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1. SINGLE-VARIABLE COMPLEX ANALYSIS

We begin by reviewing complex analysis in one variable. A good reference is Rudin’s Real
and Complex Analysis, Ch. 10.

1.1. Holomorphic functions. Fix a formal variable i satisfying
% =-1.
The field of complex numbers C = R[] will be identified with the = -y plane as follows:
C={x+iy| (z,y) e R?}.
We endow C with the norm

|2| =V2Z
which agrees with the Euclidean norm on R%2. A domain 2 ¢ C will refer to a connected
open subset 2 c C.

Definition 1.1.1. A complex-valued function f: €2 — C is said to be holomorphic if the

limit
f(z+h) - f(2)
h

!/ w13
f'(z) = 1im
heC
exists, as a complex number, for each z € ). We shall denote the set of holomorphic functions

on ) by Hol(2), and write f(z) € Hol (Q) if f(z) is also continuous on the closure 2.

With this definition, the ordinary rules of calculus apply to holomorphic functions. In
particular, with proofs unchanged, we have:

Product rule: (f(z)-9(2))" = f'(2)-9(2) + f(2)-g'(2)
Chain rule: f(g(2))"=f'(9(2))-¢'(2)
Here complex multiplication is intended. The product rule implies that Hol(2) is a ring

under complex multiplication. The chain rule implies, more surprisingly, that the ring of
entire functions Hol(C) is also closed under composition.

Example 1.1.2. (a) For n >0, f(z) = z" is holomorphic, with f/(z) = nz"1.

(b) The exponential function

el n

¢ = 3 2 (con(y) +isin(y))

n=0 '
is holomorphic, with (e?)’ = e*. Indeed, any power series f(z) = ¥,50¢n2" is holomorphic
within its radius of convergence

(1.1) R = limsup |e,| /™.

n—>00
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(c) The logarithm function can be defined as the inverse of the exponential function restricted
to {(x,y) | o0 < x < 00, - <y < w}. By the chain rule, log(z) is automatically holomorphic
in its domain. In radial coordinates on R?, we can write out

log(z) =logr+if, -m<6<m.
With this convention, the domain of log(z) is C~{(z,0) | z < 0}. So log(z) is by no means an
entire function, but could be extended to a “multivalued” holomorphic function on C \ {0}.

Next, we consider the extension of the fundamental theorem of calculus to holomorphic
functions. Given a piecewise C' path () : [a,b] — €2, we define the integral along ~ by

[r@s- [T raw) o

where again, complex multiplication is intended inside the integral. As with ordinary line
integrals, this is independent of the parametrization of v (although it does depend up to +
on the direction).

Theorem 1.1.3 (FToC for holomorphic functions). Let F(z) € Hol(Q2) and let v be a path
contained in ). Then

ﬂ F'(2)dz = F(y(b)) - F(+(a)).

This can be proved exactly as in single-variable calculus, or derived as a special case of the
result for line integrals.

Remark 1.1.4. We shall often be concerned with domains € that have piecewise C!
boundary. This means that €2 is bounded, and the boundary set 9Q = Q \ Q consists of a
finite collection of C! curves {7(t)}, whose endpoints cancel (as they must). If we give C
the standard orientation (corresponding to the ordered basis {(%, 8%}), then each curve in
0f) can be oriented by the convention

{V®. it~ {a%’a%}

where v is the inward normal to Q2. Informally, this means that we always parametrize 052
such that €2 stays “on the left” of its boundary curves, as in the counterclockwise orientation
of St = aBl

1.2. Cauchy’s Theorem: two approaches. The foundational result of complex analysis
is as follows.

Theorem 1.2.1 (Cauchy’s Theorem). Let Q be a bounded domain in C with piecewise C*
boundary, and let f(z) e Hol (). Then

Aﬂf(z)dz=0.
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1.2.1. Goursat’s proof. The best proof of Cauchy’s theorem, due to Goursat, is based on the
following simple observation.

Lemma 1.2.2. Assume that 7 is a closed curve in €, and F(z) € Hol(2). Then
[F'(z) dz = 0.
gl

Proof. Since 7 is a closed curve, we have y(a) = v(b) € C. By the fundamental theorem of
calculus for holomorphic functions, we have

L F'(2)dz = F(y(b)) - F(3(a)) =0
as claimed. ]

Proposition 1.2.3. For a closed curve v in C, and n >0, we have

fz”dz=0.
N

Proof. The entire function f(z) = 2" has an entire, holomorphic antiderivative F'(z) = %
Hence
fz”dz: fF'(z)dz:O
ol v
by the previous lemma. O

Example 1.2.4. We check the integral of (z — z5)" over the boundary of a ball B,(z)
directly. We have 0B,(z9) = [7(6)], where v(6) = zo + 7¢®,0 < § < 7. Then ~'(6) = ire®,
hence

2 ) )
/ ( )(z - 20)"dz = f et . ire® df
0B (20 0
2m )
(12) =4 '/0 Tn+1ez(n+1)9d0
0 n+-—1
2mt n=-1.

Ezercise: Explain how the result of this calculation is consistent with Lemma 1.2.2.

Theorem 1.2.5 (Cauchy-Goursat for a triangle). Let A € Q be a triangle. Then for f €

Hol(2), we have
/ f(z)dz=0.
oA

Proof. Let I = | [,, f(z)dz|. Draw the lines between the midpoints, dividing A into four
smaller triangles with half the side length. Let «;, j = 1,2,3,4, denote the boundaries of
these triangles, oriented counterclockwise. Then as cycles
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since the segments connecting the midpoints are traversed in opposite directions. Therefore

4
1-1% [ f()a
j=1 77
and we may choose j; such that

|f F(2)dz| = /4.

Vi1

Let Ay be the triangle with 0A; = ;,.
Next, subdivide A; in the same way, and choose A, such that

z)dz| > I]4%.
IRCIERY
Continuing in this fashion, we obtain nested triangles

oAy 1 9A, DAL D

with
diam(A,,) < diamA/2"
and
|f8An f(z)dz| > I/am.
Let
z0=[)A.
n>0

Then 2 € A c Q, hence f/(z) exists.
Let € > 0. Since f’(zg) exists, we may choose n such that

F(2) - f(Zi - 50(20) <e

for all z € A,,. Then
|f(2) = f(20) = (2= 20) f'(20)] < €|z = 2.
By Proposition 1.2.3, we have

faan f(z)dz = faAn (f(2) = f'(20)(z=20) = f(20)) dz.
But then

[ TG < [ @)= o) =) - )l

Se[ |z — 20| dz
O,

< e(3diamA,,) (diamA,,)
< 3¢ (diamA,,)?

< 3¢ (diamA)’
S——
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By choice of the triangles A,,, this yields

I 3¢ (diamA)?
17 <1 [ S el s o

and
0 < I < 3¢(diamA)”.

Since € was arbitrary, we conclude that I =0, as claimed. 0

Corollary 1.2.6 (Cauchy for a ball). Let y(t) be a closed curve contained in a ball B =
B, (20), and f(z) € Hol(B). Then

(1.3) /Wf(z) dz = 0.

Proof. We shall write [zo, z] for the straight line between zy and z; in C. Define

F(z)= f[o’z]f(w) dw.

Z

We claim that F'(z) = f(2).
Notice that the triangle with vertices 2y, 21, 29, is contained in B. By Cauchy’s theorem
(for the triangle), we have

F(z)-F(z)= : ]f(z)dz.

21,22

Dividing by 2 — z; and subtracting f(z;) from both sides, we obtain

UCIRZICH IV EETEAO LT
_ f[zl,ZQ] (f(Z) - f(Zl)) dz

Since f(z) - f(z1) = 0 as z —> z1, and the length of [z, z2] is |22 — 21/, the RHS tends to zero.
Therefore F’(z1) = f(21), as claimed.
The result now follows from Lemma 1.2.2. O

Corollary 1.2.7 (Cauchy for s.c. domain). Assume Q) is simply connected. For any closed
curve {y(t)} cQ and f(z) € Hol(2), (1.8) holds.

Proof. Since € is simply connected, the path v is nullhomotopic, i.e., there exists a continuous
(indeed, piecewise C1) map v(s,t) : [0,1]° = C with (1,t) = 4(¢) and ~(0,t) = ~(s,0) =
v(s,1) = z.

Since [0, 1]2 is compact, the map y(s,t) is uniformly continuous. We may therefore sub-
divide [0,1]° into n? rectangles, each of which has image inside a ball contained in €. By
the previous corollary, the integral over the boundary of each rectangle vanishes. Since the
sum of these is the integral over ~, this vanishes as well. 0J
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Theorem 1.2.1 now follows from Corollary 1.2.7 by subdividing €2 into simply connected
domains.

1.2.2. Cauchy’s proof (in modern notation). The exterior derivative d extends linearly to
complex-valued functions and differential forms on C = R? in the obvious way:

df =d(u+iv) = du+idv.
In particular, we have
(1.4) dz = dx +idy, dz = dx —idy.
Definition 1.2.8. Define the two operators:
ﬁzl(ﬁ+lﬁ) Qzl(ﬁ_lﬁ)
0z 2\o0x i0y)’ 0z 2\0x i0y)’
The first motivation for Definition 1.2.8 is the following lemma.

Lemma 1.2.9. For any differentiable complez-valued function f on C, we have

Lof . of
df = aZdz+ Eﬁdz
Proof. Check directly from (1.4) and Definition 1.2.8 (Exercise).? O

The second motivation for Definition 1.2.8 is the following well-known fact.

Proposition 1.2.10. A holomorphic function f(z) obeys the Cauchy-Riemann equation®
of
0z

Proof. Write f(z) = u(z,y) +iv(x,y). If f(z) is holomorphic, then the limit along the real

axis exists:

L SN - FE) by —uey) | v hy) - o)

(1.5) 0.

h= h h>0 h h=0 h
= @ + Z@
COr Oz

The limit along the imaginary axis also exists:

lim f(z+is) - f(is) — lim u(z,y+s)—u(x,y+s) v(z,y+s)-v(x,y)

+ 7 1lim
5—=0 18 s=0 18 s=0 18
seR
Ou  Ov
=—7— + —.
dy Oy

IStrictly speaking, we need to deal with the case when f (2) is not holomorphic across the boundary of
Q, but only continuous there. This can be done by moving the boundary 0f2 slightly into 2, and taking the
limit of the line integral using continuity of f(z) on .

2The reason this Lemma works is that % and %, as elements of TR? ®g C, form the dual basis to (1.4).
We will adopt this perspective in §3 below.

3See §1.7 below for further discussion of the Cauchy-Riemann equation(s).
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The two limits must be equal, giving

@—@+i(@+@)—0
or Oy or  Oy)

This is precisely (1.5). O
We now have the following quick proof of Theorem 1.2.1:

[ raz= [ d(raz)
:fﬂdedz

_ [9f
—[Qazdz/\dz
=0

Here we have used Stokes’s Theorem, Lemma 1.2.9, and (1.5).

Note that applying Stokes’s (i.e. Green’s) Theorem requires that f(z) is C'. This is a
much stronger assumption than pointwise differentiability, which is all Definition 1.1.1 gives
you a priori. Hence Goursat’s proof, although longer, is both stronger and more transparent
than Cauchy’s.

We will now show that this question is strictly academic.

1.3. Cauchy Integral Formula and immediate consequences. Cauchy’s Theorem is
most potent in the following form.

Theorem 1.3.1 (Cauchy Integral Formula). Let Q be a bounded domain with piecewise C*
boundary. For f € Hol(Q) and any z € Q, there holds

1 f(w)
- [ W,
/() 2mi Jog w — 2 v
Proof. For 0 < r < dist(z,00), we let

Q, =Q~\ B.(2).

Then Cauchy’s theorem gives
MY PR o (5 P S (O P
o0, W— 2 W=z OB, (2) W — Z
and
) . [ S,
N wW— 2 OB.(z) W — Z
2 f(z+re?)

= iredp
0 re

27 .
=i[ f(z+7re?)db
0
— 27if(z) asr >0

since f is continuous at z. This proves the formula. O
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Corollary 1.3.2. A holomorphic function is complex-analytic at each zy € ), i.e., admits a
convergent power-series erpansion

(16) £(2) = i e (2~ 20)"

with radius of of convergence R = R(zg) > dist(zg,92). In particular, a holomorphic function
1s smooth on its domain.
For any 0 <r < R, we have the formula

(1.7) e = i,f e LC) N
21 JoB, (w—zo)n
Proof. For w e 0B,(zy) and z € B,.(2), we have |z — 2| < |w - 2|, and may write
1 1
w-z w—z9—(2-20)
1 1
(1.8) Tw-zpl- 2R

_ i (z—2z)"
n=0 (w - Zo)n+1 .
This is a uniformly convergent power series for |z — zg| < R’ < R. We may therefore insert
(1.8) into the Cauchy integral formula and exchange limits, to obtain

1) =g [ F0) 3 A2

- Z [27?@ / (wf_(:(gn+1 dw] (Z - zO)n

which is the desired expansion. O

Corollary 1.3.3 (Cauchy’s estimates). Assume |f(2)| < M on B.(z9). Then

0 (o) <

Proof. By the above corollary, we have f*(zy) = nle,, for ¢, given by (1.7). O

Theorem 1.3.4 (Liouville’s Theorem). A bounded entire function is constant.
Proof. Let n =1 and r - oo in the previous corollary. U

Corollary 1.3.5 (Fundamental Theorem of Algebra). A non-constant polynomial function
has at least one zero on C.

Proof. Assuming the contrary, we may apply Liouville’s theorem to the bounded entire
function 1/f. O

Definition/Lemma 1.3.6. The order of vanishing N € Nu{oo} of a holomorphic function
f(2) at zo € Q is the first number for which cy # 0 in the series (1.6), or equivalently, the
greatest N such that

f(2)=0(z - 2)" as z - 2.
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Proof. Let

o0

9(2) = Y cn(z-2)" .

n=N
This power series has the same radius of convergence as that of f(z), as one can check from
(1.1). We therefore have

(1.9) f(2) = (2-20)"g(2)
where g(z) is holomorphic in Br with g(zy) = cy # 0. O

Proposition 1.3.7. If f(29) = 0 and the order of vanishing of f(z) at zq is less than infinity,
then zy is an isolated zero, i.e., there exists a neighborhood B, (zy) such that f(z) # 0 for all

Z € BT(Z()) AN {Zo}.
Proof. This follows directly from (1.9). O

Theorem 1.3.8 (Identity principle). Let f(z) be a holomorphic function on Q that vanishes
identically on a nonempty subdomain Q' c Q). Then f(z) vanishes identically on €.

Proof. Let  be the subset of  where the order of vanishing of f(z) is co. Then € is open by
definition, and nonempty by assumption. Moreover, € is closed, by Proposition 1.3.7. We
conclude that Q is both open and closed in , which is connected (by definition), so Q = Q
as claimed. 0

Corollary 1.3.9. If f(z) is not identically zero, then its zeroes are isolated in Q, i.e., form
a discrete subset.

Theorem 1.3.10 (Maximum principle). If |f(2)| attains a local mazimum inside €2, then
f(z) is constant.

Proof. Let zp be such a local maximum, with |f(zp)| = M. We may assume without loss of
generality that f(z9) = M €R.

Assume, for the sake of contradiction, that f(z) is not constant in a neighborhood B,(zg) €
Q; in particular, we may choose r such that f(z) is not identically equal to M on 0B,(z).
We now apply the Cauchy Integral Formula:

1
M =Re f(2) = Re[ — f(w) dw
9B (20) 2T W — 2y
1 2 .

2wt Jo  re?

1 2T
= Re — flw)db
21 Jo

:l—/ﬂﬂRQﬂuOd&
2w Jo
Since we are assuming | f(z)| < M for all z € B,, we have |f(2)| = M if and only if Re f(z) = M.
Hence, by our assumption, Re f(z) < M for some points z € dB,.(z). Since f(z) is continuous,
we obtain a strict inequality

1 2

27 1
M:—f Re f(w)do< — [ Mdo=M
21 Jo 21 Jo
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which is a contradiction.
We conclude that f(z) is identically constant on B,(zg). But then by the identity principle,
f(2) is constant on all of €2, as claimed. O

Corollary 1.3.11. Let Q be a bounded domain. If f(z) € Hol(Q) with |f(2)] < M on 0%,
then |f(2)| < M on Q. If equality holds at any interior point, then f(z) is constant.

Proof. Since |f(2)| is continuous on the compact set €2, it attains its maximum, i.e.
| (20)] =sup f(z) = M’
0

for some zq € Q. If zg € Q, then f(z) is constant, and M’ < M. If z5 € 982, then M’ = |f(z0)| < M
by assumption, and we are again done. 0

Theorem 1.3.12 (Riemann’s removable singularity theorem). Let f(z) € Hol(B,(z0)~{20}),
and assume that

() = O(L) 0s = 7.

|z = 20|

Then f(z) extends to a holomorphic function on B,(z).

Proof. Define the function
9(2) = (2= 20)*f ().
Then ¢(z) is holomorphic for z # zy by the product rule, and

h2f(z+h)| . )
m—————| = [limhf(z+h)| =0

, s
]g (Zo)‘ = }}_}0

by the assumption. Therefore g(z) is holomorphic on all of B,(zg), with
9(20) = 9'(20) = 0.
We therefore have

9(z) = i (2= 20)"

and may define the extension of f(z) to be the convergent power series

Z Cni2(z = 20)™.
n=0
]

Lemma 1.3.13 (Schwartz Lemma). Let f(z) € Hol (Br(0)) be a holomorphic function with
a zero of order N at the origin, which satisfies supyp, |f(2)| = M. Then

()

for all z € Bg. If equality holds at any interior point, then

(i)

for some constant with |C| = M.
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Proof. By the proof of Lemma 1.3.6, we have f(z)/z" = g(z) holomorphic on Bg(0), with

G M
RN T RN
on 0Bpg. But by the maximum principle (Corollary 1.3.11), we then have

2l =1 (2)/=")

throughout Bg, which yields the claim. If equality holds at an interior point, then g(z) =
is constant.

l9(2)] <
el
RN

[l

1.4. Spaces of holomorphic functions. Recall that the L?-norm of a complex-valued

function is defined by
| flle2c0) = \/[2 |f(2)|2dVol.

We have the following extremely strong convergence result for sequences of holomorphic
functions with bounded L? norm.

Theorem 1.4.1 (Montel’s Theorem). Let {f;(2)} be a sequence of holomorphic functions on
B,.(0) with uniformly bounded L? norm. Then for any r <r, there exists a subsequence f;,(2)
which converges to a holomorphic function uniformly on B,,, together with all derivatives.

Proof. Take f = f; for a single function, and let ¢, be the series coefficients about zy = 0.
Notice that for n,m >0, we have

r2n+2

2 -
f e dv =1 o2
" 0

n=m
n+m.

Hence, if the L? norm is bounded by M, then

2
M2 > [ F]2 _ €l
= HfHLQ(Bl) r;] MM+ 2

and, in particular, |c,| < Mv/2n + 2. For 0 <r <1, we have
1F(2)] <D leallz® < MY V20 +2r™ < MCoy(r)

n>0

for z € B,., where Cy(r) is some function of r. Similarly, we have
[FP ()] < MCy(r).

Since the foregoing estimates apply uniformly to f;(z), we conclude from the Arzela-Ascoli
Theorem that the sequence subconverges uniformly on compact subsets, together with all
derivatives. This preserves the Cauchy-Riemann equations, which are equivalent to holo-
morphicity for C! functions. (Alternatively, one can appeal to the converse of Cauchy’s
Theorem, known as Morera’s Theorem, stating that a function is holomorphic if it satisfies
(1.3) for all paths). O
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Corollary 1.4.2. Let {fi(2)} be a sequence of holomorphic functions on a domain Q0 with
uniformly bounded L? norm. Then there evists a subsequence f; (z) which converges to a
holomorphic function on € pointwise and uniformly on compact subdomains.

Proof. We may cover €2 by balls and use a diagonalization argument to obtain the limit f(z).
We then have uniform convergence on compact subsets, since any such is covered by finitely
many balls. U

Corollary 1.4.3. Let {f;(z)} be a sequence of holomorphic functions as above, and let {z,}
be a discrete subset of ). If each f; vanishes to order at least N, at z,, then the limit f(z)
vanishes to order at least N, at z,.

Proof. By the Theorem, we know that there exists a subsequence, again denoted f;(z), such
that fi(z) - f(2) in C2..

Fix a point z, and choose a neighborhood B = B,(z,) € . By uniform convergence, we
know that |f;(2)| < M for all z € 9B, for some constant M. But then by the Schwartz Lemma,
we have

|2 = 2|\
[fi(2)| < M -
Since f; — f, the same holds for f(z). We conclude from Lemma 1.3.6 that the order of
vanishing of f(z) at z, is at least N,, as desired. O

Corollary 1.4.4. The space of holomorphic functions on ) with bounded L? norm (and
vanishing to prescribed orders at a discrete set of points) is a Hilbert space, i.e., is complete
with respect to the L? inner product.

1.5. Meromorphic functions. We shall denote the punctured ball
B(#0) = Br(20) ~ {20}
and the annulus
Uﬁ(ZQ) = BR(ZO) AN BT(Z()).

We have the following generalization of Corollary 1.6 to holomorphic functions on an annulus.

Theorem 1.5.1 (Laurent series). Let f(z) be a holomorphic function on UE(zy). Then f(2)
admits a unique Laurent expansion

oo

(1.10) f(z)= Z Cm(z = 20)™

m=—00

that is uniformly convergent on compact subsets of UL (zy). Indeed, for any r < s < R and
m € Z, we have

(1.11) cm—ifa f(w)

= 2ﬂ-z Bs(zo) (w _ Zo)m+1 .
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Proof. We may apply the Cauchy Integral Formula on the domain §2 = UE(zy), to obtain
1
(1.12) f(z):_.([ de_/ de)_
214 \JoBRr(z0) W — 2 OB (z0) W — 2

Note that we have the two expansions

(z—2z0)"
1 ZZO:O (’UJ _ Zo)n+1 |Z - ZO| < |2U - ZO|
w-z (w—2)"
- Z:LO:O (Z — Zo)n+l |Z - ZO| > |’UJ - ZOl‘

The first expression is convergent for |z — 2| < R, and the second for |z — z| > 7. The Laurent
series is obtained by plugging the two expressions into the two terms of (1.12), respectively,
giving a series (1.10) where

sz' fBBR {(w)mﬂ dw m=>0
(1.13) e = (wf(ff;);
dw m<0.

1
2mi f@BT. (w B zo)m+l

But by Cauchy’s theorem, we may replace r or R by any r < s < R in the integrals in (1.13),
giving (1.11).

The uniqueness of the coefficients follows by plugging (1.10) into (1.11) and using uniform
convergence together with Example 1.2.4 to pick out the coefficients. ([l

Corollary 1.5.2. Let f(z) € Hol (UTR). Then we have a unique decomposition

(1.14) f(z) = P(2) + Q(2)
where P(z) € Hol(Bg) and Q(z) € Hol(C \ B,) with Q(z) = 0 as z — oo.

Furthermore, if f(z) € Hol(BY), then (1.14) holds with Q(z) € Hol(C ~ {0}); if f(z) €
Hol(C \ B,), then P(z) is an entire function.

Remark 1.5.3. As we shall see later, this corollary amounts to the statement that
Hl(ﬁ(c]pl) = O

Definition 1.5.4. Assume that f(z) € Hol(B%(%)). The order of the pole at z is the
minimal N, € NU {oo} such that ¢,, =0 for all m < =N, in the Laurent expansion.
The principal part of f(z) at z is

Noo

Q(2) =)

m=1 (Z - Za)m '

Com

The residue of f(z) at zj is

Reseo(f) = 1= o [ f(w)du

2m
for any 0 < s < R.
The order N € ZuU {+o0} of a meromorphic function f(z) at zy is defined to be the order
of vanishing N, or (negative) the order of the pole —No, if f(2) has a zero or pole at zy € Q,
respectively.
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Theorem 1.5.5 (Residue Theorem). Let Z = {z1,...,2,} ¢ Q be a finite set of points in a
bounded domain with piecewise C' boundary. For f(z) € Hol (2~ {z1,...,2,}) continuous
up to OS2, we have

/mf(z) dz = 2Wi;ReSZ¢(f)'

Proof. Choose r > 0 such that the balls around B, (z;) are disjoint and compactly contained
in 2, and let Q' = Q ~ u;B,.(z;). We apply Cauchy’s Theorem:

0=/;Q/f(z)dZZfmf(z)dz—;fa&(mf(z)dz

and

—/m f(2)dz = ;‘/OBT(Zi)f(z) dz
= ZWiZReszi(f)

by (1.11) and Definition 1.5.4, as claimed. O

Definition/Lemma 1.5.6. We say that f(z) is meromorphic on Q if f(z) € Hol(Q2\ Z)
for Z ={z,} a discrete subset of ), where

(1.15) lim f(z) = oo
for each z, € Z. Equivalently, f(z) € Hol(2\ Z) has only finite-order poles at points of Z.

Proof. 1t is clear that a function with finite-order (nontrivial) poles satisfies (1.15).
Conversely, assume that there exists wy € C and a neighborhood B = B,.(z,) such that
|f(2) —wo| > € for all |z — z,| < r, i.e., the image of B = B,(z,) is not dense in C. (This is a
slightly weaker assumption than (1.15)). Then the function
1
9(2) = 7 ) =
is bounded by 1/e on B and therefore extends to a holomorphic function at z,, by Riemann’s

Theorem, with a finite-order zero at z,. But then f(z) = ﬁ +wp has a finite-order pole. [

Remark 1.5.7. The density statement in the proof is known as the Casorati- Weierstrass
Theorem.

Remark 1.5.8. Notice that the quotient of two meromorphic functions is again meromor-
phic. The set of meromorphic functions on 2 is therefore a field, namely, the field of fractions
of the set of holomorphic functions on 2 (which is an integral domain, by the identity prin-
ciple).

We shall need the following two results, which show the power of the Residue Theorem
when applied to meromorphic functions. The proof is direct from (1.9).

Lemma 1.5.9. Let f(z) be a meromorphic function of one variable, and assume that

Ord., f(z) = N.
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Then f'(2)]f(z) has at most a simple pole at zy, with

(1.16) Resz()& =N

f(2)

In particular, by the Residue Theorem, we have:

Proposition 1.5.10. Let f(z) be a meromorphic function on a domain Q, with piecewise
C' boundary, and assume that f and f' extend continuously to O, with f monzero there.
The number of zeroes minus the number of poles inside §2, counted with multiplicity, is given

by
f'(2)
oo f(2)

Ezercise. Use Proposition 1.17 to prove the Open Mapping Theorem: the image of a
domain under a holomorphic function is either a point or a domain.

dz.

(1.17)

1.5.1. Two classical problems. We would be remiss not to mention the following problems
from the 19th century, which are sometimes used to motivate the whole theory. We will
return to each one later in the class, but there is nothing preventing you from solving them
NOW.

Problem 1.5.11. We say that a function is meromorphic at infinity if f(1/w) is mero-
morphic at w = 0.

(a) Identify all meromorphic functions on Cu {co}.

(b) Given finitely many points {z1,...,2,} ¢ Cu{oo} and numbers {Ny,..., N, } c N, what
is the dimension of the space of meromorphic functions with poles of order at most N; at z;?
(Answer: Y1 N; +1.)

Problem 1.5.12. Let 7 ¢ C ~\ R and denote the lattice
A={m+n7t|m,neZ}cC.

We say that f(z) is doubly periodic if f(z+ \) = f(z) for every A € A.

