Answers and Hints

T
"Inzdr = - C.
r Inxdx nr1 (n—|—1)2+

ax

(70)

(71) [ e*"sinbrdz = asinbz — beosbx) + C.

6—(
a? + b2

e cosbrdr =

— — —

(72) aze—w(a cosbx + bsinbx) + C.

(76) j‘oﬂ' sin14 rdr = 13-11-9-7-5-3- T

(77) [cos" zdx = Lsinzcos" ' + 2= [cos™? zda; fow/4 cos'zdr = & + S
(78) Hint: first integrate ™

(79) zlnz —x+C

(80) z(Inz)® —2zxlnz + 2z +C

(82) Substitute u = Inx.

(83) fﬂ/4tan zdr = 1(1)* = 1(1) +fﬂ/4tanxdm:—i+ln%\/2

(89) 1+ =

(90) 1+ 24

(91) 1— x +z+1

3 —4
(92) izf . You can simplify this further: ;2:} =x+ Z—H
(93) 2> +62+8 = (x+3) —1=(z4+4)(2+2) 50 3t—p = jfﬁ — andfm =

iln(z+2) — $In(z +4) + C.

94) [ x2+6x+10 = arctan(z + 3) + C.
(95) = LS % = %arctan(x +2)+C
(96) We add

é+ B n C A+ 1)(x—1)+ Bx(x - 1)+ Cax(x+1)

z+1 -1 z(x+1)(z—1)

(A+B+C)2*>+ (C-B)x— A
z(z+1)(z—1) '

The numerators must be equal, i.e.
’4+3=(A+B+C)z°+(C—-B)z— A

for all z, so equating coefficients gives a system of three linear equations in three unknowns
A, B, C:
A+B+C=1

C-B=0
—A=3
1



so A= -3 and B=C =2, ie.
2’ +3 3 2 2

z(x+1)(z—1) _;+:c+1+:c—1

and hence

2
/x(:c—fl—;xg—l)dx = —3In|z|+ 2In|z + 1] + 2In |z — 1] + constant.

(97) To solve
22 +3 A B c

x(x—‘—l)(x—l):;_'—x-t-l z—1’

multiply by z:

22 +3 Bz Czx
S N
(z+1)(x—1) +:c—|—1+1:—1

and plug in = 0 to get A = —3; then multiply by = + 1:
22 +3 Az +1) Cz+1)

= B
z(x —1) x tEE z—1

and plug in z = —1 to get B = 2; finally multiply by = — 1:
z? +3 A(x—1)  B(z—1)

f— C

z(z+1) T T +1 T

and plug in z = 1 to get C' = 2.

(98) Apply the method of equating coefficients to the form
z2+3 A B C

z2(z — 1) T T2 o1
In this problem, the Heaviside trick can still be used to find C' and B; we get B = —3 and

C = 4. Then
A 3 4 Az(z—1)+3(z — 1) + 42°

x x2 xz-1 z?(z—1)

so A = —3. Hence

2
/174-3(11: = —-3In|z| + 3 +41n |z — 1| + constant.
z2(z —1) x

(116) [ zsinzdz =sina —acosa

(117) [ a® coszdx = (a® 4 2) sina + 2acosa

(118) [} \/“L = [VaZ = 1], = V15— 8

z2-1
1/3 de  _ A a3 1 1
(119) f1/4 \/%—[_ 1_502}1/4—1\/15—5\/8

(120) same as previous problem after substituting z = 1/t
(152) Use Taylor’s formula : Q(z) =43 4+ 19(x — 7) + L (z — 7)°.

A different, correct, but more laborious (clumsy) solution is to say that Q(z) = Az? +
Bz + C,, compute Q'(z) = 2Az + B and Q" (x) = 2A. Then

Q(7) =49A + 7B + C = 43, Q'(7) = 14A + B =19, Q" (7) =24 =11.
This implies A = 11/2, B =19 — 144 =19 — 77 = —58, and C =43 — 7B — 494 = 1791.
(167) Toce' =1+ t+ St + -+ Lt" 4.+

(168) Tooe™ =1+ at + S t® + -+ St 4.



(169) Tw sin(3t) = 3t — S:4% + i—‘j’ﬁ TR € )ik s LSS

k+1)!
(170) Twosinht =t+ $t° 4 - + (2k+1)'t2k+1 o
(171) Teocosht =1+ 5 L t2 -+ (2k)'t2k 4.

(172) Tootty =126+ 2% — - 4 (=1)"2™" + -+

(173) TMW =5 +3Ft+ 33+ 330+ + 32(:121)15” + -+ (note the cancellation
of factorials)

(174) Tooln(1+4) =t — 242 4 148 .. g C T pm

(175) Tooln(2+2t) = TocIn[2- (1 +¢)] =In2+In(1 +¢) =2+t — 27+ 2%+ +
(71)714»1 tn

n

(176) ToolnyTFE=ToodIn(1+14) = Lt — 12 4 143 4. p GO 0ym 4
(177) Tooln(142t) =2t — 242 4 245 ... D20 m
(178) Tooln\/(122) =Too [3In(1+ 1) — $In(1 — )] = t4 313+ 267+ 4 27> T 4.

(179) Tootrz =T [1/2 + ﬁ] =1+t +t"+ - +t* + ... (you could also substitute

i
x = —1? in the geometric series 1/(1+z) =1 — x4+ 2° + -, later in this chapter we will
use “little-oh” to justify this point of view.)

(180) Tooytz =T [% - }Lft] =t+t*+t"+ -+ 4 ... (note that this function

is ¢t times the previous function so you would think its Taylor series is just ¢ times the
taylor series of the previous function. Again, “little-oh” justifies this.)

(181) The pattern for the n'™ derivative repeats every time you increase n by 4. So we
indicate the the general terms for n = 4m,4m + 1,4m + 2 and 4m + 3:

1 1 4m t4m+1 t4m+2 t4m+3
T int t) = 1+t——t>— =43 —t — —
o (sint - cost) = 1+t —gi =it - +( o T Gm D) @m+2)! @mta)l
(182) Use a double angle formula
23 24m+1 dmt1 24m+3 443
T (2sint t) = 2t =2t — = ¢* — T
(2sintcost) = sin 3 +o 4 @n 1) a9 +

(183) Tstant =t+ %t3. There is no simple general formula for the n'" term in the Taylor
series for tanz.

