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Harmonic maps

Let (M, g) and (N, h) be compact Riemannian manifolds.

The energy density of a map u : M → N is given by

e(u) =
1

2
|du|2 =

1

2
g ijhαβ

∂uα

∂x i

∂uβ

∂x j
.

The Dirichlet functional is

E(u) =

∫
M

e(u)dVg .

Harmonic maps are the critical points of E(u).
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Harmonic maps, cont’d

Extrinsic formulation. Assume N ⊂ Rk isometrically (by Nash’s Theorem). Then u is

harmonic iff

(∆u)T = 0.

Intrinsic formulation. A map u is harmonic iff the tension field

T (u) = trg∇du = 0

vanishes. In coordinates:

T (u)α = g ij

(
∂2uα

∂x i∂x j
− (Γg )kij

∂uα

∂xk
+
(

Γh(u)
)α
βγ

∂uβ

∂x i

∂uγ

∂x j

)
.
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Harmonic map flow

Harmonic map flow is the downward gradient flow of the Dirichlet energy:

∂u

∂t
= T (u).

⇒ E(u(t)) is decreasing along flow.

Idea: Limit as t →∞ will be a harmonic map (in the initial homotopy class).

Eells-Sampson (1964): if the sectional curvature KN ≤ 0, this actually works!

But....
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Critical harmonic map flow (n = 2)

Theorem (K.-C. Chang, W.-Y. Ding, and R. Ye 1992)

Harmonic map flow with M = D2, N = S2 can blow up in finite time.

t = 0

∂tφ(r , t) = ∂2
r φ+

1

r
∂rφ−

sin 2φ

2r 2
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Critical harmonic map flow (n = 2)

Theorem (K.-C. Chang, W.-Y. Ding, and R. Ye 1992)

Harmonic map flow with M = D2, N = S2 can blow up in finite time.

t = .1

∂tφ(r , t) = ∂2
r φ+

1

r
∂rφ−

sin 2φ

2r 2
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Critical harmonic map flow (n = 2)

Theorem (K.-C. Chang, W.-Y. Ding, and R. Ye 1992)

Harmonic map flow with M = D2, N = S2 can blow up in finite time.

t = .2

∂tφ(r , t) = ∂2
r φ+

1

r
∂rφ−

sin 2φ

2r 2
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Critical harmonic map flow (n = 2)

Theorem (K.-C. Chang, W.-Y. Ding, and R. Ye 1992)

Harmonic map flow with M = D2, N = S2 can blow up in finite time.

t = .3

∂tφ(r , t) = ∂2
r φ+

1

r
∂rφ−

sin 2φ

2r 2

Alex Waldron Strict type-II blowup Seminar @ UMN February 24th, 2022 5 / 22



General picture in dimension two

Struwe (1985): Global weak solution on Σ× [0,∞) with finitely many singular times.

For any singular time T <∞, the body map

u(T ) = lim
t↗T

u(t)

exists weakly in W 1,2 and smoothly away from the singular set.
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Continuity of the body map

Note that W 1,2 6⊂ C 0 in 2D, so it is possible that u(T ) may be discontinuous.

Topping (2004) constructs a pathological metric on target N = T 2 × S2 such that for an

inital map

u(0) : D2 → {x0} × S2 ⊂ N,

the body map u(T ) has an essential singularity at the first singular time.

Topping’s conjecture (also from 2004): If N is real-analytic, then u(T ) must be

continuous.

Related question: How fast does the blowup occur?
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Energy scale

Definition

Let ε,R > 0 and p ∈ M.

Let u : Σ→ N be a W 1,2 map.

The (outer) energy scale λ(u) = λε,R,p(u) is the

minimal number 0 ≤ λ ≤ R such that

sup
λ<r<R

E
(
u,U r

r/2(p)
)
< ε.

Lemma

For R > 0 sufficiently small, we have

λε,R,p(u(t))→ 0 (t ↗ T ).

Moreover, λε,R,p(u(t)) ≡ 0 for t near T ⇔ (p,T ) is a smooth point.
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Type-I versus type-II blowup

Definition

Suppose u(t) blows up at (p,T ). We say

the blowup is type-I if

sup |du(t)| ≤ C

T − t
.