(a) Prove that there does not exist a doubly periodic meromorphic function with a single,
simple pole (modulo A).

(b) (Tricky) Construct a doubly periodic meromorphic function with a pole of order 2, or
with two simple poles (modulo A). What are the residues in each case?

Remark 1.5.13. In terms of Riemann surfaces, the first problem asks for all holomorphic
maps CP! - CP'. The second asks to show that there does not exist a degree 1 holomorphic
map C/A — CP!, and instead to construct a degree 2 map.
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1.6. The O-Poincaré Lemma in dimension one. In order to construct holomorphic
functions, we shall also need to consider the inhomogeneous version of the Cauchy-Riemann
equation:

of

9z 9

Definition 1.6.1. We shall write C*(Q) for functions in C*(£2) whose derivatives extend
continuously to €.

Fix open sets Q; ¢ R” and Q, c R™. We say that a function h(x,u) on ) x{), is uniformly
C* in the x variable if h(-,u) is in C*(2;), with bounds on the C* norm independent of
u € y. We say h(z,u) has partial compact support in the u variable if for each ball
B € €y, the restriction of h to B x {2y has compact support.

(1.18)

Proposition 1.6.2 (Differentiation under the integral sign). Let p(u) be a function on Qg
that is L' on compact subsets. Let h(x,u) be a function on Qy x Qo that is uniformly C* in
the x variable and has partial compact support in the u variable. Define the integral

I(z) = /5;2 h(x,u)p(u) du.
Then I(z) € C*(), with

ol(xz) Oh(x,u)
. _f92 r o(u)du, ete.

Proof. Fix x € Qy, v € R*, with |v| = 1. Since h has partial compact support in u, we may
choose a compact set K c €y such that for all y € By(x) n {2, we have

1) = [ h(yu)e(u)du.
For h € R with |h| < dist(z, 0 ), consider the real difference quotients
I(x+hv)-I(z) [ h(x + hv,u) — g(x,u)
h Ik h

Since h is uniformly C! in x, is bounded above. The integrand of Ay is
therefore bounded by a multiple of p(u), which is L' on K. By the Dominated Convergence
Theorem, we have

Ap =

o(u) du.

h(z+hv,u)—h(z,u)
h

A, = [ lim h(x + hv,u) —h(x,u)
h—0 K h—0 h

p(u) du
and
D,I(z) = / D,h(x,u)e(u) du
which shows that I is C'' with the desired partials. Since D,h(x,u) is uniformly bounded,

D,I(z) extends continuously up to the boundary.
If i is C*, we may iterate this argument. O

Lemma 1.6.3 (0-Poincaré Lemma for a compactly supported single-variable function).
Given g€ C*(C), k > 1, the function

(1.19) F(z) = — /Cg(w)dw/\du_)

27 w—z
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is in C*(C) and satisfies the inhomogeneous Cauchy-Riemann equation (1.18).

Proof. Fixing z, change variables u = z — w. Then du = —dw, and the expression (1.19)
becomes ( )
1 g(z-u
=—— [ =—=dundau.
1) =g [ o dun

Observe that )
—dw A dw = dVol
27

and % is integrable on compact sets. So we may apply the previous proposition to conclude

that f(z) is C!, with

g__ifag(z—u)du/\dﬂ

0z 271 0z U
Lf@g(z—u)duAda
o ou u

But this just equals

of .. 1 f 09(z —u) dundu
— = lim — —
0z r=027i JosB.(z)  Ou U

S A ey
=0 271 JC\B,(2) U
1 d
:lim—‘f g(z—u)—u
=0 211 JOB,(2) U

N i
—}}_I)%%'/O g(z-re’)db
=9(2)

where we have applied Stokes’s Theorem and the continuity of g. 0J

Theorem 1.6.4 (0-Poincaré Lemma for a bounded domain in C). Let Q c C be a bounded
domain. Given ge CF (Q) , Jor k> 1, the function
1 w
(1.20) flz) = 1 [ 9)

2m Jow -z

dw A dw
is in CF (Q) and satisfies (1.18).

. r—|z .
Proof. Given z; € ), choose 0 < € < % Write

9(2) = 91(2) + ga(2)

where ¢g; vanishes outside By (2;) and go vanishes inside B.(z1). Define f; and fs from (1.20)
corresponding to g = g; and go, respectively, so that

f=h+/f
Then by the previous lemma, for z € B.(z1), f1 is C* and satisfies

Oh _

oz v
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Meanwhile, % is in C¥(B,(21) xQ). By Proposition 1.6.2, f»(z) is also in C¥(B(z1)), and

indeed satisfies 5
Q:;/Q(M)dmdw:u
0z 2mi Ja

0Z\w-z
Therefore f = fi + fy is in C*(B.(21)), and satisfies
or _oh _, .
0z 0z 7Y
But z; € Q was arbitrary, so we have in fact shown (1.18). O

1.7. The Jacobian of a single-variable holomorphic function. We end our discussion
of single-variable complex analysis with an extremely elementary, but important, remark
about the holomorphicity condition.
Consider C = R? with the basis {1,i} as above. Let I be the map of R? given by multipli-
cation by ¢, or in this basis,
0 -1
(0 7).

We say that a (real)-linear map M : R? - R? is [-(anti)-linear if
M(I(v))=+I-M(v)
for all v € R2.

Proposition 1.7.1. The space of linear maps R? - R? is a direct sum of I-linear and
I-antilinear maps:

(1.21) {(Z _ab)|a,beR}EB{(; _dc)|c,de]R}.

Notice that an element of the first factor corresponds to the map z — (a+bi)-z on C, whereas
the second corresponds to z — (c+di) - Z.
Now, let (u(z,y),v(z,y))" : R? > R2, be a differentiable map. The (real) Jacobian is

0u u
10=| 5 o
00 Oy

Notice that the Cauchy-Riemann equations
ou Ov ou  Ov
gr 9y dy O«
are precisely the condition that the Jacobian lie in the first factor of (1.21). We conclude

that a holomorphic function is precisely one whose real Jacobian is I-linear, i.e., corresponds
to complex multiplication on C by the “complex Jacobian”

af Ou . 0Ov

)=, % "
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which is no surprise, given Definition 1.1.1. This characterization of holomorphicity will
extend to several variables.

As a corollary, we have that a single-variable holomorphic function is conformal and
orientation-preserving at points where its derivative does not vanish (because this is true of
multiplication by nonzero complex scalars). Indeed, it is easy to see that

det J(f) = |f(2)2 > 0.

This formula will be generalized below (see Lemma 2.5.4).
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2. RUDIMENTS OF SEVERAL-VARIABLE COMPLEX ANALYSIS

2.1. Holomorphicity and Hartogs’ Theorem. Let 2 c C" be a domain, i.e., a connected
open set. We take real coordinates
L1,Y1,22: Y25 - - - Ty Yn
on C" = R?", and complex coordinates
21 =21+ Y1,y Zn = T+ WYy
We shall refer to a polydisk
Dy, .. o (w) = B, (wy) x - x B, (wy,).

and write D, if r; = r for all i.
Define the operators
o 1(0 .0 o 1(0 .0
(921-:5(8131-_28%)’ 32i:§(8xi+zayi)’
Definition 2.1.1. A continuous function f : & — C is said to be holomorphic if it is
holomorphic in each variable separately, i.e.,
of
0%
Lemma 2.1.2. Let f(z1,...,2,) be a continuous function on Q c C*. Then TFAE:

1=1,...,n.

=0fori=1,...,n.

(a) f is holomorphic
(b) The restriction of f to any complez line in C"™ is holomorphic

(c) For any polydisk D,.(w) €Y, f satisfies the Cauchy Integral Formula:

f(217”.,2n)= 1 f | f f(Uh...;Un) duldun

(27Ti)" [tn—wn|=r (Ul - 21)(U2 - ZQ)"'(un - Zn)

(d) f is complez-analytic about each w € Q, i.e., admits a convergent power-series expansion

o0

f(z) = . Yo ey (21— w1) (2w )

Proof. (a) = (c) = (d) = (b) = (a). O

Many of the properties of holomorphic functions carry over to several variables: for in-
stance, the identity principle, the maximum principle, and Liouville’s theorem. Here, how-
ever, is the first big difference.

Theorem 2.1.3 (Hartogs’ Theorem). Let 0 < r < R. Any holomorphic function on Dg\ D,
extends to a holomorphic function on Dg.

Proof. Let r <ry < R. Define
1 f(z d
(o1.2) /| I_ (21,us2) Uz

2w Uy — 2o
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Then F' is clearly holomorphic for z; € B,,, and also for z; € B,, because

%(Zl,UQ) =0

0%
for
(Zl7u2) € Brl x aBrl c DR N Dr'

Therefore F'(z1,22) is holomorphic throughout D,,.
But, by the 1-variable Cauchy integral formula, F' agrees with f on the open subset

(B, \ B,) x B,, ¢ D, \ D,.

Since D,, \ D, is connected, by the identity principle, F(z1, 23) = f(z1, 22) there. Therefore,
F' is the desired holomorphic extension of f. O

Corollary 2.1.4. A holomorphic function on the complement of a point in Q c C* n > 2,
extends to a holomorphic function on Q.

Corollary 2.1.5. A holomorphic function on a domain in C*,n > 2, cannot vanish at an
1solated point.

Proof. Apply the previous corollary to 1/f. 0

2.2. The Weierstrass Theorems. We now wish to understand the zero set of a holomor-
phic function on C*,n > 2, which entails finding the correct generalization of the factorization
property (1.15). We shall write

C'=C"'®C={(21,..,2n1,w)}.

Definition 2.2.1. A Weierstrass polynomial of degree d is a holomorphic function on
Cn of the form

(2.1) g(z,w) = w+ a1 (2)wT + ay(2)w? + - + aqg(2)
for holomorphic functions a1(z),...,aqs(2) on a domain Q' c C*~! satisfying
(2.2) a1(0) =--=ay(0) =0.

Theorem 2.2.2 (Weierstrass Preparation Theorem). Let f(z,w) be holomorphic in a neigh-
borhood of the origin. Assume f(0,w) # 0, and Ordy(f(0,w)) = d. Then there exists a unique
Weierstrass polynomial g(z,w), of degree d, and a holomorphic function h(z,w) on some
neighborhood of the origin, with h(0,0) # 0, such that

(2.3) flz,w) =g(z,w)h(z,w).
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2.2.1. Digression on symmetric polynomials. Before proving the WPT, we need to say a word
about symmetric polynomials. Let uq,...,u, be formal variables. We say that a polynomial
p(uq,...,u,) is symmetric if it is invariant under permuting any two coordinates. For
example, we have the elementary symmetric functions

o1(Ugy . Uy ) = Uug + e+ Uy,

oo(Up, ..., Uy ) = ULy + UgU3 + U U3 + €tC.
(2'4) ) b n

On(Uty .o Uy ) = UpUg Uy

and the power functions

(2.5) pe(un, .. uy) = ul + ok

We learn in undergrad algebra that the space of all symmetric polynomials of degree < k is
generated by the elementary symmetric polynomials of degree < k (indeed, the whole algebra
is just a polynomial algebra with generators oy, ...,0%). In fact, the following is even easier
to prove.

Lemma 2.2.3. The power functions of degree < k generate all symmetric polynomials of
degree < k. In particular, for each 1 < q <d, there exists a polynomial P,,, in q variables such
that the identity

aq(u) = Pyn(pr(u), ..., pg(u))

holds as polynomaials in w =uy, ..., Uy.
Proof. Tt is sufficient to write any symmetric function of the form
ultub?.. ~u§z + permutations

in terms of the power functions. This goes by induction: for ¢ = 1, these are exactly the
power functions. We then write

(2.6) u’flu;” + permutations = pg, pr, — const. pr.y.
By the same principle, we may write

ul ub?ub® + permutations = pg, pr,pr, — (terms with two factors)

where, by (2.6), the terms with two factors can be written using power functions. Continuing,
we have

(2.7) u]fl---u’zf + permutations = py,---py, — (terms with ¢ -1 factors)

which gives us the result by induction.
The existence of the polynomials F,, follows trivially, by applying the result to each
symmetric polynomial o,. O
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Although it won’t be necessary here, if one wants to compare the elementary symmetric
functions and the power functions explicitly (e.g. to show using the Lemma that the former
generate all symmetric polynomials), one can appeal to Newton’s identities

k-1
kow(uy, ... ,upn) = (1) pp(uy, ... un) + Z(—l)z‘lpi(ul, e U ) O (U, Uy ).
i=1

The proof of Newton’s identities is based on the basic identity

n

(2.8) [[(z-w)=2"-2""o1(u) + 2" 202 (u) =+ (-1)" "o, (u)

i=1
which is sometimes taken as an alternative definition of the elementary symmetric functions.
We may now return to the proof of the WPT.

Proof of the Weierstrass Preparation Theorem. Let f(z,w) as in the statement. Then since
f(0,w) is not identically zero, by (1.9), there exist r,d > 0 such that

£ (0,w)| 26
for |w| = r. But then by continuity of f, for € sufficiently small, we have
|f (z,w)| 2 6/2
for Jw| = r and all ||z]| < e. For such z, we may therefore define
of

1 wiq ==
2.9 Fy(2)=— f —0w q
( ) q(Z) 211 |w|=r f v
This is holomorphic in ||z|| < e.

For a fixed z, let
Uy, ..., Uq

be the zeroes in w of f(z,w), taken with multiplicity. (Note that by Proposition 1.5.10,
there will remain d such zeroes for all ||z|| < €, since the integral (1.17) is continuous and
integer-valued, hence locally constant). By Lemma 1.5.9 and the Residue Theorem, we have

Fo(z) =ui + - +ul.

Therefore the power function in the roots of f(z,w) is in fact a holomorphic function of z.
By Lemma 2.2.3, there exists a polynomial P, ; such that

og(ur,. .. uq) = Pya(Fi(z),...,F,(2)).
But then o,(uy,...,uq) = 04(2) is itself a holomorphic function of z, and we may define the
Weierstrass polynomial
g(z,w) = w? - o ()Wt + -+ (=1)%04(2).

By the identity (2.8), g(z,w) vanishes on exactly the same set as f(z,w) (in a neighborhood
of the origin).
The quotient
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is, by the construction, a nonvanishing function which is holomorphic in w. But then by the
1-variable Cauchy Integral Formula, we have

h(z,w) = i f Malu
211 Jjuf=r u—w
which is also clearly continuous and holomorphic in z. This completes the proof of the
existence of g(z,w), satisfying (2.3) as desired.
The uniqueness can be seen as follows: the proof shows that the coefficients of any Weier-
strass polynomial vanishing on the same set as f are determined by the power functions in
the zeroes. But these power sums are determined by f, according to the formula (2.9). O

Corollary 2.2.4. If the zero-set Z of a holomorphic function on C* = C~'@C, contains the
origin but does not vanish identically on C, then Z projects surjectively onto a neighborhood
of the origin in Cr-1*

Corollary 2.2.5 (Holomorphic Implicit Function Theorem, first version). Let f(z,w) be a
holomorphic function in a neighborhood U of the origin, with f(0,0) = 0 but g—i(0,0) £ 0.
Then there exists a smaller neighborhood U’ c U, and a neighborhood of the origin V c C*=!
such that

(210) ZnU' = {(21, . ,zn_l,f(zl, R 7Zn—1)) | (21, .. -Zn—l) € V}

Proof. By assumption, f(0,w) has a zero of order exactly one at the origin. From the WPT,
we have that the zero set of f agrees with that of a degree one Weierstrass polynomial
g(z,w) = w+ ay(z) near the origin. The result follows by taking f(z) = —a1(2). O

Theorem 2.2.6 (Riemann Extension Theorem). Let Z = {f = 0} be the vanishing set of
a holomorphic function. Suppose g(z,w) is holomorphic on QN Z and bounded. Then g
extends to a holomorphic function on Q.

Proof. Assume wlog that Q2 = B(0),0¢€ Z, and f(0,w) # 0. Choose r, 6, € as in the previous
proof, so that |f(z,w)| > ¢ for |w| =r,]||z|| < €. Then f(z,w) =0 only if |w| < r, and so Z does
not meet |w| =7 and g(z,w) is well-defined and holomorphic there.

By Theorem 1.3.12, g(z,w) extends to g(z,w). But then by the 1-variable Cauchy integral
formula, the function

. 1 9(2,u)
2.11 = — —d
( ) 9(27 w) 211 lul=r U —W Y

is continuous, and holomorphic in z also, so we are done. ([l

Theorem 2.2.7 (Weierstrass Division Theorem). Let g(z,w) be a Weierstrass Polynomial
of degree d. For any f holomorphic in a neighborhood of the origin, we can write

(2.12) f=gh+r
on a smaller neighborhood, where r(z,w) is a polynomial in w of degree less than d.

4See Proposition 2.4.2 below for a more precise statement.
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Proof. Choose r,4, € as usual, so that g(z,w) does not vanish for |w| =, ||z]| < €. Define

h(s w)—i f(z,u) du
2w S g(z,u) u—w'

Then h(z,w) is holomorphic, and so is

r:=f - gh.
We then write

B ~ 1 f(z7u) du
e = sean= g [ (s o )

LG (g(w) —g(z,w>) "

2w J g(z,u) u—w

(2.13)

But inspection shows that
9(27 u) B g(z, w)

p(z,u,w) =
u—w
is a polynomial of degree less than d in v and w. Therefore
1
r(z,w) =5 f(z’u)p(z7u7w)du
2ri J g(z,u)

is also a polynomial of degree < d in w, since w appears only in p(z,u,w) on the RHS. O

2.3. The local ring &,,. We define the ring of germs of holomorphic functions at z,
(also sometimes called just the local ring at z;) to be the ring &, ., of equivalence classes

{[(U, /)] | U 2 2 open, f e Hol(U)}
where
(U, f)~(V,g)<= f=gonUnV.

The multiplication operation

[(U,1)- (V.9 =[(UnV,[f-g)]

is clearly well-defined.

Henceforth, we shall suppress the open set U from our notation, and will simply refer
to a local function f € 0, .,. We will also abbreviate &, = 0, o for the ring of germs of
holomorphic functions at origin.

Theorem 2.3.1. The ring O, is a local, Noetherian, UFD.

We already know that &, is an integral domain, by the identity principle (any holomorphic
function is nonvanishing on an open, dense subset of its domain). It is also clearly a local
ring, meaning that it has a unique maximal ideal, namely:

m={fed,|f(0)=0}
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This is clearly an ideal (i.e. closed under addition and scalar multiplication by elements of
0,), and is maximal because for any f with f(0) # 0, 1/f is holomorphic in a neighborhood
of the origin, and therefore belongs to &,.

2.3.1. Digression on factorization in polynomial rings. To show that ), is Noetherian, and
a UFD, we have to recall some facts from ring theory. For more detailed proofs, one may
consult Artin’s Algebra or Atiyah and MacDonald’s Commutative Algebra (or Wikipedia, for
that matter).

Let R be an integral domain, i.e. a ring without zero-divisors. Recall that an element
f € R is said to be irreducible if for any u and v such that uv = f, either u or v is necessarily
a unit (i.e. an invertible element). A unique factorization domain (UFD) is an integral
domain in which every nonzero element f € R admits a decomposition

k
(2.14) f= ng-

where g; € R are irreducible, which is unique up to permuting the g; and multiplying by
units.

Assuming that R is a domain in which factorizations into irreducibles (2.14) exist, it is
easy to convince yourself that R is a UFD if and only if every irreducible element is prime,
i.e.

fluw= fluor f|o.
Lemma 2.3.2 (Gauss’s Lemma). If R is a UFD, then the polynomial ring R [t] is a UFD.

Proof sketch. Let K be the fraction field of R. It follows from the division algorithm that
the polynomial ring K [¢] is a principal ideal domain (choose the element of lowest degree in
a given ideal). But in a PID, any irreducible element is prime, as one shows by the following
famous trick. Assume that f is irreducible and divides uwv, so there exists g € R such that

(2.15) fg=uv.

Assume that f and u are relatively prime, i.e. have no common factors other than units.
Then the ideal (f,u) = R is the whole ring, so there exist a and b such that

af +bu=1.
Multiplying (2.15) by b, we obtain
fgb=buv=(1-af)v

and

f(gb+av) =w.

Therefore f divides v, if f and u are relatively prime. But otherwise f and u are not relatively
prime, so have a non-unit factor, which is equal to f up to a unit. Therefore f divides u,
which is equally good.

To finish the proof, you just have to lift the question back from KT[t] to R[t] by cancelling
denominators (appropriately). This amounts to showing that if f and g are primitive in
R[t], i.e. each has relatively prime coeffients, then fg is again primitive. To this end, one
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can observe that a polynomial is primitive iff it is nonzero in the integral domain R/(u) for
each irreducible element u € R. O

Lemma 2.3.3 (The resultant of two polynomials). Let R be a UFD. Then two polynomials
u,v € R[t] are relatively prime in K [t] if and only if there exists v + 0 € R, called the
resultant of u and v, as well as a, € R[t], with dega < degv and deg f < degu, such that

(2.16) au+ fu = .

Assuming that o and 3 are relatively prime in R[t], the resultant is unique up to multipli-
cation by units. Moreover, the resultant is a polynomial function of the coefficients of u and
v.

Proof. If o and § are relatively prime in K [t], which is a PID, then the existence of a
solution of (2.16) is clear. One can show using the division algorithm that it is possible to
reduce the degree of o (and so too of ) as stated. The converse is also clear.

Since we can bound the degrees of o and f3, solving the equation (2.16) can be reduced
to a matrix equation on the coefficients of o and 5 whose entries are coefficients of v and v,
as [ wrote in class. The determinant of this matrix determines the solvability of (2.16), and
for a matrix A with nonvanishing determinant, we can always solve (2.16) with detA as the
RHS, over the ring R (using the adjugate matrix). 0

Definition 2.3.4. Given a polynomial u, define the discriminant D(u) to be the resultant
of w and w'. Then D(u) =0 if and only if u is coprime to «’. But this is true exactly when
u has multiple roots (in the algebraic closure of K). Hence the discriminant, which is a
polynomial in the coefficients of u, vanishes if and only if the polynomial » has multiple
roots.

Example 2.3.5. For a quadratic polynomial at? + bt + ¢, the discriminant is b? — 4ac. For a
cubic of the form 3+ pt + ¢ (which any cubic is equivalent to under a change of coordinates),
the discriminant is given by

—4p3 - 27¢%.
We now end our digression and return to the proof that &, is a Noetherian UFD.

Proof that 0, is a UFD. We proceed by induction on n. We have 0,, = C, which is a field,
hence a UFD.

Assume for induction that &,,_; is a UFD. Let f € 0,,, which we may assume (by changing
coordinates, if necessary) is nonvanishing along the w-axis. By the WPT, f = gu, for g €
On-1[w] and u € 0, a unit. By Gauss’s Lemma, we have a unique factorization g = [] g;,
giving

(2.17) f= ng‘u-
Suppose now that
(2.18) f=1I1f

is another decomposition into irreducibles. We then have f;(0,w) # 0, since otherwise f
would vanish identically. Again by the WPT, we may write f; = g;u;. Notice that § =[] g; is



30 ALEX WALDRON

again a Weierstrass polynomial, and @ = []@; is a unit. We now have

[Tgiu=f=]]aw
and
gu = gu.
But by uniqueness in the WPT, we must have g = g. Therefore
9= H 9i = H Gi
and by Gauss’s Lemma, the two factorizations must be the same up to permutations. But this

shows that the factorization (2.18) is equivalent to (2.17), which shows the uniqueness. [

Proof that O, is Noetherian. We again proceed by induction on n, the case n = 0 being
trivial. Assume that &,_; is Noetherian. Then by the Hilbert Basis Theorem, &, i [w] is
again Noetherian.

Let I ¢ 0, be a nontrivial ideal. Choose a nonzero f € I with f(0,w) # 0, by changing
coordinates if necessary. By the WPT, we have f = gu for a Weierstrass polynomial g. But
then since u is a unit, we have g € I as well, from which we conclude

jZIﬁ ﬁnfl [w]

is nonempty.
Now, choose a finite generating set {g;}¥ |, consisting of Weierstrass polynomials, for the
ideal

In ﬁn—l [w]

over the ring &,_; [w]. We claim that this is also a generating set for I over &,. Let f eI
be arbitrary. We now apply the Weierstrass Division Theorem to divide f by ¢y, giving

f=gh+r

for a polynomial € @,_; [w]. But then r = f — gh also belongs to I, and so to I, and we
have

T = Zalgl

This gives
k
f=gi(h+a)+ Zaigi-
i=2

Since f € I was arbitrary, we conclude that I = (gq,-+,gx) is finitely generated, completing
the induction. O

We end with a last fact, which tells us that factorization and divisibility in the ring &,
although “local” by definition, is not entirely so.

Proposition 2.3.6. If f and g are relatively prime in 0, o they remain relatively prime in
Oy.» for all x sufficiently close to zero.
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Proof. Assume wlog that f and g are both Weierstrass polynomials of nonzero degree. Then
for z in an open neighborhood, f(z,w) and g(z,w) do not vanish identically in w.
Let 4 be the resultant of f and g, so that there exist «, 3 € €,,_1 [w] such that

(2.19) af +Bg=r.

Assume for contradiction that z = (zg,wg) is such that f(zo,wo) = g(20,wo) = 0, and there
exists a nontrivial common factor h(z,w) in &), (., w,), which we may assume is a Weierstrass
polynomial in (w —wy), with h(zy,wo) = 0. This means that i | f and h | g in O, (25 .we)- By
(2.19), which holds in a neighborhood of 0, we have h | 7.

But then h(z,w) must have degree zero in w. (This can be seen by looking at points z
near zo where v(z) # 0, but h(z,w) would have nontrivial zeroes if it had positive degree.)
Therefore

h(zp,w) = h(zp,wp) =0
and so f(zo,w) =0 = h(zp,w). But this contradicts our observation that f(zy,w) does not
vanish identically in w for zy near the origin. U

2.4. Analytic germs and ideals in 0,,. We will now give the main payoffs of our study of
O,. The first is the following refinement of Corollary 2.2.4 above, which uses the following
slightly informal definition. The meaning will always be clear in context.

Definition 2.4.1. We say that a certain property holds generically (or for a generic point)
if it is true on an open dense subset that is the complement of the vanishing set of a
holomorphic function (or functions).

Proposition 2.4.2. If f € 0, is irreducible, with Ordy f(0,w) = d < oo, then the fiber over a
generic point z near the origin of C™=1 consists of d distinct points. In other words, the zero
set of f is a “branched cover” of a neighborhood of Cr1.

Proof. Assume without loss that f = ¢ is a Weierstrass polynomial of degree d. If ¢ is
irreducible, then the discriminant D(g)(z) € 0,1 is not identically zero. By the above
discussion, for z near the origin such that D(g)(z) # 0, there are d distinct solutions of
g(z,w) =0, as claimed. d

Theorem 2.4.3 (Weak nullstellensatz). If g(z,w) € 0, is irreducible, and f € 0, vanishes
on the zero set {z | g(z) =0}, then g| f in O,.

Proof. We apply the Weierstrass Division Theorem:
f=gh+r

where r € 0,1 [w] has deg(r) < d = deg(g).
By the previous proposition, we may choose z € C*! arbitrarily close to zero, such that

#Hw|g(z,w) =0} =d.
By assumption, for any such w, we have

0=f(z,w)=g(z,w)h(z,w) +7r(z,w) =r(z,w).
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But then r(z,w) has at least d distinct roots, which implies that r(z,w) is identically zero
in w. Since z was a generic point close to the origin, we conclude that r vanishes identically.
Therefore f = gh, as desired. ([l

Recall that our motivation for defining the local ring @,, was that we had to keep shrinking
the domain in which we could adequately describe the zero set of a holomorphic function.
Since we are shrinking the domain of the functions, it is also convenient to be allowed to
shrink the domain of the zero sets.