(184) Too [14+ 8> — 2t*] =1+ — 2¢*

(185) Too[(1+1)°] = 1 + 5t 4 10t* + 10t + 5¢* 45

(186) Too /T =1+ HY2p4 WAABED2 4 W/HA/BHA/S2)Asondlyn
(187) Because of the addition formula

sin(a+ ) = sin acos B + sin B cos a
you should get the same answer for f and g, since they are the same function!
The solution is

sina 5 cosa 3
2! 3!

sina Lin cosa LA+l _ sina LAt _ cosa dn+3
(4n)! (4n + 1)! (4n + 2)! (4n + 3)!

T sin(xz + a) = sina + cos(a)x —




(190)

f@)=fP@)=cosz,  fl(z)=fP(2)=—sinz, f'(x)=—-cosz, [P (z)=sinz,

SO
JO) =P =1, fO)=r0=0  f0)=-1
and hence the fourth degree Taylor polynomial is
4 k) k 2 4
F®(0)z T T
T4{cosx}:zili!) :1_54_1.
k=0

The error is

fO©a° _ (=singa®

Ry{cosz} = = = =]
for some unknown & between 0 and z. As |sin| < 1 we have
2 4 5
x x _ || 1
for |z| < 1.
(207) The PFD of g is g(z) = LI
IBIW) = T a1

§@) = 4+ (L= )t (1= A)e oot (1= a4
S0 gn =1 —1/2"* and ¢(™(0) is n! times that.

(208) You could repeat the computations from problem ?7?, and this would get you the
right answer with the same amount of work. In this case you could instead note that
h(z) = zg(z) so that

) = b+ (1= o+ (L= )" 4o (1 )™
Therefore hy, =1—1/2".
The PFD of k(z) is
2—z cancell 1
(x —=2)(z—1)  1-2’

the Taylor series of k is just the Geometric series.

k(z) =

2 n
(210) Tooeat:1+at+%t2+--~+a—'t"+--~.

! n!
(211) e =e-e'so Te' ™ =etet + ST+ St 4

(212) Substitute u = —t? in the Taylor series for e*.

2 2, 14 1 (=D" 2n
Tooe™ =1 =% 4 gt — ot o i 2
(213) PFD! The PFD of 1£t js 1 = —1 + -2 Remembering the Geometric Series you
get
Tw%i%:1+2n+%2+%3+~-+%"+~~

(214) Substitute v = —2¢ in the Geometric Series 1/(1 — u). You get

1 2,2 3,3 nan g n
To——=1-2t4+27t" - 2¢ —1)"2"¢
o + R R A G ) +



(215)
1,..3 n—11
Tool (ta) z—se”+52°+-+ (D) 2"+
x T
21—%1’—1—%%’2—1““4—(—1)”71%1’"71+---
(216)

t
Tmf;;:1+2H{1+1+%ﬁ?+a+1+%+§Q§+~~+U+1+%+~~+%ﬁ”+~-
217) 1/vVT—t=(1—-t)""?s0
(217) 1/ (1—1)

1 33, 338
Ts =1 lt 22 222 t .
T—1 Fatt et st

(be careful with minus signs when you compute the derivatives of (1 — ¢)~%/2))

You can make this look nicer if you multiply top and bottom in the n'" term with 2":

1 1-35 1-3-53 1-3--(2n—1) ,
T =1 _t st t* Sl el A
o Tttt ettt Tt T bt
(218)
! Lo 1-3-5 13 (n—1),
g =145+ 5t £+ .
e 2T toa el Tt o b T
(219)
Too arcs1nt—t+lﬁ+gi+1"3'5£ +1 3---(2n—1) * .
23 ' 2.45 467 2-4---2n  2n+1

(220) Tyle 'cost] =1—t+ +t° — 1t

1
(221) Tule 'sin2t] =t —t> + gts + o(t") (the t* terms cancel).

1

(222) PFD of 1/(2 —t — t?) = % + 2. Use the geometric series.

1
Groa—o 2+t

(223) V1+2t+22 = ¢/ (1+1t)2 = (1 +¢)*/3. This is very similar to problem ??. The
answer follows from Newton’s binomial formula.

(226) 1/2

(227) Does not exist (or “+o00”)

(228) 1/2

(229) —1

(230) 0

(231) Does not exist (or “—o0”) because e > 2.
(232) 0.

(233) 0.

(234) 0 (erte the limit as limn—oo (Z'jll), = limnﬁmﬁ!w + limnﬁmm -

limp 0o =55 n+1 +lim,— oo (n+1)!)

(236) Use the explicit formula (??) from Example ??. The answer is the Golden Ratio ¢.
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(238) The k'™ derivative of g(x) = sin(2z) is ¢ (z) = £2"soc(2z). Here soc(0) is either
sin @ or cos 6, depending on k. Therefore k" remainder term is bounded by

. lg* (@), e 25 |2z
Ry 2 < =2 = - 2 < -
| [sin 22]] < (k+1)! v (k+1)! [soc(2z)] < (k+1)!
Since limp_ oo —‘?:f;ll = 0 we can use the Sandwich Theorem and conclude that

limg o0 Ri[g(x)] = 0, so the Taylor series of g converges for every z.
(242) Read the example in §77.
(243) -1 <z < 1.
(244) -1<ax< 1.
(245) -1 <z<1.

(246) —2 <z < 3. Write f(z) as f(z) = % %7(171) and use the Geometric Series.
(261) (a) arg(l +itan®) = 0 4 2kw, with k any integer.
(b) zw =1 — tanf tan ¢ + i(tan 6 + tan ¢)

(c) arg(zw) = arg z + argw = 0 + ¢ (4 a multiple of 27.)

(d) tan(arg zw) = tan(0 + ¢) on one hand, and tan(arg zw) = % on the other
hand. The conclusion is that
tan 6 + tan ¢
tan(0 — v rang
an(0 + ¢) 1 — tan 0 tan ¢

(262) cos40 = real part of (cos 6 + isin#)*. Expand, using Pascal’s triangle to get
cos 40 = cos® @ — 6 cos® @sin? 0 + sin 6.
sin 460 = 4 cos® 0 sin @ — 4 cos sin® 6.
cos 50 = cos® § — 10 cos® O sin” 6 + 5 cos O sin 0
sin 66 = 6 cos® @ sin 6 — 20 cos® #sin® 6 + 6 cos O sin® 6.