It is called type-II otherwise.

Theorem (Struwe)

If dim(M) = 2, all blowups are type-II. More precisely, we have

λ(t) = o(T − t)
1
2 .
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Blowup rate in Chang-Ding-Ye example

∂tφ(r , t) = ∂2
r φ+

1

r
∂rφ−

sin 2φ

2r 2

Van den Berg, Hulshof, and King (SIAM J. Anal., 2003) predict

λ(t) ∼ κ |T − t|
(log |T − t|)2

. (1)

Angenent, Hulshof, and Matano (SIAM J. Anal., 2009) prove λ(t) = o(T − t).

Raphael and Schweyer (CPAM, 2013) prove (1) for generic rotationally symmetric

initial data close to ground state.

Also prove u(T ) ∈W 2,2, hence Cα for each α < 1.

Davila, Del Pino, and Wei (Inventiones, 2020) construct many non-symmetric

examples with blowup rate (1).

Note: Body map is continuous in all cases.
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Harmonic map flow for almost-holomorphic maps

Theorem 1 (C. Song-Waldron (2020))

Let Σ be a compact Riemann surface and u : Σ× [0,T )→ N a classical solution of

harmonic map flow. Suppose

N is compact Kähler with nonnegative holomorphic bisectional curvature (e.g. CPn)

E∂̄(u(0)) < ε0(N).

Then:
a λ(t) = O (T − t) , t ↗ T
b u(T ) ∈ Cα(Σ) for 0 < α < 1
c No neck between u(T ) and the bubble tree.

Note: This result applies to the rotationally symmetric blowups on the last slide.

⇒ geometric proof of Raphael and Schweyer’s continuity result.
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Strict type-II blowup

Definition

A finite-time singularity of harmonic map flow at (p,T ) is called “strict type-II” if for

R > 0 sufficiently small, the energy scale satisfies

λε,R,p(u(t)) = O(T − t)
1+α

2 (2)

for some 0 < α ≤ 1.

Note: Topping proved that his counterexample blows up with rate

λ(t) & (T − t)
1
2

+ε

for all ε > 0. So this is not strictly type-II!

Theorem 2 (Waldron 2021)

The body map u(T ) at a strict type-II blowup is C
α
3 .
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Stress-energy tensor

Full variational formula

δEg (u) = −
∫ (
〈T (u), δu〉+

1

2
〈S , δg〉

)
dVg .

Stress-energy tensor

S(u) = 〈du ⊗ du〉 − 1

2
|du|2g ∈ Sym2T ∗M

satisfies

divS = 〈T (u), du〉.

The stress-energy tensor plays a dual role in harmonic map flow.
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Role of stress-energy tensor in Theorem 1(a)

Take another divergence

div2S = 〈∇T (u), du〉+ |T (u)|2.

Under HM flow

∂te(u) = 〈∇T (u), du〉.

⇒ “pointwise” energy identity:

∂te(u) = −|T (u)|2 + div2S .

Integrating over M, we recover the usual global energy identity:

E(u(t2)) +

∫ t2

t1

∫
Σ

|T (u)|2dVdt = E(u(t1)).

Integrating against a cutoff function ϕ, we get a refined local energy inequality:

E
(
u(t2),B R

2

)
≤ E (u(t1),BR) +

∫ t2

t1

∫
Σ

〈∇2ϕ,S〉dVdt.

Control of S ⇒ control on blowup rate.
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Proof of Theorem 1a

Theorem 1. Suppose that

N is compact Kähler with KN
hol.bi. ≥ 0

E∂̄(u(0)) < ε0.

Then at a finite-time singularity

a λ(t) = O(T − t).