Definition 2.4.4 (Analytic germs). The germ of a set X at the origin is the equivalence
class of X under the relation that two sets X =Y if and only if there exists an open set U 3 0
such that

XnU=YnU.

Given a finite collection fi,..., fx € 0,, we define the germ of the zero set

Zo(frr i 1) = {210 = fi(2) = - = [u(2)}]

to be the germ of the common vanishing set of the f;. A germ X is said to be analytic if it
is of the form

X =Zo(fr, fr)
for such a finite collection. In the case that
X =7Z(f)

for a single function f, we say that X is the germ of a hypersurface at the origin. The
ideal I(X) c 0, of an analytic germ is equal to

I(X)={feO,|f(z)=0VzeX}.
Conversely, given an ideal I c 0,,, the germ of the zero-set of I is given by
Zo(1) = gerZo(f).
Lemma 2.4.5. For any ideal I c 0,,,Zy(I) is an analytic germ. In particular, we have
Zo(1(X)) =X
Zo(I(X)+I(Y))=XnY
Zo(I(X)nlI(y))=XuY
XcY=I(Y)cl(X).
Proof. Since 0, is Noetherian, the ideal I is finitely generated by fi,..., fx, and so
Zo(I)=Zo(fr,- -\ fr)

is indeed analytic. The remaining claims are tautological. 0

It remains to determine 1(Zy(1)), for an ideal I c &,,. This is the content of a deep theorem
due to Hilbert, which we have already proved in a special case: assume that I = (g) is a
principal ideal, with g irreducible. Then Zg((g)) = Zo(g) is the germ of a hypersurface. The
Weak Nullstellensatz above exactly states that if f € I(Zo(g)) = [(Zo(I)) then f e (g)=1.
The version for general analytic germs is as follows; we will not give the proof of this result,
although it is in the same spirit as the weak version (with more algebra).
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Theorem 2.4.6 (General Nullstellensatz). Let I € 0, be an ideal. If f € I(Zo(1)) (i-e. f
vanishes on the zero set of 1), then fr eI for some n >0. Restated, f belongs to the radical

VT of I.

Lastly, to finish the correspondence between germs of functions and germs of sets, recall
that an ideal p is said to be prime if uv e p = u or v e p.

Definition/Lemma 2.4.7. We say that an analytic germ X is irreducible if it cannot
be written as X = Xy U Xy for two proper subsets X1, Xo ¢ X that are themselves analytic
germs. An analytic germ Zo(1) is irreducible if and only if the ideal I is prime.

Proof. The proof is straightforward, and no different from the case of hypersurfaces (where
I=(f) is prime iff f is irreducible). O

Proposition 2.4.8. Let X be the germ of a hypersurface. Then X has a unique decompo-
sition
X = X1 U---u Xk

into irreducible germs of hypersurfaces.

Proof. Let f = fflffe be a decomposition of f € €, into irreducibles, which exists since 0,
is a UFD. Then clearly

X =Zo(f)=2Zo(f1) vV Zo(fr)

is the desired irreducible decomposition.
We can show the uniqueness of the decomposition as follows: let

X =Y, u-uY,

be another such decomposition into irreducible analytic germs. Then we must have Y; o X;
for some 7, because

Vi=YinX=u_,(1nX;).

If Y1 n X, is a proper analytic subset of Y] for each i, then their union is again a proper
subset, because Y7 is assumed irreducible. Hence we must have Y] 5 X; for some i. By the
weak nullstellensatz, we have I(Y7) c (f;) ¢ 0, so I(Y1) = (f;)- I’ for some ideal I' ¢ (f;). If
I' is not the whole @, then Zq(I') is a proper analytic germ. But then Y; = X; UZy(I') is a
proper decomposition into analytic germs, which is a contradiction. Therefore I(Y7) = (f;),
and Y] = Z(f;) = X;. Continuing, one gets the uniqueness of the decomposition. O

Remark 2.4.9. The last result holds for general analytic germs as well, as one can show
using factorization by prime ideals and the general Nullstellensatz.

We note that the last several facts form the basis of a subject called “algebraic geometry,”
which T strongly recommend you to pursue (at a later time).
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2.5. The holomorphic Implicit Function Theorem. We now turn to the question of
when an analytic germ is in fact the germ of a smooth (indeed, a complex) manifold. We
begin with the following Lemma, which could have been proved much sooner.

Lemma 2.5.1 (Chain rule for complex-valued functions). Let h(w) = h(w?,...,w"):C" - C
be a complex-valued function, and let w(z) = (w'(2),...,w"(z)) : C - C" be an n-tuple of
complex-valued functions. Then
Oh(w(z))  Oh Ow' . Oh Ow'
0z Ow' 0z Ow' 0z
Oh(w(z))  Oh Ow' . Oh Ow'
0z Ow' 9z  Ow' 0z
Proof. Let z =x +1iy and w/(z) = u’(z) + v/ (z). Then by the real chain rule, we have
oh _ ol 0w oh 0w
or Ouw dx  Ovi Ox

(2.20)

(2.21) o %%4_@%
Oy Oul Oy Ol Oy’
This gives
P YA W L KT L LT L0
0z 2\0x Oy) 2\0uw Or Ovi Ox ow dy  Ovi dy

On the other hand, we have

o e (o (o )
owl 0z 0wl 0z 2\0uw/  Ovi)\2\ Oz ox Ay oy
1(0h Oh\(l (0w Ovi (0wl  OvI
229 3w GG % (5 %))
10h (0w 0w\ 10h (Ovi  Ovl
zﬁauj(ax _Zay)ﬁ%(%”a_y)‘
Observe that (2.22) agrees with (2.23), giving the first equation of (2.20). The second is
proved similarly. 0

Definition 2.5.2. We say that a continuous map f : C* - C™ is holomorphic if fi(z!, ... 2")
is holomorphic, for ¢ = 1,...,m. Define the complex Jacobian to be the m x n matrix of
complex numbers

o fi
SN (L)
Lemma 2.5.3. Given two holomorphic functions
cr e em
we have the holomorphic chain rule

H(feog)(z)= 7 (N9(2)- 7 (9)(z)

where - denotes matriz multiplication.
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Proof. Fix i and j. The holomorphic chain rule as stated is equivalent to the claim that

(2:24) VD 8 ()2 ),

2J

Setting h(w) = fi(w), and w*(z2) = g¥(z',...,2,...,2™), with z in the j’th place, and apply-
ing the previous lemma, we see that all but the first term on the RHS of (2.20) drop out.
This gives (2.24). O

We should now compare the real and the complex Jacobians. Let J(f)(z) be the real
Jacobian, considered as a map from T,R?" — T,)R?*™. With respect to the bases

B_{a o 0 a}
02 g oyl ayn

for T,R?", and

B, - { 0 o 0 0 }
27 loul T un gt dum
for T's(.)R?™, the matrix of J(f) is given by
out  ou’
J J
(2.25) s =| 05 9
oxi  Oyi

If we complexify the tangent spaces, then the map J(f) extends canonically to a map
TZR2n ®r C - Tf(z)R2m ®r C.

which we shall continue to denote by J(f). Letting 27 = 27 + i3/ and w* = u* + 0¥, we may
choose the complexr bases
0 o 0 0
B = {— ) }

Dz17 790 9zt 9z

By o ol

owl” T wm’ owt’ T Quwm
for T,R?m@g C. With respect to this basis, Lemma 2.5.1 (or an equivalent calculation) implies
that the matrix of J(f) is given by

for T,R?>" @ C, and

oft of

_| 0 0z

(J(f))B;,Bg - a;’z‘ 3;’1

(2.26) 021 Oz

S0 )
0 7(f)

if f is holomorphic. This gives the following:
Lemma 2.5.4. If f: C* - C" is holomorphic, then
(2.27) det J(f)(2) = |det 7 (f)(2)*.
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Proof. The determinant of J(f) is unchanged under complexification and change of basis,
and the relation (2.27) holds for any matrix that is block-diagonal of the form (2.26). O

Theorem 2.5.5 (Holomorphic Inverse Function Theorem). Let f: 2 — Q' c C" be a holo-
morphic map between two domains of C", and let zg € 2 be such that

(2.28) det Z(f)(z) #0.

Then there exists a neighborhood U’ > f(z9) ¢ Q' and an inverse map f=':U" - Q that is
holomorphic.

Proof. According to Lemma 2.5.4 and (2.28), the determinant of the real Jacobian is nonzero
at zo. By the real inverse function theorem, there exists a C* inverse map f~! as stated. It
remains to check that f=! is holomorphic. We have

z= ([ (2))
0= L)
Z
B af—l 8fk (9f‘1 afk
~Duk 071 T daF 0z

where we have applied Lemma 2.5.1. But 8f =0, and we are left with

0o

- owk (‘323"
Since _#Z (f) is nonsingular, the complex conjugate is as well. We conclude that af =0
for all k, as desired. O

Theorem 2.5.6 (Holomorphic Implicit Function Theorem). Given f1,..., f¥ e 0, ,, with

(2.29) det (gf : (zo))m’jsk £0

there exist open sets U c C* V c Ck, with zo e UV, and g: U -V holomorphic such that
(2.30) fi(z) = fi(20) fori=1,....k < z=(g(z"" ... .2"), 2" 0 2")

for ze U xV.

Proof. This follows from the Inverse Function Theorem in the usual way. Define a map
f:Cr - C" by
P = (1), 5 (2), 25 2m).

WD
s, 79 )

and det _# (f)(z0) = det ( =L (ZO))1<ij<k # 0. By the Inverse Function Theorem, there exists

a holomorphic inverse f~1(z) in a neighborhood. We let

gt ) = F (o), R (20), 22 2.

Then
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Then (2.30) holds by definition, as one can check, and ¢ is clearly holomorphic since f‘l
is. L]

2.6. Generic smoothness and biholomorphisms. We now turn briefly back to analytic
germs, to make another point using the Implicit Function Theorem. Recall the informal
definition of the term “generic” made in Definition 2.4.1, whose meaning will be clear in
each statement. (Or if not in the statement, then definitely in the proof.)

Lemma 2.6.1 (Generic smoothness). Let X = Zy(f) be the germ of a hypersurface. Then
the generic point of X is smooth.

Proof. Assume first that X = Zg(f) is irreducible, i.e., f € 0, is irreducible.

We may assume without loss that f = f(z,w) is an irreducible Weierstrass polynomial.
Then f is relatively prime to %, hence the discriminant D(f)(z) € €,,_1 (i.e. the resultant
of f and %) does not vanish identically.

The vanishing locus Zo(D(f)(z)) is an analytic germ at the origin in C"~!. For any point
zp outside Zo(D(f)(2)), the polynomials f(zy,w) and g—l’:(zo,w) have distinct roots in w.
This means that for any wq such that f(zp,wp) = 0, we have g—i # 0. By the implicit function
theorem, the vanishing set {f(z,w) = 0} near (zg,wq) is a smooth manifold, as claimed.

For the case that X is not irreducible, by Proposition 2.4.8, it is a finite union of irreducible
analytic hypersurfaces. But these are generically smooth, and the finite union of generically
smooth things is again generically smooth (because a finite intersection of analytic germs is
again an analytic germ, and a finite union of dense open sets is again open and dense). [

Remark 2.6.2. Generic smoothness is also true of general analytic germs.

Lastly, we turn to the following converse of the inverse function theorem. Note that the
result fails over the real numbers, as seen from the map = — 23 (which is bijective over R,
but not over C).

Theorem 2.6.3. Let f: € — ) c C" be a bijective holomorphic map between two domains
in C*. Then the Jacobian determinant det J(f)(z) # 0 for all z € Q. In particular, f is a
biholomorphism, i.e., there exists a holomorphic inverse map f~1: Q' — Q.

Proof. We proceed by induction on the dimension n. The base case n =1 goes as follows.
Given z € (2, we know that there exists N > 0 such that f(z) = f(20) + (2 - 20)" f(2), where
f(z0) # 1. Since f(z9) # 0, we may choose an N’th root g(z) of f(z) in a neighborhood of
Zo. Then

F(2) = f(z0) + ((z = 20)9(=))"
and ((z - 20)9(2))" (20) # 0, so by the Inverse Function Theorem, (z - z9)g(z) is a bijection
in a neighborhood. But the composition of a bijection with an N-to-1 map is N-to-1. So if

f(2) is bijective, we must have N = 1. Then indeed the Jacobian f’(zy) does not vanish, as
claimed.
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Next, we assume that the result has been established for 1 < k <n. We first claim that for
z € €2, the implication

(2.31) det 7 (f)(2)=0 = _Z(f)(2)=0
holds. We can show this using the induction hypothesis and the implicit function theorem,
as follows.

Assume for contradiction that det #(f)(z0) =0, but 1 <k =1k_#(f)(20) < n. We may
choose coordinates so that

oft
2.32 det( - (2 ) = 0.
(2.32) 5,7 (#0) e
Then the implicit function theorem gives the existence of g(zgs1,- -, 2,) such that

Filg(ZF 0 2™, 252 = fi(2)

for 1 <7 < k. Define the holomorphic function

(2.33)
h: Cn—k N Cn—k
h(ZFY 0 2") = (f’”l(g(zk”rl7 o2 ) (g2 ), 2R ,z")) )
Since f is bijective, f(g(2**1,...,2"), 2%, ..., z") must be bijective from {(2},...,25)} xU’

to {(f1(20),---,f*(20))} x V'. Therefore h is also a bijection between these neighborhoods.
But some thought using the chain rule shows that the Jacobian of A must vanish, by our
assumptions on f. This contradicts our induction hypothesis, establishing the implication
(2.31).

Now, let zy be a point where det J(f)(29) =0. Then X = Zy(det J(f)(z)) is the germ of a
nontrivial analytic hypersurface at z5. By Lemma 2.6.1, we can choose a point z; close to zy
with det J(f)(z1) = 0 but such that X is smooth near z1, i.e., there exists a bijective map
g: U — X for a neighborhood of the origin U ¢ C*!. But then we have

(2.34) H(feg)=72(f) F(g9)=0

because # (f)=0on X, by (2.31). A holomorphic map with vanishing Jacobian is constant;
therefore f(z) is constant along X, which is a contradiction to the bijectivity (since n > 1
and therefore X is not an isolated point). This completes the induction. O
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3. COMPLEX STRUCTURES AND DIFFERENTIAL FORMS

In this section, we will add a layer of abstraction to what we have already (essentially)
done, before moving onward to geometry.

3.1. Complex structures and complexification. Let V be a 2n-dimensional real vector
space. A complex structure is an endomorphism I : V - V with

?=-1.

Notice that if V' carries a complex structure I, then it also carries the structure of an
n-dimensional C-vector space, by the rule

(3.1) (a+bi)-v=av+bl(v)

which one can check gives a valid scalar multiplication. However, for reasons which will
become apparent, we shall not use the complex multiplication (3.1) but will continue to refer
to the action of I by name.

We now let

(3.2) Ve =V erC.

Then V is naturally contained in V¢ by the map v = v®1. Also, V¢ has a complex conjugation
map
VA=V
The real subspace V' c V¢ is precisely the fixed set of the conjugation map.
We now canonically extend the complex structure I to the vector space V¢, by the rule

(3.3) I(ve ) =1(v)® A

Then V¢ has two complex structures, I and 4, the first given by (3.3), and the second given
by complex multiplication using the attached scalars:

(3.4) i-(veX)=ve® (iN).
When multiplying elements of V¢ by 4, we shall always mean in the sense of (3.4).

Because I? = -1, its eigenvalues must be +i. The eigenspaces are therefore subspaces of
Ve, given by

VIO =tveVe | I(v) =i v}, VOl =tveVe | I(v) =—i-v}.
Lemma 3.1.1. We have
Vo=V g yo!
and V10 =VO1  In particular, V19 and VOl are both complex subspaces of dimension n.
Proof. Since V1.0 n V01 =0, the canonical map
k: V0@ VOl & 1,
is injective. But we also have projection maps

1,0 * V(C g Vl’o

v»%@-u@»
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and
T : Ve » VO
v H%(v+i[(v))
which one checks yield elements of the claimed eigenspaces. Then the map
T1,0 ® 70,1 ¢ Ve — V10 g 101

is a right-inverse of k, since
1 . 1 .
K(mo@me1(v)) = 3 (v—il(v))+ 5 (v+il(v)) =v.

Therefore k is also surjective, hence an isomorphism.
To see that conjugation exchanges the factors, note that by definition, we have I(v) = I(v).
Letting v € V19, we have

v=mo(v) = % (v =il (1))
and
5= % (6 +31(0)) = 701 (D).
Hence v € V01, as claimed. O

Definition 3.1.2. Let (V,I) and (W, J) be vector spaces with complex structures. We say
that a real-linear map «a: V — W is complex-linear if

(3.5) a(l(v)) = J(a(v))

forall veV.

Remark 3.1.3. Notice that by definition, the natural map
V- Ve Vo

gives a complex-linear map between (V1) and (V19 7). The two are therefore canonically
isomorphic as complex vector spaces.

Proposition 3.1.4. Fiz two vector spaces (V,I) and (W, J) with complex structures, and a
complex-linear map o : V — W. Then the canonical extension o : Ve — We satisfies

a(v) = a(v)
Oz(Vl’O) cwto
Oé(VO’l) c WO,l.
Proof. The first identity is by definition, and the next two are also easy to check. O

Theorem 3.1.5. Any complez-linear map o : (V,1) — (V,I) is orientation-preserving.

Proof. Denote the canonical extension of a to V- again by a. Choose any basis vy, ..., v, for
V1.0 and pick the basis

(36) B:{vl,...,vn,ﬁl,...,ﬁn}
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for Vo = V19@ V01 Then by the previous Proposition, in the basis (3.6), the matrix of « is
of the form

@) @5 )

Since the determinant of « is unchanged under complexification, we have

(3.8) det o = det Adet A = det Adet A = | det A]* > 0.

Therefore the map « is orientation-preserving, i.e., the two orientations are equivalent. [J

Remark 3.1.6. Notice that the proof of Theorem 3.1.5 gives a streamlined proof of Lemma
2.5.4.

Corollary 3.1.7. A complez structure I induces a canonical orientation on V.

Proof. Let {e1,...,e,} ¢V be nonzero vectors such that

(3.9) {e1,...,en, I(€1),...,1(en)}

form a basis for V; such a choice is clearly possible. Define the orientation on V' to be given
by the ordered basis (3.9).

We claim that any two bases chosen in this way induce the same orientation on V. Given
{e;} and {e} as above, we may define an endomorphism of V' by

aze; e,
I(e;) =~ I(€f).

One checks that this is [-linear. By the Theorem, it is orientation-preserving; so the two
choices induce the same orientation on V. U

3.2. Dual spaces and exterior powers. Let V* = Homg(V,R) be the (real) dual space of
V. We give this a complex structure by the rule

(3.10) I(a)(v) = a(I(v))
for a e V* v e V. Then
(V*)e =V*@r C=Homg (V,C) = Home (V,C) = (V)"
where the last * is in the complex sense. Through this identification (V*)s = (Vc)", we have
(V)" = {f e Homg(V,C) | f(I(v)) =if(v)}

= Hom¢ ((V,1),C)

x (V10).
In fact, the natural pairing

(3.11) (V*)C ®c Ve - C
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induces isomorphisms
(V)= (V)
(V)= (Vo).
This follows because for o€ (V*)10 and 8 € Vo1, we have
a(B) = —il(a)(B) = —ia(IB) = (-i)*a(B = —a(B)

which implies that a(8) = 0.
Next, we have the real and complex exterior algebras on V' and V¢, respectively, given by

112

(3.12)

112

2n
ANV =P ALV c o5V
k=0

2n
(3'13) A*Vc = @A{é‘/@ C ®(EV(C
k=0

= A"V er C.
Definition/Lemma 3.2.1. Define the subspace of alternating elements of type (p,q):
APV = APV @ ATVOL ¢ APV,

We then have
AVe= @ APV

p+q=k

(3.14) RraV/ = Aery
A APV @c ATV — AP
Proof. These all follow formally from the direct sum decomposition Vg = V1.0 @ V0.1, d

Define the operator

(3.15) I=®"I: AFV — AFV.
Then for w=a ® § € A7V, we have
(3.16) [(w)=I(a®p)=iPa®i i =i’ w.

Therefore AP4V c AP+4V lies inside the eigenspace with eigenvalue iP~¢ inside the (p+¢q)-forms
/\p+q‘4t'
We may perform the exterior power operations for VV* in an identical manner. Then the
natural pairing
ANVE@c A Ve - C
induces isomorphisms

(3.17) API(V*) = (APTV)T

for each p and ¢. This just means that for w e AP4 (V*) and n € A™*V, we have w(n) # 0 only
if p=r and ¢ = s, and the pairing is nondegenerate. The isomorphism (3.17) follows formally
from the k =1 case, given by (3.12).
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3.3. Holomorphic (co)tangent spaces. We now come to the key example of the con-
structions of the previous subsection: given a point z € C", let

V=T,C".
Then we have the standard basis for V' as a real vector space:
{i 9 90 i}
oxt’ oyt’ T Oan’ Oy )
The standard complex structure is given by the rule
TEARERRE AT S
ox7 0yl oy’ ox’

The action of the complex structure on the dual space V* =T7C", i.e. the cotangent space,
is determined by

(3.18) J(dxf)(a%) _ o (I(a%)) _ da (—%) I
and so is
(3.19) I(da?) = -dy?, 1(dy’) =da’.

According to Lemma 3.1.1, we have a splitting
(3.20) Te.C":= (T,C") @r C = TH'C" & T'C"

where T2°Cn is called the holomorphic tangent space of C" at z. A basis for 7:°C" may
be given by the projections

(oGl -GG,
10 oI jzl_ 2\ 0xJ 8yj jzl_ 0z jzl'

Similarly, a basis for the anti-holomorphic tangent space T2 is given by {%}Zz L

We also have the holomorphic cotangent space (7:)"° C" as well as (T)*"' C". These
are spanned by the dual bases to the above, dz7 = dz7 +idy’ and dz7 = dx? —idy?, j=1,...,n,
respectively.

Proposition 3.3.1. Let f:U -V be a holomorphic map between open subsets U c C"* and
V c C™. Then the C-linear extension of the differential J(f)(2) : T.C" - Ty,)C™ respects
the above decomposition, i.e.

J(H)() (TR e TP e J(f)(2) (T Cr) e TV C)

Proof. The real Jacobian of a holomorphic map is I-linear, for the standard complex struc-
tures on C* and C™ (exercise). Then the claims follow from Proposition 3.1.4. U
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3.4. Differential forms on C". We now come back to complex analysis. Given a domain
Q c C, write AF(2) for the space of C'* real-valued differential k-forms on . We shall
write

AF(Q) = AL(Q) ®r C
for the space of C' complex-valued differential forms on €2.
Definition 3.4.1. Define the space of (p, q)-differential forms
(3.21) API(Q) = {w e AP*(Q) |w e APITIC"V 2 € Q} .

Note that this is a module over the space of complex-valued smooth functions A°(£2).
As above, we canonically extend the exterior derivative operator d to complex-valued forms
AP, We now define two new operators

(3.22) O=nPtiod, 0=mPod,

Explicitly, these operators are given as follows. We use the following notation for a (p, q)-
form:

(3.23) a=ar(2)dz" Adz’ = > Qiyvigjrogy, (2)d2" A A2 NAZTE A A dZT

{ip<<ipe{l,..., n}
{j1<<jq}c{1,....n}

Then we have

Do = %dz’“ Adzt Adz?

T ok
(3.24) Oz
ey = dayy
ozk
Notice that we now have a more manifestly coordinate-invariant definition of holomorphicity,
namely:

(3.25) f(2) is holomorphic < 9f(2) =0.

dzF andzt A dz’ .

The algebraic properties of the operators d and 0 can be summarized as follows.

Proposition 3.4.2. We have
d=0+0
0?=0, 0°=0, 00=-00.
We have also the following commutation rules, for € AP4 and 3 € A™S :
d(anp)=0anB+(-1)Pan0B
d(anB)=0anpf+(-1)P"andf.

Proof. We can either use the explicit formulae above, or argue as follows. Letting f € A9,
from Lemma 1.2.9 (or now simply by definition), we have

df =0f + 0f.
The case of « € AP? follows from the formula

(326) d(Of]JdZI /\d?‘]) = d(Oz]J) /\dZ[/\dZJ.
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The next claim follows by writing
0=d?>=0%*+0%*+00+00

and observing that the forms of each type must vanish individually. The commutation rules
are proved similarly. 0

The point of defining these spaces and operators is the following invariance property:

Proposition 3.4.3. Let 2 c C* and 2 ¢ C™ be domains, and f : Q — €' a holomorphic
map. Then for o€ AP4(Q)), we have
frae AP9(Q))
o(f*a)=f" (504) :
Proof. The first claim follows from the fact that the Jacobian of a holomorphic map is
complex-linear: by Proposition 3.1.4, it preserves the (anti)-holomorphic tangent spaces,

and by duality, so too the cotangent spaces and all exterior powers. More explicitly, one can
simply pull back the formula (3.23) using the fact that

dfi =0fi,  dfi=df.

This gives
Fra(2) = aiipiieg, (FENA(F) A nd (F2) Ad (f71) A nd(fi2)
ofn 4 O fir ofin ) Ofia
= Oéil...ipjl...jq(f(Z))azkl dzk A eee %dzkl’ N %dzk A %dqu

of afe of o

dzkl/\.../\dzkp/\dzkl/\.../\dgkq
Ozkr Ozke  QZF1  OZka

= ail---ipjl"'jq (f(Z))

which is again a (p, ¢)-form.
The second identity follows from the first identity and the property do f* = f* od of the
ordinary exterior derivative operator. O

3.5. The 0-Poincaré Lemma in several variables. We now prove the general version of
Theorem 1.6.4. Recall that we denote a polydisk of radius r by

D, =B, x--xB,cC".

We shall write 3 € AP4(D,) for the subspace of (smooth) forms in AP4(D,) that extend
continuously to the boundary.

Lemma 3.5.1 (0-Poincaré Lemma in a closed polydisk). Let 8 € AP4(D,.), with q > 1, satisfy
0B =0. Then there exists o € AP4~1(D,.) such that

da = B.
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Proof. Notice that if 3 = gr;dz" Adz’, then 0B = (~1)rdz! /\? (grsdz”) vanishes if and only if
9 (grydz’) = 0 for each I. Moreover, if a = f;dz!dz’", then da = (-1)Pdz10 (fU,dZJ') . Hence
Oa = B if and only if 0 (fUIdZJ') = (gyydz”’) for each I. It therefore suffices to consider the
case p = 0. We shall also prove only the case n = 2, since the general case is only notationally

more complex.
First, let ¢ = 2. Then 5 = g(z!, 22)dz! A dz?. By Theorem 1.6.4, we may solve

0
ﬁf(zlazz) = 9(21722)
by the formula
(3.27) f(zh,2%) =

Letting a = f(2',22)dz?, we have

_ 6f
do - o7

1 g(w, 2%)
21 JB, wl - 2!

dw A dw.

