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1. Single-variable complex analysis

We begin by reviewing complex analysis in one variable. A good reference is Rudin’s Real

and Complex Analysis, Ch. 10.

1.1. Holomorphic functions. Fix a formal variable i satisfying

i2 = −1.

The field of complex numbers C = R [i] will be identified with the x − y plane as follows:

C = {x + iy ∣ (x, y) ∈ R2}.

We endow C with the norm

∣z∣ =
√
zz̄

which agrees with the Euclidean norm on R2. A domain Ω ⊂ C will refer to a connected

open subset Ω ⊂ C.

Definition 1.1.1. A complex-valued function f ∶ Ω → C is said to be holomorphic if the

limit

f ′(z) ∶= lim
h→0
h∈C

f(z + h) − f(z)
h

exists, as a complex number, for each z ∈ Ω. We shall denote the set of holomorphic functions

on Ω by Hol(Ω), and write f(z) ∈ Hol (Ω̄) if f(z) is also continuous on the closure Ω̄.

With this definition, the ordinary rules of calculus apply to holomorphic functions. In

particular, with proofs unchanged, we have:

Product rule: (f(z) ⋅ g(z))′ = f ′(z) ⋅ g(z) + f(z) ⋅ g′(z)
Chain rule: f(g(z))′ = f ′(g(z)) ⋅ g′(z)
Here complex multiplication is intended. The product rule implies that Hol(Ω) is a ring

under complex multiplication. The chain rule implies, more surprisingly, that the ring of

entire functions Hol(C) is also closed under composition.

Example 1.1.2. (a) For n ≥ 0, f(z) = zn is holomorphic, with f ′(z) = nzn−1.

(b) The exponential function

ez =
∞
∑
n=0

zn

n!
= ex (cos(y) + i sin(y))

is holomorphic, with (ez)′ = ez. Indeed, any power series f(z) = ∑n≥0 cnz
n is holomorphic

within its radius of convergence

(1.1) R = lim sup
n→∞

∣cn∣−1/n.



4 ALEX WALDRON

(c) The logarithm function can be defined as the inverse of the exponential function restricted

to {(x, y) ∣ −∞ < x < ∞,−π < y < π}. By the chain rule, log(z) is automatically holomorphic

in its domain. In radial coordinates on R2, we can write out

log(z) = log r + iθ, −π < θ < π.

With this convention, the domain of log(z) is C∖{(x,0) ∣ x ≤ 0}. So log(z) is by no means an

entire function, but could be extended to a “multivalued” holomorphic function on C∖ {0}.
Next, we consider the extension of the fundamental theorem of calculus to holomorphic

functions. Given a piecewise C1 path γ(t) ∶ [a, b] → Ω, we define the integral along γ by

∫
γ
F ′(z)dz = ∫

b

a
F ′(γ(t)) ⋅ γ′(t)dt

where again, complex multiplication is intended inside the integral. As with ordinary line

integrals, this is independent of the parametrization of γ (although it does depend up to ±
on the direction).

Theorem 1.1.3 (FToC for holomorphic functions). Let F (z) ∈ Hol(Ω) and let γ be a path

contained in Ω. Then

∫
γ
F ′(z)dz = F (γ(b)) − F (γ(a)).

This can be proved exactly as in single-variable calculus, or derived as a special case of the

result for line integrals.

Remark 1.1.4. We shall often be concerned with domains Ω that have piecewise C1

boundary. This means that Ω is bounded, and the boundary set ∂Ω = Ω̄ ∖Ω consists of a

finite collection of C1 curves {γ(t)}, whose endpoints cancel (as they must). If we give C
the standard orientation (corresponding to the ordered basis { ∂

∂x ,
∂
∂y}), then each curve in

∂Ω can be oriented by the convention

{γ′(t), νγ(t)} ∼ { ∂

∂x
,
∂

∂y
}

where ν is the inward normal to Ω. Informally, this means that we always parametrize ∂Ω

such that Ω stays “on the left” of its boundary curves, as in the counterclockwise orientation

of S1 = ∂B1.

1.2. Cauchy’s Theorem: two approaches. The foundational result of complex analysis

is as follows.

Theorem 1.2.1 (Cauchy’s Theorem). Let Ω be a bounded domain in C with piecewise C1

boundary, and let f(z) ∈ Hol (Ω̄) . Then

∫
∂Ω
f(z)dz = 0.
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1.2.1. Goursat’s proof. The best proof of Cauchy’s theorem, due to Goursat, is based on the

following simple observation.

Lemma 1.2.2. Assume that γ is a closed curve in Ω, and F (z) ∈ Hol(Ω). Then

∫
γ
F ′(z)dz = 0.