(265) To prove or disprove the statements set z = a + bi, w = ¢+ di and substitute in the
equation. Then compare left and right hand sides.

(a) Re(z) + Re(w) = Re(z + w) TRUE, because:
Re(z +w) = Re(a + bi + ¢+ di) = Re[(a + ¢) + (b+ d)i] = a+ ¢ and
Re(z) + Re(w) = Re(a + bi) + Re(c+di) =a+c.

The other proofs go along the same lines.

(b) z+w = z+w TRUE. Proof: if z = a+ bi and w = ¢+ di with a, b, ¢, d real numbers,
then

Re(z) =a, Re(w) =c = Re(z) + Re(w) =a+c
z+w=a+c+ (b+di = Re(z+w)=a+c.
So you see that Re(z) + Re(w) and Re(z + w) are equal.

(c) Im(z) + Im(w) = Im(z + w) TRUE. Proof: if z = a+ bi and w = c+ di with a,b,¢,d
real numbers, then

Jm(z) =b, Im(w)=d = Im(z) + Im(w) =b+d
z+w=a+c+ (b+d)yi = Im(z+w)=0>b+d.
So you see that Jm(z) + IJm(w) and IJm(z + w) are equal.
(d) zw = (z)(w) TRUE



) = Re(zw) FALSE. Counterexample: Let z = ¢ and w = 4. Then
(z2)Re(w) =0-0 =0, but Re(zw) = Re(i - i) = Re(—1) = —1.
(f) z/w = (2)/(w) TRUE
(g) Re(iz) = Im(z) FALSE (almost true though, only off by a minus sign)
(

h) Re(iz) = iMRe(z) FALSE. The left hand side is a real number, the right hand side is
an imaginary number: they can never be equal (except when z = 0.)

(i) Re(iz) = Jm(z) same as (g), sorry.
(j) Re(iz) = iJm(z) FALSE
(k) Im(iz) = Re(z) TRUE
(1) Re(z) = Re(z) TRUE
(266) The number is either %\/5—&— %z 5 or —%\/_— %1\/5
(267) 'tis 2V3 -+

(269) MDD+ — n2Hiln2 _ oIn2(6041n 9 4 sinln 2) so the real part is 2cosIn 2 and the
imaginary part is 2sinIn 2.

(270) €® can be negative, or any other complex number except zero.

If z = & + iy then e* = e®(cosy + isiny), so the absolute value and argument of e* are
|z] = e” and arge® = y. Therefore the argument can be anything, and the absolute value
can be any positive real number, but not 0.

1 1 cost —isint cost —isint .
(271) = P = — — = — = cost —isint =
e“ cost + ¢sint cost+isint cost —isint cos?t +sin“t

—it
e .

(274) Ae'®t + Be Pt = A(cos ft + isin 3t) + B(cos Bt — isin Bt) = (A + B) cos Bt +i(A —
B) sin 3t.

So Ae'P* + Be Pt = 2cos Bt + 3sin 5t holds if A+ B = 2,i(A — B) = 3. Solving these
two equations for A and B we get A =1 — %i, B=1+ %z

(280) (a) 22 +62+10 = (2 +3)? 4+ 1 = 0 has solutions z = —3 £ i.

(b) 22 +8=0 = 2°® = —8. Since —8 = 8¢™+?*™ we find that z = gl/3eFitghmi (k any
integer). Setting k = 0,1, 2 gives you all solutions, namely

k=0 : z=23"=1+iV3
k=1 : z=2e5H2m/3 - 9
k=2 : z=2e3""/5-1_4y3
(c) 2° —125=10: 20 =5, 21 = -2 + 2iV3, 20 = -2 — 2iV/3
(d) 222 +42+4=0: 2= —1+1.
(e
(f

) 2249222 -3=0:22=1o0rz2’= —3, so the four solutions are +1, +i/3.
1328 =28+ 2 28 =1or2® = —%. The siz solutions are therefore

-1+ %\/&1 (from 2z = 1)
“53G+5v8), (om = -3)

(g) 2° — 32 = 0: The five solutions are

2, 2cosZm+2isin 2w, 2cosim =+ 2isin 7.



Note that 2 cos gw + 2isin gw = 2cos %w — 2isin %7‘(’, and likewise, 2 cos %7‘(’ + 2isin %w =
2 cos %w — 2isin %7‘(’. (Make a drawing of these numbers to see why).

5

(h) 2° =16z = 0: Clearly z = 0 is a solution. Factor out z to find the equation z* — 16 = 0
whose solutions are +2, +2i. So the five solutions are 0, +2, and +2¢

(281) f'(x) = ﬁ In this computation you use the quotient rule, which is valid for
complex valued functions.

g,(x) = % + 1+iz2

B (z) = 2ize™” . Here we are allowed to use the Chain Rule because h(z) is of the
form hi(hz2(x)), where hi(y) = €' is a complex valued function of a real variable, and
ha(x) = z? is a real valued function of a real variable (a “221 function”).

(282) (a) Use the hint:
2ix —2ix\ 4
/(COSQm)4 dr = / (%) dx
) N4
— % (62190 + 6722&6) dr

The fourth line of Pascal’s triangle says (@ +0)* = a* + 4a®b + 6ab* + 4ab® + b*. Apply
this with a = €?®, b = ¢~ and you get

/(COSQ:C)4 dr = 1_16/{68ix _'_4641'96 _"_6_’_46742'&0 _"_6781‘95} da

_ 1_16 ée&x + %64& + 6 + %674190 4 _Lgief&m} +C
We could leave this as the answer since we're done with the integral. However, we are
asked to simplify our answer, and since we know ahead of time that the answer is a real
function we should rewrite this as a real function. There are several ways of doing this, one
of which is to carefully match complex exponential terms with their complex conjugates
(e.g. ¥ with ¢™8®) This gives us
1 8ix —8ix 4ix —4dix

4 e™'r —e e —e
/(cost) d:c:1—6 % + ; —|—61:}+C’.

