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Proof of the Fundamental Theorem of Calculus

Definition of the Riemann integral. If f is a function defined on an
interval [a, b], then we say that∫ b

a

f(x)dx = I,

iff for every ε > 0, there exists a δ > 0 such that for any partition of [a, b],
a = x0 < x1 < · · · < xn = b with xk − xk−1 = ∆xk < δ and and sample
points ck with xk−1 ≤ ck ≤ xk we have that∣∣∣f(c1)∆x1 + f(c2)∆x2 + · · ·+ f(cn)∆xn − I

∣∣∣ < ε

These are called Riemann sums. In summation notation we write

n∑
k=1

f(ck)∆xk = f(c1)∆x1 + f(c2)∆x2 + · · ·+ f(cn)∆xn

Expressing the integral as a kind of limit, we could write∫ b

a

f(x)dx =def Limitmax{∆xk:k=1...n}→0

n∑
k=1

f(ck)∆xk

We assume without proof that this limit exists for any f continuous on
[a, b]. The following is perhaps the simplest version of this limit. Given any
positive integer n let

∆x =
b− a
n

and ck = a+ k∆x for k = 1, . . . , n

Then ∫ b

a

f(x) dx = lim
n→∞

n∑
k=1

f(ck)∆x

The numerical analysists call this the right-hand rectangle rule.
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Lemma 1 (Mean-Value Theorem for Integrals) If f is continuous on [a, b],
then for some c in [a, b]

f(c) =
1

b− a

∫ b

a

f(x) dx

proof:

Let m be the minimum of f on [a, b] and M its maximum. Then since
m ≤ f(x) ≤M for any x in [a, b] we have for any Riemann sum that

n∑
k=1

m∆xk ≤
n∑

k=1

f(ck)∆xk ≤
n∑

k=1

M∆xk

Now
∑n

k=1m∆xk = m
∑n

k=1 ∆xk = m(b− a) and similarly for M , hence

m(b− a) ≤
n∑

k=1

f(ck)∆xk ≤M(b− a)

Passing to the limit gives that

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a)

and dividing thru by (b− a) gives that

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M

By the intermediate value theorem f assumes all values between its minimum
m and maximum M so such a c must exist.
QED

Lemma 2 (Additivity property for area under a curve) If a < b < c and f
is continuous on [a, c], then∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx
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proof:

We can see it as an additive property for areas in the case f is positive.
The area under the curve between a and b plus the area under the curve
between b and c is the area under the curve between a and c.

More formally note that taking two sufficiently fine Riemann sums for
[a, b] and [b, c] (the second renumbered to be from n+ 1 to n+m) gives:

n∑
k=1

f(ck)∆xk ≈
∫ b

a

f(x) dx and
n+m∑
k=n+1

f(ck)∆xk ≈
∫ c

b

f(x) dx

but ∫ c

a

f(x) dx ≈
n+m∑
k=1

f(ck)∆xk =
n∑

k=1

f(ck)∆xk +
n+m∑
k=n+1

f(ck)∆xk

And so passing to the limit gives the result.
QED

Fundamental Theorem of Calculus Part I
Suppose f is continuous on [a, b] and

G(x) =def

∫ x

a

f(t) dt

Then G is differentiable and G′(x) = f(x).

proof:

G′(x) = lim
∆x→0

G(x+ ∆x)−G(x)

∆x
Assuming for simplicity that a < x < x+ ∆x < b and note that

G(x+ ∆x)−G(x) =

∫ x+∆x

a

f(t) dt−
∫ x

a

f(t) dt =

∫ x+∆x

x

f(t) dt

where we have used Lemma 2. By the Mean-Value Theorem for integrals,
Lemma 1, we may find x∗ between x and x+ ∆x with

1

∆x

∫ x+∆x

x

f(t) = f(x∗)
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Hence
G(x+ ∆x)−G(x)

∆x
= f(x∗)

and since x∗ is between x and x+ ∆x and f is continuous, we have

lim
∆x→0+

G(x+ ∆x)−G(x)

∆x
= lim

∆x→0+
f(x∗) = f(x)

For ∆x→ 0− the proof is similar and for x = a or x = b the result holds for
the one-sided derivative of G.
QED

Fundamental Theorem of Calculus Part II
Suppose f is continuous on [a, b] and F is any antiderivative of f , i.e., F ′ = f .
Then ∫ b

a

f(t) dt = F (b)− F (a)

proof:

Since G is also an antiderivative of f it follows that F ′ − G′ = f − f
is identically zero. The ordinary Mean-Value Theorem implies that F − G
must be a constant function, say F (x) = G(x) + C for all x.

Note that G(b) =
∫ b

a
f(t) dt and G(a) =

∫ a

a
f(t) dt = 0 and so

F (b)− F (a) = (G(b) + C)− (G(a) + C) = G(b) =

∫ b

a

f(t) dt

QED
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