Proof. Since γ is a closed curve, we have γ(a) = γ(b) ∈ C. By the fundamental theorem of

calculus for holomorphic functions, we have

∫
γ
F ′(z)dz = F (γ(b)) − F (γ(a)) = 0

as claimed. �

Proposition 1.2.3. For a closed curve γ in C, and n ≥ 0, we have

∫
γ
zn dz = 0.

Proof. The entire function f(z) = zn has an entire, holomorphic antiderivative F (z) = zn+1
n+1 .

Hence

∫
γ
zn dz = ∫

γ
F ′(z)dz = 0

by the previous lemma. �

Example 1.2.4. We check the integral of (z − z0)n over the boundary of a ball Br(z0)
directly. We have ∂Br(z0) = [γ(θ)] , where γ(θ) = z0 + reiθ,0 ≤ θ ≤ π. Then γ′(θ) = ireiθ,
hence

∫
∂Br(z0)

(z − z0)n dz = ∫
2π

0
rneinθ ⋅ ireiθ dθ

= i∫
2π

0
rn+1ei(n+1)θdθ

=
⎧⎪⎪⎨⎪⎪⎩

0 n ≠ −1

2πi n = −1.

(1.2)

Exercise: Explain how the result of this calculation is consistent with Lemma 1.2.2.

Theorem 1.2.5 (Cauchy-Goursat for a triangle). Let ∆ ⋐ Ω be a triangle. Then for f ∈
Hol(Ω), we have

∫
∂∆
f(z)dz = 0.

Proof. Let I = ∣ ∫∂∆ f(z)dz∣. Draw the lines between the midpoints, dividing ∆ into four

smaller triangles with half the side length. Let γj, j = 1,2,3,4, denote the boundaries of

these triangles, oriented counterclockwise. Then as cycles

∂∆ =
4

∑
j=1

γj
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since the segments connecting the midpoints are traversed in opposite directions. Therefore

I = ∣
4

∑
j=1
∫
γj
f(z)dz∣

and we may choose j1 such that

∣ ∫
γj1

f(z)dz∣ ≥ I/4.

Let ∆1 be the triangle with ∂∆1 = γj1 .
Next, subdivide ∆1 in the same way, and choose ∆2 such that

∣ ∫
∂∆2

f(z)dz∣ ≥ I/42.

Continuing in this fashion, we obtain nested triangles

⋯ ⊃ ∆n−1 ⊃ ∆n ⊃ ∆n+1 ⊃ ⋯

with

diam(∆n) ≤ diam∆/2n

and

∣ ∫
∂∆n

f(z)dz∣ ≥ I/4n.

Let

z0 = ⋂
n≥0

∆n.

Then z0 ∈ ∆̄ ⊂ Ω, hence f ′(z0) exists.

Let ε > 0. Since f ′(z0) exists, we may choose n such that

∣f ′(z0) −
f(z) − f(z0)

z − z0

∣ < ε

for all z ∈ ∆n. Then

∣f(z) − f(z0) − (z − z0)f ′(z0)∣ < ε∣z − z0∣.
By Proposition 1.2.3, we have

∫
∂∆n

f(z)dz = ∫
∂∆n

(f(z) − f ′(z0)(z − z0) − f(z0)) dz.

But then

∣ ∫
∂∆n

f(z)dz∣ ≤ ∫
∂∆n

∣f(z) − f ′(z0)(z − z0) − f(z0)∣dz

≤ ε∫
∂∆n

∣z − z0∣dz

≤ ε(3diam∆n)(diam∆n)
≤ 3ε (diam∆n)2

≤ 3ε (diam∆)2

4n
.
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By choice of the triangles ∆n, this yields

I

4n
≤ ∣∫

∂∆n

f(z)dz∣ ≤ 3ε (diam∆)2

4n

and

0 ≤ I ≤ 3ε (diam∆)2
.

Since ε was arbitrary, we conclude that I = 0, as claimed. �

Corollary 1.2.6 (Cauchy for a ball). Let γ(t) be a closed curve contained in a ball B =
Br(z0), and f(z) ∈ Hol(B). Then

(1.3) ∫
γ
f(z)dz = 0.

Proof. We shall write [z0, z] for the straight line between z0 and z1 in C. Define

F (z) = ∫[z0,z]
f(w)dw.

We claim that F ′(z) = f(z).
Notice that the triangle with vertices z0, z1, z2, is contained in B. By Cauchy’s theorem

(for the triangle), we have

F (z2) − F (z1) = ∫[z1,z2]
f(z)dz.

Dividing by z2 − z1 and subtracting f(z1) from both sides, we obtain

F (z2) − F (z1)
z2 − z1

− f(z1) =
∫[z1,z2] f(z)dz

z2 − z1

− f(z1)

= ∫[z1,z2]
(f(z) − f(z1)) dz
z2 − z1

.

Since f(z)−f(z1) → 0 as z → z1, and the length of [z1, z2] is ∣z2 − z1∣, the RHS tends to zero.

