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Abstract

This is an exposition of Chapter 3 of [3].

1 Preliminaries

Let M denote a closed (compact, without boundary) n-dimensional manifold
equipped with an evolving Riemannian metric g(t). In the notes, A ≤ CB for
some constant C = C(n) means C is independent of A,B, but may depend on
n. For each different inequality, C may be different.

Definition 1.1.

1. Raising and lowering indices

Let η ∈ T ∗M be a cotangent vector with components ηi. We can raise
the index by taking ηi = gijηj and obtain a tangent vector η# = ηi∂i.
Similarly, for a tangent vector X ∈ T M with components Xi, we can
lower the index by taking Xi = gijX

j and obtain a cotangent vector
X♭ = Xidx

i. We can similarly raise and lower desired indices of general
tensors.

2. Inner products

Let X,Y ∈ T M with components Xi, Y j , respectively. Then their inner
product is defined as

< X,Y >= gijX
iY j . (1.1)

Let η, ω ∈ T ∗M. We can define their inner product by

< η, ω >:=< η#, ω# >= gijηiωj = ηiω
i. (1.2)

For a general tensor F,G ∈ T (k,l)M with components F i1,...,ik
jl,...,jl

, Gi1,...,ik
jl,...,jl

,
respectively, we define their inner product to be

< F,G >= F i1...,ik
jl,...,jl

, G
i′1,...,i

′
k

j′l,...,j
′
l

k∏
r,r′=1

gir,i′r′

l∏
s,s′=1

gjs,j
′
s′ . (1.3)
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3. Frobenius norms

Let F ∈ T (k,l)M. The Frobenius norm, denoted by |F | is defined as a
non-negative function on M satisfying |F |2 =< F,F >.

4. The ∗-notation
Let A,B be any tensor fields. Then A ∗ B is a real linear combination of
operations of A⊗B including raising and lowering indices and contractions.

5. Curvature tensors

Let R ∈ T (1,3)M be a tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (1.4)

Locally, we can write R = Ri,j,k
ldxi ⊗ dxj ⊗ dxk ⊗ ∂l.

Define the (Riemann) curvature tensor Rm ∈ T (0,4)M by Rm = R♭; that
is

Rm(X,Y, Z,W ) =< R(X,Y )Z,W > . (1.5)

Then locally Rm = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl, where Rijkl = gmlRijk

m.
Conversely, Rijk

m = glmRijkm.

The Ricci curvature, denoted by Ric, is given by

Ric(X,Y ) = tr(Z 7→ R(Z,X)Y ). (1.6)

Then Ric ∈ T (0,2)M with components Rij = Rkij
k = gkmRkijm.

The scalar curvature is a function S given by

R = trgRic = Ri
i = gijRij . (1.7)

Remark 1.2. R may be a (1, 3)-, (0, 4)-, or (0, 2)- tensor, or a scalar function,
depending on the context.

Then one has the following properties of ∗.

Lemma 1.3. Let A,B be any tensor fields on M. Then

|A ∗B| ≤ C|A||B|, (1.8)

for some constant C = C(n).

Lemma 1.4 ((2.1.4) of [3]). Let A,B be any tensor fields on M. Then

∇(A ∗B) = (∇A) ∗B +A ∗ (∇B). (1.9)

Lemma 1.5 ((2.1.6) of [3]). Let A be any tensor field. Then

∇(∆A)−∆(∇A) = (∇Rm) ∗A+Rm ∗ (∇A). (1.10)
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Lemma 1.6 ((2.3.3) of [3]). Let A be any tensor field. Then

∂

∂t
∇A−∇ ∂

∂t
A = A ∗ ∇h, (1.11)

where h = ∂
∂tg.

Throughout the notes, unless otherwise specified, g(t) is a Ricci flow on M
for t ∈ [0, T ]; that is, g satisfies the following equation,

∂g

∂t
= −2Ric(g). (1.12)

Let’s recall some properties of g(t).

Lemma 1.7.
∂

∂t
Rm = ∆Rm+Rm ∗ Rm. (1.13)

Lemma 1.8 (Corollary 2.5.5 of [3]). The scalar curvature R satisfies

∂R

∂t
≥ ∆R+

2

n
R2. (1.14)

Lemma 1.9 ((2.5.8) of [3]). Let V (t) := Vol((M, g(t))). Then

dV

dt
= −

∫
RdV. (1.15)

2 The weak maximum principle

Theorem 2.1 (Weak maximum principle).
Let F : R× [0, T ] −→ R be a smooth function. Suppose u ∈ C∞(M× [0, T ],R)
solves

∂u

∂t
≤ ∆g(t)u+ F (u, t). (2.1)

Suppose further that ϕ : [0, T ] −→ R solves{
dϕ
dt = F (ϕ(t), t),

ϕ(0) = α ∈ R. (2.2)

If u(·, 0) ≤ α, then u(·, t) ≤ ϕ(t) for all t ∈ [0, T ].

