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Abstract
This is an exposition of Chapter 3 of [3].

1 Preliminaries

Let M denote a closed (compact, without boundary) n-dimensional manifold
equipped with an evolving Riemannian metric g(¢). In the notes, A < C'B for
some constant C' = C'(n) means C is independent of A, B, but may depend on
n. For each different inequality, C' may be different.

Definition 1.1.

1. Raising and lowering indices
Let n € T*M be a cotangent vector with components 7;. We can raise
the index by taking 7' = g“n; and obtain a tangent vector n* = 1;0;.
Similarly, for a tangent vector X € T M with components X*, we can

lower the index by taking X; = g;; X’ and obtain a cotangent vector
X’ = X;dz'. We can similarly raise and lower desired indices of general
tensors.

2. Inner products

Let X,Y € TM with components X?, Y7, respectively. Then their inner

product is defined as o
< X,Y >= ginlYJ. (11)

Let n,w € T*M. We can define their inner product by
<nw >=< gt wh >= gInw; = niw'. (1.2)
For a general tensor F,G € T*D M with components F;;"“’-i",G reeerlh
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respectively, we define their inner product to be
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3. Frobenius norms

Let F € T®YM. The Frobenius norm, denoted by |F| is defined as a
non-negative function on M satisfying |F|? =< F, F >.

4. The s*-notation

Let A, B be any tensor fields. Then A x B is a real linear combination of
operations of A® B including raising and lowering indices and contractions.

5. Curvature tensors
Let R € T3 M be a tensor defined by

R(X,Y)Z =VxVyZ - VyVxZ — Vixy 7. (1.4)

Locally, we can write R = Ri,j,kldxi ®dr) ® da* ® o).

Define the (Riemann) curvature tensor Rm € T(%% M by Rm = R; that
is
Rm(X,Y,Z, W) =< R(X,Y)Z,W > . (1.5)

Then locally Rm = R;jida’ ® dod @ da* @ da', where Riji = gmiRije™-
Conversely, R;ir™ = ¢"™ Rijkm.

The Ricci curvature, denoted by Ric, is given by
Ric(X,Y) =tr(Z — R(Z,X)Y). (1.6)

Then Ric € T(®2 M with components R;; = Rii;" = "™ Riijm.

The scalar curvature is a function S given by

R = tr Ric = R;" = g R;;. (1.7)

Remark 1.2. R may be a (1,3)-, (0,4)-, or (0,2)- tensor, or a scalar function,
depending on the context.

Then one has the following properties of .

Lemma 1.3. Let A, B be any tensor fields on M. Then
A% B| < C|A||B]. (1.8)
for some constant C = C(n).
Lemma 1.4 ((2.1.4) of [3]). Let A, B be any tensor fields on M. Then
V(A*B)=(VA)*x B+ Ax(VB). (1.9)
Lemma 1.5 ((2.1.6) of [3]). Let A be any tensor field. Then

V(AA) — A(VA) = (VRm) % A + Rm * (VA). (1.10)



Lemma 1.6 ((2.3.3) of [3]). Let A be any tensor field. Then

0 0
5 VA= Vg A=AxVh, (1.11)

where h = %g.

Throughout the notes, unless otherwise specified, g(t) is a Ricci flow on M
for t € [0, T]; that is, g satisfies the following equation,

0
8—? = —2Ric(g). (1.12)
Let’s recall some properties of g(t).
Lemma 1.7. 5
aRm = ARm + Rm * Rm. (1.13)
Lemma 1.8 (Corollary 2.5.5 of [3]). The scalar curvature R satisfies
OR 2
— > AR+ =R 1.14
ot — + n (1.14)

Lemma 1.9 ((2.5.8) of [3]). Let V (t) := Vol((M, g(¢))). Then

v
—_— = — R 1.1
i /RdV (1.15)

2 The weak maximum principle

Theorem 2.1 (Weak maximum principle).
Let F: R x [0, T] — R be a smooth function. Suppose u € C°(M x [0,T],R)
solves

ou
ot < Ag(t)u+F(u,t). (2.1)
Suppose further that ¢ : [0,T] — R solves
%= P00
dt b
{ 6(0) = aceR. (2:2)

If u(-,0) < a, then u(-,t) < ¢(t) for all t € [0,T)].