Therefore F ′(z1) = f(z1), as claimed.

The result now follows from Lemma 1.2.2. �

Corollary 1.2.7 (Cauchy for s.c. domain). Assume Ω is simply connected. For any closed

curve {γ(t)} ⊂ Ω and f(z) ∈ Hol(Ω), (1.3) holds.

Proof. Since Ω is simply connected, the path γ is nullhomotopic, i.e., there exists a continuous

(indeed, piecewise C1) map γ(s, t) ∶ [0,1]2 → C with γ(1, t) = γ(t) and γ(0, t) = γ(s,0) =
γ(s,1) ≡ z0.

Since [0,1]2
is compact, the map γ(s, t) is uniformly continuous. We may therefore sub-

divide [0,1]2
into n2 rectangles, each of which has image inside a ball contained in Ω. By

the previous corollary, the integral over the boundary of each rectangle vanishes. Since the

sum of these is the integral over γ, this vanishes as well. �
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Theorem 1.2.1 now follows from Corollary 1.2.7 by subdividing Ω into simply connected

domains.1

1.2.2. Cauchy’s proof (in modern notation). The exterior derivative d extends linearly to

complex-valued functions and differential forms on C ≅ R2 in the obvious way:

df = d (u + iv) = du + idv.

In particular, we have

(1.4) dz = dx + idy, dz̄ = dx − idy.
Definition 1.2.8. Define the two operators:

∂

∂z
= 1

2
( ∂
∂x

+ 1

i

∂

∂y
) , ∂

∂z̄
= 1

2
( ∂
∂x

− 1

i

∂

∂y
) .

The first motivation for Definition 1.2.8 is the following lemma.

Lemma 1.2.9. For any differentiable complex-valued function f on C, we have

df = ∂f
∂z
dz + ∂f

∂z̄
dz̄

Proof. Check directly from (1.4) and Definition 1.2.8 (Exercise).2 �

The second motivation for Definition 1.2.8 is the following well-known fact.

Proposition 1.2.10. A holomorphic function f(z) obeys the Cauchy-Riemann equation3

(1.5)
∂f

∂z̄
= 0.

Proof. Write f(z) = u(x, y) + iv(x, y). If f(z) is holomorphic, then the limit along the real

axis exists:

lim
h→0
h∈R

f(z + h) − f(z)
h

= lim
h→0

u(x + h, y) − u(x, y)
h

+ i lim
h→0

v(x + h, y) − v(x, y)
h

= ∂u
∂x

+ i∂v
∂x
.

The limit along the imaginary axis also exists:

lim
s→0
s∈R

f(z + is) − f(is)
is

= lim
s→0

u(x, y + s) − u(x, y + s)
is

+ i lim
s→0

v(x, y + s) − v(x, y)
is

= −i∂u
∂y

+ ∂v
∂y
.

1Strictly speaking, we need to deal with the case when f(z) is not holomorphic across the boundary of

Ω, but only continuous there. This can be done by moving the boundary ∂Ω slightly into Ω, and taking the

limit of the line integral using continuity of f(z) on Ω̄.
2The reason this Lemma works is that ∂

∂z
and ∂

∂z̄
, as elements of TR2

⊗R C, form the dual basis to (1.4).

We will adopt this perspective in §3 below.
3See §1.7 below for further discussion of the Cauchy-Riemann equation(s).
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The two limits must be equal, giving

∂u

∂x
− ∂v
∂y

+ i(∂v
∂x

+ ∂u
∂y

) = 0.

This is precisely (1.5). �

We now have the following quick proof of Theorem 1.2.1:

∫
∂Ω
f(z)dz = ∫

Ω
d (f dz)

= ∫
Ω
df ∧ dz

= ∫
Ω

∂f

∂z
dz ∧ dz

= 0.

Here we have used Stokes’s Theorem, Lemma 1.2.9, and (1.5).

Note that applying Stokes’s (i.e. Green’s) Theorem requires that f(z) is C1. This is a

much stronger assumption than pointwise differentiability, which is all Definition 1.1.1 gives

you a priori. Hence Goursat’s proof, although longer, is both stronger and more transparent

than Cauchy’s.

We will now show that this question is strictly academic.

1.3. Cauchy Integral Formula and immediate consequences. Cauchy’s Theorem is

most potent in the following form.

Theorem 1.3.1 (Cauchy Integral Formula). Let Ω be a bounded domain with piecewise C1

boundary. For f ∈ Hol(Ω̄) and any z ∈ Ω, there holds

f(z) = 1

2πi ∫∂Ω

f(w)
w − z dw.