0 —10
Finally, we use the formula sin § = “—~—— to remove the complex exponentials. We end
up with the answer

4, 1y . o L 3
/(cosQ:c) dr = 1—6{151n8x+251n4m+6x} +C = g;sin8r + gsindr + gz + C.
(b) Use sinf = (' — e™9)/(2i):
Cow, . 2 o eiam_efiaac 2

dx = — )" d

/e (sinaz)? de /e () da
1 —2x 2iax —2iax
= W/e (e —2+e )dx

= _i/\(e(72+2ia)z _ 2_‘_6(727271(1)1;) dx

6(72+2ia)ac 6(72722'(1)90

_ 1= 0 -
(1) =i Tt e O
———— ———
A B

We are done with integrating. The answer must be a real function (being the integral of
a real function), so we have to be able to write our answer in a real form. To get this real
form we must expand the complex exponentials above, and do the division by —2 + 2ia



and —2 — 2¢a. This is still a fair amount of work, but we can cut the amount of work in
half by noting that the terms A and B are complex conjugates of each other, i.e. they are
the same, except for the sign in front of i: you get B from A by changing all i’s to —i’s.
So once we have simplified A we immediately know B.

We compute A as follows

—2 — 2ia —2x+2iax
A =
(—2 — 2ia)(—2 + 2ia) (e )
(=2 —2ia)e”**(cos 2ax + isin 2azx)
- (27 + (207

—2x —2z

= 4(3_ 12 (—2cos2ax + 2asin 2az) + i4i_ 122 (—2a cos 2ax — 2sin 2azx).
Hence
e 2% e 2
B = 11 4a2 (—2cos2ax + 2asin 2ax) — im (—2a cos 2ax — 2sin 2az).
and
A+ B= ﬁ(—2 cos 2ax + 2asin 2ax) = i(— cos 2ax + asin 2azx).
4 4 4a? 1+ a2
Substitute this in () and you get the real form of the integral
o . 2 L e ) x
/e (smaac) dx:—ZH_—az(—cos2am+asm2ax)+§—|—C.

(283) (@) This one can be done with the double angle formula, but if you had forgotten
that, complex exponentials work just as well:

T —ix
/cos2:cd1: /‘(%)2 dx
_ i/{62i1+2+672i1‘} dx
:i{%6221+2$+%2167221}+0
2ix —2ix

— e

_1r¢
=i{—; +2z}+C

= i{sin2x+2x} +C
= isian—i—g—&—C’.

(¢), (d) using complex exponentials works, but for these integrals substituting v = sinx

works better, if you use cos?z = 1 — sin® z.

(e) Use (a — b)(a+ b) = a® — b* to compute
ix —ixz\2 T —ix\2 . . . .
0082 xsin2 T = (6 ‘|’226 ) (6 (2;2 ) _ %16(6211. + 6722&0)2 _ %16(6411. +24 674290)

First variation: The integral is

/cos2 zsin® z dr = %16(%64" + 2z + %41.6747;1) +C = —L5sindz — 22+ C.
Second variation: Get rid of the complex exponentials before integrating:
%16(64”” +24e 7)) = —-(2cosdz + 2) = —%(cos 4z + 1),

If you integrate this you get the same answer as above.
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(3) and (1): Substituting complex exponentials will get you the answer, but for these
two integrals you’re much better off substituting u = cos = (and keep in mind that sin? z =
1—cos’z.)

(k) See (e) above.

Aet +1
292 t) =2
(202) y(1) =255

(293) y=Ce /3, C = 5e/3

(294) y=Ce " C = ¢
(295) Implicit form of the solution tany = —% +C,s0 C =tanm/3 =+/3.
Solution y(z) = arctan(v/3 — z*/3)

(296) Implicit form of the solution: y + %yz +x+ %:c2 =A+ %AQ. If you solve for y you
get

y=—1++A2+24+1— 22— 22
Whether you need the “+” or “—” depends on A.

1 -1
(297) Integration gives 5111 12;4' 1‘ = x + C. Solve for y to get Z—ﬂ — 220 _
(ieQC)eQx'
—1 1+ Be*
Let B = +¢%¢ be the new constant and you get Y~ 2 _ Be® whence y = +7e.
y+1 1 — Be2®

The initial value y(0) = A tells you that B = and therefore the solution with initial
A+1+(A—-1)e*>

A4+1—(A-1)e2’
(298) y(z) = tan(arctan(A) — ).

A-1
A+12

value y(0) = Ais y =

(299) Y= xesinz +Aesinz
(300) Implicit form of the solution %ys—&— ix‘l =C;C= %AS. Solution is y = §/ A3 — %m‘*.

(304) General solution: y(t) = Ae®* cost + Be* sint. Solution with given initial values
has A="7, B=—10.
(305) y = Ae'+ Be '+ Ccost+ Dsint

(306) The characteristic roots are r = :t%\/i + %\/57 so the general solution is

1 1 1 1
y= AezV? cos %\/it + BezV? sin %\/it +Ce V% cos %\/it + De 2% sin %\/it

(307) The characteristic equation is 7* —r? = 0 whose roots are r = £1 and r = 0 (double).
Hence the general solution is y = A + Bt + Ce' 4 De™*.

(308) The characteristic equation is r*+72 = 0 whose roots are r = +i and r = 0 (double).
Hence the general solution is y = A+ Bt + C' cost + Dsint.

(309) The characteristic equation is 7* 4+ 1 = 0, so we must solve

7,,3 - 1= e(rr+2k‘rr)z.
The characteristic roots are

r = e(F3km)i
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where k is an integer. The roots for k£ = 0, 1, 2 are different, and all other choices of k lead
to one of these roots. They are

. 1 ;
k=0: r:em/Szcosg—&—isin%:E—i—%\/g
k=1: r=e¢" =cosm+isinm=—1
5ri 5 5 1 7
k=29 _ o‘rr’L/3: o N I
r=e Ccos 3 + 4 sin 3 5 2\/5

R S 1 7
- ~L_2+iVvB
_ <2172
// A
s ' N
7 1 AN
1
/ i \
/ ] \
/ i \
/ ' \
_1! ' !
o ; :
\ 1 '
' 2 !
\ | /
\ | /
\ , /
\ ' ,
\ 1 /
N : Va
\\ s
N _ )
~ -~ -1 _ i
. 1-1v3

The real form of the general solution of the differential equation is therefore

y=Ae "+ Be?" cos ?t + Ce?'sin ?t
(310) y = Ae’ + Be 2! cos @t + Ce 2'sin gt
(311) y(t) = c1e¥ 4 coe”V3 4 Acost + Bsint.
(312) Characteristic polynomial: 7* 4+ 4r® + 3 = (r® + 3) (r* 4+ 1).
Characteristic roots: —iv/3, —i,1, i/3.
General solution: y(t) = A1 cos V3t + By sin V3t + Ay cost + Basint.
(313) Characteristic polynomial: 7* 4 2r® +2 = (r® + 1)2 + 1
Characteristic roots: 7{2 =—1+1, 7“%74 =—1—1.

