5 points per problem. Show all work and explain your answer.

1. (a) Draw a picture of the region R of the plane which is under the curve $f(x) = x^2$ and above the interval [0, 1] on the x-axis. Shade the region R.

(b) Let R_n be sum of the areas of the following n rectangles which approximate the area of R. Use rectangles of equal width and use the right hand endpoint of each interval and f to find their height. Draw a picture of these rectangles for n = 3 and calculate R_3 .

- (c) Find a summation (Σ) expression for R_n .
- (d) Simplify the expression for R_n .
- (e) Find $\lim_{n\to\infty} R_n$.
- 2. (a) $\int_{1}^{3} (3 2f(x)) dx = 9$. What is $\int_{1}^{3} f(x) dx$? (b) $\int_{-1}^{1} g(x) dx = 3$, $\int_{-2}^{2} g(x) dx = 9$, and $\int_{-2}^{-1} g(x) dx = 2$. What is $\int_{1}^{2} g(x) dx$?

3. Let
$$h(x) = \int_{x^3}^0 e^{t^2} dt$$
. Find $h'(x)$.

- 4. (a) Find $\int \sin(2x+1)dx$.
 - (b) Find $\int_0^1 (x^2 + 1) dx$. (This is a definite integral.)
 - (c) Find $\int \frac{\arcsin(x)}{\sqrt{1-x^2}} dx$.

The final exam will be Monday December 15 at 5:05pm in 494 Van Hise.

Answers

1. (b) $\frac{14}{27}$ (c) $\Sigma_{k=1}(\frac{k}{n})^2(\frac{1}{n})$ (d) $\frac{(n+1)(2n+1)}{6n^2}$ (e) $\frac{1}{3}$ 2. (a) $-\frac{3}{2}$ (b) 4 3. $-3x^2e^{x^6}$ 4. (a) $-\frac{1}{2}\cos(2x+1) + C$ (b) $\frac{4}{3}$ (c) $\frac{(\arcsin(x))^2}{2} + C$