Proof. For 0 < r < dist(z, ∂Ω), we let

Ωr = Ω ∖Br(z).
Then Cauchy’s theorem gives

0 = ∫
∂Ωr

f(w)
w − z dw = ∫

∂Ω

f(w)
w − z dw − ∫

∂Br(z)
f(w)
w − z dw

and

∫
∂Ω

f(w)
w − z dw = ∫

∂Br(z)
f(w)
w − z dw

= ∫
2π

0

f(z + reiθ)
reiθ

ireiθdθ

= i∫
2π

0
f(z + reiθ)dθ

Ð→ 2πif(z) as r → 0

since f is continuous at z. This proves the formula. �
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Corollary 1.3.2. A holomorphic function is complex-analytic at each z0 ∈ Ω, i.e., admits a

convergent power-series expansion

(1.6) f(z) =
∞
∑
n=0

cn (z − z0)n

with radius of of convergence R = R(z0) ≥ dist(z0, ∂Ω). In particular, a holomorphic function

is smooth on its domain.

For any 0 < r < R, we have the formula

(1.7) cn =
1

2πi ∫∂Br
f(w)

(w − z0)n+1 dw.

Proof. For w ∈ ∂Br(z0) and z ∈ Br(z0), we have ∣z − z0∣ < ∣w − z0∣, and may write

1

w − z = 1

w − z0 − (z − z0)

= 1

w − z0

1

1 − z−z0
w−z0

=
∞
∑
n=0

(z − z0)n
(w − z0)n+1

.

(1.8)

This is a uniformly convergent power series for ∣z − z0∣ < R′ < R. We may therefore insert

(1.8) into the Cauchy integral formula and exchange limits, to obtain

f(z) = 1

2πi ∫∂Ω
f(w)

∞
∑
n=0

(z − z0)n
(w − z0)n+1

dw

=
∞
∑
n=0

[ 1

2πi ∫∂Ω

f(w)
(w − z0)n+1

dw] (z − z0)n

which is the desired expansion. �

Corollary 1.3.3 (Cauchy’s estimates). Assume ∣f(z)∣ ≤M on Br(z0). Then

∣f (n)(z0)∣ ≤
n!M

rn
.

Proof. By the above corollary, we have fn(z0) = n!cn, for cn given by (1.7). �

Theorem 1.3.4 (Liouville’s Theorem). A bounded entire function is constant.

Proof. Let n = 1 and r →∞ in the previous corollary. �

Corollary 1.3.5 (Fundamental Theorem of Algebra). A non-constant polynomial function

has at least one zero on C.

Proof. Assuming the contrary, we may apply Liouville’s theorem to the bounded entire

function 1/f. �

Definition/Lemma 1.3.6. The order of vanishing N ∈ N∪{∞} of a holomorphic function

f(z) at z0 ∈ Ω is the first number for which cN ≠ 0 in the series (1.6), or equivalently, the

greatest N such that

f(z) = O(z − z0)N as z → z0.
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Proof. Let

g(z) =
∞
∑
n=N

cn (z − z0)n−N .

This power series has the same radius of convergence as that of f(z), as one can check from

(1.1). We therefore have

(1.9) f(z) = (z − z0)Ng(z)
where g(z) is holomorphic in BR with g(z0) = cN ≠ 0. �

Proposition 1.3.7. If f(z0) = 0 and the order of vanishing of f(z) at z0 is less than infinity,

then z0 is an isolated zero, i.e., there exists a neighborhood Br(z0) such that f(z) ≠ 0 for all

z ∈ Br(z0) ∖ {z0}.

Proof. This follows directly from (1.9). �

Theorem 1.3.8 (Identity principle). Let f(z) be a holomorphic function on Ω that vanishes

identically on a nonempty subdomain Ω′ ⊂ Ω. Then f(z) vanishes identically on Ω.

Proof. Let Ω̃ be the subset of Ω where the order of vanishing of f(z) is ∞. Then Ω̃ is open by

definition, and nonempty by assumption. Moreover, Ω̃ is closed, by Proposition 1.3.7. We

conclude that Ω̃ is both open and closed in Ω, which is connected (by definition), so Ω̃ = Ω

as claimed. �

Corollary 1.3.9. If f(z) is not identically zero, then its zeroes are isolated in Ω, i.e., form

a discrete subset.

Theorem 1.3.10 (Maximum principle). If ∣f(z)∣ attains a local maximum inside Ω, then

f(z) is constant.

Proof. Let z0 be such a local maximum, with ∣f(z0)∣ = M. We may assume without loss of

generality that f(z0) =M ∈ R.
Assume, for the sake of contradiction, that f(z) is not constant in a neighborhood Br(z0) ⋐

Ω; in particular, we may choose r such that f(z) is not identically equal to M on ∂Br(z0).
We now apply the Cauchy Integral Formula:

M = Re f(z0) = Re∫
∂Br(z0)

1

2πi

f(w)
w − z0

dw

= Re
1

2πi ∫
2π

0

f(w)
reiθ

ireiθ

= Re
1

2π ∫
2π

0
f(w)dθ

= 1

2π ∫
2π

0
Re f(w)dθ.

Since we are assuming ∣f(z)∣ ≤M for all z ∈ B̄r, we have ∣f(z)∣ =M if and only if Re f(z) =M.