Proof. Let € > 0. Consider an e-perturbation of (2.2)

e — F(¢(t),t) +¢,
{¢e(d()) = a+eelR ] -

Then one can find some gy > 0 such that for all ¢ € (0,ep), there exists a
solution ¢. to (2.3) on [0,7]. Thus, it suffices to show that u(-,t) < ¢.(t) for
all t € [0,T] and for all € € (0,&p).



Suppose, otherwise, there exists some ¢ € (0,g¢), ¢t € (0,7]), and z; € M
such that u(zs,t) > ¢-(t). Let tg > 0 denotes the infimum of such ¢. Then one
can find a sequence {¢;} \ top and corresponding {z;,} such that u(xs,,t;) >
¢ (t;) for each i. By compactness of M, one can find a subsequence of {x:,}
that converge to some x € M such that u(z,t9) > ¢.(to). On the other hand, by
definition of o, one has u(x, s) < ¢.(s) forall s € (0,t9). Thus, u(z,to) = ¢(to),
and 2% (z,t) — ¢.(to) > 0.

Moreover, we observe that u(x,ty) = maxa u(+,tp). Otherwise, there exists
some ' € M satisfying u(z’,tg) > u(xo,to) = ¢-(to). By continuity of u, ¢,
this violates the definition of tg. Then, one has Au(z,ty) < 0, and Vu(z,ty) = 0,
which implies

0 > 2u(z,t0) — Au(x, to) — F(u(z, to), o)
> dL(to) — F(de(,t0), to) (2.4)
= e>0.
Contradiction arises. O

By reversing the inequalities, one has the following minimu principle.

Corollary 2.2 (Weak minimum principle). Theorem 2.1 holds with all the <
replaced by >.

Remark 2.3. The strong maximum principle, where one has wu(-,t) < ¢(t) for
all t € (0,7], unless u(z,t) = ¢(¢t) for all (z,t) € M x [0,T] is true under the
same assumptions in Theorem 2.1.

3 Basic control on the evolution of curvature

In this section, we will apply the maximum and minimum principles to obtain
some control on how R and Rm evolve.

3.1 Lower bounds of the scalar curvature

Theorem 3.1. If the scalar curvature satisfies R(-,t =0) > a € R on M, then
for allt € 0,77,

R> —ys—. (3.1)

Proof. Let u =R, F(r,t) = 2%, and ¢(t) = By Lemma 1.8, one has

_a
1—(Z2)-

Ou > Au+ F(u,t). (3.2)
ot
On the other hand,
d¢ 202 _
=t F(o(t),1). (3.3)
bo0) = o
Applying Corollary 2.2, we obtain (3.1). O



There are several obvious corollaries of the theorem. We pick the least
obvious one to prove here.

Corollary 3.2. (Corollary 3.2.5) Suppose g(t) is a Ricci flow on M for t €
(0,7]. Then R > —3%.

Proof. We observe that (1.12) is translation invariant with respect to time ¢.
Let t9 € (0,7). Consider the metric g;, = g(- + to) on M. Then it is also
a Ricci flow, but for ¢ € [0,T — tg]. The corresponding scalar curvature is
Ry, (x,t) = R(x,t +to) for (x,t) € M x [0,T —to]. Let o = infrq R(,%9). By
compactness of M and continuity of R, one has a € R. Now we apply Theorem
3.1 to g¢, to obtain

« 1
R(-,t) > 3.4
(8212 (22 (t—to) 1_ 20—to) (34
for t € [ty, T]. We finish the proof by taking ¢ty \, 0 and « \ —oc. O
Corollary 3.3. If o == infy R(-,t = 0) < 0, then ﬁ is weakly de-
creasing, and in particular, !
2 _ 2
V(t) < V(0) (1 1 2Hze) t) (3.5)
Proof.
d V(t) — d 2(=a) a)
1 dv
= VT + 1+2< a>t 26
< lnfM R( ) 1++;a)t
< 0.