Since —1 + i = /2e™/4*2*™ (k an integer) the square roots of —1 + i are £2'/4¢™/% =
214 cos 3 +i2Y%sin 5+ The angle 7/8 is not one of the familiar angles so we don’t simplify
cosm/8, sinm/8.

Similarly, —1 — i = V2e /2R o6 the square roots of —1 — i are £2Y/4e” T8 —

i21/4(cos 5 —4sin %)



12

If you abbreviate a = 21/ cos 5 and b = 24 gin 5, then the four characteristic roots
which we have found are

1/4

r1:21/4cos%+i2 sing:a—i—bi

r2=21/4cosz—i21/4sin% =a— bi
r3:—21/4cosg+i21/4sing = —a-+bi
7’4:—21/4(;osg—2‘21/4SinE = —a—bi

The general solution is

y(t) = Aie™ cosbt + Bre sin bt + Ase *t cos bt + Boe “ sin bt

(316) Characteristic equation is r® — 125 = 0, i.e. 7° = 125 = 125¢2*™". The roots are
7= 5e2"/3 e,
5 5(—2+1v3)=-2+2iV3, and 5(-1 - iV3) = -2 - 3iV3.

The general solution is

5 _5 = _5 .
f(z) = c1e’ + coe 2xCOS%\/§£C+Cg€ 2% sin 2v/ 3.

(317) Try u(z) = €™ to get the characteristic equation 7° = 32 which has solutions

2 - 4. 6 8
£ i L i
r=2,2e5"" 2e5"" 2e5"" 2e5"",

ie.

7‘0:2
_ 2 . .9
r1 = 2cos gﬂ'+2’LSln =
_ 4 c a4
ro = 2coS gﬁ—|—2zsm T

r3 = 2C0oSs gﬂ'—l—Zisin gﬂ'

r4 = 2COS %ﬂ' + 27 sin %71'.
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Remember that the roots come in complex conjugate pairs. By making a drawing of the
roots you see that r1 and ry are complex conjugates of each other, and also that r2 and
rs are complex conjugates of each other. So the roots are

2, 2 cos %71':&21'5111%71’7 and  2cos %W:I:Qisin %71'.
The general solution of the differential equation is
u(z) = 162 + 2™ cos bx + c3e® sin bz + c3eP” cos gr + c3eP” sin gz
Here we have abbreviated
a = 2cos %W,b = 2sin %w,p = 2cos %W,q = 2sin %7‘(’.
(319) Characteristic polynomial is 7* —5r%4-6r—2 = (r—1)(r*—4r+2), so the characteristic

roots are ry = 1,723 =2+ V2. General solution:

(2-v2)t (24+V2)t

y(t) = crel + coe + c3e

(321) Characteristic polynomial is 7® —5r% +4 = (r — 1)(r® — 4r — 4). Characteristic roots
arery = 1,103 =2+% 2v/2. General solution

2(z) = c1e” + c2ePT2VDT 4 pe2-2VD2

(322) General: y(t) = Acos3t + Bsin3t . With initial conditions: y(t) = sin 3¢
(323) General: y(t) = Acos 3t + Bsin 3t. With initial conditions: y(t) = —3cos 3t
(324) General: y(t) = Ae* + Be'. With initial conditions: y(t) = ¥ — e

(325) General: y(t) = Ae™?' 4+ Be™%'. With initial conditions: y(t) = 3e™2" — 2¢~%
(326) General: y(t) = Ae™?" + Be™%'. With initial conditions: y(t) = ™2 — ¢~
(327) General: y(t) = Ae' + Be®. With initial conditions: y(t) = 2e’ — 1€
(328) General: y(t) = Ae' + Be®. With initial conditions: y(t) = (¢ — ') /4
(329) General: y(t) = ¢

(330) General: y(t) =

efot

b

e~ '+ Be ®. With initial conditions: y(t) = 2e™" —

1
1
(e—t _ e—5t)

(331) General: y(t) = ¢**(Acost + Bsint). With initial conditions: y(t) = e* (cost —
2sin t)

b

NN

e~' + Be™®. With initial conditions: y(t) =

(332) General: y(t) = e*(Acost + Bsint). With initial conditions: y(t) = e**sint

(333) General: y(t) = e **(Acost + Bsint). With initial conditions: y(t) = e *(cost +
2sin t)

334) General: y(t) = e 2*(Acost + Bsint). With initial conditions: y(t) = e **sin ¢
Y Y
(335) General: y(t) = Ae® + Be'. With initial conditions: y(t) = 3¢ — 2¢*

(336) Characteristic polynomial: r® + r? — 7 4+ 15 = (r + 3)(r* — 2r + 5). Characteristic
roots: r1 = —3, r2,;3 = 1 + 2i. General solution (real form) is

f(t) = cre™ " + Ae’ cos 2t + Be' sin 2t.
The initial conditions require
fO)=ca+A=0, f(0)=-3c:+A+2B=1, f"(0)=9c1 —3A+4B=0.
Solve these equations to get ¢1 = —1/10, A = 1/10, B = 3/10, and thus

t)=—Le 3 + Lefcos2t + 2e sin 2t.
10 10 10

(338) y=—2+ Ae' + Be*
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(339) y = Ae' + Be ' + tet
= Acost+ Bsint + ztsint
(340) y=A Bsi Ltsi
y = Acos3t 4+ Bsin3t + 3 cost
341 Acos3t + Bsin3t + &
= Acost+ Bsint + 5tsint
(342) y=A Bsi Ltsi
= Acost+ Bsint — z cos 3t
(343) y= A Bsi §cos3

(345) (i) Homogeneous equation: try z(t) = e, get characteristic equation r44r+45 = 0,
with roots r1,2 = —2 £ 4. The general solution of the homogenous equation is therefore
zr(t) = cie 2 cost + coe Hsint.