Hence, by our assumption, Re f(z) <M for some points z ∈ ∂Br(z0). Since f(z) is continuous,

we obtain a strict inequality

M = 1

2π ∫
2π

0
Re f(w)dθ < 1

2π ∫
2π

0
M dθ =M
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which is a contradiction.

We conclude that f(z) is identically constant on Br(z0). But then by the identity principle,

f(z) is constant on all of Ω, as claimed. �

Corollary 1.3.11. Let Ω be a bounded domain. If f(z) ∈ Hol(Ω̄) with ∣f(z)∣ ≤ M on ∂Ω,

then ∣f(z)∣ ≤M on Ω. If equality holds at any interior point, then f(z) is constant.

Proof. Since ∣f(z)∣ is continuous on the compact set Ω̄, it attains its maximum, i.e.

∣f(z0)∣ = sup
Ω̄

f(z) =M ′

for some z0 ∈ Ω̄. If z0 ∈ Ω, then f(z) is constant, andM ′ ≤M. If z0 ∈ ∂Ω, thenM ′ = ∣f(z0)∣ ≤M
by assumption, and we are again done. �

Theorem 1.3.12 (Riemann’s removable singularity theorem). Let f(z) ∈ Hol(Br(z0)∖{z0}),
and assume that

f(z) = o( 1

∣z − z0∣
) as z → z0.

Then f(z) extends to a holomorphic function on Br(z0).

Proof. Define the function

g(z) = (z − z0)2f(z).
Then g(z) is holomorphic for z ≠ z0 by the product rule, and

∣g′(z0)∣ = ∣lim
h→0

h2f(z0 + h)
h

∣ = ∣ lim
h→0

hf(z0 + h)∣ = 0

by the assumption. Therefore g(z) is holomorphic on all of Br(z0), with

g(z0) = g′(z0) = 0.

We therefore have

g(z) =
∞
∑
n=2

cn(z − z0)n

and may define the extension of f(z) to be the convergent power series
∞
∑
n=0

cn+2(z − z0)n.

�

Lemma 1.3.13 (Schwartz Lemma). Let f(z) ∈ Hol (B̄R(0)) be a holomorphic function with

a zero of order N at the origin, which satisfies sup∂BR ∣f(z)∣ =M. Then

∣f(z)∣ ≤M (∣z∣
R

)
N

for all z ∈ BR. If equality holds at any interior point, then

f(z) = C ( z
R

)
N

for some constant with ∣C ∣ =M.



COMPLEX MANIFOLDS (MTH 935) 13

Proof. By the proof of Lemma 1.3.6, we have f(z)/zN = g(z) holomorphic on BR(0), with

∣g(z)∣ ≤ ∣f(z)∣
RN

≤ M

RN

on ∂BR. But by the maximum principle (Corollary 1.3.11), we then have

M

RN
≥ ∣g(z)∣ = ∣f(z)/zN ∣

throughout BR, which yields the claim. If equality holds at an interior point, then g(z) = C
RN

is constant. �

1.4. Spaces of holomorphic functions. Recall that the L2-norm of a complex-valued

function is defined by

∥f∥L2(Ω) =
√
∫

Ω
∣f(z)∣2 dV ol.

We have the following extremely strong convergence result for sequences of holomorphic

functions with bounded L2 norm.

Theorem 1.4.1 (Montel’s Theorem). Let {fi(z)} be a sequence of holomorphic functions on

Br(0) with uniformly bounded L2 norm. Then for any r1 < r, there exists a subsequence fij(z)
which converges to a holomorphic function uniformly on Br1 , together with all derivatives.

Proof. Take f = fi for a single function, and let cn be the series coefficients about z0 = 0.

Notice that for n,m ≥ 0, we have

∫
Br
znz̄m dV =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2π
r2n+2

2n + 2
n =m

0 n ≠m.
Hence, if the L2 norm is bounded by M, then

M2 ≥ ∥f∥2
L2(B1) = ∑

n≥0

∣cn∣2
2n + 2

and, in particular, ∣cn∣ ≤M
√

2n + 2. For 0 < r < 1, we have

∣f(z)∣ ≤ ∑
n≥0

∣cn∣∣z∣n ≤M∑
√

2n + 2rn ≤MC0(r)

for z ∈ Br, where C0(r) is some function of r. Similarly, we have

∣f (k)(z)∣ ≤MCk(r).
Since the foregoing estimates apply uniformly to fi(z), we conclude from the Arzela-Ascoli

Theorem that the sequence subconverges uniformly on compact subsets, together with all

derivatives. This preserves the Cauchy-Riemann equations, which are equivalent to holo-

morphicity for C1 functions. (Alternatively, one can appeal to the converse of Cauchy’s

Theorem, known as Morera’s Theorem, stating that a function is holomorphic if it satisfies

(1.3) for all paths). �
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Corollary 1.4.2. Let {fi(z)} be a sequence of holomorphic functions on a domain Ω with

uniformly bounded L2 norm. Then there exists a subsequence fij(z) which converges to a

holomorphic function on Ω pointwise and uniformly on compact subdomains.