Proof. Let ε ≥ 0. Consider an ε-perturbation of (2.2){
dϕε

dt = F (ϕε(t), t) + ε,
ϕε(0) = α+ ε ∈ R. (2.3)

Then one can find some ε0 > 0 such that for all ε ∈ (0, ε0), there exists a
solution ϕε to (2.3) on [0, T ]. Thus, it suffices to show that u(·, t) < ϕε(t) for
all t ∈ [0, T ] and for all ε ∈ (0, ε0).
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Suppose, otherwise, there exists some ε ∈ (0, ε0), t ∈ (0, T ]), and xt ∈ M
such that u(xt, t) > ϕε(t). Let t0 ≥ 0 denotes the infimum of such t. Then one
can find a sequence {ti} ↘ t0 and corresponding {xti} such that u(xti , ti) ≥
ϕε(ti) for each i. By compactness of M, one can find a subsequence of {xti}
that converge to some x ∈ M such that u(x, t0) ≥ ϕε(t0). On the other hand, by
definition of t0, one has u(x, s) < ϕε(s) for all s ∈ (0, t0). Thus, u(x, t0) = ϕε(t0),
and ∂u

∂t (x, t0)− ϕ′
ε(t0) ≥ 0.

Moreover, we observe that u(x, t0) = maxM u(·, t0). Otherwise, there exists
some x′ ∈ M satisfying u(x′, t0) > u(x0, t0) = ϕε(t0). By continuity of u, ϕε,
this violates the definition of t0. Then, one has ∆u(x, t0) ≤ 0, and∇u(x, t0) = 0,
which implies

0 ≥ ∂u
∂t (x, t0)−∆u(x, t0)− F (u(x, t0), t0)

≥ ϕ′
ε(t0)− F (ϕε(x, t0), t0)

= ε > 0.
(2.4)

Contradiction arises.

By reversing the inequalities, one has the following minimu principle.

Corollary 2.2 (Weak minimum principle). Theorem 2.1 holds with all the ≤
replaced by ≥.

Remark 2.3. The strong maximum principle, where one has u(·, t) < ϕ(t) for
all t ∈ (0, T ], unless u(x, t) = ϕ(t) for all (x, t) ∈ M× [0, T ] is true under the
same assumptions in Theorem 2.1.

3 Basic control on the evolution of curvature

In this section, we will apply the maximum and minimum principles to obtain
some control on how R and Rm evolve.

3.1 Lower bounds of the scalar curvature

Theorem 3.1. If the scalar curvature satisfies R(·, t = 0) ≥ α ∈ R on M, then
for all t ∈ [0, T ],

R ≥ α

1− ( 2αn )t
. (3.1)

Proof. Let u ≡ R, F (r, t) ≡ 2
nr

2, and ϕ(t) = α
1−( 2α

n )t
. By Lemma 1.8, one has

∂u

∂t
≥ ∆u+ F (u, t). (3.2)

On the other hand, {
dϕ
dt = 2α2

n(1−( 2α
n )t)2

= F (ϕ(t), t).

ϕ(0) = α.
(3.3)

Applying Corollary 2.2, we obtain (3.1).
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There are several obvious corollaries of the theorem. We pick the least
obvious one to prove here.

Corollary 3.2. (Corollary 3.2.5) Suppose g(t) is a Ricci flow on M for t ∈
(0, T ]. Then R ≥ − n

2α .

Proof. We observe that (1.12) is translation invariant with respect to time t.
Let t0 ∈ (0, T ). Consider the metric gt0 = g(· + t0) on M. Then it is also
a Ricci flow, but for t ∈ [0, T − t0]. The corresponding scalar curvature is
Rt0(x, t) = R(x, t + t0) for (x, t) ∈ M× [0, T − t0]. Let α = infM R(·, t0). By
compactness of M and continuity of R, one has α ∈ R. Now we apply Theorem
3.1 to gt0 to obtain

R(·, t) ≥ α

1− ( 2αn )(t− t0)
=

1
1
α − 2(t−t0)

n

(3.4)

for t ∈ [t0, T ]. We finish the proof by taking t0 ↘ 0 and α ↘ −∞.

Corollary 3.3. If α := infM R(·, t = 0) < 0, then V (t)

(1+
2(−α)

n t)
n
2

is weakly de-

creasing, and in particular,

V (t) ≤ V (0)

(
1 +

2(−α)

n
t

)n
2

. (3.5)

Proof.

d
dt ln

[
V (t)

(1+
2(−α)

n t)
n
2

]
= d

dt

[
lnV − n

2 ln
(
1 + 2(−α)

n t
)]

= 1
V

dV
dt + α

1+
2(−α)

n t

= − 1
V

∫
RdV + α

1+
2(−α)

n t

< − infM R(t) + α

1+
2(−α)

n t

≤ 0.

