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Proof of the Fundamental Theorem of Calculus

Definition of the Riemann integral. If f is a function defined on an
interval [a, b], then we say that

[ =1,

iff for every e > 0, there exists a § > 0 such that for any partition of [a, b],
a=x90 < x1 < -+ <xp, =0bwith z, — 2,1 = Axp < 0 and and sample
points ¢ with x,_1 < ¢ <z, we have that

() + flen) Ay + -+ flen)Aa, — 1] < e

These are called Riemann sums. In summation notation we write
> flen) Ay = fer) Az + f(e2) Ay + -+ + f(en) Az,
k=1

Expressing the integral as a kind of limit, we could write

b n
/ f(z)dz =" Limitmax{ac,k1..n}—0 Z few) Ay,
a k=1

We assume without proof that this limit exists for any f continuous on
la,b]. The following is perhaps the simplest version of this limit. Given any
positive integer n let

_b—a

Ar = and ¢, =a+kAxfork=1,...,n
n

Then , .
/ f(z) dx = Y}erolto(ck)Ax
a k=1

The numerical analysists call this the right-hand rectangle rule.

1



Lemma 1 (Mean-Value Theorem for Integrals) If f is continuous on [a, b],
then for some c in [a, b]

fo)= 5= [ 1) o

proof:

Let m be the minimum of f on [a,b] and M its maximum. Then since
m < f(x) < M for any x in [a, b] we have for any Riemann sum that

zn:mAxk < zn:f(ck)Axk < zn:MAxk
k=1 k=1 k=1

Now > 7 mAzxy =m>.;_, Az, = m(b — a) and similarly for M, hence
m(b—a) <Y fen)Azg < M(b— a)
k=1

Passing to the limit gives that

m(b—a)g/ f(z)de < M(b—a)

and dividing thru by (b — a) gives that

1

b
mgm/a flz)de <M

By the intermediate value theorem f assumes all values between its minimum
m and maximum M so such a ¢ must exist.

QED

Lemma 2 (Additivity property for area under a curve) If a < b < ¢ and f
is continuous on |a, ¢], then

/acf(x) dx:/abf(:v) dx—i—/bcf(:zc) dx
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proof:

We can see it as an additive property for areas in the case f is positive.
The area under the curve between a and b plus the area under the curve
between b and c is the area under the curve between a and c.

More formally note that taking two sufficiently fine Riemann sums for
la,b] and [b, c] (the second renumbered to be from n + 1 to n 4+ m) gives:

n+m

chk JIAVRES /f ) dz  and Z flep)Azy, ~ /f
k=n+1
but
c n+m n n+m
[ s dom Y fedn =Y fa)ancs 3 fle)da
a k=1 k=1 k=n+1

And so passing to the limit gives the result.
QED

Fundamental Theorem of Calculus Part I
Suppose f is continuous on [a, b] and

_def / f
Then G is differentiable and G'(x) =

proof:

Assuming for simplicity that a < r < x + Ax < b and note that

o+ Az T +Ax
G(x + Az) — G(x) :/ f(t) dt—/ f(t) dt :/ f(t) dt

where we have used Lemma 2. By the Mean-Value Theorem for integrals,
Lemma 1, we may find x* between x and z + Az with

1 z+Ax

Az



Hence Gle + Ar) — Gl(x)
= =

and since z* is between z and x + Ax and f is continuous, we have

lim Glo + Az) = Glz) = lim f(z*) = f(x)

Az—0t Ax Az—0t

For Az — 0~ the proof is similar and for x = a or x = b the result holds for
the one-sided derivative of G.
QED

Fundamental Theorem of Calculus Part II
Suppose f is continuous on [a, b and F is any antiderivative of f, i.e., F' = f.
Then

| sy de=Fie) - Flo

proof:

Since G is also an antiderivative of f it follows that I/ — G’ = f — f
is identically zero. The ordinary Mean-Value Theorem implies that F' — G
must be a constant function, say F(z) = G(z) + C for all z.

Note that G(b) = [ f(t) dt and G(a) = [ f(t) dt = 0 and so

F(b) — Fla) = (G(b) + C) — (Gla) + C) = G(b) = / () dt

QED