Proof. We may cover Ω by balls and use a diagonalization argument to obtain the limit f(z).
We then have uniform convergence on compact subsets, since any such is covered by finitely

many balls. �

Corollary 1.4.3. Let {fi(z)} be a sequence of holomorphic functions as above, and let {za}
be a discrete subset of Ω. If each fi vanishes to order at least Na at za, then the limit f(z)
vanishes to order at least Na at za.

Proof. By the Theorem, we know that there exists a subsequence, again denoted fi(z), such

that fi(z) → f(z) in C∞
loc.

Fix a point za and choose a neighborhood B = Br(za) ⋐ Ω. By uniform convergence, we

know that ∣fi(z)∣ ≤M for all z ∈ ∂B, for some constant M. But then by the Schwartz Lemma,

we have

∣fi(z)∣ ≤M (∣z − za∣
r

)
Na

.

Since fi → f, the same holds for f(z). We conclude from Lemma 1.3.6 that the order of

vanishing of f(z) at za is at least Na, as desired. �

Corollary 1.4.4. The space of holomorphic functions on Ω with bounded L2 norm (and

vanishing to prescribed orders at a discrete set of points) is a Hilbert space, i.e., is complete

with respect to the L2 inner product.

1.5. Meromorphic functions. We shall denote the punctured ball

B′
r(z0) = Br(z0) ∖ {z0}

and the annulus

UR
r (z0) = BR(z0) ∖ B̄r(z0).

We have the following generalization of Corollary 1.6 to holomorphic functions on an annulus.

Theorem 1.5.1 (Laurent series). Let f(z) be a holomorphic function on ŪR
r (z0). Then f(z)

admits a unique Laurent expansion

(1.10) f(z) =
∞
∑

m=−∞
cm(z − z0)m

that is uniformly convergent on compact subsets of UR
r (z0). Indeed, for any r ≤ s ≤ R and

m ∈ Z, we have

(1.11) cm = 1

2πi ∫∂Bs(z0)
f(w)

(w − z0)m+1 dw.
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Proof. We may apply the Cauchy Integral Formula on the domain Ω = UR
r (z0), to obtain

(1.12) f(z) = 1

2πi
(∫

∂BR(z0)
f(w)
w − z dw − ∫

∂Br(z0)
f(w)
w − z dw) .

Note that we have the two expansions

1

w − z =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑∞
n=0

(z − z0)n
(w − z0)n+1

∣z − z0∣ < ∣w − z0∣

−∑∞
n=0

(w − z0)n
(z − z0)n+1

∣z − z0∣ > ∣w − z0∣.

The first expression is convergent for ∣z − z0∣ ≤ R, and the second for ∣z − z0∣ ≥ r. The Laurent

series is obtained by plugging the two expressions into the two terms of (1.12), respectively,

giving a series (1.10) where

(1.13) cm =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2πi ∫∂BR

f(w)
(w − z0)m+1 dw m ≥ 0

1
2πi ∫∂Br

f(w)
(w − z0)m+1 dw m < 0.

But by Cauchy’s theorem, we may replace r or R by any r ≤ s ≤ R in the integrals in (1.13),

giving (1.11).

The uniqueness of the coefficients follows by plugging (1.10) into (1.11) and using uniform

convergence together with Example 1.2.4 to pick out the coefficients. �

Corollary 1.5.2. Let f(z) ∈ Hol (ŪR
r ) . Then we have a unique decomposition

(1.14) f(z) = P (z) +Q(z)
where P (z) ∈ Hol(B̄R) and Q(z) ∈ Hol(C ∖Br) with Q(z) → 0 as z →∞.

Furthermore, if f(z) ∈ Hol(B′
R), then (1.14) holds with Q(z) ∈ Hol(C ∖ {0}); if f(z) ∈

Hol(C ∖Br), then P (z) is an entire function.

Remark 1.5.3. As we shall see later, this corollary amounts to the statement that

H1(OCP1) = 0.

Definition 1.5.4. Assume that f(z) ∈ Hol(B′
R(z0)). The order of the pole at z0 is the

minimal N∞ ∈ N ∪ {∞} such that cm = 0 for all m < −N∞ in the Laurent expansion.

The principal part of f(z) at z0 is

Q(z) =
N∞
∑
m=1

c−m
(z − za)m

.