The last equality is by Lemma 1.9, and the last inequality by Theorem 3.1. [
Remark 3.4.

1. If T = oo, then
Voo 1 V(t)
V= ey (3.7)

exists.

2. [1] considers a local version of the Ricci flow: if V' > 0, then the open ball
is becoming hyperbolic. If V' = 0, then it behaves like a graph manifold.



3.2 Upper bounds for |Rm|
Proposition 3.5.

§|Rm|2 < ARm|? — 2|VRm/|? + C|Rm|?, (3.8)

where C' = C(n) is a constant.

Proof. Expanding the components of |[Rm|?, one has
[Rm|* = [Rm|* = g7 ¢"¢**g°* Rikac Rjiba- (3.9)

Let h = @ We first observe that £ ¢ = —h%. (Warning: h% is obtained
by raising the indices instead of taking the inverse of h.) This can be seen by
differentiating the constant matrix §;/ = ¢;,¢*’ to obtain

0 = 4 (gzkg 7)
= hig" +gzk* ki
= hpqupgkqg +glk*g ki (310)

= hp]gzp +gzk 6tg ki
= gzk(hk] + 3 g )

The observation is valid because ¢ is non-degenerate. By (1.12), we then have

0

~—g =2RY 3.11
3¢9 (3.11)
2 4ii = 9.
Differentiating (3.9) on both sides, and using (3.11) we obtain
grIRunl? ’
— (Rijgklgabgcd 4 ginkl abgcd 4 gzjgklRab cd (312)

+97 g" g® RN Rijac Rjtpa + 2 < Rm, 2 Rm >

By Cauchy-Schwarz inequality, the first term is bounded above by [Rm|?, which
the second term, by Lemma 1.7, becomes

<Rm, ZRm > = < Rm,ARm >+ < Rm,Rm * Rm > (3.13)

) 9t

Since |Rm * Rm| < C|Rm|? for some constant C = C(n), we can once more
apply Cauchy—Schwarz inequality to bound the second term by |Rm|?> up to
some constant.

We also observe that d]Rm|? = 2 < Rm, VRm > (the computation is tedious,
but think of the case where Rm is replaced by a vector function F', and VF
is the gradients of each component of F', then this boils down to the product
rule). Expanding A|Rm|? by definition, we have

ARm|*> = tr;3V?(|Rm|?)
= tr12V(d|Rm\2)
2tI‘1QV(< Rm, VRm >)
= 2|VRm|? +2 < Rm, ARm > .

(3.14)



Again, the last equality is a generalization of that for functions to tensors. Then
the proposition is proven. O

Theorem 3.6. Suppose |Rm| < M att =0. Then for all t € [0,T),

M
[Rm| < (3.15)

sCOMt’
where C is the same constant as in Proposition 3.5.

Proof. By Proposition 3.5, we have

%|Rm|2 < ARm|? - 2|VRm|?* + C|Rm* < A|Rm|> + C|Rm|®.  (3.16)

3
2

Let u = [Rm[? and F(r,t) = Cr. Then the above implies Zu < Au+ F(u,t),
and u(-,t) < M?. Let ¢(t) = (M~ — £Ct)~2. Then

%(15(15) = W = F(é(t),1), (3.17)
¢(0) = M?
Now we can apply Theorem 2.1 to obtain (3.15). O

Remark 3.7.

1. By scaling invariance with respect to time ¢, we may assume M = 1. From
Theorem 3.6, we know that |[Rm| won’t reach twice it’s initial data until
after ¢ = . Therefore, growth of [Rm| is bounded.

2. In contrast, there is no such bound for the scalar curvature. Indeed for
M(t = 0) = S? x H?, the product of a 2-sphere and a hyperbolic surface,
the initial scalar curvature R(t = 0) = 0, but for ¢ > 0, R # 0. Then we
can scale so that R blows up at ¢t = 0.