To find a particular solution try z,(t) = Ae. You get (i* + 4i + 5)Ae’ = €, i.e.
(4+49)A =1,50 A= ﬁ = ilii =315 =3 So the general solution to the
inhomogeneous problem is

z
8-

1—17 _
2(t) = et b ee?

t —2t .
3 cost + coe sint.

(347) Let X(¢) be the rabbit population size at time ¢. The rate at which this population
grows is dX/dt rabbits per year.

%X from growth at 5% per year

2 X from death at 2% per year
—1000 car accidents

4700 immigration from Sun Prairie

Together we get

dX 3

This equation is both separable and first order linear, so you can choose from two methods
to find the general solution, which is

X (t) = 10,000 + Ce” %"
If X (1991) = 12000 then
10,000 + Ce® >0 =12 000 = C = 2,000e""**"! (don’t simplify yet!)
Hence

X(1994) = 10, 00042, 000 0031991 £0-03x1994 _ 10 009042, 00003 * (19941991 — 10 00042, 000e™*° ~ 12, 188. . ..

(348) (a) Separate variables or find an integrating factor (4- —kT = —kA). Both methods
work here. You get T'(t) = A + Ce*| where C is an arbitrary constant. Since k < 0 one
has lim; .« €** = 0, and hence lim;_ o T(t) = lime—oo A + Ceft=A+C 0= A.

(b) Given T'(0) = 180, A = 75, and T'(5) = 150. This gives the following equations:
A+C =180, A+ Ce* =105 = C = 105, Bk =In-—" —In2=—1Inr.
105 7 5
When is T' = 90?7 Solve T'(t) = 90 for t using the values for A, C, k found above (k is a bit
ugly so we substitute it at the end of the problem):

15 1
Tt :A kt: 1 kt: kt:—:_.
() + Ce 75 + 105e 90 = e 105 -
Hence
t_lnl/?__ln_?_ In7
ok k 71n7/5'

The limit as t — oo of the temperature is A = 75 degrees.
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(349) (a) Let y(t) be the amount of “retaw” (in gallons) in the tank at time ¢. Then
dy 5

= 3 .
dt 100 ~——
" removal
growth

(b) y(t) = 60 + Ce’/?° = 60 + (yo — 60)e/?°,
(c) If yo = 100 then y(t) = 60 + 40e*/2° so that lim; . y(t) = +ooc.
(d) Yo = 60.

(350) Finding the equation is the hard part. Let A(t) be the volume of acid in the vat at
time ¢. Then A(0) = 25% of 1000 = 250gallons.

A’(t) = the volume of acid that gets pumped in minus the volume that gets extracted
per minute. Per minute 40% of 20 gallons, i.e. 8 gallons of acid get added. The vat is
well mixed, and A(t) out of the 1000gallons are acid, so if 20 gallons get extracted, then

A .
Tooo X 20 of those are acid. Hence

dA A A
——=8-——x20=8-—.
&~ 100 P =85

The solution is A(t) = 400 + Ce™"/°° = 400 4 (A(0) — 400)e~*/0 = 400 — 150e /",

The concentration at time t is

) A(t) 400 — 150e /%0 /50
tration = = =0.4-0.15 .
concenration total volume 1000 "
If you wait for very long the concentration becomes
concentration = lim & =0.4.
t—oo 1000

(351) P is the volume of polluted water in the lake at time ¢. At any time the fraction
of the lake water which is polluted is P/V, so if 24 cubic feet are drained then % X 24 of
those are polluted. Here V = 10°; for simplicity we’ll just write V until the end of the
problem. We get

% = "in minus out” =3 — § X 24

whose solution is P(t) = 1V + Ke V', Here K is an arbitrary constant (which we can’t

call C' because in this problem C' is the concentration).

The concentration at time t is
Pit)y 1 K 21, 1

—24 1, _24,
1) = —= = — — V== — = v,
Ct)=—=~=35+v°¢ 5+ (Co—g)e
No matter what Cj is you always have
tlim Ct)=0

. _24
because lim; oo e~ Vi =0.

If Co = % then the concentration of polluted water remains constant: C(t) = %.

(364) (a) Since <;) + (i) = <; i i) the number x would have to satisfy both 14+x = 2
and 2 4+ x = 1. That’s impossible, so there is no such .

(b) No drawing, but p = <;) + (i) = <;) +x <1) is the parametric representation of

a straight line through the points (1,2) (when z = 0) and (2, 3) (when = = 1).
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. r+y\ _ (2 _ _ _
(c) = and y must satisfy <2m_‘_y)—<1>.Solve:tc—l—y—?7 2z +y =1to get x = —1,
y=3.

(365) Every vector is a position vector. To see of which point it is the position vector
translate it so its initial point is the origin.

- -3 - . .
Here AB = ( 3 )7 so AB is the position vector of the point (—3, 3).
(866) One always labels the vertices of a parallelogram counterclockwise (see §77).
e — —_— —— 1 — 2 — 3
ABCD is a parallelogram if AB+ AD = AC. AB = <1>7 AC = <3>7 AD = <1> So
— —_— —
AB+ AD # AC, and ABCD is not a parallelogram.
(367) (a) As in the previous problem, we want AB + AD = AC. If D is the point

— 0 —_— d1 — 4 — —_— —
(di,d2,ds) then AB= 1|, AD = |d2—2|, AC = | —1], so that AB+ AD = AC
1 ds —1 3

will hold if d; =4, d2 = 0 and d3 = 3.
—_— - —_—
(b) Now we want AB + AC = AD, so diy =4, d2 =2, d3 = 5.

3 -1 33—t
372) () =0 +t| 1 | = t
1 1 1+t
(b) Intersection with xzy plane when z = 0, i.e. when ¢ = —1, at (4, —1,0). Intersection

with zz plane when y = 0, when ¢t = 0, at (3,0,1) (i.e. at A). Intersection with yz plane
when x = 0, when t = 3, at (0, 3,4).

(373) (a) p=(b+8)/2,G=(a+&)/2, 7= (a+b)/2
(bym =d +_‘§(ﬁ — @) (See Figure 7?7, with AX twice as long as X B). Simplify to get
m = %a + %b + %c.
(c) Hint : find the point N on the line segment BQ which is twice as far from B as it is
from Q. If you compute this carefully you will find that M = N.