——dz' AdZ? = gdZt A dZ? = 3

as desired.
Next, let ¢ = 1. Then = g1 (21, 22)dz! + go(21, 22)dz2. By (3.27), we may let f5 solve
0
ﬁf?(zla 22) = 92(217 22)'

Then 0f, = %ﬁdél + ¢godZz?, and we have

~ ~ 0fa

ﬂ::ﬁ—@ﬁ:( 1—8—fl)dz + (g2 — go)dz?

=: gl(zl,ZQ)dzl.

This still solves

0B=08-0"f=
a91
= 822d Adz
Therefore
(3.28) % - 0.
Now let f; solve
e

by (3.27). Then
dw A dw =0

072 2mi

o1 stz
w2t
by (3.28). Hence
0 0
(9f1— f1 af;

Now let o = f1 + f5. Then

dz* = g1dz' = 3 = B - Ofs.

50z:5f1+5f2:(5—5f2)+5f2=ﬁ
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as desired. This completes the case n=2,q = 1.
The case n > 2 follows by a similar strategy of knocking off the factors dz* from (3 one-by-
one. .

Theorem 3.5.2 (0-Poincaré Lemma in an open polydisk). Let 3 € AP4(D,), with q > 1,
satisfy 0B = 0. Then there exists o € AP11(D,) such that
da = B.

Proof. As before, it suffices to prove the theorem for p = 0.
Choose an increasing sequence r,,, / r, and write D,,, = D, € D, = D.

Claim 1. For each m, there exists oy, € A»¢1(D) with Oa,, = 8 on D,y,.
Since [ is continuous on D,,, by the previous lemma, there exists o/, € AP4~1(D,,,1) with
Oal, = on D,,,1. Choose a smooth cutoff ¢ with suppy ¢ D,,,; and ¥ =1 on D,,, and let

(3.29) O = Y0l

This proves Claim 1.
We now proceed by induction on g. We will do the induction step first; so fix ¢ > 1 and
assume that the Theorem has been proven for 1,...,q¢ - 1.

Claim 2. For ¢ > 1, it is possible to choose {«,,} such that
Ums1 = Oy
on D,,_1.
Assume that aq,...,q,, have already been chosen. As in Claim 1, may choose &,, €
A%4-1(D) such that 0,41 = 8 on Dy,i1. Then
5(04m_dm+1) :B_BZO
on D,,. By the induction hypothesis, there exists v € A%9-2 such that
57 =Qpy — d/m-¢—1-

Let

Om41 = &m+1 + 5(1#7)
We then have

5a/m+1 = 5dm+1 +0= 6
on D,,.1, and

Om41 = &m+1 + 5’}/ = Qpy

on D,,_1, as claimed.
We now have a sequence «,,, which agree on the open sets D,,, hence converge trivially to
a € A%-1( D) satisfying da = 5. This proves the theorem for ¢ > 1, assuming it also holds for

q=1.

Claim 3. For ¢ = 1, we can choose a sequence «,, € A°(D) with da,, = 3 on D,,, and

(330) |Oém+1 - Ozm|cm(Dm) <27,
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Assume ay, ..., a,, have been chosen. Let @y, € A°(D) such that Ody,., = 8 on Dy, as
before. Then
8(am - dm+1) =0
on D,,.1. But «a,, are now functions, hence we conclude that «,, — &,,+1 is holomorphic on
D,,.1. It therefore has a uniformly convergent Taylor series on D,,. We can truncate the
series to obtain a polynomial P = P(z!,...,2") such that

(3.31) | = Qi1 — P|Cm(Dm) <9 m
We now let «a,11 = Qupe1 + P, which is well-defined on D, and satisfies

on Dy,.1. Moreover, by (3.31), a1 satisfies (3.30), which proves Claim 3.
By (3.30), the sequence {«,,} is uniformly convergent in C*(D,,) for each n,k > 0. We
therefore have «,,, — o € A°(D), satisfying da = 8 on D, as desired. O

Remark 3.5.3. Notice that the proof also works with r = co, so with C" replacing D,. We
will also need the following generalization. We write C* = C\ {0}. (The theorem also works
with C replaced by a ball and C* replaced by an annulus.)

Theorem 3.5.4. Let r,s € N with r + s =n, and put
Q=C"x (C*)* cCm
Let B € Ara(Q), with q > 1, satisfy 08 = 0. Then there exists o € AP9-1(Q) such that
da = B.

Proof. The proof is the same as that of Theorem 3.5.2, except that one uses a truncation of
the Laurent series instead of the Taylor series in (3.31). O
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4. COMPLEX MANIFOLDS

This section finally begins the main business of the class, which is the study of complex
manifolds. We shall be particularly interested in compact complex manifolds. The first clear
differences between the categories of compact smooth (i.e. real) manifolds and compact
complex manifolds are as follows.

(1) Any holomorphic function on a compact complex manifold is locally constant.

(2) It is impossible to holomorphically embed a compact complex manifold of positive di-
mension in CV, for any N.

(3) The coordinate charts of a complex manifold cannot always be taken to be C".

(4) There exist holomorphic families of compact complex manifolds that are not isotrivial,
i.€., in which nearby members are not isomorphic.

The corresponding (false) statements in the smooth category are obtained by replacing “holo-
morphic” by “smooth” and C by R.
We will establish (1-4) over the course of this section.

4.1. Definitions and first properties. Let M be a smooth manifold of real dimension 2n,
with an atlas of coordinate charts U = {U,, ¢, }. Recall that an atlas is an open cover of M,
together with maps ¢, : U, = ¢(U,) c R?" that are homeomorphisms onto their images, for
which the transition functions

Yooz 03(UanUs) = 0a(Ua 0 Up)

are smooth maps. We say that an atlas is holomorphic if, identifying R?® = C" in the
standard way (as above), the transition functions are holomorphic maps in the sense of
Definition 2.5.2. Two holomorphic atlases U and V are equivalent if the union UuV is again
a holomorphic atlas.

Definition 4.1.1. A complex manifold M of (complex) dimension n is a smooth manifold
of real dimension 2n, equipped with an equivalence class of holomorphic atlases. A complex
manifold of dimension n =1 is called a Riemann surface.

Definition 4.1.2. A continuous map f: M — N between two complex manifolds is said to
be holomorphic if it restricts to a holomorphic map between coordinate charts. In other
words, for charts U c M,V c N and ¢ :U - C" ¢ : V — CP, the map

(4.1) Yo fopio(f(V)nU) > u(V)

is holomorphic.

We say that f is biholomorphic if it is also bijective. By Theorem 2.6.3, such an f
has a holomorphic inverse function f~!, hence is an isomorphism in the category of complex
manifolds and holomorphic maps.

Lastly, a holomorphic function on M is a holomorphic map f: M — C. In particular,
on any coordinate chart, f restricts to a holomorphic function on a domain in C”.
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Theorem 4.1.3. Any holomorphic function f on a connected, compact, complex manifold
M is constant.

Proof. Since M is compact, |f| attains its maximum at a point p lying inside some coordinate
chart U. But U is a domain in C", so by the maximum principle, f is constant on U. Since
M is connected, the usual argument shows that f must be constant throughout M. U

Corollary 4.1.4. If M is connected, the image of any holomorphic map M — CN is a point.

Proof. Given a holomorphic map f: M — CV, each coordinate function on C¥ pulls back to
a holomorphic function on M, which must be constant by the Theorem. 0J

Definition 4.1.5. Let 7 : M — N be a holomorphic submersion, i.e., a holomorphic map
whose differential is surjective at all points—equivalently, by (2.26), whose complex Jacobian
Y () is surjective. Theorem 2.5.6 implies that for each ¢ € N, the fiber M, = 771(%), is a
complex manifold, where the coordinate charts are obtained from those of M by restricting
to coordinate hyperplanes appropriately. A holomorphic family of complex manifolds,
parametrized by N, is simply the collection of fibers { M, }ny of a holomorphic submersion.
The dimension of the fibers is

dim M; =dim M - dim N.

Definition 4.1.6. Recall that for any point p in a smooth manifold M, the tangent space
T,M is simply the tangent space to T, ;,»C" in any coordinate chart, where tangent vectors
are identified under pushforward by the transition functions. Since these functions are holo-
morphic, they preserve the (1,0) and (0, 1) parts of the complexification Tt ,M = T,M &g C,
by Proposition 3.1.4. We may therefore define the holomorphic tangent space

1,0
TYOM = (T,M)"°.

As discussed in Remark 3.1.3, the space T),M is canonically isomorphic to 7, pl OM. We can
therefore expect all the geometry of a complex manifold to be reflected in the holomorphic
tangent spaces.

Similarly, we may define the (anti)-holomorphic cotangent spaces (7;7)-°M and (7} )% M
at each point, and the spaces of (p, ¢)-differential forms

AP(U) = {we A" (U) |we APITIC"V peU}

for any open set U ¢ M. Moreover, we may define the operators  and 9 exactly as in (3.22),
which again satisfy the conclusions of Proposition 3.4.2.

Definition 4.1.7. Given an open set U c M, define the space
Z2U(U) =kerd c APA(U).

Since & =0 (Proposition 3.4.2), we know that the image dAP4-1(M) is contained in Z5(M).
We may therefore define the Dolbeault cohomology groups of M by

Z2(M
(4.2) H2Y(M) = —5A§,q(1 (1\)4)'
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By the 0-Poincaré Lemma (ifheorem 3.5.2), for an open polydisk D, ¢ M and any p > 0,g > 1,
the kernel Z2“(D,) of the 0 operator is identical to its image, dAP¢"!(D,), and therefore
P,q —
HY(D,) = 0.

In this sense, the Dolbeault cohomology groups with ¢ > 1 are “locally trivial,” and can
be expected to detect the global holomorphic “shape” of M. As we shall see (in part), the
Dolbeault groups are a refinement of the DeRham cohomology groups (where d is in place
of 0 in (4.2)) in the holomorphic category. In particular, they are functorial with respect to
holomorphic maps:

Proposition 4.1.8. Dolbeault cohomology defines a contravariant functor from the category
of complex manifolds to the category of complex vector spaces. In other words, given a
holomorphic map f : M — N between complex manifolds, the pullback map on differential
forms induces a linear map

(4.3) H2(N) L ()
which s functorial. In particular, f* is an isomorphism iof f is a biholomorphism.

Proof. By Proposition 3.4.3, we have f*Zr4(N) c Zp4(M) and Of* AP41(N) = f*0AP4-1(N).
Therefore f* descends to a well-defined map HZ“(N) - HZ?(M), which retains its functo-
riality properties. 0

Definition 4.1.9. Define the Hodge numbers
hP4(M) = dime Hg’q(M).

These are the most basic invariants (i.e., biholomorphism invariants) of a complex manifold.

4.2. Examples. This section describes the first few examples in the subject.
Example 4.2.1. The Riemann sphere CP! = Cu {o0} has two coordinate charts
U=C
with coordinate z, and
V=C"u{oo}
with coordinate w = 1/z, and w(oo) = 0. The transition function is holomorphic on the
overlap
UnV=C"
Example 4.2.2. The n-dimensional projective space is given by
CP" = {C—lines through the origin in C’”l}
={[Z]|Z+0eC™'}/([Z] ~[AZ] for X e C*).
We shall denote points of CP" by equivalence classes [Z] = [Z°,...,2"], where

(4.5) [2°,..., 2"~ [A\2°,... ., \2"]

(4.4)
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for any A # 0 e C.
We have n + 1 standard coordinate charts on CP?, given by

U ={[2°....2"]| Z' + 0}
for + =0,...,n, with coordinate maps
@i U > Cr={(z%...,2,...,2")}
Z0 A AL
[ZO,...,Z"]H(i,...,ﬁ...,?).
The notation “2?” means that we omit that element of the sequence. Notice that ¢; is
well-defined under the equivalence relation (4.5). The inverse map is given by
o7t (20,...,2i,...,z") > [zo,...,l,...,z”]
where 1 is in the i’th coordinate entry. The transition function on
UnU;={[Z]| 2" +0,27 # 0}
is given by

20 zJ 1 2" )

-1. 0 5 n
QOJOQO,L ~(Z N AR Ny A )H(;,...,;,...,—,,...,—.

which is holomorphic, as required.
Notice that we may write
CP" = C"uCP"!
=Upu{[0,Z",...,Z"]}.

In this way, CP™ can be seen as a compactification of C" by adding a “plane at infinity,”
whose points in turn correspond to complex lines through the origin in C".
Given an injective linear map

(4.6)

(azj) L<icmel © (Ck+1 N (Cn+1

1<j<k+1
we obtain a holomorphic inclusion
CP* - CP"
[wo, e ,wk] > [aojwj, e ,a"jwj] .

which we refer to as a projective k-plane. Notice that any k + 1 linearly independent
points in C**! determine a projective k-plane. A projective (n — 1)-plane in CP" is called a
hyperplane. The space of hyperplanes is parametrized by the dual projective space

CP™ = (CnJrl)* N {O}/ -
which is of course biholomorphic to CIP"?, but not canonically.

Example 4.2.3. Given a complex manifold M and a group I" acting on M properly discon-
tinuously by biholomorphisms, the quotient space M /T is again a complex manifold, with
coordinate charts inherited from M. For example, let m € Z act on C" by

(zh,...,2") = (22 2mem).



COMPLEX MANIFOLDS (MTH 935) 53

The quotient C"/Z is called a Hopf manifold, and is easily seen to be diffeomorphic to
Gl % §2n-1

Example 4.2.4. Let A c C be a lattice, i.e.
A={mmn+nmn|mmneZ}cC

for 7 /7 ¢ R. Then the quotient C/A is a one-dimensional complex torus. In particular,
for 7 ¢ R, we let
A =(1,7)

and
X, =C/A,.

Exercise: Show that there can be no holomorphic, injective map from C to X, .

Lemma 4.2.5. For a complex torus X = C/A, we have h'(X) = 1.

Proof. Observe that the space of holomorphic (1,0)-forms on X contains the element dz.
Since dz spans TZ(I’O)X at each point z € X, any holomorphic 1-form on X is of the form
a(z)dz for a doubly periodic holomorphic function a(z) (see Problem 1.5.12 above). By
Liouville’s Theorem, «(z) must be constant. Therefore

HY(X) = {cdz|ceC}
which has rank one, as claimed. 0]

Proposition 4.2.6. Given two lattices A and A’ c C, the complex tori X = C/A andY = C/N’
are biholomorphic if and only if there exists ¢ € C* such that ¢- A = A'.

Proof. Let f: X —Y be a biholomorphism. Then f lifts to a holomorphic map f :C - C,
which we may choose with f(0) =0, so f(A) = A’. But then f*dz is a holomorphic differential
on X, which is equal to cdz by the Lemma. On C, we have

frdz = cdz = f'(2)dz.
Therefore f(z) = cz, and f(A) = cA = A, as desired. O

According to the proposition, the set of isomorphism classes of complex tori is identical
to the set of lattices in C modulo complex scalars. Given any such A, we may assume, after
multiplication by a scalar, that 1 € A is an element of shortest length. With this choice, A
will have nontrivial intersection with the strip

S={zeC|-1/2<Rez<1/2,Imz>0,|z| >1}.

Letting 7 € An S be the element with minimal imaginary part, we have A = A,. It is easy to
convince yourself that for 7 € S, A, is unique up to isomorphism, except for the identifications

T~T+1

and
T = eie o ei(w—@)'

These identifications only affect the boundary of S. We have shown the following:
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Theorem 4.2.7. The set of all isomorphism classes of one-dimensional complex tori is given
by
{X,|TeS]~}.

(S\{1+2¢§¢71—2\/§z’i})/w

parametrizes a holomorphic family of complex tori, in the sense of Definition 4.1.5.

FEzercise: Show that

4.3. Subvarieties and submanifolds. A closed subset V c M is called an analytic sub-
variety if, for each p € V, the germ of V' at p is analytic in the sense of Definition 2.4.4.

Equivalently, for each p € V| there exists a coordinate neighborhood U 3 p and holomorphic
functions f1,..., f* such that

(4.7) SnU={f'(2) == f'r(z) =0} = Z(f',-, f*).
We say that V' is an analytic hypersurface if k, =1 for all pe V.

Definition 4.3.1. A complex submanifold S ¢ M of codimension k is an analytic sub-
variety such that for all p € S, we have k, = k, and for f!,..., f* as in (4.7), the matrix

(4.8) (g; (p))

has full rank (equal to k). By Theorem 2.5.6, S is a complex manifold in its own right, of
dimension n - k.

Notice that the fibers of a holomorphic family, per Definition 4.1.5, are complex subman-
ifolds of the total space. Indeed, this is the special case where the functions f1,..., f* are
each defined on an open neighborhood of S inside M.

A point on an analytic subvariety where (4.8) holds is called a smooth point, as opposed
to a singular point. According to Lemma 2.6.1, at least in the hypersurface case, the generic
point of an analytic variety is smooth. In this sense, an analytic variety is a submanifold
with “analytic singularities” along a proper subset.

Definition 4.3.2. Given an entire holomorphic function f : C* - C, the vanishing locus
X =Z(f) cCr is called an affine analytic hypersurface. If f is a polynomial, then X is
called an affine algebraic hypersurface.

Notice that if zero is a regular value, i.e., for each p € C* with f(p) = 0, there exists 2
such that
of
0z
then Z(f) is a smooth hypersurface in C".

(4.9) (p) #0,

Example 4.3.3. Consider the affine algebraic hypersurface X = Z(Py) c C?, where
Py(z,y) =y* —z(z - 1)(z - ).
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We have
oPy
By
? =—((z-1D)(x=-N)+z(x-N)+x(x-1)).
x

Then aa% is nonvanishing except at (0,0),(1,0), and (A,0). But if A # 0 or 1, then aa% is
nonvanishing at these points and we conclude that X is a complex submanifold. As \ varies,
these form a holomorphic family of smooth affine hypersurfaces { X, } called elliptic curves,
which is intimately related to the family { X} of Example 4.2.4.

For A = 1, X7 = {y? = x(x - 1)} is no longer a submanifold, but an affine analytic
hypersurface singular at (1,0). In fact, X; can be parametrized by

(4.10) r=t, y=t(t*-1), teC.
This map is 1-to-1 except for +1 — (1,0). Hence, X; is isomorphic to C with two points
identified (this is called a rational nodal curve).

Definition 4.3.4. Given k homogeneous polynomials
PYZ°,...,Z2"™),...,P*(Z° ..., Z2")

the common vanishing set
X =Z(P,...,P*)cCP"

is well-defined under the equivalence relation (4.5). This is called a projective algebraic
variety. In particular, X is an analytic subvariety of CP" : for example, on the coordinate
chart Uy 2 C", we clearly have

XnUy=Z(P'(1,ut,...,u"),..., PE(Lut, . u™)).
Example 4.3.5. Let
PA(X,Y,Z)=ZY?*-X(X - Z)(X - \Z)

and put
X, = Z(P\(X,Y,Z)) c CP.

Then clearly X, n U, = X, per Example 4.3.3. Notice that Xy \ U, = {[0,1,0]}, and on
Uy ={[x,1, z]}, we have
XonUp=Z(z-a(x-2)(z-A2)).

Then W(O7 0) = 1, hence [0,1,0] is a smooth point as well. For A # 0,1, X, is therefore a
smooth projective algebraic variety in CIP? (also called a smooth projective curve). Since CIP?
is compact and X, is a closed subset, it is also compact; hence, X, is a “compactification”

of XA.

Every affine algebraic variety can be compactified to a projective algebraic variety in a
similar way. It is easy to check whether a projective variety is smooth, using the following
criterion:
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Proposition 4.3.6. Let X = Z(P',..., P*) be a projective algebraic variety. Then X is
smooth if and only if

OP!
4.11 =)
(4-11) (02 )z
has rank k at each point of X.
Proof. On Uy, let pi(29,..., 26 ..., 2") = Pi(2%,...,1,...,2"). Then X nU, = Z(p", ..., p*),
and

opt OP?
(4.12) 8?:j(z0,...,%,...,zn) = o7 (L2, 1<ish0<j#l<n.
But for any homogeneous polynomial of degree d, we have the identity
oP
d-P=7F—.
o0Zk

For a point Z € Uy, where Pi(Z) =0, we have

OP? 73 QP!
579 = e 574

k
i=1 0z
It follows that the matrix (4.12) has the same rank as (4.11), which gives the result. O

opt . . . . opt k .
The vector (W (Z)) is therefore a linear combination of the vectors (— (Z)) L for j # ¢.

Notice that there is a difference between the definition of an analytic hypersurface in
Cn, which may be defined by a different function near each point, and an affine analytic
hypersurface, which is defined by a single entire function. This brings up the following
question:

Problem 4.3.7 (Cousin problem). Is every analytic hypersurface in C" an affine analytic
hypersurface?

Note that an analytic hypersurface in a compact complex manifold can never be the zero
locus of an entire function, since this would necessarily be constant. In the case of projective
space, we have the following analogue of the above question:

Problem 4.3.8. Is every analytic subvariety of CP™ a projective algebraic variety?

The first question will be answered (affirmatively) below in §6.4.1, and the second will be
partially answered by Theorem 9.2.4.
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5. SHEAVES

5.1. Motivation. At the end of the last section, we saw two problems that have to do with
passing from local to global data. We begin this section by describing another, more central,
motivating problem, which (in some form or other) will occupy us for most of the rest of the
semester.

Let ¥ be a Riemann surface and {pg} a discrete collection of points. Choose coordinate
charts {U,} for ¥ such that each pg is contained in exactly one Ug, and corresponds to the
origin in this chart. For each (3, fix a “principal part”

(5.1) Q) = Yals

Problem 5.1.1 (Mittag-Leffler). Does there exist a global meromorphic function® on
which is holomorphic on ¥ \ {ps} and has principal part Qs(z) at pg, for each 57

Notice that the problem is locally trivial, since on the patch Ug, we may take the function
(Qs(#) as our solution. In fact, it is also trivial in the cases ¥ = C and ¥ = CP'. However, we
have seen in Problem 1.5.12 that for ¥ = C/A, there does not exist a meromorphic function
with a single, simple pole; so the answer to the global question is sometimes negative. The
goal is to describe a general approach—in fact, two approaches that will turn out to be
equivalent—which will allow us in principle either to solve the problem or to identify the
“obstruction” to the existence of a solution in a given case.

5.1.1. Approach via Cech cohomology. Let U = {U,} be the open cover of ¥ described above.
Choose Qs per (5.1), and let

Qaﬁ = Qa - Qﬁv

which is a holomorphic function on U, nUg, for each o and . Notice that on U, nUgnU,,
we have

(5.2) Qap + sy + Qya = 0.

To make a global solution, we need to find a holomorphic function g, on U,, for each «, such
that

(53) Qa + ga = Qﬁ + 93
on U, nUg, for each a and . This would give a well-defined meromorphic function f with
f=Qa+3a

on each chart U,.
Notice that (5.3) is equivalent to

(5'4) 98 = Ga = Qaﬁ'
Define
ZY (U, O) = {{fap} | fap € Hol(Us N Up), fap + f3y + fra = 0}

5See 5.3.9 below for the formal definition.
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and
BY (U, 0) = {{fas} | fap = 95 = ga, for some {ga}}.
In this formulation, the obstruction to choosing {g,} as required lies in the quotient group
- ZW(U,0)
: HYU,0) = =—""7=""+~.

5.1.2. Approach via Dolbeault cohomology. Assume that the cover U, is locally finite, and
choose smooth cutoff functions p, € C (U, ) such that p, =1 in a neighborhood of p,. Let

b= Zg(paQa)'

Observe that this is a global, smooth (0, 1)-form (vanishing identically near p,, ), and satisfies

ap =0.
If we can solve
da =0
for a e (M), then
f= %:ﬂafa -

will satisfy Of = 0, with the required principal parts at p,. In this setup, the obstruction to
solving the problem therefore lies in the Dolbeault cohomology group (4.2) already defined
above:

ZXN(%
(5.6) HYH(X) = aixo—gz;'

5.2. Presheaves and sheaves. Let M be a topological space. A presheaf.# on M assigns
to each open set U c M a set % (U), together with restriction maps

rvy s F (V) > F(U)
for each U c V, satisfying
1) Tvu = Id
ii) ryy orwy = rwy for each triple U c V c W.
For an element s € # (W), we shall often write s|; = ryy(s). When the sets .#(U) are
endowed with an algebraic structure and the restriction maps are morphisms in the relevant
category, we say that .# is a presheaf of abelian groups, rings, modules, etc.

Let U = {U,} be an open cover of U c M. We say that .7 is a sheaf if it satisfies two
further axioms, for any such open cover:

iii) If f,g € #(U) satisfy f|;, = gl foreach o, then f=g.
iv) If f, € #(U,) satisty

foz|UamU/j = fﬂ|UanUﬁ
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for each «, f, then there exists f € % (U) such that
f|Ua = fa

for all a.

Example 5.2.1. The sheaf of continuous functions 47, assigns to each open set U ¢ M
the set of continuous functions on U :

Gu(U) =C(U).
This clearly satisfies the axioms, and is a sheaf of rings.

Example 5.2.2. More generally, given any continuous map 7 : X — M between topological
spaces, define the sheaf of sections 2" of M by

2 (U)={0c:U - X continuous | roo =Idy} .

It is trivial to check that this is a sheaf of sets. If the fibers of X are endowed with additional
structure (such as if X is a vector bundle over M), then 2 is naturally a sheaf of abelian
groups (or modules over CY(M)).

The previous example can be recovered by taking X = M x R, and 7 the projection to
the first factor. Indeed, you will show on the homework that any sheaf is isomorphic to the
sheaf of sections of some map of topological spaces X — M.

Example 5.2.3. Consider the constant presheaf R, which assigns R(U) = R for each open
subset. If the space M = U uV is disconnected, then this is a presheaf, but not a sheaf. For,
we have sections 0 € R(U) and 1 € R(V'), but no section exists in R(M) that restricts to
each.

To remedy the situation, define the sheaf of locally constant functions, R, by the
prescription

K(U) — CO(U, Rdiscrete).

By the previous example(s), R is clearly a sheaf. This is an example of sheafification—see
Definition 5.3.7 below.

We may similarly define locally constant sheaves for any abelian group, such as Z or C.

Example 5.2.4. On any smooth manifold, we have the following sheaves:

%, the sheaf of complex-valued smooth functions

%*, the sheaf of nonvanishing smooth functions, viewed as a sheaf of groups under multi-
plication

/%, the sheaf of smooth k-forms

%, the sheaf of closed k-forms.
The first and third are sheaves of modules over the €.

Example 5.2.5. On any complex manifold, we have also the following sheaves:

O, the sheaf of holomorphic functions

0*, the sheaf of nonvanishing holomorphic functions, viewed as a sheaf of groups under
multiplication

Q. the sheaf of holomorphic p-forms, i.e., O-closed (p,0)-forms

/P4, the sheaf of smooth (p,q)-forms
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221, the sheaf of O-closed (p, q)-forms
Hv, the sheaf of holomorphic functions vanishing along an analytic subvariety V c M.
All but the second are sheaves of modules over 0.

5.3. Basic constructions in the sheaf category.
Definition 5.3.1. Given x € M, define the stalk of .% at = by
Fo={(U,s) |xeU,se FU)}/~
where (Uy,s1) ~ (Us, s2) if and only if there exists x € U c Uy n Us such that
s1ly = soly -

Notice that any section s € #(U) defines a canonical element s, € .%,, for each = € U.
Moreover, according to the sheaf axiom iii) above, these images uniquely determine the
section s.

Example 5.3.2. The stalk at x € M of the sheaf of holomorphic functions &, is isomorphic
to the ring of germs of holomorphic functions &, of §2.3.