The residue of f(z) at z0 is

Resz0(f) = c−1 =
1

2πi ∫∂Bs
f(w)dw

for any 0 < s < R.
The order N ∈ Z∪ {±∞} of a meromorphic function f(z) at z0 is defined to be the order

of vanishing N, or (negative) the order of the pole −N∞, if f(z) has a zero or pole at z0 ∈ Ω,

respectively.
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Theorem 1.5.5 (Residue Theorem). Let Z = {z1, . . . , zn} ⊂ Ω be a finite set of points in a

bounded domain with piecewise C1 boundary. For f(z) ∈ Hol (Ω ∖ {z1, . . . , zn}) continuous

up to ∂Ω, we have

∫
∂Ω
f(z)dz = 2πi

n

∑
i=1

Reszi(f).

Proof. Choose r > 0 such that the balls around Br(zi) are disjoint and compactly contained

in Ω, and let Ω′ = Ω ∖ ∪iBr(zi). We apply Cauchy’s Theorem:

0 = ∫
∂Ω′

f(z)dz = ∫
∂Ω
f(z)dz −∑

i
∫
∂Br(zi)

f(z)dz

and

∫
∂Ω
f(z)dz = ∑

i
∫
∂Br(zi)

f(z)dz

= 2πi∑
i

Reszi(f)

by (1.11) and Definition 1.5.4, as claimed. �

Definition/Lemma 1.5.6. We say that f(z) is meromorphic on Ω if f(z) ∈ Hol(Ω ∖Z)
for Z = {za} a discrete subset of Ω, where

(1.15) lim
z→za

f(z) = ∞

for each za ∈ Z. Equivalently, f(z) ∈ Hol(Ω ∖Z) has only finite-order poles at points of Z.

Proof. It is clear that a function with finite-order (nontrivial) poles satisfies (1.15).

Conversely, assume that there exists w0 ∈ C and a neighborhood B = Br(za) such that

∣f(z) −w0∣ > ε for all ∣z − za∣ < r, i.e., the image of B = Br(za) is not dense in C. (This is a

slightly weaker assumption than (1.15)). Then the function

g(z) = 1

f(z) −w0

is bounded by 1/ε on B and therefore extends to a holomorphic function at za, by Riemann’s

Theorem, with a finite-order zero at za. But then f(z) = 1
g(z) +w0 has a finite-order pole. �

Remark 1.5.7. The density statement in the proof is known as the Casorati-Weierstrass

Theorem.

Remark 1.5.8. Notice that the quotient of two meromorphic functions is again meromor-

phic. The set of meromorphic functions on Ω is therefore a field, namely, the field of fractions

of the set of holomorphic functions on Ω (which is an integral domain, by the identity prin-

ciple).

We shall need the following two results, which show the power of the Residue Theorem

when applied to meromorphic functions. The proof is direct from (1.9).

Lemma 1.5.9. Let f(z) be a meromorphic function of one variable, and assume that

Ordz0f(z) = N.
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Then f ′(z)/f(z) has at most a simple pole at z0, with

(1.16) Resz0
f ′(z)
f(z) = N.

In particular, by the Residue Theorem, we have:

Proposition 1.5.10. Let f(z) be a meromorphic function on a domain Ω, with piecewise

C1 boundary, and assume that f and f ′ extend continuously to ∂Ω, with f nonzero there.

The number of zeroes minus the number of poles inside Ω, counted with multiplicity, is given

by

(1.17) ∫
∂Ω

f ′(z)
f(z) dz.

Exercise. Use Proposition 1.17 to prove the Open Mapping Theorem: the image of a

domain under a holomorphic function is either a point or a domain.

1.5.1. Two classical problems. We would be remiss not to mention the following problems

from the 19th century, which are sometimes used to motivate the whole theory. We will

return to each one later in the class, but there is nothing preventing you from solving them

now.

Problem 1.5.11. We say that a function is meromorphic at infinity if f(1/w) is mero-

morphic at w = 0.

(a) Identify all meromorphic functions on C ∪ {∞}.
(b) Given finitely many points {z1, . . . , zn} ⊂ C ∪ {∞} and numbers {N1, . . . ,Nn} ⊂ N, what

is the dimension of the space of meromorphic functions with poles of order at most Ni at zi?

(Answer: ∑n
i=1Ni + 1.)

Problem 1.5.12. Let τ ∈ C ∖R and denote the lattice

Λ = {m + nτ ∣m,n ∈ Z} ⊂ C.

We say that f(z) is doubly periodic if f(z + λ) = f(z) for every λ ∈ Λ.

(a) Prove that there does not exist a doubly periodic meromorphic function with a single,

simple pole (modulo Λ).

(b) (Tricky) Construct a doubly periodic meromorphic function with a pole of order 2, or

with two simple poles (modulo Λ). What are the residues in each case?