(375) To decompose bset b="b, + 5/, with 5// = ta for some number ¢. Take the dot

product with @ on both sides and you get @b = t||@||%>, whence 3 = 14t and ¢t = 2.
Therefore

by=—a, bi-b-—a

Vi T

To find b y and b— L you now substitute the given values for @ and b.

—

The same procedure leads to @, and @,: d, = %57 a, =a— %5

(376) This problem is of the same type as the previous one, namely we have to decompose
one vector as the sum of a vector perpendicular and a vector parallel to the hill’s surface.
The only difference is that we are not given the normal to the hill so we have to find it

ourselves. The equation of the hill is 12z1 + 52 = 130 so the vector 1 = ( 152 ) is a normal.

The problem now asks us to write fgrav = fJ_ + f//7 where fJ_ = tn is perpendicular to

the surface of the hill, and }:// id parallel to the surface.

Take the dot product with 7, and you find ¢||7i||? = 7- f
—%gmg. Therefore

r 5 12 o —%mg T z _%mg
fl__@mg<5)_(—%mg ’ 'f//_fgrav_fL_ 144mg 5

— 169t = —5mg — t =

grav
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(378) (i) [la — b||2 lldlf* — 2a-b + |1B]1%; (i) [|12d — &) = 4]a@|* — 4a-b + [|b]|*; (i)
@+ b|| = V54, ||@— b|| = V62 and ||2d@ — b = +/130.

— — 1 — — -2 — — —1
(380) Compute AB=—BA = 1) BC =-CB= 5 | AC =-CA = L Hence
—

IAB| = V2, | BC|| = vB = 22, | AC|| = V0.

AB. A — _ _AB-AC _ _ 2 _ 1
And also AB-AC =2 = cos ZA = AB|AC] — VB — V5

A similar calculation gives cos /B = 0 so we have a right triangle; and cos Z/C' = %

(381) AB = (}), AC = (i=}), BC = (12).

If the right angle is at A then AB-AC = 0, so that we must solve 2(t — 1) + (2 —¢) = 0.
Solution: ¢t = 0, and C' = (0, 3).

If the right angle is at B then AB-BC = 0, so that we must solve 2(t —3) + (1 —¢) = 0.
Solution: ¢t =5, and C' = (5, —2).

If the right angle is at C' then AC-BC = 0, so that we must solve (¢t — 1)(¢t — 3) + (2 —
t)(1 —t) = 0. Note that this case is different in that we get a quadratic equation, and in
that there are two solutions, t =1, t = %

This is a complete solution of the problem, but it turns out that there is a nice picture
of the solution, and that the four different points C' we find are connected with the circle
whose diameter is the line segment AB:

C (t=0)

C (t=5)




18

(382.i) ¢ has defining equation —%:c + y = 1 which is of the form 7-Z =constant if you
choose 11 = (*11/2).

(382.ii) The distance to the point D with position vector d from the line ¢ is Z:(d-9)

where @ is the position vector of any point on the line. In our case d = 0 and the point
—

A(0,1), @ = OA = (9), is on the line. So the distance to the origin from the line is
a 1

i —2/vE

17— /(122 +12
(882.iii) 3z 4+ y = 2, normal vector is m = (3).

(382.iv) Angle between ¢ and m is the angle 6 between their normals, whose cosine is

71 —1/2 1 1
cosl = R — —__1 —__1./
[EINEA \/5/4+/10 50 10

(388.i) 0 (the cross product of any vector with itself is the zero vector).

(388.iii) (@+b)x (@—b)=dxa+bxa—axb—bxb=—2dxb.
(389) Not true. For instance, the vector é could be é = a + b, and @ x b would be the
same as € X b.

. . . — - - 74 .
(390.i) A possible normal vector is 7 = AB X AC = (:14). Any (non zero) multiple of
-1
this vector is also a valid normal. The nicest would be i’fi = ( L )
(390.ii) 7-(Z —a@) =0, or 11-& = n-d. Using 77 and @ from the first part we get —4x; +
4z — 4z3 = —8. Here you could replace @ by either b or é. (Make sure you understand
why; if you don’t think about it, then ask someone).

(390.iii) Distance from D to P is Ad-a) _ 4/V/3 = %\/5 There are many valid choices

[l
of normal ¢ in part (i) of this problem, but they all give the same answer here.

(390.iv) Since 7-(0 — @) and 7-(d — @) have the same sign the point D and the origin lie
on the same side of the plane P.

7’i~(();7[i)

Distance from O to P is =T

(390.v) The area of the triangle is %HA_B) X A—C>'|| =23

(390.vi) Intersection with z axis is A, the intersection with y-axis occurs at (0, —2,0) and
the intersection with the z-axis is B.

(391.i) Since 1 = AB x AC = (ES) the plane through A, B, C has defining equation

—3z + y + z = 3. The coordinates (2, 1,3) of D do not satisfy this equation, so D is not
on the plane ABC'.

(391.ii) If E is on the plane through A, B, C' then the coordinates of E satisfy the defining
equation of this plane, so that —3-1+1-1+1-« = 3. This implies a = 5.

(392.i) If ABCD is a parallelogram then the vertices of the parallelogram are labeled A,
B, C, D as you go around the parallelogram in a counterclockwise fashion. See the figure
in §43.2. Then AB + AD = AC. Starting from this equation there are now two ways to
solve this problem.

di—1
(first solution) If D is the point (d1,d2,ds) then A—D> = <3;+i>7 while A—B> = (%) and
i

— 0 _— - —_— dy 0

AC = ( 31). Hence AB + AD = AC implies <32+§) = ( 31), and thus d; =0, d2 =1
- ol -

and ds = 0.
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(second solution) Let a, 5, c, d be the position vectors of A, B,C, D. Then AB = b— a,
A A ~ - -
etc. and AB+ AD = AC is equivalent to b—a +d — a = é — a. Since we know a, b, ¢ we

can solve for d and we geta:é'—l;—i—[i: ({1) — ((j))—&—(%) = (((1;)

.. e = -1
(392.ii) The area of the parallelogram ABCD is ||AB x AD| = H( 1 )H =+11.

(392.iii) In the previous part we computed ABx AD = (gl ), so this is a normal to the

plane containing A, B, D. The defining equation for that plane is —x + y + 3z = 1. Since
ABCD is a parallelogram any plane containing ABD automatically contains C.