(3.6)

The last equality is by Lemma 1.9, and the last inequality by Theorem 3.1.

Remark 3.4.

1. If T = ∞, then

V := lim
t→∞

V (t)

(1 + 2(−α)
n t)

n
2

(3.7)

exists.

2. [1] considers a local version of the Ricci flow: if V > 0, then the open ball
is becoming hyperbolic. If V = 0, then it behaves like a graph manifold.
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3.2 Upper bounds for |Rm|
Proposition 3.5.

∂

∂t
|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3, (3.8)

where C = C(n) is a constant.

Proof. Expanding the components of |Rm|2, one has

|Rm|2 = |Rm|2 = gijgklgabgcdRikacRjlbd. (3.9)

Let h := ∂g
∂t . We first observe that ∂

∂tg
ij = −hij . (Warning: hij is obtained

by raising the indices instead of taking the inverse of h.) This can be seen by
differentiating the constant matrix δi

j = gikg
kj to obtain

0 = ∂
∂t (gikg

kj)
= hikg

kj + gik
∂
∂tg

kj

= hpqgipgkqg
kj + gik

∂
∂tg

kj

= hpjgip + gik
∂
∂tg

kj

= gik(h
kj + ∂

∂tg
kj).

(3.10)

The observation is valid because g is non-degenerate. By (1.12), we then have

∂

∂t
gij = 2Rij (3.11)

∂
∂tg

ij = 2Rij .
Differentiating (3.9) on both sides, and using (3.11) we obtain

∂
∂t |Rm|2

= 2(Rijgklgabgcd + gijRklgabgcd + gijgklRabgcd

+gijgklgabRcd)RikacRjlbd + 2 < Rm, ∂
∂tRm >

(3.12)

By Cauchy–Schwarz inequality, the first term is bounded above by |Rm|3, which
the second term, by Lemma 1.7, becomes

< Rm, ∂
∂tRm > = < Rm,∆Rm > + < Rm,Rm ∗ Rm > (3.13)

Since |Rm ∗ Rm| ≤ C|Rm|2 for some constant C = C(n), we can once more
apply Cauchy–Schwarz inequality to bound the second term by |Rm|3 up to
some constant.

We also observe that d|Rm|2 = 2 < Rm,∇Rm > (the computation is tedious,
but think of the case where Rm is replaced by a vector function F , and ∇F
is the gradients of each component of F , then this boils down to the product
rule). Expanding ∆|Rm|2 by definition, we have

∆|Rm|2 = tr12∇2(|Rm|2)
= tr12∇(d|Rm|2)
= 2tr12∇(< Rm,∇Rm >)
= 2|∇Rm|2 + 2 < Rm,∆Rm > .

(3.14)
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Again, the last equality is a generalization of that for functions to tensors. Then
the proposition is proven.

Theorem 3.6. Suppose |Rm| ≤ M at t = 0. Then for all t ∈ [0, T ],

|Rm| ≤ M

1− 1
2CMt

, (3.15)

where C is the same constant as in Proposition 3.5.

Proof. By Proposition 3.5, we have

∂

∂t
|Rm|2 ≤ ∆|Rm|2 − 2|∇Rm|2 + C|Rm|3 ≤ ∆|Rm|2 + C|Rm|3. (3.16)

Let u = |Rm|2 and F (r, t) = Cr
3
2 . Then the above implies ∂

∂tu ≤ ∆u+ F (u, t),
and u(·, t) ≤ M2. Let ϕ(t) = (M−1 − 1

2Ct)−2. Then{
∂
∂tϕ(t) = C

(M−1− 1
2Ct)3

. = F (ϕ(t), t),

ϕ(0) = M2
(3.17)

Now we can apply Theorem 2.1 to obtain (3.15).

Remark 3.7.

1. By scaling invariance with respect to time t, we may assume M = 1. From
Theorem 3.6, we know that |Rm| won’t reach twice it’s initial data until
after t = 1

C . Therefore, growth of |Rm| is bounded.

2. In contrast, there is no such bound for the scalar curvature. Indeed for
M(t = 0) = S2 ×H2, the product of a 2-sphere and a hyperbolic surface,
the initial scalar curvature R(t = 0) = 0, but for t > 0, R ̸= 0. Then we
can scale so that R blows up at t = 0.