Definition 5.3.3. Let .%#,¥ be presheaves. A morphism (or map of sheaves
a:F -9
is given by a map ay : Z(U) - 4(U) for each U c M, satisfying
(5.7) auoTiy =i o
for any U c V. We say that « is injective (resp. surjective) if the induced maps on stalks
Oy Fy > Y,
are injective (resp. surjective), for each x € M.

Proposition 5.3.4. If F is a sheaf and o : F — 94 is injective, then for any U c M, the
mduced maps
ay: FWU) >4 (U)
are injective.
Proof. Let s € #(U) be an element with a(s) =0. We have a,(s,) = a(s), =0 for all z € U.

But «, is injective by assumption, so we conclude that s, = 0 for all x € U. By sheaf axiom
iii), this implies that s = 0. O

Definition 5.3.5. We define the Kernel Ker « of a sheaf morphism by the prescription:
(Kera)(U) =Ker (ay : F(U) -4 (U)).

One can check using axiom (iv) that Ker« is a sheaf, and indeed there exists a canonical
injective map of sheaves
Kera — 7.

In other words, Ker « is a subsheaf of .7.
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Example 5.3.6. Define the exponential map
exp: 0 - 0"

f — 627rif
This is a surjective map of sheaves, per Definition 5.3.3. However, notice that the element
ze 0" (C~{0})

is not the image of an element f € O(C~ {0}). For, if z = 2™/ then dz/z = 2widf. But then

27m':/ %=27Tif df =0
Stz St

by the fundamental theorem, which is a contradiction.

We conclude that a surjective map of sheaves is not necessarily surjective on sections over
each open set. One consequence is that the image presheaf im(«) is not necessarily a sheaf:
in other words, there can exist elements ¢ € ¢ such that im.%, > t, for all = € U, but for which
there exists no s € #(U) with «a(s) =t, violating axiom iv). This is a fundamental problem
in sheaf theory.

A first step toward remedying the problem is to make the following definition.

Definition 5.3.7. Given a presheaf . on M, we define the sheafification .#* by declaring
that .#*(U) consists of the set of all maps s — U,y Z,, with s(x) € %,, such that for all
x € U there exists an open subset x € V c U and a section t € . (V') such that ¢, = s(y) for
all y e V.

Equivalently, a section s € .%#*(U) is given by an open cover U = {U,} of U, together with
sections s, € .#(U,) for which

(5.8) 8a|UanU3 = 85|UaﬁU5

modulo equivalence under refinements. From this perspective, it is clear that .#* is a sheaf.
Moreover, one checks that the obvious map

F > FT

induces isomorphisms on all stalks:

Fy > F
Lastly, the sheafification has the property that if ¢ is a sheaf, then any morphism o : . % -~ ¥
factors as . - .+ - &, agreeing with « on stalks.

Definition 5.3.8. Define the image sheaf Im « = im a*. This is naturally a subsheaf of ¢.
Define the cokernel Coker a to be the sheaf associated to the presheaf

U g (U)/a(F(U)).

Definition 5.3.9. Define the sheaf of meromorphic functions .# on M to be the sheaf
associated to the presheaf

U ~ Frac(0Oy)
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where Frac(0y) is the fraction field of the ring of holomorphic functions on U. We denote by
A+ the multiplicative sheaf of meromorphic functions that are not identically zero on any
connected component of M.

5.4. The sheaf of divisors. This subsection gives another important example of a sheaf of
abelian groups.

Definition 5.4.1. A divisor D on an open set U c M is, by definition, a formal linear
combination

D= Znﬂzﬂ7
8

where ng € Z, Zg is an irreducible analytic subvariety of U, and the sum is locally finite. We
say that a divisor D is effective if ng > 0 for all 5. The sheaf of divisors Ziv on M assigns
to each open set U ¢ M the abelian group Ziv(U) of divisors on U. In particular, the stalk
Div, is the group of finite formal linear combinations of irreducible analytic germs at x.

Given any meromorphic function f on U, we may define an element
div(f) € Ziv(U)

as follows. By Theorem 2.3.1, for any open set x € U, there exists V' 3 x such that

;- i
g;nl...gznz

on V, with h; and g; all relatively prime in &,. We define the stalk of the map div by

k I4
div(f)s = ; naZo(ha) - ﬁz_l nsZo(gp)-

One can prove using Proposition 2.3.6 that this gives a well-defined, surjective map of sheaves
div: 4" - Div.

Definition 5.4.2. A (global) divisor D on M is said to be a principal divisor if there
exists a global meromorphic function f on M such that

D =div(f).

5.5. Complexes and the global sections functor. We say that a sequence of maps of
sheaves

T a% 3 9141 o 9“2 —
is a complex if a;,1 0o a; =0 for all 2. The complex is said to be exact if Ker a1 = Coker «;
for each ¢. A short exact sequence is an exact sequence of the form

0->8& - -9 0.
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Example 5.5.1. Given any map of sheaves «:.% — ¢, the sequence
0-Kera - .F 59 - Cokera - 0
is exact.
Example 5.5.2. The exponential exact sequence is given on any complex manifold by
O%Z%ﬁeﬁ)ﬁ*ﬁo.

Example 5.5.3. Given a complex submanifold S, the ideal sheaf .#5 fits into a short exact

sequence:
Oﬁfsﬁﬁ]\/[—)ﬁsﬁo.
Here Oy is the “extension by zero” of the sheaf of holomorphic functions on .S, whose sections

are given by
fs(U) = ﬁS(UﬂS)

Example 5.5.4. The ordinary Poincaré Lemma implies that the complex of sheaves
0oR- S S5/ 50
is a long exact sequence.
Example 5.5.5. The 0-Poincaré Lemma implies that the complex of sheaves
0— QP - 7?0 3 o/ P 3 AP > 5 P ()
is a long exact sequence.
Definition 5.5.6. Define the global sections functor I': {sheaves on M} - Ab by
(F)=F(M).
As we have seen in Example 5.3.6 above, the global sections functor is not always right-exact,
i.e., from a short exact sequence of sheaves only gives an exact sequence of abelian groups:
(5.9) 0-T(&)->T'(F)->T(9).

Example 5.5.7. We may define the sheaf of principal parts &% as the cokernel of the
inclusion map

(5.10) 00> M—~PP 0.

In the Riemann surface case, this is exactly the set of “Mittag-Leffler data.” We may
therefore reformulate the Mittag-Leffler Problem 5.1.1 as one of determining the image

I(M)—>T(PP).

Example 5.5.8. The sheaf of divisors Ziv on M fits into a short exact sequence

(5.11) 0> 0" .S Piv 0.

We may therefore formulate the Cousin Problem 4.3.7 as one of determining the part of the
image

T(#*) - (Ziv)

that is also effective; i.e., the space of effective principal divisors on M.
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6. SHEAF COHOMOLOGY

Sheaf cohomology gives a way to remedy the failure of right-exactness of the global sections
functor. There are many equivalent definitions. Our approach will be to list a set of axioms
guaranteeing that the groups have the desired properties, and also defining them uniquely
up to isomorphism (if they exist). We will then give a construction of the groups and check
that they satisfy the axioms.

We shall assume henceforth that all sheaves are sheaves of abelian groups (possibly with
additional structure). We shall also assume always that M is paracompact, i.e., every open
cover has a locally finite subcover.

6.1. Axioms. A sheaf cohomology theory is an assignment of abelian groups H*(.%), for
1=0,...,00, to any given sheaf .7 | together with certain maps between the groups, satisfying
several axioms.

Axiom 1. For each i =0, ..., 00, the sheaf cohomology group H%(-) is a (covariant) functor
from the category of sheaves to the category of abelian groups.

Axiom 2. H(-) =T'(-).
Axiom 3. Given any short exact sequence of sheaves
08> ->9-0

on M, there exist maps 0** : H(¥) — H*'(&), so that the sheaf cohomology groups form a
long exact sequence

(6.1) 05 T(&) > T(F) > T(%) > HY(E) > HI(F) - H\(D) > HX(&) > -

This assignment gives a functor from the category of short exact sequences of sheaves to
long exact sequences of abelian groups.
Before stating the remaining axioms, we need to make the following definitions.

Definition 6.1.1. A sheaf .# on M is said to be faithful if, given any exact sequence of
sheaves

0->SF>F >9->0
on M, and any open set U c M, the induced sequence of abelian groups
0-IU)->F(U)-%U) -0
is exact. We say that a sheaf .# is acyclic (for the given theory) if H/(.#) =0 for all ¢ > 1.

Axiom 4. Any faithful sheaf .# satisfies H'(.#) = 0.
Axiom 5. On a compact space M, any faithful sheaf is acyclic.

For a more detailed set of axioms, determining the sheaf cohomology groups up to canonical
isomorphism, see Warner, Foundations of differentiable manifolds and Lie groups, Bredon,
Sheaf Theory, or any of the many other books covering the subject.
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6.2. The Cech cohomology groups. We now give a concrete construction of sheaf coho-
mology, which we will take as our definition of the groups.
Let U be a locally finite open cover of M. Given a sheaf . on M, define the abelian groups

C°(U, F) =aF (Ua)
Cl(g,f) = H(ﬁgy(Ua n Ug)

CP(U,7) = lagsia,F (Uayn--nU,,)

We call CP(U, %) the group of p-cochains, an element of which is denoted
o ={or € F(Mp_oUi.) }1-pe1-
Define the coboundary operator
0:C"(U,F) » (U, 7)
(6.2) Pl :
(50’)1-0”.1»1”1 = Z(—l)] O—iO"'ij"'ip+l

J=0

UiormumU,-p ’
For example, if 7 = {71/} is a O-cycle, we have
((57’)(]\/ =Ty —Ty-
If o ={oyy} is a 1-cycle, we have
(60)vvw = ovw — ouw +ouv.
Notice that
(527‘)va =tw-1v-(tw-10)+7v -7 =0.
In general, we have

Proposition 6.2.1. 62 =0.

Proof. We calculate

p+2

p+2

k-1 ) p+1 )
= Z(—l)k (_1)]0-i0~~~ij~~~ik~~-ip+2 + Z(_1)jo-i()"'ik"'ij+1"'ip+2
k=0 j=0 j=k

= Z(_1)k+jaio---ij---fk---ip+2 + Z (_1)k+j/_10io---ik---ij/---ip+2
j<k k<j’

=0
as claimed. O

The proposition shows that the Cech complex
C*(U,#):0>C°(U, F) > C'(U, F) > CHU, F) ~ -~
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is a complex of abelian groups. We define the Cech cohomology groups of .# with
respect to U as

(6.3) H (U, %) =1 (C*(U, #)) = 5o fi :éf%@ffé?}%’?f |

The elements of the numerator of the RHS of (6.3) are called Cech cocycles, and the elements
of the denominator are called Cech coboundaries.

To satisfy all of the required axioms, we must remove the dependence on the open cover
U, which can be done as follows. We say that U’ = {U /é} is a refinement of the open cover
U if, for each 3, we have

(6.4) U c U,
for some some «a. For each (3, we may choose ¢(/3) = a per (6.4), and define a map

ng : Cp(gag) - Cp(glvy)

(Pe(0)) 5y, = U%(ﬁo)'“%’(ﬁp)|U30r1---mU5p :
This is clearly a chain map C*(U,.%) - C*(U’,.%), hence gives a map on cohomology
(6.5) p: H?(U, F) > H*(U', F).

One can check that p is independent of the choice of map ¢ on the indexing set of the
refinement.

Definition 6.2.2. The p’th sheaf cohomology group of .% is defined to be the direct limit

HY(F) = lim H7(U, F)
U

over refinements of open covers of M. This simply means that we consider Cech classes for
all open covers, where two elements are equivalent if they agree under a common refinement.

Lemma 6.2.3. Let U be a locally finite open cover of M. Given an open set V- c M, let
V=Uu{V}
Suppose that F is a sheaf on M such that the restriction F|,, satisfies

[:[p(g’ Zly) =0
for allp>1. Then ) )
H(U, 7) = H*(V,.7)

for allp>1.
Proof. By the definition of the Cech complex above, we have an exact sequence of complexes:

0->C'(U, Z|,)~>C(V,Z7)->C*"(U,F) ~0.
Since

c Y (U, #l,): 0> Z(V)->C(U|,, Z|,) >
is exact by assumption, the Snake Lemma yields the stated identity of Cech groups. OJ

Theorem 6.2.4. The groups HP(-) of Definition 6.2.2 satisfy Axioms 1-5 of the previous
section.
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Proof. Axiom 1 is clear from the definition.
For Axiom 2, given any open cover U, we in fact have

H(U,.7) = {{ga} | 9o = 95 = 0 on Uy, 0 Us}
- 7 (M) =1()

by the sheaf axioms iii) and iv). This persists in the direct limit.
For Axiom 3, given a short exact sequence of sheaves

-5 75950

we obtain an exact sequence between the Cech complexes:
(6.6) 0-C (U, &) S (U,.7) 5 0 (U.9).

It is often possible to choose the cover U so that the maps 3* are also surjective, i.e., (6.6)
forms an exact sequence with — 0 on the right. In this case, the existence of the connecting
maps 0* forming the long exact sequence follows directly from the Snake Lemma.

In general, the connecting maps 6* can be defined by passing to a refinement, as follows.
Because the sheaf map [ is surjective, given a class [o] € HY(U,%¥), it is possible to choose a
refinement U’ such that there exists 7€ C*(U’,.%) with (1) = o
cocycle, we have

CiU' ) - Since o is a Cech

p(7)) =0(5(7)) = (o) = 0.
Therefore 0(7) = a(p), for some e C*1(U',&). We then have

a(d(p)) = 0(a(p)) = 6%(1) = 0.
But since « is injective, we conclude that §(u) = 0, and [p] represents a class in h* (C*(U', &)) =
Hi(U',&). We then define
0" ([o]) = [1]-

Imitating the proof of the Snake Lemma, one can check that this class is independent of
the various choices of cocycle representatives, and gives the required long exact sequence of
cohomology groups.

For Axiom 4, we argue as follows; let .# be a faithful sheaf. Given an open cover U, we
define a “sheafy” Cech complex

0->¢U, 7)€ (U, )~ C* U, I) >
where
U, I) =1l Iy,
¢! (U, 7) =1lazp j|UQnUﬁ

and the differentials are defined as in (6.2).
We claim that

(6.7) 0> > EU, ) > C U, I) > CHU,.I) >
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is an exact sequence of sheaves. To see this, let x € M and consider the induced sequence on
stalks:

Let o = (aao...ap) € Kerd,. Choosing an index /3 such that Ug 3 z, define the stalk of a cochain
at x by

7'040,..011771 = U,Bao-~~ap71-
Then 7 is a well-defined element of €P~1(U, .%),, which one can check satisfies 9,7 = 0.
Because .# is a faithful sheaf and I'(¢?(U,.#)) = CP(U,.#), we get from (6.7) a short

exact sequence of groups:
0-T(F)~CU,#) - CY(U,F) - Ker (C'(U,7) » C*(U, 7)) - 0.

This shows that H'(U,.#) = 0 for all open covers U, and therefore H(.#) = 0.

To verify Axiom 5, assume that the base space M is compact. This allows us to restrict
to finite open covers (after taking refinements) and argue by induction. The result is trivial
for a cover with one element. Assume that the result has been established for all covers with
n elements, and let V be a cover of M with n + 1 elements. Choosing any open set W eV,
write V. = U u{W} and U = uU,. We have an exact sequence of sheaves

0S8 Iy = Alyaw = 0.
Since .# is faithful, we obtain an exact sequence of Cech complexes:
(6.8) 0-C*(V,7)-C"(V, A)eC (V, 7)) = C(V, Zyow) = 0.

But for the faithful sheaves .#|,, |, , and .Z|;., , the cover V has at least one “redun-
dant” open set. By Lemma 6.2.3 and the induction hypothesis, we get that the cohomology
groups H?(V, i) Hr(V, S|y ), and Hr(V, A |yaw) are all zero, for p > 1. Applying the
Snake Lemma to (6.8), we conclude that HP(V,.#) =0 for all p > 2, as required. O

6.3. Resolutions. Underlying the Cech definition of sheaf cohomology is the complex of
sheaves (6.7), which is an example of the following. We say that a complex

(6.9) 0> > > A
is a resolution of a sheaf .7 if there exists an injective map .% — &% such that the complex
(6.10) 0-.F > >t -

is exact. If the sheaves in the resolution have a certain property, for instance, are acyclic,
then (6.9) is said to be an acyclic resolution.

Theorem 6.3.1. Given an acyclic resolution </ of a sheaf %, we have
(6.11) HP(F)=h? (T (*))

for p>0. In other words, the sheaf cohomology groups are equal to the cohomology groups of
the complex of global sections of an acyclic resolution.
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Proof. For i > 1, let % = Ker (/% - o/™*'). Then #° =% and we have exact sequences
of sheaves

(6.12) 0—H" o - " 50
for each i > 0. Applying the long exact sequence in cohomology to (6.12), for i = 0, gives
0— H(Z) > H (%) - H ()

- HY(F) -0 H' (x")

- H*(F) -0 H* (")

- H*(F) >0 -
This gives

H(Z) =Ker (I'(&°) - I(&")) = h°(T(*))
and
HY(F)=h' (T'(*))
which is the desired result, for p =0, 1.
The long exact sequence corresponding to the ¢’th short exact sequence in (6.12) reads

0= H(A) > H (o) > HO ()
S HY( A = 0= HY(#™)
- H*(H") >0
This gives
HY(#7) = B Y(D(*))
and
HP () =~ HP Y (o).
for each p > 2. Therefore, we have

HP(F) 2 HP(#°) = HY ()

~ HP™2(4?)
(6.13) :
~ H'(oeP )
2 h(L(*))
as desired. 0

Corollary 6.3.2. Given a faithful resolution #* of a sheaf F over a compact base space
M, we have

HP(F) = h*(D(7°))
for p>0.

Proof. By Axiom 5, a faithful resolution over a compact base is acyclic. O
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Remark 6.3.3. It follows from the previous corollary that, at least for any sheaf that admits
a faithful resolution, the sheaf cohomology groups over a compact space are determined up
to isomorphism by the axioms. An alternative approach (originating in the famous “Tohoku
paper” of Grothendieck) is to define the sheaf cohomology groups directly using a resolution
by sufficiently flexible sheaves. This puts sheaf cohomology in the more general framework
of “right-derived functors;” the reader may consult Hartshorne, Ch. 3.

As another application of Theorem 6.3.1, we can do away with the need for taking direct
limits over the open covers U in the definition of Cech cohomology.

Corollary 6.3.4 (Leray Theorem). Let F be a sheaf, and let U be an open cover such that
for any choice of indices av, ..., y,, the restriction

§|Ua0n---mUap
1$ acyclic. Then
HY(F) = HY(U, 7).

Proof. Under this assumption, the sheafy Cech complex (6.7) is an acyclic resolution of .7.
The complex of abelian groups obtained by taking global sections therefore computes the
sheaf cohomology; but this is just the Cech complex with respect to the open cover U. [

6.4. Fine resolutions and the DeRham and Dolbeault Theorems. We will now de-
scribe the class of faithful /acyclic sheaves that is most relevant to our situation. A sheaf of
abelian groups .% is said to be fine if, for any open set U c¢ M and locally finite open cover
U of U, there exist maps 7, : % (U,) = Z# (U) such that:
For any 7 € .% (U,), the support of n,(7) is contained in U,,° and;
For any o € #(U), we have
Zna(U|Ua) =0.

Proposition 6.4.1. The sheaf /P (resp. «/P4) on a smooth (resp. complex) manifold is
fine.

Proof. Let U ¢ M and U be a locally finite cover of U. Choose a partition of unity {p,} €
CY (U, %) subordinate to U, and define

Na(T) = paT
for 7 € &P (U,). Then 1,(7) is a global section of .&7?(9) supported on U,, and we have

Za:”a(U|Ua) = gpa(%a)
:zo;(paa)

(2

5The support of a section o is the set of all 2 such that o, % 0.



COMPLEX MANIFOLDS (MTH 935) 71
as desired. U
Theorem 6.4.2. A fine sheaf ¥ is faithful and acyclic.

Proof. Given an exact sequence 0 - .% — 5 — 4 — 0 of sheaves, we claim that the induced
sequence

0> Z(U) > #U) >%U) >0

is exact. For p € 4(U), we have an open cover U and elements o, € 7 (U,) such that
Oo > fify - Let

Oup = 05— 04 € F(UynUp)
and let
Ta = Zpb’aﬁaa
g
which is a well-defined element of .#(U,). Then

Ty = Ta = ZPB (087 = 0pa)
B
= ZPBUW
B

= Zpﬂava
B
=04 -0y

on U, nU,. Therefore {0, + 7.} glues to form a well-defined section of . (U) that maps to
we 7(U). This shows that .# is faithful, which implies that it is acyclic if the base M is
compact.

To show that .# is acylic in general, one can use a similar trick: given a cocycle o, one
defines

(6.14) Tagmaps = 9 PO Bagap 1
B

to obtain an element with 07 = 0. OJ
Corollary 6.4.3 (DeRham Theorem). For a smooth manifold M, we have

(6.15) HP(R,,) = Hyp(M)

where R, is the locally constant sheaf on M.

Proof. Let o7 be the sheaf of smooth real-valued p-forms as above. By the Poincaré Lemma,
the complex

0> A0S AL S A2 o> Al >0
is a resolution of the locally constant sheaf R. By Proposition 6.4.1, this is a fine resolution,
which is acyclic by Theorem 6.4.2. By Theorem 6.3.1, the sheaf cohomology of R is isomor-

phic to the cohomology of the global sections of this complex, which are simply the DeRham
cohomology groups of M. O
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Remark 6.4.4. Strictly speaking, the DeRham Theorem asserts the equivalence between
singular cohomology and DeRham cohomology of a manifold. See p. 42 of Griffiths and
Harris for a simple proof that HP(Z) computes CW cohomology, which is equal to singular
cohomology (as you know from Hatcher, presumably).

Corollary 6.4.5 (Dolbeault Theorem). For a complex manifold M, we have
(6.16) HI(QE,) ;Hg’q(M).
Proof. By the 0-Poincaré Lemma, the complex

0 ]
00— PO S Pl 5 7P2 5 5 /P 5 )

is a fine resolution of the sheaf of holomorphic p-forms on M. As in the proof of Corollary
6.4.3, the global sections compute sheaf cohomology. 0

Corollary 6.4.6. If M is a complex manifold of dimension n, then
HY QY ) =0, g>n.

6.4.1. Solution of the Cousin problem. Consider the long exact sequence in cohomology
associated to the exponential sheaf sequence (Example 5.5.2) on C":

(6.17) o> HY(Ocn) - HY(O%) » H(Z) — .
By the Dolbeault Theorem and the Poincaré Lemma, we have
HY(Oc¢n) = Hy'(C") =0
for ¢ > 1. By the DeRham Theorem, we have H9*1(Z) = 0 on C". Therefore, for ¢ > 1, (6.17)
implies
HY(0¢.) =0.
Now, consider the long exact cohomology sequence associated to (5.11):
s D) B 1(2i) > HY(6%) = 0.
This shows that the map div is surjective on global sections. Hence, every divisor on C"
is equal to div of a global meromorphic function; in particular, an effective divisor is the
vanishing set of an entire holomorphic function.

6.5. Calculations using Cech cohomology. We can now use the Leray Theorem in con-
junction with the Dolbeault Theorem to make a few cohomology calculations.

Theorem 6.5.1.

H(QP
( crt 0 otherwise.

)_{(C p=qg=0orl
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Proof. As for any compact complex manifold, we have H°(O¢p1) = C.

Choose the standard cover {Uy, U} for CP!, with coordinate z on Uy c CP! and w =1/z
on U; c CP!. We have HY(Ocpr) = H(%’O(CIPH) =0 by Problem 4 of HW # 3, or as follows:
let

afy, =Y aiz'dz
i=0
be a holomorphic 1-form on Uy. Then on Uy, we have dz = —dw/w?, which gives

o0
ofy, = Y aw " Pdw.
i=0

This is holomorphic if and only if a; = 0 for all 4.
Now, notice that Uy n U; = C*, so by the Dolbeault Theorem” and the general version of
the Poincaré Lemma (Theorem 3.5.4), we have

HI( Q| 0p,) = HE(CT) = 0.

Therefore {Uy,U;} is an acyclic cover of CP!. By the Leray Theorem, we can use it to
compute the remaining cohomology groups.

A Cech 1-cochain for Ogp is represented by a holomorphic function h € Hol(C*). By
Corollary 1.5.2; there exist P(z) € Hol(Uy) and @Q(w) € Hol(U;) such that

h=P+Q
Therefore, h = 6{P,Q} is a Cech coboundary. We conclude that
Hl ( ﬁ(c[pvl) =0.

1

Given a holomorphic 1-form h(z)dz, with h(z) € Hol(C*), representing a 1-cochain for ¢,

we may write
h(z)= ) a2’
i=—00

uniquely by Laurent expansion. The image under ¢ of a 0-cochain

{Z b2tdz, Z ciwidw}
i=0 i=0
is

Z b;z'dz - Z c;iz 27Nz,

i=0 i=0
Therefore h(z) is a coboundary if and only if a_; = 0, which gives

HI(Q}CPI) = C

as claimed. U
Proposition 6.5.2. Hi(Ocpn) =0, ¢>1.

7Strictly speaking, we are not using the Dolbeault Theorem as stated, but rather the fact that .« p”|UO AU,
is a fine resolution of QF[; ., (over M).
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Proof. We will only prove that H'(Ocp2) = 0; the general case requires more bookkeeping.
Write
C]Pﬁ = {[X(th; XQ]}
Choose the standard cover U = {Uy, Uy, Us}, which is acyclic as above. We then have Uy 2
C*xC and UynU; 2 (C*)?2, etc. Any holomorphic function on these sets has a convergent
Laurent series in the local coordinates, which are ratios of the homogeneous coordinates Xj.
So for example, any holomorphic function f on Uy has a unique Laurent expansion of the
form
f=3 > apXeX{Xj.
1=—00 i+j+k=0
7,k=0
A 1-cocycle o is therefore given by
001 = Z @iij(%X{Xg
i+7+k=0
k>0
012 = Z biijéXfXg
i+j+k=0
020
o= Y. cipXeXiX5.

1+j+k=0
720

(6.18)

We may assume without loss of generality that aggg = booo = cooo = 0. We then have
0=(00)g15 =y (@ijn +bije + cijp) XgX{ X5
i7j7k
Since b, = ¢, = 0 if 4,7 < 0, we conclude that a;, = 0; so a;j, = 0 unless either j,k >0 or
1,k > 0. Similar conclusions hold for b and ¢. The expression reduces to
0= % (agn+cip) XeXIXE+ D (age+bye) XeX{ X5+ 3 (bije + cije) X0 X{ X5
i<0,7,k>0 §<0,i,k>0 k<0,i,5>0
i+j+k=0 i+j+k=0 i+j+k=0
We conclude
Aijk = —Cyjk, <0
(6.19) biji = —aijk, J<0
Cijk = _bijk7 k <0.

We can let

_ i vJ vk
T0 = ZaiijéXng

<0
_ i vJ vk
= b XX X5

7<0
_ i YvJ vk
T =Y e X§X{ X}

k<0

which define holomorphic functions on Uy, Uy, Us, respectively. One checks from (6.19) that
the O-cochain 7 = (7;);=0,1,2 satisfies

0T =o.
We have shown that H(U, Ocp2) = 0, and the result follows from the Leray Theorem. [
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Remark 6.5.3. With more work (which we may carry out later), one can show
C p=gq<n
Hq Qp n =
() {0 otherwise.
This result also follows from the Hodge Theorem, which we would prove next semester.

