Final A. Miller	Fall 2011	$Math \ 211$
-----------------	-----------	--------------

No books, no notes, no electronic devices of any kind. Show all your work. Simplify your answer and circle it.

Name____

Circle your TA's name and the time your section starts.

Μ	11:00	1:20
Μ	1:20	2:25
Т	8:50	9:55
Т	11:00	12:05
Μ	8:50	9:55
Т	1:20	2:25
Т	11:00	12:05
Μ	8:50	11:00
	M M T M T T M	$\begin{array}{ccc} M & 11:00 \\ M & 1:20 \\ T & 8:50 \\ T & 11:00 \\ M & 8:50 \\ T & 1:20 \\ T & 11:00 \\ M & 8:50 \end{array}$

Hand in to your TA.

Detach pages 14-16 from your exam and take them home with you.

Hand in only pages 0-13.

	Page	Points	Score	
	1	10		
	2	10		
	3	10		
	4	10		
	5	10		
	6	10		
l l	7	10		
	8	10		
	9	10		
	10	10		
	11	10		
	12	10		
	13	10		
	14	5		
	15	5		
	16	5		
	17	5		
	Total	150		

0

Final A. Miller Fall 2011 Math 211	Final	
------------------------------------	-------	--

1. (10 pts)

$$f(x) = x^2$$

Find the derivative of f using the definition of derivative. Begin by stating the definition of f'(x). Do **not** use differentiation rules. This problem is from Section 2.1. In all other problems you may use the differentiation rules to compute derivatives.

Final	A. Miller	Fall 2011	$Math \ 211$	2
-------	-----------	-----------	--------------	---

2. (10 pts) Suppose y is implicitely defined as a function of x by the equation:

$$e^{xy} + x + y = 2$$

Find $\frac{dy}{dx}$ when x = 0 and y = 1. Circle you answer.

3. (10 pts) Note that this is the derivative of f:

$$f'(x) = x^2(x-1)^3(e^x+1)$$

Find the intervals where f is increasing or decreasing. Circle your answer.

Final	A. Miller	Fall 2011	$Math \ 211$	4
-------	-----------	-----------	--------------	---

4. (10 pts) Suppose q is the demand and p is the price of a certain commodity. The elasticity of demand, E, is the percentage change of q divided by the percentage change of p taken to the limit:

$$E = \lim_{\Delta p \to 0} \frac{\frac{\Delta q}{q}}{\frac{\Delta p}{p}}$$

If the demand is related to the price by $q = 300 - p^2$, find the price p for which E = -1, i.e., of unit elasticity. Circle your answer.

5. (10 pts)

 $D(q) = 450 - q^2 \qquad S(q) = 150 + 2q^2$

are the demand and supply functions for a particular commodity. Specifically q units will be demanded (sold) at a price p = D(q) dollars per unit, while q units will be supplied by producers when the price is p = S(q) dollars per unit.

(a) Find the equilibrium point (q_e, p_e) where supply equals demand.

(b) Find the producer's surplus at equilibrium.

Circle your answers.

6. (10 pts) Find the value of the definite integral:

$$\int_0^1 \frac{x}{e^{2x}} \, dx$$

7. (10 pts) Find the particular solution of the differential equation

$$\frac{dy}{dx} = \frac{2x}{y^2}$$

satisfying y = 3 when x = 2. Circle your answer.

8. (10 pts) Find the second partials (including the mixed partials) of

$$z = e^{xy^2}$$

Circle your answers.

Filial A. Willer Fall 2011 Math 211	Final	A. Miller	Fall 2011	$Math \ 211$	9
-------------------------------------	-------	-----------	-----------	--------------	---

9. (10 pts) Find the critical points of

$$f(x.y) = x^3 - 6xy + y^3$$

and classify each as a relative minimum, relative maximum, or saddle point. Circle your answer.

10. (10 pts) Given the points $\mathbf{10}$

$$(1,2)$$
 $(2,4)$ $(4,4)$

find the least-squares line. Circle your answer.

