Final

A. Miller

Spring 2004

Show all work. Simplify your answers. Circle your answer.

You may use a cheat sheet: one $8\frac{1}{2} \times 11$ sheet of paper with anything written on both sides.

No books, no calculator, no cell phones, no pagers, no electronic devices.

Name_____

Hand in to your TA. Circle your TA's name:

Adam Berliner Ben Ellison Jon Godshall E. Alec Johnson Dan McGinn Derek Moffitt Richard Oberlin

Problem	Points	Score
1	8	
2	8	
3	8	
4	8	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
13	4	
Total	100	

Solutions will be posted shortly after the exam: www.math.wisc.edu/~miller/m222

1. (8 pts) Find the general solution of the differential equation:

$$y'' - 4y = e^x$$

2. (8 pts) Find the polar coordinates of the point with Cartesian coordinates:

$$(-\frac{\sqrt{3}}{2},\frac{\sqrt{3}}{2})$$

FinalA. MillerSpring 2004Math 222

3

3. (8 pts) Find a vector that has the same direction as $3\mathbf{i} - 4\mathbf{j}$ but twice its length.

Final	A. Miller	Spring 2004	$Math \ 222$	4
-------	-----------	-------------	--------------	---

4. (8 pts) Find the $\cos(\theta)$ where θ is the angle between the vectors $\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $2\mathbf{i} + \mathbf{j} + \mathbf{k}$.

Final

5. (8 pts) Find

 $\int e^x \cos(x) \, dx$

6. (8 pts) Evaluate this improper integral or show that it diverges:

$$\int_{1}^{e} \frac{dx}{x \ln(x)}$$

7

7. (8 pts) Determine whether the following series converges or diverges and indicate which test you use. $1 \qquad 1 \qquad 1$

$$\frac{1}{2\sqrt{3}} + \frac{1}{3\sqrt{4}} + \frac{1}{4\sqrt{5}} + \dots$$

8. (8 pts) Find the power series $\sum_{n=0}^{\infty} a_n x^n$ for the function

$$f(x) = \frac{1}{1 - 4x^2}$$

and determine the interval where it converges.

9. (8 pts) In the plane a curve $\mathbf{r}(t)$ satisfies

$$\mathbf{r}''(t) = \mathbf{i} + e^t \mathbf{j}$$
$$\mathbf{r}'(0) = 2\mathbf{i} + \mathbf{j}$$
$$\mathbf{r}(0) = \mathbf{i} + \mathbf{j}$$

Find the curve \mathbf{r} .

10. (8 pts) Find the equation, ax + by + cz = d, of the plane that contains the intersecting lines:

$$\mathbf{L}_1(t) = (1, 1, 1) + t(1, -2, 1)$$
$$\mathbf{L}_2(t) = (2, -1, 2) + t(-1, 1, 1)$$

11. (8 pts) Find the curvature κ for the curve

$$\mathbf{r}(t) = \cos(t) \mathbf{i} + \sin(t) \mathbf{j} + t \mathbf{k}$$

as a function of t.

12. (8 pts) A tangent line to the ellipse $x^2 + 2y^2 = 1$ intersects the *y*-axis at (0,2). Find the *y*-coordinate of the point of tangency.

Final	A. Miller	Spring 2004	$Math \ 222$	13
-------	-----------	-------------	--------------	----

13. (4 pts) Use this page for scratch paper or for any comments you would like to make about the course.

(You will get four points whether or not you write anything - I just wanted the exam to add up to 100.)

Answers

- 1. $y = -\frac{1}{3}e^x + C_1e^{2x} + C_2e^{-2x}$. 2. $r = \sqrt{3}, \theta = \frac{3}{4}\pi$ 3. $6\mathbf{i} - 8\mathbf{j}$. 4. $\cos(\theta) = \frac{2}{\sqrt{18}} = \frac{\sqrt{2}}{3}$ 5. $\frac{1}{2}(e^x \cos(x) + e^x \sin(x)) + C$ 6. It diverges $\ln(\ln(x))]_1^e = \infty$. 7. It converges by comparison to the convergent series $\sum \frac{1}{n^{3/2}}$. 8. $\sum 4^n x^{2n}$. Converges for $-\frac{1}{2} < x < \frac{1}{2}$. 9. $\mathbf{r}(t) = (\frac{t^2}{2} + 2t + 1)\mathbf{i} + e^t\mathbf{j}$ 10. $(-1, 1, 1) \times (1, -2, 1) = (3, 2, 1)$ so equation is 3x + 2y + z = 6. 11. $\kappa = \frac{1}{2}$
 - 12. Let (x, y) be the point of tangency. Then the tangent line has slope

$$\frac{y-2}{x}$$

By implicit differentiation of $x^2 + 2y^2 = 1$ we get that

$$x + 2y\frac{dy}{dx} = 0$$
 hence $\frac{dy}{dx} = \frac{x}{-2y}$

Equating gives

$$\frac{y-2}{x} = \frac{x}{-2y} \qquad (-2y)(y-2) = x^2 = 1 - 2y^2$$
$$4y = 1 \qquad y = \frac{1}{4}$$