Example 6.5.4. Let M = C2\ {0}. Take the cover U; = {z! # 0},U; = {22 # 0}, which is
acyclic as before. Then &'(U; nUs;) consists of Laurent series

(6.20) L2 = ) am(Z) ()"

but, for example, &'(U;) consists of series

(6.21) FGEL ) = T b))
m>0

Therefore all the terms with m,n <0 in (6.20) represent cohomology classes, and
(6.22) dim H(6)y) = oo.
By contrast, according to Hartogs’ Theorem, every class in H°(0),) extends to H°(O¢2).

6.6. The Euler characteristic. Recall the Rank-Nullity Theorem, which states that for an
exact sequence
0>A->B->C-0

of finite-dimensional vector spaces, we have

(6.23) dim B =dim A + dim C.

Given a complex of finite-dimensional vector spaces

(6.24) cro-or S oS L om L
we obtain

i(_l)ihi(c') = > (-1) (dimker o’ - dimim o)

=n

~

(6.25) =" (-1)" (dimker o + dimim o*)

= > (-1)"dimC".

The best-known instance of this formula is when (6.24) is the CW chain complex of a finite
CW complex M. Then (6.25) is the topological Euler characteristic

Xtop(M).

The right-hand side of (6.25) is given in terms of the concrete data of the CW cochain
complex C*, but the left-hand side is given in terms of cohomology groups, which depend
only on the topology of M. The conclusion is that x:,,(M), which is trivial to compute from
a particular CW structure, is a homotopy invariant.

We now make the following generalization to sheaves.
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Definition 6.6.1. Given a sheaf .%# of vector spaces on a topological space M such that
dim Hi(.F) < oo for all i and Hi(F) = 0 for i sufficiently large, define the (sheaf) Euler
characteristic

(6.26) X(F) =) (-1)"dim H'(F).

According to the DeRham Theorem, for a manifold M of finite topological type (and indeed
for any finite CW complex), we have

Xtop(M) = x (Ryr)
where R, is the locally constant sheaf on M so this is a strict generalization of the topo-

logical Euler characteristic.
We have the following generalization of the Rank-Nullity Theorem.

Lemma 6.6.2. Given an exact sequence of sheaves
0>&—->F->9-0
each with finite Fuler characteristic, we have
X(F) = x(&) +x(9).

Proof. The long exact sequence in sheaf cohomology reads:

{(0F3

(6.27)  0- HY(&) - HY(F) - H(9) 5 HY (&) > HY(F) - H(9) o H*(&) — .
Applying (6.24), since the sequence is exact, we obtain
0=H"&)-H'(F)+H"(Y)-HY &)+ H(F)-H (Y) + -
= (H(&) - HU(F) + HY)) - (H'(8) - H'(F) + H(@)) + -
=X(&) - x(F) +x(¥)
as desired. 0

As in the topological case, the Euler characteristic of a sheaf is often easier to compute
than the individual cohomology groups. It is also sufficient for many applications.
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7. HOLOMORPHIC VECTOR BUNDLES

The constructions of the last two sections are most commonly applied to sheaves of sections
of holomorphic vector bundles, which we now introduce. We focus on theory in this section,
and will defer any nontrivial concrete examples to §8.

7.1. Definitions. Recall that a (topological) vector bundle of rank r is given by a surjec-
tive map 7 : E' - M of topological spaces, where each fiber E, = 7=1(z) has the structure of
an r-dimensional complex vector space. For each x € M, we require the existence of a neigh-
borhood U > z and a local frame of sections {e;}!_; of m over U—meaning that {e;(x)}!_,

forms a basis for each fiber F,, and for any V' c U, the space of sections of 7w over V is given
by

(7.1 35 sel, [ ecto |.

A vector bundle of rank r =1 is called a line bundle.

If £ and M are smooth (resp. complex) manifolds, and all the objects mentioned are
smooth (resp. holomorphic), then we say that E is a smooth (resp. holomorphic)
vector bundle.

Example 7.1.1. The trivial bundle of rank r over M is given by the Cartesian product
M x Cr. If M is a complex manifold, this is naturally a holomorphic vector bundle.

Given two smooth (resp. holomorphic) vector bundles £ and F over M, a bundle map
¢ : E - F is a smooth (resp. holomorphic) map such that ¢(FE,) c F,, for all z, and ¢
induces a complex-linear map ¢(x) : £, - F, with tkp(x) independent of x. Two bundles
are isomorphic if this map has an inverse, which is equivalent to being a linear isomorphism
on each fiber (exercise).

Now, let U = {U,} be an open cover of M by coordinate charts, over which E has local
frames {e?}"_,. Notice that for each a, the map

UsxC" — E|;

(z,(z',...,2")) ~ gziei(a:) € E,

is a bundle isomorphism over U,, also known as a local trivialization of E. For this reason,
the condition in Definition 7.1 above is known as local triviality.
Applying (7.1) with U = U,V =U,, and s = e, we may write

(7.3) 5, = 2(908)'5 €]

in order to define the transition functions (gag)’; on U, N Ug. For any section

% Z (s*) e

J

(7.2)

we get from (7.3) the transformation law

(7.4) () = 3 (gus)' 5 ()
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By definition, the transition functions satisfy the cocycle conditions®

(7.5) 98~ 9o = Goy
on U, nUgnU,, where - denotes matrix multiplication.

Conversely, given any collection of invertible matrix-valued functions satisfying (7.5), one
can define a vector bundle £ - M by gluing together the trivial bundles U, x C" according
to (7.4), which is an equivalence relation. Moreover, if the transition functions (gag)i ; are
holomorphic on each coordinate chart, then E will be a holomorphic vector bundle.

We now come to the following meta-theorem: any canonical construction that can be
made with vector spaces carries over naturally to (holomorphic) vector bundles. In each
case, the naturality of the construction will imply that the transition functions satisfy the
cocycle condition (7.5), making the bundle well-defined.

Examples 7.1.2. Let E and F' be vector bundles over M. Let U,V c¢ M be open subsets
over which both are trivial, and denote the respective transition functions by g(x) and h(x),
forzeUnV.

1. The direct sum E @ F has fiber E, & I, and transition function

g(x) 0
0 h(z) ]
2. The dual bundle E* has fiber E = Homg(E,,C), and transition function (¢7)". A
bundle map F — F' induces a bundle map F* — E* of the same (constant) rank.

3. The tensor product E ® F has fiber FE, ®c F,, with transition function g(z) ® h(z).

4. The alternating product A*E c ® F has transition function AFg(x). In particular, we
define the determinant line bundle

det E = A'¥FE

with transition function given by det g(z). In this case, (7.5) follows from multiplicativity of
the determinant of a matrix.

5. Given a subbundle F c F' (i.e. the image of an injective bundle map), we may define the
quotient bundle F'/E, with fiber F,/E,, as follows. After possibly shrinking our coordinate
neighborhoods, we may choose a frame for F' of the form

{617"'767’76T+17"'768}

where the first r sections are a frame for E. Then the transition function is necessarily of
the form

x) l(z
(7.6) h(m):( 9(0) k((x)) )

We may take the (s — 1) x (s —r) matrix k(x) as the transition function for F/E, since
the cocycle condition on h implies it for k. Moreover, if both E and F' are holomorphic,

8Notice the similarity with (5.2); see also Theorem 8.2.1 below.
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then the quotient is holomorphic by this construction, independently of the choices involved
(exercise).

There is another construction of central importance in the study of vector bundles: given

amap f: N - M and a bundle E - M, define the pullback bundle
(7.7) f*E=FExy N— N.

The fibers are
(f"E), = Ep)
for z € N. Given local frames (U,, {e?}) for E, local frames for f*E may be given by

(f (U) Aed(f(2)) ).

Lastly, given a holomorphic vector bundle 7 : E — M, we denote its sheaf of holomorphic
sections, in the sense of Example 5.2.2, by &. We shall often abuse notation and denote the
holomorphic bundle itself by &, since this sheaf carries the same data. When we refer to a
holomorphic bundle &, we will write F for the underlying smooth vector bundle. We shall
also sometimes use the notation

(U, E)=8(U)
to denote the space of holomorphic sections of F over an open set U.

Remark 7.1.3. One has to be slightly careful with sheaves of sections when discussing
canonical operations. For instance, the sheaf of sections of E ®¢ F' is the tensor product

g@ﬁMy

in the category of sheaves of &);-modules, i.e., the sheaf associated to the presheaf U —
E(U)®gwy# (U). This means that £® F' may have more global sections than just I'(6") ®p(s)
['(Z); in fact, this is a key feature of the subject.

There is also a potential for confusion between the fiber E, of a vector bundle at x, which
is an r-dimensional complex vector space, and the stalk &, of the corresponding sheaf of
sections, which is a free module of rank r over the local ring &, ... At least it turns out that
any sheaf with the latter property is the sheaf of sections of a vector bundle—see Huybrechts,
Proposition 2.2.19.

7.2. The (co)tangent bundle and the (co)normal sequence. Given a complex mani-
fold M, the (holomorphic) tangent bundle 7'M consists of the collection of all tangent
spaces {T,M | x € M}, with local trivializations inherited from the coordinate charts. Re-
call that T, M is canonically isomorphic to the holomorphic tangent space Tél’O)M ;in a
coordinate chart U = {z1,..., 2"}, we therefore have the local frame

{i i}
021 oz
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for TM. Given a different coordinate chart V' = {w!,... w"}, the transition function for TM
on U NV is given by the holomorphic Jacobian matrix

(55)
0z i,j=1 n'

77777

In this way, the tangent bundle T'M canonically inherits the structure of a holomorphic
vector bundle from the complex manifold M.

Similarly, the cotangent bundle T*M = TM* is holomorphic, as are the exterior powers
AFT*M. The sheaf of sections of the latter is of course Q% , the sheaf of holomorphic k-forms
studied above. The canonical line bundle of M is defined to be

Ky = Q7 = det T* M.

The canonical bundle is of central importance in complex geometry.

Now, given a complex submanifold S c M, the tangent bundle 7'S has a natural inclusion
into T'M over points of S. We define the normal bundle via the following exact sequence
of holomorphic vector bundles on S :

(7.8) 0TS - TM|s - Ng—0.

(See Example 7.1.2.5 for the definition of the quotient as a holomorphic bundle.) This is
known as the normal sequence. Taking duals, we obtain the conormal sequence

(7.9) 0->Ng—->T"M|g—>T"S -0

which is again an exact sequence of holomorphic vector bundles on S, by Example 7.1.2.2
above.

Notice that, given any holomorphic bundle & and a global section s € ['(&’), the vanishing
set Z(s) is an analytic subvariety of M. For, in any coordinate chart U, over which E is
trivial, we have

Z(s)nUy=Z((s*),...,(s")").
Since the local components are holomorphic (by definition), and {U,} cover M, this is indeed
analytic, according to the definition in §4.3. We say that a global section s € T'(&") vanishes
transversely if S = Z(s) is a complex submanifold defined by the local components of s,
per Definition 4.3.1.

The relationship between holomorphic bundles and subvarieties will be explored further
in §8.

7.3. Finiteness theorem. We now come to the following fundamental theorem.

Theorem 7.3.1. For a holomorphic vector bundle & over a compact complexr manifold, we
have

dim H(&) < oo
for all 1> 0.
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This result can be approached either via Cech or via Dolbeault cohomology. Although
the Dolbeault approach is more powerful, it requires PDE techniques that we would not
develop until next semester. The Cech approach requires only complex variables and a bit
of functional analysis, and has the virtue of generalizing to coherent analytic sheaves (see
Gunning and Rossi).

For starters, we can prove the ¢ = 0 case of the Theorem.

7.3.1. Proof of finiteness of H°(&). We make H(&) into a Hilbert space as follows. Choose
a finite open cover U = {U,} of M over which F is locally (holomorphically) trivialized, as
well as a refinement V' = {V,,} with the property that

V., eU,

for each . Denote by z, : U, = C" the local coordinate on U,, whose image we assume to be
a bounded domain; we may also assume that all the transition functions of £ are bounded.
Given two O-cocycles f ={fi},g={g¢.} € H(V,&) 2 H(&) (i.e. global sections of &),

define the Hermitian inner product:
(F.9) =% [ FiG)gGdvol.,.

This inner product is finite: because H(V,&) 2 HO(U, &), each f, is the restriction of a
holomorphic function on U,, and therefore has finite L? norm on V. By Corollary 1.4.4,
HO%(&) is a Hilbert space.

We claim that the unit ball in H%(&) is relatively compact, by the following argument.
Given a sequence f* of cocycles in H(&’) for which | f*| = 1 in the above norm, each f* is
represented by a cocycle {(f*)i} € C°(U, &) for which (f*)i, also has uniformly bounded L?
norm on the chart U, (because, modulo transition functions, f* is equal to f;; in any over-
lapping chart). By Montel’s Theorem 1.4.1, there exists a subsequence of f* that converges
uniformly on V,,, for each «, and this subsequence converges with respect to the above inner
product. This establishes the claim.

It is clear (by choosing an orthonormal basis) that a Hilbert space whose unit ball is
relatively compact is finite-dimensional. O

7.3.2. Digression on Fréchet spaces. The proof for higher cohomology groups is similar in
spirit, but requires some deeper functional analysis. It is necessary to make the space of Cech
cochains into a topological vector space, which is most naturally done within the following
framework. We follow Appendix B of Gunning and Rossi.

Let {p,} be a sequence of pseudonorms on a vector space X, i.e., norms that are allowed
to have p,(x) = 0 for some nonzero = € X. We define a basis of open neighborhoods of X
from the open balls with respect to the pseudonorms p,,. So, a subset U c X is open if and
only if for each x € U, there exist n,d > 0 such that the J-neighborhood of x with respect to
pn is contained in U. In particular, a subsequence converges in X if and only if it converges
with respect to every pseudonorm p,,.
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Definition 7.3.2. We say that the vector space X with the topology defined by the pseudonorms
{pn} is a Fréchet space if p,(x) =0Vn =2 =0 (i.e. X is Hausdorff), and X is complete
in the topology defined above.

Examples 7.3.3. 1. The space of C functions is often considered as a Fréchet space,
defined by the C* norms. Completeness follows from the Arzela-Ascoli theorem.

2. Given an open set U c M in a complex manifold, we make the space of holomorphic
functions €(U) into a Fréchet space based on the collection of pseudonorms defined by

[fl5 = sup|f ()]
reK

where K is any compact subset of U. Completeness follows from the Montel Theorem, as in
§7.3.1 above.

Lemma 7.3.4 (Open mapping theorem). Let X and Y be Fréchet spaces and ¢ : X =Y a
continuous, surjective map. Then ¢ is an open map.

Proof. See G & R Appendix B, Lemma 6. O
Theorem 7.3.5. Every locally compact topological vector space has finite dimension.
Proof. See Rudin, Functional Analysis, Theorem 1.22 on p. 17. O

Definition 7.3.6. A continuous map ¢ : X - Y of Fréchet spaces is said to be compact if
there exists a neighborhood V' of the origin in X such that the image ¥(V') in Y has compact
closure.

Theorem 7.3.7 (L. Schwartz). Let ¢, : X - Y be continuous linear transformations
between Fréchet spaces, with ¢ surjective and v compact. Then @ +1) has closed range, and
the cokernel

Y/ (p+¢)(X)

1s finite-dimensional.

Proof. For the closed range statement, see the proof in G & R, Appendix B, Theorem 12,
which follows from Lemma 7.3.4 and the corresponding statement for Banach spaces.

Since the range is closed, Y’ =Y/ (¢ + 1) (X) is again a Fréchet space. By Theorem 7.3.5,
it suffices to show that Y is locally compact, i.e., for any N, e >0 and any sequence {y,} €Y
with py(y,) < €, the sequence {[y,]} ¢ Y’ has a convergent subsequence. Let V' ¢ X be the
neighborhood of the origin in the statement of Definition 7.3.6 for the map . By Lemma
7.3.4, we may choose € sufficiently small and N sufficiently large that for each y,,, there exists
z, € V such that

So(xn) =Yn.

Then, by choice of V| {¢)(-x,)} has a convergent subsequence (again labelled x,). But in
Y’ we have

[yn] = [p(2n)] = = [¥(2,)] .

Therefore [y,] has a convergent subsequence, as claimed. O]



COMPLEX MANIFOLDS (MTH 935) 83

We can now return to Theorem 7.3.1. The proof uses Leray coverings, i.e., open covers
satisfying the condition of Corollary 6.3.4. These in fact exist generally for complex man-
ifolds, as shown in G & R, Ch. VI. For Riemann surfaces, any open covering by simply
connected open sets with simply connected overlaps is sufficient: by the Riemann mapping
theorem and the 0-Poincaré Lemma, these are acyclic.’

7.3.3. Proof of Theorem 7.3.1. Let U ={U,} and V = {V,,} each be finite Leray covers of M,
chosen such that

V,eU,

for each a.

According to Example 7.3.3.2, spaces of holomorphic sections are Fréchet, as are the spaces
of p-cochains C? (U, &) and C? (V, &), with the product topology. (This requires the covers
to be finite.) Moreover, since the Cech differential d is continuous, the space of cocycles

ZP(U,8) =kerd c C? (U, &)
is a closed subspace, and so too a Fréchet space. Denote the restriction map
V2P (U, &) » 27 (V. €).

By Montel’s Theorem, this is a compact map.
By the Leray Theorem, the restriction map

H? (U, &) - H" (V, &)
is an isomorphism. This implies that the sum
p=(ed): X=2"UE) e CP (V,8) > 2 (V,6)
is surjective. But we then have
0Oed=p-(V®0).
By Theorem 7.3.7, the cokernel
27 (V, &) [ (0@0) (X) = 27 (V, &) [5(C7 (V. 6))

is finite-dimensional. Since V is a Leray cover, this implies the claim.

9n fact, for the Leray Theorem on a Riemann surface, no assumption on the cohomology of the overlaps
is necessary—see Forster, Theorem 12.8. We also note that in the case of Riemann surfaces, the finiteness
theorem can be proved without introducing Fréchet spaces—see Forster, Theorem 14.9, or (simpler yet)
Gunning, Lectures on Riemann surfaces, Theorem 7 on p. 64.
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7.4. The O-operator and integrability. As mentioned above, it is also extremely fruit-
ful to study holomorphic bundles via Dolbeault cohomology, i.e., using real analysis. Let
o/P4(E) denote the sheaf of E-valued (p, q)-forms, meaning the sheaf of smooth sections of
the vector bundle A»4T*M ® E.

The basic observation is as follows: every holomorphic bundle, &, comes with a canonical
differential operator

(7.10) s : A/PU(E) - o/PL(E).

This is simply defined to agree with the ordinary d-operator in any holomorphic trivialization.
So, given a local holomorphic frame e for F, we write

Os : A" E) - " (F)
Ds(s'e?) = (55’) ey
where we are using the Einstein summation convention. One has to check that (7.11) is
well-defined: given an equivalent frame ef = g';e?, we get
0s(s7€) = 0s(s7g"je)

= (5sj) g'ied + s (5gij) e

= (0') g'sef

= (5sj ) ef
since ¢‘; is holomorphic. This shows that the definition did not depend on the choice of

frame. The maps (7.10) on (p, q)-forms are defined via the Leibniz rule:
(7.12) s (sat) = (Ogs) A+ s0a.

(7.11)

Here s is a smooth section of F and « € &/P4.

Now, given the expression (7.11), we clearly have 5{% = 0. Moreover, since the operator is
identical to (several copies of) 0 in local coordinates, the proof of the d-Poincaré Lemma
carries over without change. We conclude that complex

(7.13) 0 - PY(E) % o (B) % aP?(B) > > o/P"(B) - 0

is an acyclic resolution of the sheaf 2 ® &. By Theorem 6.3.1, we obtain the following
generalization of Theorem 6.4.5:

Theorem 7.4.1. HI((® &) = Hg’gq.

Corollary 7.4.2. For a holomorphic vector bundle & over an n-dimensional complexr man-
ifold, we have

H(&)=0, i>n.

Proof. This follows from the p = 0 case of the previous theorem, and the fact that the acyclic
resolution (7.13) terminates after n steps. O

Corollary 7.4.3. For a holomorphic vector bundle & over an n-dimensional compact com-
plex manifold, the FEuler characteristic x(&) is finite.
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Proof. We have seen in Theorem 7.3.1 that each cohomology group is finite-dimensional, and
Corollary 7.4.2 implies that only finitely many are nonzero. U

Remark 7.4.4. The analytic approach receives a major bonus from the following result,
which shows that holomorphic vector bundles live and die by the d-operator.

Theorem 7.4.5. Let E be a smooth vector bundle together with a differential operator Og
of the form (7.11), satisfying the Leibniz rule (7.12) and

0% = 0.
Then there exists a holomorphic structure & on E such that O = Os.

For a beautiful proof, see Donaldson and Kronheimer, The geometry of four-manifolds, pp.50-
53.

Remark 7.4.6. There is a deeper integrability question in the subject, which asks when a
smooth manifold M that admits an “almost-complex structure,” i.e. a bundle map I : TM —
TM with I? = -1, is a complex manifold, 7.e. possesses a holomorphic atlas. For instance,
although the 6-sphere possesses an almost-complex structure (coming from the octonionic
cross product on R7); we still do not know if it is a complex manifold.
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8. LINE BUNDLES, DIVISORS, AND LINEAR SYSTEMS

Recall that a (holomorphic) line bundle is simply a (holomorphic) vector bundle of rank
one. The equivalent formulations of this concept are very ample, as we now describe.

8.1. Main examples. We have already seen that any complex manifold M carries a canon-
ical line bundle, Ky = (2}, whose sections are holomorphic forms of top degree. In general,
the canonical bundle and the trivial bundle are the only line bundles that are guaranteed
to exist on a complex manifold. However, in the most important cases—compact Riemann
surfaces and projective varieties—the following constructions guarantee that nontrivial line
bundles will always be floating around.

Example 8.1.1. The tautological bundle &'(-1) on CP" is the subbundle of the trivial
bundle C"** = CP» x C**! given by

((6,t) [te ) cC™.

The fiber over a point ¢ € CP" is exactly the corresponding line. A holomorphic frame for
O (-1) over the standard chart U, = {[20,. -, 2a,-- -, 2n]} may be given by

e ([20y -y Zar--y2n]) = (20, -, Loy 2n).
The transition function (per 7.3) is then given on U, n Uz by
Zs
gaﬁ = ZB = Z—

in homogeneous coordinates.
The dual of the tautological bundle is denoted by

(1) = 6(-1)".

This is sometimes called the hyperplane bundle (see Example 8.3.1 below). Given k € Z,
we will denote the tensor power by

O (k) = 6(1)%"

where 0(0) = €, and for k < 0, we mean O (k) = 0 (-1)®*. Given any holomorphic vector
bundle & on CP", it is standard to write

E(k)=8® O(k).
Also, given any projective variety X c CP", we shall denote the restriction to X by
Ox(k) = O(k)|x = xO(k)

where 1y : X <= CP7 is the inclusion. By the pullback construction (7.7), this is a holomorphic
line bundle on X. We shall see later that Ox (k) is a nontrivial bundle for all k£ # 0, if
dim X > 0.

Example 8.1.2. Let ¥ be a Riemann surface. Given a point p € ¥, we define the point
bundle &(p) as follows. Let U be a coordinate chart in which p = zp, and let V =X\ {p}.
Then O(p) is defined to be trivial on the two open sets U and V, with transition function

guv = (2 - Z’o)_1
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where z is the coordinate on U. This is holomorphic and nonvanishing on UnV = U \ {p},
and satisfies the cocycle condition (7.5) trivially. Hence, &(p) is a holomorphic line bundle.
We claim that if ¥ is compact, then &'(p) is a nontrivial bundle. For, we may construct

a global holomorphic section:

SyU=2—2
(8.1)
Sy = 1.

This clearly satisfies (7.4). However, s has an isolated zero at p, so is not identically constant,
as would necessarily be the case if &(p) were the trivial bundle (whose sections are global
holomorphic functions on ).

In fact, given any meromorphic function f(x) on ¥ that is holomorphic on V' and has a
pole of order at most one at p, we may define a holomorphic section of &(p) by

su=(z-20)f
Sy = f

By Lemma 1.5.6, sy and sy are holomorphic on their respective domains.
Conversely, given any holomorphic section s of &'(p), we may define a meromorphic func-
tion by

fly = (=) sy
fly = sv.

We conclude that this sheaf has the following equivalent description:

(8.2)

sheaf of meromorphic functions on X
(p) = c M.

with a pole of order at most one at p

We also define
(8.3) O(-p)=0(p)".

Either by a similar argument or directly from (8.3), we can obtain that ¢'(—p) is isomorphic
to the sheaf of holomorphic functions vanishing at p € 3.

Example 8.1.3. Now fix a divisor
(8.4) D=3 nepa-y. msqs
a B

where n,,mp € N, and {p,},{gs} are discrete sets of points on the Riemann surface 3. We
may define the line bundle associated to D:

(8.5) (D) = @ﬁ(pa)% ®(§)ﬁ(—qﬁ)®m"-

As in Example 8.1.2, we then have:
sheaf of meromorphic functions with
(8.6) O(D) = | poles of order at most n, at p, and | c .Z.

zeroes of order at least mg at gg



88 ALEX WALDRON

It is very convenient that this subsheaf of .# is isomorphic to the sheaf of sections of a line
bundle.

This construction will be carried out in §8.3 below for divisors in complex manifolds of
general dimension, with almost no essential changes.

Remark 8.1.4. Note that in the previous examples, &'(number) and &'(divisor) have dif-
ferent (although closely related) meanings.

8.2. The Picard group and the first Chern class. It is a special feature of line bundles,
as opposed to general holomorphic bundles, that the tensor product of two line bundles is
again a line bundle. The tensor product is of course associative and commutative, up to
isomorphism. Moreover, for any line bundle L, there is a natural isomorphism

(8.7) L*®Lz0

coming from the fact that L* ® L © Hom (L, L), which has an obvious nonvanishing global
section. The set of isomorphism classes of holomorphic line bundles on M is thus an abelian
group, with multiplication given by the tensor product and inversion given by taking duals.
This is called the Picard group Pic(M).

The Picard group has the following very handy cohomological interpretation. Given an
isomorphism class [L] represented by a line bundle L, choose a cover U = {U,} of M over
which L is trivialized. The transition functions

{gaﬂ}

determine a Cech 1-cochain with values in €*, and the compatibility condition (7.5) states
precisely that this cochain is a multiplicative cocycle, lying in Z1(U, 0*).

Theorem 8.2.1. The above correspondence determines a natural isomorphism
Pic(M) = H'(0})).

Proof. We claim that the cocycle g = {gns} gives a well-defined element in H*(0*). Let
L’ € [L], with an isomorphism ¢ : L — L’. Then there exists a refinement V = {V,} of
U ={U,} over which both L and L' are trivialized, with frames e® and f¢, respectively, and
@ is given by

p(e”) = qa(2) f°
for nonvanishing holomorphic functions ¢,(z), for each a. Define a 0-cochain ¢ = {q,}. Let
hap be the transition functions of L', defined by

f*=hasf”.
Then we have
o=t e (e®) = 2 0 (gape?) = 02  gapp (€7) = 43" gapgs f®  (no summation)
which gives
hap = 45" 9apds-
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Therefore the cocycles g and h differ by §(q), which implies that the class in H'(&*)
determined above is well defined.