11. (10 pts) Find the minimum and maximum values of

$$f(x, y, z) = x + 2y + 3z$$

subject to the constraint $x^2 + y^2 + z^2 = 14$. Circle your answers.

Final A. Miller	Fall 2011	Math 211	12
-----------------	-----------	----------	----

12. (10 pts) Find the volume of the solid under the surface:

$$f(x,y) = 2x + 2y$$

and over the region R where R is bounded by y = x, y = 2 - x, and y = 0. Circle your answer. Detach pages 14-16 from your exam and take them home with you. Hand in only pages 0-13.

Record your answers to problems 13-17 here.

Circle your answers below.

13.

(a)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(b)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(c)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(d)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(e)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(f)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(g)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(h)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(i)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
(j)	0	1	2	∞	$-\infty$	C	doesn't-exist	none-of-these
14	0		h	0	d	0		
14.	a		D	C	u	е		
15.	a		b	с	d	е		
16.	a		b	с	d	е		

17. a b c d e

Put your answers on page 13.

13. (10 pts)

- (a) $\lim_{x\to\infty} \frac{1}{x}$ (b) $\lim_{x\to-\infty} \frac{1}{x}$ (c) $\lim_{x\to0^+} \frac{1}{x}$ (d) $\lim_{x\to0^-} \frac{1}{x}$ (e) $\lim_{x\to0} \frac{1}{x}$ (f) $\lim_{x\to0} \frac{1}{x^2}$ (g) $\lim_{x\to\infty} e^x$ (h) $\lim_{x\to-\infty} e^x$ (i) $\lim_{x\to0^+} \ln(x)$ (j) $\lim_{x\to\infty} \ln(x)$
- 14. (5 pts) The improper integral $\int_2^{\infty} \frac{1}{x^2}$ a. is ∞ .
 - b. is 1.
 - c. diverges but not to ∞ .

d. is
$$-\frac{1}{2}$$

e. none of above

	Final	A. Miller	Fall 2011	$Math \ 211$	15
--	-------	-----------	-----------	--------------	----

Put your answers on page 13.

15. (5 pts) The value of the trapazoid rule to estimate the integral $\int_1^2 \frac{1}{x} dx$ with n = 4 is

a. undefined b. ∞ c. $\frac{320987}{22}$ d. $\ln(2)$ e. none of above

16. (5 pts) For what value of A (if any) is the following function f continuous for every x?

$$f(x) = \begin{cases} \ln(x) & \text{if } x > 1\\ x^2 + Ax - 2 & \text{if } x \le 1 \end{cases}$$

e. none of above.

a. A = 1b. no Ac. all $A \le 1$ d. A = e

17. (5 pts) Describe the domain of the function:

$$f(x,y) = \sqrt{y - x^2}$$

- a. All ordered pairs (x, y) of real numbers.
- b. All real numbers y which are nonnegative.
- c. All ordered pairs (x, y) of real numbers such that $y \ge x^2$.
- d. All ordered pairs (x, y) of real numbers such that $y = x^2$.
- e. None of above.

Use this sheet for scratch paper.

Answers

1. Define

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

then

$$f(x+h) - f(x) = (x+h)^2 - x^2 = x^2 + 2hx + h^2 - x^2 = 2hx + h^2$$

 \mathbf{SO}

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} 2x + h = 2x$$

2. -2

- 3. decreasing for x < 1 and increasing for x > 1.
- 4. p = 105. (10, 350) and $PS = \frac{4000}{3}$ 6. $\frac{1}{4} - \frac{3}{4}e^{-2}$ 7. $y = (3x^2 + 15)^{\frac{1}{3}}$ 8. $\frac{\partial^2 z}{\partial x^2 - 2}$

$$\frac{\partial^2 z}{\partial x \partial y} = 2y(y^2x+1)e^{xy^2}$$

- 9. rel min at (2, 2), saddle at the origin.
- 10. $y = \frac{4}{7}x + 2$
- 11. max 14, min -14
- 12. $\frac{8}{3}$
- 13. 0 0 $\infty \infty$ doesn't-exist $\infty \infty 0 \infty \infty$ 14e 15e 16a 17c