(392.iv) (=1,0,0), (0,1,0), (0,0, 3).
(393.i) Here is the picture of the parallelepiped (which you can also find on page 103):

G

base
A

Knowing the points A, B, D we get AB = (%l), AD = (7?2). Also, since }jggg is

a parallelepiped, we know that all its faces are parallelogram, and thus EFF = A—B>, etc.
Hence: we find these coordinates for the points A, B, ...

. . . —_— —_— —_— —3
A(1,0,0), (given); B(0,2,0), (given); C(—2,2,1), since AC = AB + AD = ( 2 );

D(_1707 1)7 (given); E(O7 07 2)7 (given)

— — 1
F(—1,2,2), since we know F and EF = AB = ( 2 )

- o 297
G(-3,2,3), since we know F and FG=FH =AD = { o

— —_— ) !
H(-2,0,3), since we know E and EH = AD = ( 0 )

(393.ii) The area of ABCD is HA_é X EH =+/21.

(393.iii) The volume of P is the product of its height and the area of its base, which we
volume

of
compute in the previous and next problems. So height= 7252 \/% = %\/21.

(393.iv) The volume of the parallelepiped is A_E)(A_B) X E) =6.

Sketching Parametrized Curves

(395) The straight line y = = + 1, tra- At t = —oo we start at the origin, as
versed from the top right to the bottom t — 400 both x and y go to +oo.
left as ¢ increases from —oo to 4-oc0.
(398) The graph of y = Inz, or z = ¢?

(396) The diagonal y = x traversed from (same thing), traversed in the upwards
left to right, from upwards. direction.

(397) The diagonal y = =z again, but (399) The part of the graph of y = 1/x
since x = e’ can only be positive we which is in the first quadrant, traversed

only get the part in the first quadrant. from left to right.
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(400) The standard parabola y =
from left to right.

401) The graph z = siny. This is the
g y
usual Sine graph, but on its side.

T =siny

—7

(402) We remember that cos2a = 1 —
2sin? o, so that #(t) traces out a part
of the parabola y = 1 — z?. Looking
at x(t) = sint we see &(t) goes back
and forth on the part of the parabola

y=1—222 between z = —1 and & = +1.

(403) The unit circle, traversed clock-
wise, 25 times every 27 time units. Note
that the angle 0 = 25t is measured from
the y-axis instead of from the z-axis.

(404) Circle with radius 1 and center
(1,1) (it touches the = and y axes). Tra-
versed infinitely often in counterclock-
wise fashion.

e

(1.1)

(405) Without the 2 this would be the
standard unit circle (dashed curve be-
low). Multiplying the & component by
2 stretches this circle to an ellipse. So
Z(t) traces out an ellipse, infinitely of-
ten, counterclockwise.

(406) For each y = t* there is exactly
one t, namely, t = yl/g. So the curve
is a graph (with x as a function of y in-
stead of the other way around). It is the
graph of x = y2/3 = Jy2.

The curve is called Neil’s parabola.



(407) If 6 is the angle through which
the wheel has turned, then #(0) =

0 —asinf
1—acosf)’

(410) Here’s the picture:

The curve

The arc AB has length 0, and we are
told the line segment BX has the same
length. From this you get

#(0) = (cos@—|—05m0)

sinf — f cos 6

This curve is called the evolute of the
circle.

(415.i) £(0) = a, Z(1) = € so the curve
goes from A to C as t increases from
t=0tot =1 &'(0) = 2b—da) so
the tangent at ¢ = 0 is parallel to the
edge AB, and pointing from A to B.
# (1) = 2(€ — b) so the tangent at t = 1
is parallel to the edge BC', and pointing
from B to C. For an animation of the
curve in this problem visit Wikipedia at

Horizontal tangents: t =
Vertical tangents: ¢ = 7,

Directions: NE O <t < 3, SE § <t <
g,syvg<t§%,N3W’%<t7<%,
o7 s sy s
SW =F <t < 55, SE 5 <t <, NE

T <t<2m

The curve traced out is a figure eight on
its side, i.e. the symbol for infinity “oco”.

(417.iii) Very similar to the previous
problem. In fact both this vector func-
tion and the one from the previous prob-
lem trace out exactly the same curve.
They just assign different values of the
parameter ¢t to points on the curve.

(417.iv) Horizontal points: ¢t = =++/a;
Vertical points: ¢ = 0; Directions:
SE —co <t < —v/a, NE —y/a <t <0,
NW 0 <t <+a, SWa<t<oo.

The curve looks like a “fish” (with some
imagination.)

(417.v) No horizontal points;  Vertical
point: t = 0. Directions: NE —oco < t <
0, NW 0 <t < 0.

(417.vi) This one has lots of horizon-
tal and vertical tangents. If you re-

http://en.wikipedia.org/wiki/File:Bezier_2_bigagéfthe numbers 2 and 3 by other

(415.ii) At ¢t = 1/2. If you didn’t get
this, you can still get partial credit by
checking that this answer is correct.

(417.1) Horizontal tangents: ¢ = 1/4;
Vertical tangents: t = 0; Directions:
SouthEast —oo < t < 1/4, NorthEast
1/4 <t <0, NorthWest 0 < t < oo.

(417.ii) This vector function is 27 pe-
riodic, so we only look at what hap-
pens for 0 < ¢t < 27 (or you could take
—m < t < 7, or any other interval of
length 27).

integers you get curves called “Lis-
sajous figures’. Get a graphing calcu-
lator/program and draw some. Or go to

http://en.wikipedia.org/wiki/Lissajous_curve

(417.vii) Horizontal point: ¢ = 0;  Ver-
tical points: ¢t = £1; . Directions: SW
—00 <t < -1, SE -1 <t < 0, NE
0<t<1,NW1<t<oo.

It sort of looks like this


http://en.wikipedia.org/wiki/File:Bezier_2_big.gif
http://en.wikipedia.org/wiki/Lissajous_curve
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(But this is really the graph of Z(¢) =
(t/(1+t4) ) )
t2

(417.ix) This vector function traces out
the right half of the parabola y = 2(z —
1)? (i.e. the part with = > 1), going
from right to left for —oo < ¢t < 0, and
then back up again, from left to right for
0<t<oo.
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