Conversely, given a class in H! (0*) represented by a cocycle {gas}, these satisfy (7.5)
by definition, and can be used to construct a holomorphic line bundle. Changing by a
coboundary only changes the resulting bundle by an isomorphism, and this construction is
clearly inverse to the one above. Hence we have the claimed isomorphism. 0

Recall the exponential sequence of Example 5.5.2 above. The long exact cohomology
sequence reads:

exp

(8.8) o HY(Z) > HY(On) <53 HY(07%,) = Pic(M) - HX(Z) - -

Notice that H'(0)) is a complex vector space, whereas H?(Z) = H?(M,Z) is a Z-module.
In this sense, Pic(M) has both a “continuous” and a “discrete” part. The latter is encoded
by:

Definition 8.2.2. The first Chern class ¢;(L) is defined to be the image of [ L] € Pic(M)
in H2(M,Z), via (8.8).
Proposition 8.2.3. We have
a(Le L") =c(L)+ci (L)
(8.9) ci(L) = - (L)
a(f7L) = fre(L)
for a map f: N - M.

Proof. The first two items follow because ¢;(+) is a group homomorphism, by Theorem 8.2.1
and the definition. The third item follows from the fact that the transition functions of
f*L (and the corresponding cocycle in H!(N)) are given by the pullbacks of the transition
functions of L. 0

Remark 8.2.4. Notice that none of the previous discussion required L to be holomorphic:
indeed, smooth line bundles are classified by H'(.2/*), where o/* is the space of nonvanishing,
complex-valued smooth functions. We have the exponential sequence

(8.10) 0>Z—>o >d*—0

which gives the first Chern class of a smooth bundle as above. Since the holomorphic
exponential sequence is a subsequence of (8.10), this agrees with the above definition for
a holomorphic bundle. However, by Proposition 6.4.1, H'(</) = 0, so the sequence (8.8)
becomes an injective map:

0~ H!(e/") > HX(Z) .

We conclude that a smooth line bundle is determined up to isomorphism by its first Chern
class. In particular, any holomorphic line bundle with vanishing first Chern class is trivial
as a smooth bundle, even while it might not be nontrivial as a holomorphic bundle.
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8.3. Div, Pic, and linear equivalence. Recall from §5.4 and Example 5.5.8 that the sheaf
of divisors Pivy on a complex manifold, M, assigns to each open subset U the abelian group
of divisors on U, per Definition 5.4.1. We shall denote its group of global sections by

['(Zivyr) = Div(M)

which consists of the set of locally finite linear combinations of global irreducible hypersur-
faces in M.

According to Example 5.5.8, the sheaf Ziv is precisely the quotient sheaf .Z*/0* (as
argued above, because any divisor is locally defined by a meromorphic function, uniquely
up to multiplication by nonvanishing holomorphic functions). The corresponding long exact
sequence in cohomology reads:

div

(8.11) 0->T(0*)>T (") — Div(M) e S HY(0*) 2 Pic(M) - HY(AM*) - -
In particular, we have a natural map
Div(M) - Pic(M)
D~ [0(D)].
The map defined by this cohomological procedure directly generalizes the construction given
by Example 8.1.3. Explicitly, let {U,} be an open cover of M such that D has a local defining
function f, on each U,, i.e., f, generates #p, c O, for each z € U,. Define the transition

functions of &'(D) by

ga,B = ;ﬁ

By the Nullstellensatz, these extend to nonvanishing holomorphic functions on U, nUpg. This
construction makes (D) well defined up to isomorphism.

The bundle &(-D) = 0(D)*, for D an irreducible effective divisor, is easier to describe:
it is isomorphic to the ideal sheaf .#p c & of holomorphic functions vanishing along D.

Example 8.3.1. Let H @ CP"! be any hyperplane in CP". Then
O(H)z0(1).

For, assume that H is defined by the the linear equation

(8.12) WZ)=a"Zy++a"Z, =0

and choose f, = K(Z) for its defining function on U,. Then the transition functions are clearly
identical to those of 0(1), per Example 8.1.1 above. More generally, we have

(8.13) O(kH) = O(k).
Definition 8.3.2. Given a global meromorphic function f on M, it is standard to write
(f) = div(f).

We say that two divisors D and D’ are linearly equivalent if there exists a global mero-
morphic function f € I' (.#) such that

(8.14) D' =D+ (f).
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In this case, according to the above cohomological construction, the bundles &(D) and
O(D'") should be isomorphic. Indeed, if {f,} is a system of defining functions for D, then
according to (8.14), {ff.} will be a system of defining functions for D’, which gives the
bundles the same transition functions.

Definition 8.3.3. A meromorphic section of a line bundle L is a section of the sheaf
L ®¢,, A . Explicitly, such a section is given by meromorphic functions {(s*)*} in each
coordinate chart, obeying the compatibility conditions (7.4). We shall sometimes write
div(s) for the divisor of zeroes and poles of a meromorphic section of a line bundle.

Caution. In the case L 2 (D), a meromorphic section s of L corresponds via (8.6) to
a meromorphic function on M. In this case, div(s) and (s) have different meanings; in
particular

(s) =div(s) + D.
We can summarize the essential points of this construction as follows.

Theorem 8.3.4. (a) For each divisor D € Div(M), there exists a line bundle O(D), unique
up to isomorphism, such that (D) carries a global meromorphic section s with div(s) = D.
If D ~ D', then O(D) = O(D'); in other words, the map D — O (D) descends to an injective
homomorphism

(8.15) Div(M)/~ < Pic(M).

(b) Conwversely, if a line bundle L has a nontrivial'®

L=0(D)

global meromorphic section s, then

where D = div(s).
If the divisors concerned are effective then the sections are holomorphic, and vice-versa.

Corollary 8.3.5. A diwvisor D is principal if and only if 0(D) = 0.

Remark 8.3.6. We shall see in §10 that for compact Riemann surfaces, the map (8.15) is
an isomorphism. The same is true for projective varieties, although we would not develop
the tools to prove this until next semester.

8.4. Linear systems and maps to projective space. There is yet another viewpoint on
line bundles and divisors that is important for applications.

Definition/Lemma 8.4.1. Given a holomorphic line bundle L — M and a nonzero subspace
V cT'(M, L), the linear system associated to V' is the family of effective divisors

Divy = {div(s) | s € V}.
The base locus of V' is defined to be
Bs(V) = npeiv, D ={x e M |s(z) =0V seV}.

OBy a nontrivial section, we mean one that does not vanish identically on any connected component of
M.
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A linear system is said to be complete if V =T'(M,L). Given a divisor D on M, write |D|
for the complete linear system associated to HO(O(D)); equivalently,

DI ={D+(f)20] f e (M)}
15 the set of all effective divisors linearly equivalent to D.

Proof. The equivalence follows by interpreting & (D) c .# according to (8.6), which is of
course not limited to Riemann surfaces. O

Notice that a subspace V' of dimension d + 1 on M defines a holomorphic map
M~ Bs(V) - CP.
For, we can choose a basis sq, ..., sS4, and send

(8.16) x> [so(x),...,sq4(x)].

Since the transition functions are scalars, this gives a well-defined map away from the base
locus. One can avoid choosing a basis for V' by instead associating to x € M ~ Bs(z) the
linear functional

(8.17) s—s(r)el,=C.

This gives an element in the dual space V* of V' that is well-defined up to the choice of
isomorphism in (8.17). Hence, we actually have a canonical map

oy : M ~NBs(V) - P(V*).

If once does choose a basis for V, hence an isomorphism of V' with V*, then this agrees with
(8.16).

Lastly, one can observe that the pullback of the hyperplane bundle on CP" is the line
bundle L:

o 0(1) 2 L.

So, in fact, the divisors in the linear system are just “hyperplane sections” of the image
v (M).

Definition 8.4.2. We say that a holomorphic line bundle L is ample if, for some k > 0, the
complete linear system associated to L* is an embedding. The bundle L is said to be very
ample if L itself gives an embedding.

By definition, a compact complex manifold is projective if and only if it admits an ample
line bundle. This point of view leads to the Kodaira embedding theorem, which we would
prove next semester.
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8.5. The degree of a line bundle on a Riemann surface. Before moving on, we should
actually calculate the first Chern class of the bundle (D) constructed in Examples 8.1.2-
8.1.3.

Let 3 be a Riemann surface, and fix p € 3. Let (U,z) be a coordinate neighborhood
identified with B;(0) c C, with p corresponding to the origin in the z coordinate. Let

V=%\[0,1]
W=%~[-1,0].
Then {U,V,W} is an open cover of ¥. Notice that
UnVnnW=U~NR=U,uU_

where U, corresponds to the part of By within the upper (resp. lower) half-plane.
To compute ¢; (€(p)) using this cover, we must calculate the connecting homomorphism
in the exponential sequence, applied to the cocycle

g={gvv=2"9vw=2"gvw =1} e H ({U,V,W},0%).
Choose o € C1({U,V,W}, 0) such that e?miovv = gy, ete., as follows:

—logr -0y

opyy = ——————, —w<0y<m
21
-1 - Owi
21
O'VW:O.

We then have

Wuvw = (50)UVW =0yw — Oyw +0yv

1
. (logr + Oyi —logr — Oyi)

B Ow — Ov
- 2T

0 ze U,
1 zeU_
and wywyv = —wyvw, etc. Then we H? ({U,V,W},Z) represents c¢1(0(p)).
Now, assuming that > is compact, we have

H?(Z) =~ H*(S,Z) = 7.

We need to evaluate the class w against the fundamental class [X] € Hy(X,Z), which requires
unpacking the DeRham isomorphism of Corollary 6.4.3. To this end, we choose a special
partition of unity subordinate to {U,V,W}. Let ¢(r) be a smooth, compactly-supported
function on the unit ball U, with
1 0<r<1/4
p(r) = {

0 3/4<r.
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Let ¢(x) be a smooth function on ¥ with 0 < ¢(z) < 1 as follows: assume that for 1/4 <r <1,
P(r,0) =1(0) is independent of r, and satisfies

1 -w/d<f<n/4

U(0) =

0 37m/4<6<5m/4

Let
pu=p, pv=1-9)¥, pw=(1-p)(1-¢).

Then py, pv, and py have compact support in U, V, and W, respectively, and clearly satisfy

pu+pv+pw=1

i.e., they form a partition of unity subordinate to {U,V, W}.
Now, per the proof of Theorem 6.3.1, we need to trace through the isomorphisms coming
from the exact sequences:

(8.18) 0-R->& > 2! >0
and
(8.19) 0> 2} > > 27 0.

By the proof of Theorem 6.4.2, we know that the 1-cocycle n e H'(Z}) defined by

Mgy =d (Z pawaﬁ’v) = Z dpaapy

satisfies d(n) = w, in the long exact sequence associated to (8.18). Then, the 0-cocycle
TeHO (c@pdz) defined by

(8.20) 7y =d (Z Pﬁnﬁv) =2 dps A dpawas,
B a,B8

satisfies 6(7) = 7, in the long exact sequence associated to (8.19). Therefore 7 € H7 (%)
represents the class of w under the DeRham isomorphism.

From (8.20), we see that the support of 7 is contained in the support of w, so lies within
U_ c U, where 7 = 7;. We have

T =1y = dpw Adpywywy + dpy A dpwwwvy
= —2dpy A dpwwuvw .
We calculate
dpy = =dp + (1 - p)dy
dpw = —dp(1 =) = (1 - p)dip
dpv A dpw = (1= )do ndip = (1) (1 -¥)dy Ady

=(1-p)(W+1-9)dpndi
= (L-p)dendy

= —%d(l — )’ Adi.
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This yields
r=d(1-¢)* A dpwyvw
=d(1-9)* ndip], .

Since the support of d (1 - ¢)? is contained in 1/4 < r < 3/4, we have 1) = 1(0) by assumption.
Integrating over Y, we obtain

fz T= fU d(1—=¢(r))? A dip(0)

= [P g are [ o) ds
=1.

If 3 is compact then, because it is orientable, it has a fundamental homology class [X] gen-
erating Hy(X,Z) 2 Z. Let (,) denote the natural pairing between Hy(X,R) and H?(%,R),
which on DeRham classes is just given by integration. Then the result of the above calcula-
tion is:

(c1(0(p)),[E]) = 1.

This will generalize to line bundles associated to a divisors, per Example 8.1.3, as soon as
we make the following definition.

Definition 8.5.1. The degree of a divisor D on a Riemann surface is defined by
deg(D) = ;na - %:mg

where D is of the form (8.4).

Theorem 8.5.2. For a divisor D on a compact Riemann surface Y, we have
(c1(0(D)),[E]) = deg D.

Proof. This follows immediately from the definition (8.5), Proposition 8.2.3, and the above
calculation of ¢1(0(p)). O

Corollary 8.5.3. Let L be a holomorphic bundle on a compact Riemann surface, 3. For
any nontrivial meromorphic section s of L, we have

degdiv(s) = (c1(L),[2]).
In other words, the number of zeroes minus the number of poles of any meromorphic section
of L, counted with multiplicity, is given by evaluating the first Chern class.

Proof. According to Theorem 8.3.4b, a line bundle with a nontrivial meromorphic section, s,
is isomorphic to &(div(s)). The claim then follows from the previous theorem. O

Corollary 8.5.4. On a compact Riemann surface, 3, we have a commutative diagram
Div(X)/ ~ —— Pic(X)

l(m(-),[ﬁ])

7

deg
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where the maps to 7 are surjective. In particular, for a meromorphic function f e .# (X),

we have deg((f)) = 0.
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9. BUNDLES AND DIVISORS ON CP»

This section discusses the basics of line bundles and divisors on projective space (and some
projective varieties).

9.1. The topology of projective space. Recall that CP! ~ S? and therefore has (co)homology
Z in degrees 0 and 2. More generally, according to (4.6), CP" can be decomposed as:

CP" = C"uCP™!
=CruC™tucCp?

=C"uC™'u--uCu{pt}.

The disjoint unions can be extended continuously to give a CW decomposition of CP". Since
each cell has even dimension, we get

7, 1 even

(9.1) H,(CP",7) = {0 o

Notice that according to this description, a k-plane (CP*) generates Hoi(CP™).

As there is no torsion, the cohomology also takes the form (9.1). It is instructive to write
down generators for the DeRham cohomology groups. To this end, define the Fubini-Study
form

(9.2) W= i8510g|2|2

where |Z|? = Z2 +--- + Z2. This requires some explanation. A priori, w is only a well-defined
differential form on C"*! \ {0}, but we claim that it descends to a differential form on CP"
(in the following way).

Let U c CP" be any open set such that there exists a holomorphic section of the projection
C™1~ {0} - CP", which we denote again by Z(x), for = € U. (For instance, U = U, can
be taken to be a standard coordinate chart). Then w descends to U c CP" via the formula
(9.2). One must then check that the resulting form on CP" does not depend on the choice
of section: let f-Z an another such section, where f = f(x) is a nonvanishing holomorphic
function on U. By shrinking U, we may choose a branch of log that is well-defined on f(U).
Then we have

L8510g|fZ|2 = LaélogfﬂZF
I 2T
= éaé(logf +log f +log|Z|?)
= 2L (09d1og f — 00log f + 90 1og | Z|?)
T
= 90log|Z]? = w.
2

This shows that w indeed descends to a well-defined, closed form of type (1,1) on CP".
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To show that [w] is the integral generator of the second cohomology, we just need to
integrate against CP!; in other words, we may assume without loss that n = 1. In a standard
coordinate chart C c CP!, we have

w = %Gélog (1+]2)

_ (92
27 1+ |22

1 dzndz 2z
- 1-

21 1+ |z 1+|2?
_i dz ndz

2 (142

1 rdr

S (1+r2)?

This clearly integrates to 1 over C = R2.
On a standard coordinate chart of CP", a similar calculation gives the coordinate expres-
sion

i [dziAdzt ZId20 A 2tdzt
w(z)=— -
2 | 1+ ]z (1+|2]?)?

where 4, 7, and ¢ are summed over. Notice that at the point 0 € C*, and for the coordinate
plane CF = {(2%,...,2%,0,...,0)}, we have

-\ k

wk(0)].., = K! (L) dz' Adz' A A dZF A dZE
> 27

which is a positive multiple of the volume form on CF. Since w is invariant under the bi-
holomorphism group SU(n + 1) of CP", which acts transitively, we conclude that the same
is true at any point. This implies that
[ Wk > 0.
CP*

Hence w* represents a nonzero cohomology class; in fact, one can check directly that the
value of this integral is 1. The ring structure on the cohomology of CP" is therefore given by

H*(CP") = Z[w] [ [w]™".

The Fubini-Study form (metric) plays a starring role in complex geometry, as we would see
next semester.

9.2. Cohomology of the line bundles on CP". One consequence of the above discussion
is the following:

Lemma 9.2.1. ¢;(0(k)) = k[w].
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Proof. First assume n = 1. Then Ocpi (1) = Ocpr (pt), which by Theorem 8.5.2, has first Chern
class 1 € H2(CP!,Z), corresponding to the DeRham class [w] . Therefore ¢; (Ocp1 (k)) = k [w] .
For n > 1, let ¢ : CIP! - CP™ be the inclusion of a line. Then by Proposition 8.2.3, we have

v er (Ocpn (k) = 1 (" Ocpn (k) = c1 (Ocpr () = k [wep ]
But ¢* : Z - Z is an isomorphism, with ¢*wcpr = wept, so we conclude that
c1(Ocpn (k)) = k[w]
as claimed. 0

Remark 9.2.2. We would see a direct proof of this fact using Chern-Weil theory in the
next semester.

Theorem 9.2.3. Pic(CP) 2Z = {[O(k)]|keZ}.

Proof. Recall from Proposition 6.5.2 that H!'(Ocpr) = 0. From the long exact sequence (8.8)
defining the first Chern class, we see that ¢; : Pic(CP") - H?(CP»,Z) is injective. But,
by the previous subsection, we have H?(CP",Z) = Z. Lemma 9.2.1 then implies that &' (1)
generates the group, as claimed. 0

We now calculate the global sections of &' (k). Given a nonzero linear functional ¢(Z) :
Cm1 — C of the form (8.12), we obtain a nonzero linear function on &(-1) ¢ C"*' by
restriction. Hence ¢(Z) defines a global section of &'(1). More generally, for each k >0, any

homogeneous polynomial P(Z) of degree k defines a linear functional on (§”+1)®k, and on
O(-k)=0(-1)® c (@"”)@C by restriction. This gives an injective map from homogeneous
polynomials of degree k to global sections of (k) :

(9.3) Cl[2°,...,2"], -~ H°(O(k)).
Theorem 9.2.4. The above map is an isomorphism. We therefore have
k
dim H (G gon (k) = (”; )

Proof. 1t remains to show that (9.3) is surjective.

Let 7 : Cn*1\{0} - CP" be the projection. Notice that the pullback 7*&(-1) c (C"* \ 0)x
Cr*l is trivial, with a nonvanishing section given by e = (z,z). The pullback 7* & (k) also
has a nonvanishing section e®*.

Given a section s € H°(0'(k)), the pullback 7*s is a global section of 7* @' (k) = (7* O (-k))" .
We may therefore evaluate

f=n"s(e®")
to obtain a nontrivial holomorphic function f(Z) on C"*!\ (. The construction implies that
f is k-homogeneous, i.e.
fAZ) =N f(Z).
But, by Hartogs’s Theorem, f(Z) extends to a holomorphic function on C"*'. Any k-
homogeneous smooth function on C™*! must be a k-homogeneous polynomial (since its k+1-st
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partials are —1-homogeneous, and must therefore vanish). We conclude that f(Z) is a ho-
mogeneous polynomial, which implies that s is precisely the image of f(Z) under the map
(9.3). O

Corollary 9.2.5. Any analytic hypersurface X c CP" is algebraic, i.e., is the vanishing
locus of a homogeneous polynomial P(Z). If P(Z) has no repeated factors, then it is unique
up to multiplication by a constant, and vanishes transversely at a generic point of X.

Proof. By Theorem 8.3.4, any hypersurface X defines a line bundle &(X), which carries a
section s that vanishes to order one along X. But by Theorem 9.2.4, we have 0(X) ~ 0(k)
for some k > 0, and s = P(Z) is given by a homogeneous polynomial of degree k. The ratio
of any two such polynomials defining X is holomorphic on CP", hence constant.

Lastly, since P(Z) has no repeated factors, p(z) = P(1,2',...,2") will also not have re-
peated factors as long as degp = deg P, which can be arranged by changing coordinates.
Then p and % (say) are relatively prime as polynomials, and their discriminant (see Defi-
nition 2.3.4) D(z2,...,2") does not vanish identically. So p vanishes transversely (and X is
smooth) at all points not lying over the vanishing locus of the discriminant. 0

Remark 9.2.6. This is the first instance of Serre’s GAGA! principle: see Griffiths and
Harris, pp. 164-171.

Next, we calculate the higher cohomology groups of these line bundles. Let H = CP* ! be
a hyperplane in CP". Recall that we have 0/(-1) 2 0(-H) = %y, the ideal sheaf of H. The
ideal sheaf sequence of Example 5.5.3 therefore takes the form

0-0(-1)> 0 - Oy —0.

Here we are abusing notation and writing Oy = 1,0y for the pushforward of the structure
sheaf of 0. (By an exercise on your homework, this does not change the cohomology.)
Hence, the above sequence is not an exact sequence of vector bundles over CIP", but is still
an exact sequence of ¢-modules, to which we can apply cohomology. Tensoring by &(k),
we obtain a more general exact sequence (homework exercise):

(94) 0-— ﬁ((j]pn(k - 1) - ﬁ(cpn(k) - ﬁ@[pm—l(k) - 0.
Theorem 9.2.7. We have

("R g=0, k20

dim H? (Ocpn (k) = 1 ( At ) g=n, k<-n-1

“k-1-n
0 otherwise.

Proof. The case ¢ = 0 has already been established in Theorem 9.2.4, and the case k£ =0 in
Proposition 6.5.2. We can prove the remaining items of the formula by induction, using the
formula (9.4).

For the base case n = 0, we have CP? = pt, and H°(0,(k)) = C for all k, which agrees
with the formula.

W Géométrie Algébrique et Géométrie Analytique.
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We first prove the result for k£ > 1 by a double induction. Assume that the result is
established for up to n—1 and k — 1. The long exact sequence associated to (9.4) reads:
0->H"(0(k-1)) > H*(0(k)) > H (Ocpn (k)
(9.5) 0> H'(O(k)) >0
which gives H1(0'(k)) =0 for ¢ > 1.
Next, let n =1 and k < 0. The long exact sequence is
0-0-H(Ocpri(k+1))—>C
—>H'"(Ocpi (k) > H (Ocpr (k +1)) > 0.
This gives H! (Ocp1(-1)) =0, and dim H'(Ocpr(k)) = dim HY(Ocpr (k + 1)) + 1, for k < -2,

which gives

(9.6)

dlmHl(ﬁ@pl(l{Z)) =-k-1

agreeing with the formula.
Finally, let n > 2 and k£ < -1, and assume that the result is known up to n — 1 and down
to k + 1. The long exact sequence reads:

0= HO(6(k)) — HY (0(k + 1)) — H (Gcpr (k + 1))
—~H"(O(k)) = 0-0
(9.7) s
SH" Y (O(k)) -0 H" (Ocpni(k+1))
-H"(O(k)) > H"(O(k+1)) -0
This gives H1(0(k)) =0 for all 1<¢g<n-1, and

dim H* (0 (k)) = (_ _k_%l) +( o )

k-n k-n-2
~ ( -k-1 )
\-k-n-1
by “inclusion-exclusion,” establishing the formula by induction. 0

Remark 9.2.8. The dimension formula of Theorem 9.2.7 can also be established using the
Serre duality theorem, which we will prove below in the special case of Riemann surfaces,
and the Kodaira vanishing theorem, which we would prove next semester.

9.3. The Euler sequence and the adjunction formula. Now that we know all the line
bundles on CP”, it is worth determining which one is the canonical bundle. For this, we
need a global description of the tangent bundle T'CP™.

Recall that we have a holomorphic submersion

7:C" < {0} - CP".
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The tangent bundle TC™* has the global frame {32 }7",. Given a point Z = (2°,...,2") ¢
Cr+l the images 7, Z% span Tj;CP". Moreover, the kernel is given by the 1-dimensional
subspace

YA
where the summation convention is used. For, this vector is clearly annihilated by the
projection map, which has rank n, so its kernel must have dimension one.
Observe that for any linear functional £(Z) on a fiber W = C c C™*! over [Z] € CP", the
vector field

(9.8) kerm, 7 = (Zi 0 )

X(Z)=0(2) 88Zi

on W descends to a well-defined tangent vector on CP". This is because for A # 0 € C,

(Z,X(Z)) and (A\Z,X(N\Z)) = AN(Z,X(Z)) correspond to the same tangent vector to CP".
At the bundle level, this means that for any holomorphic section s of &(1) over CP", the

expression
0
@57
gives a well-defined, holomorphic (as one could check) section of TCP™.
This discussion can be summed up by the existence of an exact sequence of holomorphic
vector bundles

(9.9) 00— 0(1)°Y - TCP" - 0

called the Euler sequence. The first map sends 1 — Z° 82“ and the second sends an
(n +1)-tuple of sections (s°(z),...,s"(z)) to s'(z)5%. Dualizing (9.9), we obtain

(9.10) 0 - Qbpn = O(-1)°0*D 5 & - 0.

Lemma 9.3.1. Given an exact sequence of holomorphic vector bundles
0>E->F5G-0

we have a canonical 1somorphism:

(9.11) det Fzdet E®detG.

Proof. (Cf. HW 2 # 8.) Write s = rkE, r = rkF, and let U be a sufficiently small open set
containing a given point. Over U, one defines a map

det F @ det G — det F’
QLA ANUg®VL A AYpeg P QL A s AQg AYL A o A Vg
where 4; € I'(U, F') are chosen such that f(%;) = ;. This map is manifestly holomorphic on
U, and well-defined: changing 7; to 7; + a, for a e I'(U, E), we have
QA ANAFE A A (F Q) A A
SQIA T AUGAYL A ATYpeg F QLA AN AV A AQN AN TYp_g
S A AU AT A ATy

since ay A+ A, A = 0. Since the map is well-defined, it gives the global isomorphism (9.11).
Alternatively, one can examine the transition functions directly from (7.6). O
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Proposition 9.3.2. Kcpr 2 O(-n-1).
Proof. This follows by applying the Lemma to the dual Euler sequence (9.10). 0

Next, we return for a moment to the general situation: let & be a holomorphic vector
bundle over a complex manifold M.

Lemma 9.3.3. Given a submanifold S ¢ M along which a global section s € I'(&) vanishes
transversely, we have

E | g = Ng.
Proof. Choose coordinates and a local frame for E. Then
0s”
d =\
’ (82] )

gives a well-defined map T'M|y - E|y, as one checks from the fact that s(z) =0 for z € S.
By assumption, this matrix has full rank, so gives a surjective, holomorphic bundle map
whose kernel is precisely T'S. We therefore have a holomorphic bundle isomorphism

E|lg=TM|s/TS = Ng
as claimed. O

Theorem 9.3.4 (Adjunction formula). The canonical bundle of a complex submanifold S c
M s given by

(9.12) Kg = K|y ®det Ng.
In particular, if S is the zero-set of a transverse section of a vector bundle E, we have
(9.13) Kg= Ky ®detEly.
Proof. Applying Lemma 9.3.1a to the conormal sequence (7.9) yields
Kulg 2 Ks ® det Ng.