4 Global curvature derivative estimates

Theorem 4.1. Suppose that M > 0 and T = ﬁ Then for all k € N, there
exists C' = C(n, k) such that the following statement is true. If |Rm| < M on
M x [0,T), then for all t € [0,T),

CM
IVFRm| < —. (4.1)
ts
Proof. We prove the theorem by induction on k.
Let’s first consider k = 1. Let u(x,t) = t|VRm|? + o|Rm|?, where a € R is
to be determined. Then
0

0 0
o _ 2,9 2, O 2
pre [VRm|* + tat|VRm| + aat\Rm| . (4.2)



We may run the similar argument as in the proof of Proposition 3.5 to obtain

AN ’ ;
— 2(R7,jgklgabgcd 4 g’Lj Rklgabgcd 4 gz]gklRabgcd (43)
+9% g* g% R*?) (VRm)igac(VRM) j1pg + 2 < VRm, 2 VRm >

Applying Cauchy—Schwarz inequality, we obtain |[Rm||VRm|? as an upper bound
for the first term. Now it remains to bound < VRm, %VRm >.
we observe that

SVRm = VZRm+Rm*VRm
= V(ARm)+ V(Rm * Rm) + Rm * (VRm) (4.4)
= A(VRm) + Rm * (VRm),

where the first equality is due to Lemma 1.6, the second due to Lemma 1.7, and
the third due to Lemmas 1.4 and 1.5. Then,

< VRm, %VRm >=< VRm, A(VRm) > + < VRm,Rm * (VRm) > . (4.5)

Replacing Rm with VRm in (3.14), we obtain
2 < VRm, A(VRm) >= A|VRm|? — 2|V?*Rm/|?. (4.6)
By Lemma 1.3 and Cauchy—Schwarz inequality, we have
| < VRm, Rm * (VRm) > | < C|Rm||VRm|*. (4.7)

Thus,
9
a\VRmF < A|VRm|? - 2|V?*Rm|? + C|Rm||VRm|?. (4.8)

Together with Proposition 3.5, we obtain

2u < |VRm[?+¢(A|VRm|? + C|Rm||VRm/|?)
+a(A|Rm|? — 2|VRm|? + C|Rm|?) (4.9)
= Au+ |[VRm|*(1 + CtRm| — 2a) + Ca|Rm|3.

Since |[Rm| < M, t < ﬁ, we can take o > % so that the second term is
non-positive. Let F(r,t) = CaM3. Then u satisfies (2.1).

Let ¢(t) = aM? + CatM3. Then it is easy to verify that ¢ solves (2.2) with
initial data ¢(0) = aM? > u(-,0). Then we can apply Theorem 2.1 to obtain

u < C(M? 4 tM?) < CM?. (4.10)

because t < ﬁ Expanding the definition of u gives t{{VRm|? < CM?, which

implies |[VRm| < %

For k > 1, we consider u = t 5" |VEFRm|? + a|VF~'Rm|?, and use the induc-
tion hypothesis and Lemmas 1.6 and 1.5 to obtain (4.1). The key to killing the
second term in (4.9) is the non-positive term in (4.8). O



Corollary 4.2. Under the same assumptions of Theorem 4.1, for j, k € {0}UN,
there exists a constant C = C(j, k,n) such that the following statement holds.
If Rm| < M on M x [0,T = ], then for all t € [0,T],

o, cM
— < . .
55 VRl < (4.11)

Proof. By scaling invariance, one may assume ¢t = 1 and M < 1. Then we
mainly use Lemmas 1.6 and 1.5 to prove the statement. O

Theorem 4.3 ([2]). Suppose that g(t) is a Ricci flow defined on an arbitrary
manifold U without boundary for t € [0,T]. g is not necessarily complete. Sup-
pose further that [Rm| < M on U x [0,T], and that Bg)(p,7) C U for some
p € U,r >0, where Byo)(p,7) is the geodesic ball with respect to g(0), centered
at p, of radius r. Then

|VRm(p, T)|* < C’(n)MQ(T% + % + M). (4.12)
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