4 Global curvature derivative estimates

Theorem 4.1. Suppose that M > 0 and T = 1
M . Then for all k ∈ N, there

exists C = C(n, k) such that the following statement is true. If |Rm| ≤ M on
M× [0, T ], then for all t ∈ [0, T ],

|∇kRm| ≤ CM

t
k
2

. (4.1)

Proof. We prove the theorem by induction on k.
Let’s first consider k = 1. Let u(x, t) = t|∇Rm|2 + α|Rm|2, where α ∈ R is

to be determined. Then

∂

∂t
u = |∇Rm|2 + t

∂

∂t
|∇Rm|2 + α

∂

∂t
|Rm|2. (4.2)
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We may run the similar argument as in the proof of Proposition 3.5 to obtain

∂
∂t |∇Rm|2

= 2(Rijgklgabgcd + gijRklgabgcd + gijgklRabgcd

+gijgklgabRcd)(∇Rm)ikac(∇Rm)jlbd + 2 < ∇Rm, ∂
∂t∇Rm >

(4.3)

Applying Cauchy–Schwarz inequality, we obtain |Rm||∇Rm|2 as an upper bound
for the first term. Now it remains to bound < ∇Rm, ∂

∂t∇Rm >.
we observe that

∂
∂t∇Rm = ∇ ∂

∂tRm+Rm ∗ ∇Rm
= ∇(∆Rm) +∇(Rm ∗ Rm) + Rm ∗ (∇Rm)
= ∆(∇Rm) + Rm ∗ (∇Rm),

(4.4)

where the first equality is due to Lemma 1.6, the second due to Lemma 1.7, and
the third due to Lemmas 1.4 and 1.5. Then,

< ∇Rm,
∂

∂t
∇Rm >=< ∇Rm,∆(∇Rm) > + < ∇Rm,Rm ∗ (∇Rm) > . (4.5)

Replacing Rm with ∇Rm in (3.14), we obtain

2 < ∇Rm,∆(∇Rm) >= ∆|∇Rm|2 − 2|∇2Rm|2. (4.6)

By Lemma 1.3 and Cauchy–Schwarz inequality, we have

| < ∇Rm,Rm ∗ (∇Rm) > | ≤ C|Rm||∇Rm|2. (4.7)

Thus,
∂

∂t
|∇Rm|2 ≤ ∆|∇Rm|2 − 2|∇2Rm|2 + C|Rm||∇Rm|2. (4.8)

Together with Proposition 3.5, we obtain

∂
∂tu ≤ |∇Rm|2 + t(∆|∇Rm|2 + C|Rm||∇Rm|2)

+α(∆|Rm|2 − 2|∇Rm|2 + C|Rm|3)
= ∆u+ |∇Rm|2(1 + Ct|Rm| − 2α) + Cα|Rm|3.

(4.9)

Since |Rm| ≤ M , t ≤ 1
M , we can take α ≥ 1+C

2 so that the second term is
non-positive. Let F (r, t) = CαM3. Then u satisfies (2.1).

Let ϕ(t) = αM2 +CαtM3. Then it is easy to verify that ϕ solves (2.2) with
initial data ϕ(0) = αM2 ≥ u(·, 0). Then we can apply Theorem 2.1 to obtain

u ≤ C(M2 + tM3) ≤ CM2. (4.10)

because t ≤ 1
M . Expanding the definition of u gives t|∇Rm|2 ≤ CM2, which

implies |∇Rm| ≤ CM√
t
.

For k > 1, we consider u = t
k+1
2 |∇kRm|2+α|∇k−1Rm|2, and use the induc-

tion hypothesis and Lemmas 1.6 and 1.5 to obtain (4.1). The key to killing the
second term in (4.9) is the non-positive term in (4.8).
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Corollary 4.2. Under the same assumptions of Theorem 4.1, for j, k ∈ {0}∪N,
there exists a constant C = C(j, k, n) such that the following statement holds.
If |Rm| ≤ M on M× [0, T = 1

M ], then for all t ∈ [0, T ],

| ∂
j

∂tj
∇kRm| ≤ CM

tj+
k
2

. (4.11)

Proof. By scaling invariance, one may assume t = 1 and M ≤ 1. Then we
mainly use Lemmas 1.6 and 1.5 to prove the statement.

Theorem 4.3 ([2]). Suppose that g(t) is a Ricci flow defined on an arbitrary
manifold U without boundary for t ∈ [0, T ]. g is not necessarily complete. Sup-
pose further that |Rm| ≤ M on U × [0, T ], and that Bg(0)(p, r) ⊂ U for some
p ∈ U, r > 0, where Bg(0)(p, r) is the geodesic ball with respect to g(0), centered
at p, of radius r. Then

|∇Rm(p, T )|2 ≤ C(n)M2(
1

r2
+

1

T
+M). (4.12)
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