Tensoring with det Ng and using the fact that det Ng ® det N§ & & gives the adjunction
formula (9.12). Applying Lemma 9.3.3 gives (9.13). O

Corollary 9.3.5. Let S ¢ CP™ be a smooth projective hypersurface (i.e., the transverse
vanishing locus of a homogeneous polynomial) of degree d. Then

Kg=z ﬁg(d—n— 1)
Proof. Since S ¢ M is a hypersurface, Ng is a line bundle, and we have det Ng = Ng 2 Os(d).
Then (9.13) reads
Kqg= Kepr ® ﬁ(d)|s
= ﬁg(—n -1+ d)

as claimed. 0
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9.4. Plane curves. A hypersurface X c CP? is referred to as a plane curve. By Theorem
9.2.4, any such Y is the vanishing locus of a homogeneous polynomial P of degree d without
repeated factors, unique up to a constant multiple. We will always assume that defining
polynomials have no repeated factors, and will sometimes refer equally to d as the degree
of X (not to be confused with the degree of a divisor on a Riemann surface, per Definition
8.5.1).

It is convenient at this point to make the following definition.

Definition 9.4.1. Let X and Y be plane curves defined by polynomials P and ) of degree
d and e, respectively. Given p € C'n X, define the intersection multiplicity

Lp (Xa Y) = dlm(c ﬁ(C]P’Q,p/ (Pv Q)p :

This notation requires some explanation. Since P is a section of &(d) and @ is a section of
O'(e), after choosing frames near the point p, they give elements of the local ring &, well-
defined up to multiplication by nonvanishing functions. So the ideal (P, @), is well-defined
in &,. (Note that the intersection multiplicity may be infinity.)

Lemma 9.4.2. For X and Y as above, if p € X is a smooth point (where P vanishes
transversely), then

(9.14) ,p (X,Y) =0rd, Q|-
Here, Q)|y denotes the restriction to X of Q, which is a section of Ox/(e).

Proof. We claim that R = Ocp2,/(P), = 04, the ring of germs of holomorphic functions at
the origin in C!. For, by the implicit function theorem, there exists a local chart {(z,w)}
near p in which P(z,w) = w. Hence R is isomorphic to the ring of convergent power series
in the z variable, as claimed. Then the restriction of @ is given by Q(z) = z2™mg(z), with
g(0) # 0, where m computes both sides of (9.14). O

Lemma 9.4.3. Given a smooth plane curve X of degree d, we have

(9.15) (c1 (Ox(k)),[X]) = dk.
In particular, for any divisor D € |Ox(k)|, we have
(9.16) deg(D) = dk.

Proof. Notice that by Theorem 8.5.2 and (8.13), (9.15) and (9.16) are equivalent; it suffices
to prove (9.16). In fact, by additivity of the Chern class, we may assume k = 1 without loss
of generality.

Let P be the defining polynomial of X. Choose a hyperplane H = CP! not contained in
X. By the Fundamental Theorem of Algebra, the restriction of P to H vanishes in d = deg P
points, counted with multiplicity. By Lemma 9.4.2, this gives:

Y o (H,X)=d

peHNX

But, by definition, we have
(9.17) tp(H, X)) =1,(X,H).
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Let @ be the linear functional (section of &'(1)) defining H, and let D be the divisor of
zeroes of the restriction of @ to X. Again by Lemma 9.4.2, and (9.17), we have
deg(D) = Z (X, H) = Z tw(H,X)=d
peXnH peHNX

which is the desired statement, for k£ = 1. The statement for general k follows by additivity
of the degree (Chern class) under tensor products. U

We have the following direct application of Lemma 9.4.3.

Theorem 9.4.4 (Bézout’s Theorem). Let X # Y be plane curves in CP? of degree d and
e, respectively, defined by homogeneous polynomials f and g, and assume that X is smooth.
Then

S (X, Y) = de.

peXnY

Proof. Let () be a defining equation for Y. Since X is connected (exercise), and X # Y,
the restriction of () to X does not vanish identically, and its divisor of zeros D on X is
well-defined. But by Lemmas 9.4.2 and 9.4.3, we have

Y (X, Y) =deg(D) = de

peXnNY

as claimed. O

Remark 9.4.5. By developing intersection theory topologically (see Griffiths and Harris,
pp. 49-65), this result becomes obvious, and can be vastly generalized.

Next, we have another very classical result:

Theorem 9.4.6 (“Degree-genus formula”). Let X be a smooth plane curve of degree d. The
first Chern class of the canonical bundle Kx is given by

(9.18) (c1(Kx), [X]) = d(d-3).
In particular, the divisor of zeroes and poles of any meromorphic 1-form on X has degree
d(d-3).
We also have
(9.19) BAO(X) = hOY(X) = (d; 1).

Proof. By Corollary 9.3.5, we have Kx = Ox(d—-3). Then (9.18) follows from Lemma 9.4.3.
To prove (9.19), consider the ideal sheaf sequence of X, which takes the form

0— Ocpz2(—d) - Ocp2 > Ox — 0.
The exact sequence in cohomology is:
(9.20) H'(Ogp2) =0~ H' (Ox) > H*(Ocp2(~d)) - 0.
By Theorem 9.2.7, this gives

st -9 (1) (13
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as claimed. By Theorem 9.2.4 and a similar exact sequence argument, we also have

hO(X) = dim H(Kx) = dim H (Ox (d - 3)) = dim HO(Ocp: (d - 3)) = (d O 2) - (d : 1)

d-3 2
as claimed. 0
Remark 9.4.7. Since T'X = K%, (9.18) implies that
(9.21) (ai(TX),[X])=d(3-4d).

Because X is a compact Riemann surface, (9.21) determines its topology entirely, as can be
seen in many different ways. The main point is that the Chern class of the tangent bundle
is equal to the FEuler class, which gives the topological Euler characteristic when evaluated
against [ X]. So (9.21) is equivalent to

Xtop(X) = d(3 - d).
Now, recall that the Euler characteristic of a smooth, compact, orientable surface of topo-
logical genus g is equal to 2 —2g. We therefore have

d(3-d)=2-2g
2g=d*-3d+2=(d-1)(d-2)
~ (d - 1)
9= o )

By Theorem 9.4.6, we obtain the fundamental identity
(9.22) (X)) =h"N(X) =g

in the case that X is a smooth plane curve. By the end of the next section, we will have
proved (9.22) for general compact Riemann surfaces.
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10. THE RIEMANN-ROCH THEOREM

We will now apply our modern technology to prove the classical theorem about meromor-
phic functions on a Riemann surface. The goal is to effectively solve the following version of
the Mittag-Leffler problem (5.1.1):

Given a finite collection of points {p.} on a compact Riemann surface ¥, and integers n,
what is the dimension of the space of meromorphic functions with poles of order at most n,
at P ?

Notice that this problem has two aspects. The first is to determine the number of “con-
straints” on the principal parts of such a meromorphic function (i.e., to bound the dimension
from above); the second is to actually “construct” meromorphic functions with controlled
poles (i.e., to bound the dimension from below). We shall see that our cohomological tools
can handle both aspects in a remarkable way.

10.1. Motivation for the formula. Let Y be a compact Riemann surface. For a divisor
D= Znapoc - ZmﬂQB
o B

we shall write
(D) =dimH°(O(D))=dim{fe.#(M)|(f)>D}.
for the dimension of the space of meromorphic functions with poles of order at most n, at
Pa, and zeroes of order at least mg at gg. Recall that if D ~ D’ are linearly equivalent, then
O(D) =z 0(D"), and consequently ¢(D) = ((D").
Assume for the moment that D is effective, of degree d = > n,. We want to make an
estimate of /(D). First of all, notice that

(10.1) (D) <d+1

for obvious reasons: the principal part of a meromorphic function at p, has dimension n,,
and any two functions with the same principal parts differ by a holomorphic function, which
must be constant.

We have seen above (Problem 1.5.11) that for the case of CP!, there are no further con-
straints, and (10.1) is sharp. But a general Riemann surface > may carry holomorphic differ-
ential forms, which impose constraints in the following way. Given a meromorphic function
f with (f) > D, and a holomorphic differential form w, we obtain a global meromorphic
differential form by taking the product:

(10.2) n=fw.

Lemma 10.1.1. Given a meromorphic differential form n on a compact Riemann surface
Y, with poles at {p,}, we have

(10.3) > Res,,n =0.
Here Res,,n is defined to be the coefficient a_; in the Laurent expansion
n= Z a; 2" dz

1=—Ng



108 ALEX WALDRON

with respect to any local coordinate z in which p, = 0.

Proof. Choose a triangulation of ¥ such that each face A, is contained in a coordinate chart,
and each p, is in the interior of a face. Then, since ¥ is closed, we have

0=0% =8ZA7 = Z@Aw
v v
Integrating n over this 1-chain, we get

0= ;f{mw n= %:QWZRGSPQT]

by the Residue Theorem, applied in each face A,. O

As discussed above, since a meromorphic function is determined by its principal parts, up
to a constant, we have:

0-C- H(0(D)) - C"
Putting this together with the assignment (10.2), by Lemma 10.1.1, gives a complex:
0-C- H(0(D)) »C%— H(QL)".
We can also determine the cokernel of the right-hand map: a holomorphic form has residue
zero at p,, when multiplied by any possible principal part, if and only if it vanishes to order
ne at po. We therefore obtain a complex
(10.4) 0-C- H(0(D)) - C*> H' Q)" - H(Q(-D))* =0
which is exact, except possibly at C?. By (6.25), we obtain
(10.5) {(D)-1<d-h" +dim H° (Q(-D)).

The Riemann-Roch Theorem states that (10.5) is an equality (and so the complex (10.4)
was indeed exact).

Having provided this motivation, we will now attempt to give a maximally efficient proof
of the theorem.!?

10.2. First version. Recall that for a holomorphic line bundle ., we write
ZL(D)=ZL®,0(D)

which is again isomorphic to a line bundle. If D = ¥ n,p, is effective, there is (by definition)

an exact sequence of sheaves of &-modules

(10.6) 0.2~ .Z(D) >, (C'), ~0.

Here (C"=), is the “skyscraper sheaf” whose sections are C"= for open sets containing p,
and zero otherwise. We also write

hOt = pdt = HY(0%)

12This approach has the disadvantage of making it slightly difficult to see the connection between the
proof and the motivation. For a proof more directly connected to the above residue argument, see Griffiths
and Harris, Ch. 2.
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as above. This number, sometimes called the “arithmetic genus” of ¥, is finite by Theorem
7.3.1.

Theorem 10.2.1 (Riemann-Roch, first version). For a holomorphic line bundle £ over a
compact Riemann surface 3, we have

(10.7) dim H°(Z) - dim H'(Z) = (c1(£),[2]) + 1 - hy'.
Proof. Recalling the definition (6.6.1) of the Euler characteristic, notice that the LHS of
(10.7) is simply x(-Z). We have seen in Corollary 7.4.3 that this is a finite quantity.

Let Dy be any effective divisor of degree d, and consider the exact sheaf sequence (10.6).
Applying the additivity of the Euler characteristic, Lemma 6.6.2, we obtain

(10.8) X(Z(Do)) =x(LZ) +d.
Taking d > —x (%), we conclude that
X(Z(Do)) = H*(Z (D)) - H'(Z (D)) >0
and therefore
H°(Z(Dy)) > 0.
Consequently, the bundle £ (D) has nontrivial global holomorphic sections, which corre-

spond to nontrivial meromorphic sections of .Z. Letting s be any such section of .Z and
D =div(s), we conclude from Theorem 8.3.4b that

Z=0(D).

Therefore, all line bundles on ¥ are isomorphic to &' (D) for some divisor; it suffices to prove
the theorem for bundles of this form.
We can now prove the formula by induction. The base case .Z = € reads:

dim H°(0) -dim H'(0) =0+ 1 - h%!
which is true by definition. Now, let
D =Dgy- D,

be an arbitrary divisor, where Dy and D; are both effective, and write d = deg D = dy — d;.
By (10.8), since & = (0(-Dy)) (D1), we have

X(0) = x(0(=D1)) +dy
and
x(O(-Dy)) =—-d; +1 - b
Applying (10.8) again, we obtain
X(O(D)) = x(6(-Dy)) +dy =dy - dy +1 -
=d+1-hpt
as desired. 0

Corollary 10.2.2. Every holomorphic line bundle £ over ¥ is isomorphic to &(D) for
some divisor D.
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Proof. This was shown during the proof of the last theorem. O

Remark 10.2.3. In view of the previous corollary, we will refer to the “degree” of any
holomorphic line bundle .Z as the degree of any divisor such that . ~ &'(D). By Theorem
8.5.2, this is just the first Chern class of £ evaluated against [X].

Corollary 10.2.4. Given any divisor D with deg(D) > h%') there exists a nonconstant
meromorphic function f with (f)>-D.

Proof. This follows because H'(&'(D)) (fortunately) appears with a negative sign on the
right-hand side of (10.7), so the assumption implies that ¢(D) > 2. d

Corollary 10.2.5. Any Riemann surface with h%' =0 is biholomorphic to CP.

Proof. For any point p € 3, we have dim H°(&'(p)) > 2, so there exists a nonconstant mero-
morphic function f with a simple pole at p. Then

[1, /]

defines a holomorphic map from > to CP!, and the degree of this map is clearly one (since
f has a simple pole). Hence, by Theorem 2.6.3 (or much more elementary arguments), this
is a biholomorphism. O

10.3. Serre vanishing and projective embeddings. Theorem 10.2.1 gives us a powerful
method for manufacturing meromorphic functions on a Riemann surface. To gain more pre-
cise control over the output, we need to better understand the groups H'(.¢), in particular
the group H'(0') whose dimension appears negatively on the RHS of (10.7).

We will first give a direct proof of a vanishing theorem due to Serre. The following lemmas
will prove convenient.

Lemma 10.3.1. For any holomorphic map'® between line bundles

(10.9) VL >N

over Y, there exists an effective divisor D such that v factorizes as

(10.10) L - ZL(D)> N

where the first map is the canonical inclusion and the second is an isomorphism.

Proof. This is a simple exercise in the definitions, using the local description (1.9) of a
single-variable holomorphic function. 0

Lemma 10.3.2. Any nonzero holomorphic bundle map v as in (10.9) induces an epimor-
phism
HY (&) » H' ().

13This means a map of @s-modules that is not necessarily a “bundle map,” per §7.1. Locally, it is just
given by a holomorphic function that may have zeroes.
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Proof. Let D be the effective divisor produced by the previous lemma. Consider the long
exact sequence in cohomology associated to (10.6), which was implicitly used in the proof of
Theorem 10.2.1:

(10.11) 0 HY(Z) - H"(Z(D)) > &,C™ - H'(Z) - H'(Z(D)) - 0.

This shows that H(.Z) - H'(Z(D)) is an epimorphism. But ¢ factorizes as (10.10), and
so the induced map on cohomology also factorizes as

HY (%) » H (Z(D)) > H' (/).
Since the first map is surjective and the second is an isomorphism, the composition is sur-

jective. 0

Theorem 10.3.3 (Serre vanishing). Let £ be a line bundle on ¥ and D any divisor with
(10.12) degD=d>H'(Z) +h".
Then

HY(Z(D))=0.
In particular, we have

HY(0(D))=0
for all divisors with deg D > 2h%1,
Proof. Let A = £(D). By HW 5 # 8, we have

Homy (£, N )2 H' (L @A) =H"(0(D)).
Here, Hom is the space of all holomorphic maps . — .4". By Lemma 10.3.2, any nonzero
map ¢ : .Z — A induces a surjective map on cohomology, and so an injective map on dual
spaces:
v HY (A) > HY (L),

Assume, for the sake of contradiction, that H' (A4") # 0, and let A # 0 € H' (A4)" be a

nonzero element. Since, for any nonzero v as above, the induced map * is an injection, the
element 1*(\) is nonzero. We therefore obtain an injective map
H°(0(D)) = H (¥)"
(10.13) (0(D)) *( )
¥ =P (A).
But Theorem 10.2.1 gives
(10.14) dim H° (0(D)) >d+1-h%.

Hence, if

d-h" >dim H' (£)
then (10.13) cannot possibly be injective. We conclude that A =0 for d as in (10.12). Since
A was arbitrary, we are done. O

Corollary 10.3.4. For deg D =d > 2h%', we have
{(D)=d+1-h",
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Recall from §8.4 that spaces of holomorphic sections of line bundles (or equivalently, linear
systems of divisors on ¥) define maps to projective space in an obvious way. We can easily
use Corollary 10.3.4 to obtain the following result.

Theorem 10.3.5. For any divisor D with deg D > 2h%1 + 2, the map to CPh*"'+2 associated
to the complete linear system |D| is an embedding.

Proof. There are three things to check. First, we must verify that the base locus Bs(|D|) =
Nprep/ D’ is empty, so that the map is defined on all of X. This is equivalent to showing
that for each point p € X, there exists a section s € HO(& (D)) with s(p) # 0. Supposing the
contrary, we would have

H(0(D-p)) = H(0(D)).

But this is impossible, by Corollary 10.3.4, since deg (D - p) = deg D -1 for deg D > 2h%! +1,
as we have assumed. Therefore Bs(|D|) = @.

Next, we must check that the map associated to |D] is injective. This is equivalent to
showing that for any two points p # ¢ € 3, there is a section s with s(p) = 0 but s(q) # 0.
(This is called “separating points.”) But again by our degree assumption, we have

dim H°(0(D - p)) > dim H*(0(D - p - q))

so not all sections that vanish at p also vanish at q.

Lastly, we must check that the derivative of the map associated to |D| is nonvanishing at
every point p € . With a tiny bit of thought, this is equivalent to showing that some section
s vanishes at p to order exactly one (i.e. the derivative of this coordinate is nonzero at p).
Again, there must be such a section, because

dim H°(0(D - p)) > dim H°(0(D - 2p))
by Corollary 10.3.4. We have shown that the map is an embedding, as required. U

Remark 10.3.6. We will see below that the degree thresholds in these theorems can be
improved by one.

Corollary 10.3.7. Every line bundle £ of positive degree on a Riemann surface is ample
(per Definition 8.4.2).

Corollary 10.3.8. Fvery compact Riemann surface is btholomorphic to a smooth projective
variety.

10.4. Second version (with Serre duality). Although we know that it is finite and

vanishes for effective divisors of high-enough degree, the cohomology group H' (€(D)) ap-

pearing in (10.7) is still a bit mysterious. We can reinterpret it geometrically as follows.
Recall from §7.4 that the Dolbeault isomorphism H! (.£) = Hg:; holds for any line bundle;

therefore any class H' (%) is represented by an equivalence class of (0,1)-forms on ¥ with
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values in the underlying smooth bundle, L. Notice that since ¥ is a Riemann surface, any
such form is 0-closed. We now define the following pairing:

(L) e % (L) - C
(a® )\, 5®s) HLA(S)OH\B.

Notice that the integral makes sense, because A(s) is a scalar and a A § is a 2-form.

(10.15)

Lemma 10.4.1. The pairing (10.15) descends to a pairing
(V:H' Qe L )e H' (¥)~C.
Moreover, the induced map
(10.16) L HY(Q® L) - H (L)
18 1njective.
Proof. The first claim amounts to the statement that given any holomorphic section w ¢

['(Q2®.2*), the function (w,-) vanishes identically on the image 9 (2/°(L)). To see this,
write

(w,ds) = fwAégS
s

- [0 )
- [y
=0.

Here we have used the Leibniz rule and the assumption that w is holomorphic:
0 (w(s)) = (ag&g*UJ) (5) +w®dgw=w® Dyw.

This is sufficient to show that the pairing (,) induced by (10.15) is well defined.
To show the injectivity, let w +0€ H? (2 ® £*), and let p € ¥ be a point where w(p) # 0.
Choose a coordinate chart U and local frame near p = 0, in which we have

w=A(2)dz

with A(0) # 0. We may choose a smooth section s of .Z over U, such that \(s)(z) =1 for z
in a neighborhood U’ € U of p. Let x > 0 be a smooth cutoff supported on U’, with x(0) =1,
and let

N = xAdZ.
This is an element of &7%(L) with dgn =0 (trivially). We then have

(w,n) = []IxA(s)(z)dzAdE

= xdz Adz # 0.
UI

(10.17)

Therefore the functional (w,-) is not identically zero, as claimed. O
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This simple argument establishes that nonzero global holomorphic 1-forms pair nontriv-
ially with cohomology classes. The question is then whether any cohomology class pairs
nontrivially with a holomorphic 1-form. This is a famous theorem of Serre, which can be
seen as a complex version of the Poincaré Duality Theorem for an orientable smooth mani-

fold.

Theorem 10.4.2 (Serre duality). The pairing (,) above is a perfect pairing, i.e. the map ¢
of (10.16) is an isomorphism. In particular, we have

dim H' (£) =dim H® (Q ® .£*).
We will prove a special case of this result in §10.4.1, and the general case in §10.5.

Corollary 10.4.3. We have
(X)) = hO1(D).
Proof. This is the case .Z = € in the previous Theorem. U
Definition 10.4.4. Define the genus of X by
g=gs=h""(2) =r" (D).
We shall write
K =Ky,

for the divisor of any meromorphic section of 2ys;, the canonical bundle of ¥, called a canon-
ical divisor (really a linear equivalence class of divisors).

We can now rephrase the Riemann-Roch Theorem using Serre duality.

Theorem 10.4.5 (Riemann-Roch, second version). For any divisor D on % of degree d, we
have

U(D)-¢(K-D)=d+1-g
Corollary 10.4.6. The degree of the canonical bundle of X is given by
deg K =2g - 2.

10.4.1. Proof of Serre duality for plane curves. For the special case of plane curves, there is
a quick-and-dirty proof of Theorem 10.4.2 that goes as follows. According to Remark 9.4.7,
we have already seen by direct calculation that the degree of the canonical bundle is

-1
dengd(d—B):Q(d2 )—2:2g—2

agreeing with Corollary 10.4.6, where the “genus” g is given by Definition 10.4.4. (From the
analytic perspective, this is actually the central point of the whole theory.)

Notice that by Lemma 10.4.1, it is sufficient to establish that the dimensions of the two
spaces are equal. Also, applying Lemma 10.4.1 with .Z = (D), we have

(10.18) dim H° (Q(-D)) = (K - D) < dim H' (6(D)).



COMPLEX MANIFOLDS (MTH 935) 115

Putting this together with Theorem 10.2.1, we get!'*

(10.19) {(D)-0(K-D)>24D)-dimH"(0(D))=d+1-g.
Applying (10.19) with K - D in place of D, we obtain

(10.20) (K-D)-4(D)>(29-2-d)+1-g=-d-1+g.

Adding (10.19) and (10.20), we obtain
0>0.

But this implies that the inequality (10.18) must have been an equality. 0

10.5. Proof of Serre duality. We will now give a clever proof of Theorem 10.4.2 for a
general Riemann surface, relying on a similar trick to the proof of Serre vanishing above
(Theorem 10.3.3). T learned the proof from Forster’s book (§17).

Recall that given a holomorphic map ¢ : % - £ between line bundles, not identically
zero, the induced map H! (%) — H' (L) is a surjection, by Lemma 10.3.2. The corre-
sponding map on dual spaces

(10.21) W HY(L) > HY (%)

is therefore an injection. We also have a natural inclusion

(10.22) H'(Q®Z*) > H' (00 %)

induced by the dual holomorphic map .£* - Z. The following Lemma is crucial.

Lemma 10.5.1. Let ¢ as above and w € H°(Q® %) . If the element 1 (w) = (w,—) €
HY ()" lies in the image of H'(ZL)* under v* (per (10.21)), then w lies in the image of
HO(Q® ) under (10.22).

Proof. By Lemma 10.3.1, we may assume without loss of generality that %, = £ (-D), for
D an effective divisor, and %, - .Z is the natural map. In fact, we can assume that D =p
is an effective divisor of degree one, and the general result will follow by induction. Then
to show that w e H? (%) belongs to HY (£*) = H° (£, (-p)), we must simply show that
w(p) = 0.

As in the proof of Lemma 10.4.1, let (U, z) be a coordinate neighborhood of p on which
% is trivialized. Let x be a cutoff supported in U with y =1 on a ball B 3 p. Consider the

element
nz@(z) e 220
z 9,
Notice that since .2 = % (p), n belongs to the image 0.27°(L), and is therefore equivalent
to zero in Hg:; ~ H'(Z). So the assumption on ¢(w) implies that

(OJ, 77) =0.

MEor an effective divisor, we could also finish the proof here by combining this inequality with (10.5),
which goes in the opposite direction.
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But, writing w = f(z) dz on U, we have

oszf(z)dZAa(f)

_ _fg(xf(Z)dz)
f(z) d:
oB Z

=2mif(0)
by the Cauchy Integral Formula (!). Therefore f(0) = 0 and w vanishes at p, as claimed. [

Proof of Theorem 10.4.2. Let A #0 e H' ()" . We must produce a section w € H° (Q ® .£*)
such that ¢ (w) = A, where ¢ is the injective map defined by (10.16).
Let

(10.23) n = max [deg.Z +1,3h*! — deg 2] .
Choose any line bundle %, with
deg % +n =deg.Z.

(For instance, we may take any effective divisor Dy of degree n, and let £ = £ (-Dy).) We
shall write (g = t.g,.

The space of holomorphic maps .4, — . is isomorphic to the space of global sections of
the tensor product:

Homg (£, Z) 2T (% 0 %) .

Since

deg £y ® £ =-deg Ly +deg L+n=n
we have
(10.24) dimHom (%, Z) >n+1-h"!

by Theorem 10.7.
Given ¢ : L - &, let ¥* : H' (£)" - H' (%)" be the induced map (10.21). Consider

the subspace
(10.25) A={*\| ¢ e Hom (%, L)} c H (L))"

By Lemma 10.3.1, ¢* is is an injection for ¥ # 0, so ¥*\ # 0. Therefore we have an isomor-
phism

Hom (%, Z) > A
Y PrA
From (10.24) and Theorem 10.2.1, we obtain
(10.26) dimA >n+1-h%
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Now, by Theorem 10.2.1 the space of holomorphic sections of 2 ® £ has dimension
(10.27) dim H° (2 ® %) > (degQ - deg Z +n) + 1 - hOL
Define the subspace
I=4(H (Q®.24))c H (%)
Recall from Lemma 10.4.1 that the map ¢¢ is an injection, so (10.27) gives
(10.28) dim I > degQ - deg Z +n+1 - h"'.
On the other hand, since n > deg.Z by (10.23), we have deg. %, < 0, and Theorem 10.2.1

gives

—dim H' (%) =deg. ¥ -n+1-h%!

and

(10.29) dim H' (%) =n+h% -1 -deg Z.
Combining (10.26) and (10.28), we now have

(10.30) dim 7 +dim A > 2n + 2 + deg Q — deg & — 2h%1.

Comparing (10.30) and (10.29), the assumption (10.23) guarantees that the sum of the
dimensions of the two subspaces I and A is greater than that of H' (.%,)". Consequently,
there exists a nonzero element

NoelnAc H' (L)
and, by definition, a section w € H° (2 ® %) and a holomorphic map ¢ : £ - £, such
that
(10.31) o (W) =g =0*A.

But, using v to identify %, as a subsheaf of ., Lemma 10.5.1 implies that in fact w €
H°(Q® . £*), where £* - £ is induced by 1. Then w satisfies

t(w)=A
as desired. 0
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11. APPLICATIONS TO RIEMANN SURFACES

11.1. The Riemann-Hurwitz formula.

11.2. Genus one.

11.3. Genus two and three.

11.4. The Hodge Theorem. MICHIGAN STATE UNIVERSITY, EAST LANSING, MI 48823
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