Proof:

1 E∂̄(0) < ε0 ⇒ E∂̄(t) < ε0 ∀t > 0, since E = κ+ 2E∂̄ and E(t) is decreasing

2 supE∂̄(u(t)) < ε0 ⇒ ‖∂̄u(t)‖L∞ ≤ C by ε-regularity argument

3 ‖S(u(t))‖L2 ≤ C‖∂̄u‖L∞‖∂u‖L2 ≤ C , since S(u) = Re〈∂̄u, ∂u〉
4 ‖S(u(t))‖Lp(Σ) ≤ C ⇒ λ(t) = O(T − t)

p
2 by refined energy identity

5 Apply with p = 2.
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Role of stress-energy tensor in Theorem 2

Contracting div S = 〈T (u), du〉 with the radial vector field ~r , one obtains

div(~r ¬ S) = 〈T (u), ~r ¬ du〉. (3)

In polar coordinates, we have

S =
1

2

(
|ur |2 −

1

r 2
|uθ|2

)
(dr 2 − r 2dθ2) + 2〈ur , uθ〉drdθ.

Integrating (3) over a disk Dr and applying the divergence theorem, we obtain∫
S1
r

(
r 2|ur |2 − |uθ|2

)
dθ =

∫
Dr

〈T (u), r ur 〉 dV . (4)

⇒ basic control over the difference between angular and radial components of du

(familiar trick from harmonic maps).
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Proof of Theorem 2

Theorem 2. Suppose the blowup is strictly type-II, i.e.

λ(t) = O(T − t)
1+α

2 .

Then u(T ) is C
α
3 .

Proof. For u : D1(p)× [0,T )→ N, define the angular energy

f (r , t) :=

(∫
S1
r

|uθ(r , θ, t)|2dθ

) 1
2

.

Direct computation gives

∂t f −
(
∂2
r +

1

r
∂r −

1− η
r 2

)
f ≤ 0,

where η = CN sup r 2|du|2.
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Supersolution for angular energy

Given T > 1 and 0 < ρ < 1, let

Ωα =
{

(r , t) ∈ [ρ, 1]× [0,T ) | r ≥ (1− t)(1+α)/2
+

}
.

Let ν =
√

1− η, and choose µ with

1

1 + α
≤ µ < ν.

Lemma 1

Suppose f ≤ η on the parabolic boundary of Ωα. Then

f (r , t) ≤ Cη
((ρ

r

)ν
+ rmin[µ,(1+α)ν2−ν]

)
for ρ ≤ r ≤ 1 and 1 ≤ t < T .

Proof. Supersolution on Ωα :(ρ
r

)ν
+

(
(1− t)+ + r 2ν

)(1+α)ν/2

rν
+

ν + 1

ν2 − µ2
rµ.
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Decay of angular energy
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Estimate on radial energy

Define

g = g(u; r , t) :=

√∫
S1
r

r 2|ur (r , θ, t)|2dθ.

Under the flow, this satisfies(
∂t −

(
∂2
r +

1

r
∂r −

1− η
r 2

))(g
r

)
≤ 6f

r 3
. (5)

⇒ weaker decay than f .

Construct inner boundary kernel Gρ(r , t) such that

v1(r , t) =

∫ t

0

ψ(τ)Gρ(r , t − τ) dτ

solves (5) with v1(ρ, t) = ψ(t).

Proposition 3

For 2ρ ≤ r ≤ 1 and t ≥ 0, we have

|v1(r , t)| ≤ Ce−(r−ρ)2/5t

(
ρ2ν

r 2ν+1

)√∫ t

0

ψ2(τ)dτ .
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Decay of radial energy

Step 1. Use stress-energy identity (4) to bound
∫ t1
t0

(
f 2(ρ, t)− g 2(ρ, t)

)
dt ⇒ bound on∫ t1

t0
g 2(ρ, t) dt (since f decays).
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Decay of radial energy

Step 1. Use stress-energy identity (4) to bound
∫ t1
t0

(
f 2(ρ, t)− g 2(ρ, t)

)
dt ⇒ bound on∫ t1

t0
g 2(ρ, t) dt (since f decays).

Step 2. Use Proposition 3 to convert this time-integral bound to spatial decay of g(r , t1).
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Decay of radial energy

Step 1. Use stress-energy identity (4) to bound
∫ t1
t0

(
f 2(ρ, t)− g 2(ρ, t)

)
dt ⇒ bound on∫ t1

t0
g 2(ρ, t) dt (since f decays).

Step 2. Use Proposition 3 to convert this time-integral bound to spatial decay of g(r , t1).

Step 3. Bootstrap.
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Thank you!
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