Remark 1.5.13. In terms of Riemann surfaces, the first problem asks for all holomorphic

maps CP1 → CP1. The second asks to show that there does not exist a degree 1 holomorphic

map C/Λ→ CP1, and instead to construct a degree 2 map.
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1.6. The ∂̄-Poincaré Lemma in dimension one. In order to construct holomorphic

functions, we shall also need to consider the inhomogeneous version of the Cauchy-Riemann

equation:

(1.18)
∂f

∂z̄
= g.

Definition 1.6.1. We shall write Ck(Ω̄) for functions in Ck(Ω) whose derivatives extend

continuously to Ω̄.

Fix open sets Ω1 ⊂ Rn and Ω2 ⊂ Rm. We say that a function h(x,u) on Ω̄1×Ω̄2 is uniformly

Ck in the x variable if h(⋅, u) is in Ck(Ω̄1), with bounds on the Ck norm independent of

u ∈ Ω2. We say h(x,u) has partial compact support in the u variable if for each ball

B ⋐ Ω1, the restriction of h to B̄ × Ω̄2 has compact support.

Proposition 1.6.2 (Differentiation under the integral sign). Let ϕ(u) be a function on Ω2

that is L1 on compact subsets. Let h(x,u) be a function on Ω̄1 × Ω̄2 that is uniformly Ck in

the x variable and has partial compact support in the u variable. Define the integral

I(x) = ∫
Ω2

h(x,u)ϕ(u)du.

Then I(x) ∈ Ck(Ω̄1), with

∂I(x)
∂xk

= ∫
Ω2

∂h(x,u)
∂xk

ϕ(u)du, etc.

Proof. Fix x ∈ Ω1, v ∈ Rn, with ∣v∣ = 1. Since h has partial compact support in u, we may

choose a compact set K ⊂ Ω̄2 such that for all y ∈ B̄1(x) ∩ Ω̄1, we have

I(y) = ∫
K
h(y, u)ϕ(u)du.

For h ∈ R with ∣h∣ < dist(x, ∂Ω1), consider the real difference quotients

∆h =
I(x + hv) − I(x)

h
= ∫

K

h(x + hv, u) − g(x,u)
h

ϕ(u)du.

Since h is uniformly C1 in x, h(x+hv,u)−h(x,u)
h is bounded above. The integrand of ∆h is

therefore bounded by a multiple of ϕ(u), which is L1 on K. By the Dominated Convergence

Theorem, we have

lim
h→0

∆h = ∫
K

lim
h→0

h(x + hv, u) − h(x,u)
h

ϕ(u)du
and

DvI(x) = ∫ Dvh(x,u)ϕ(u)du
which shows that I is C1 with the desired partials. Since Dvh(x,u) is uniformly bounded,

DvI(x) extends continuously up to the boundary.

If h is Ck, we may iterate this argument. �

Lemma 1.6.3 (∂̄-Poincaré Lemma for a compactly supported single-variable function).

Given g ∈ Ck
c (C), k ≥ 1, the function

(1.19) f(z) = 1

2πi ∫C

g(w)
w − zdw ∧ dw̄
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is in Ck(C) and satisfies the inhomogeneous Cauchy-Riemann equation (1.18).

Proof. Fixing z, change variables u = z − w. Then du = −dw, and the expression (1.19)

becomes

f(z) = − 1

2πi ∫
g(z − u)

u
du ∧ dū.

Observe that
−1

2i
dw ∧ dw̄ = dV ol

and 1
u is integrable on compact sets. So we may apply the previous proposition to conclude

that f(z) is C1, with

∂f

∂z̄
= − 1

2πi ∫
∂g(z − u)

∂z̄

du ∧ dū
u

= 1

2πi ∫
∂g(z − u)

∂ū

du ∧ dū
u

.

But this just equals

∂f

∂z̄
= lim
r→0

1

2πi ∫C∖Br(z)
∂g(z − u)

∂ū

du ∧ dū
u

= − lim
r→0

1

2πi ∫C∖Br(z)
du (

g(z − u)du
u

)

= lim
r→0

1

2πi ∫∂Br(z)
g(z − u)du

u

= lim
r→0

1

2π ∫
2π

0
g(z − reiθ)dθ

= g(z)
where we have applied Stokes’s Theorem and the continuity of g. �

Theorem 1.6.4 (∂̄-Poincaré Lemma for a bounded domain in C). Let Ω ⊂ C be a bounded

domain. Given g ∈ Ck (Ω̄) , for k ≥ 1, the function

(1.20) f(z) = 1

2πi ∫Ω

g(w)
w − zdw ∧ dw̄

is in Ck
loc(Ω) and satisfies (1.18).

Proof. Given z1 ∈ Ω, choose 0 < ε < r − ∣z1∣
2

. Write

g(z) = g1(z) + g2(z)
where g1 vanishes outside B2ε(z1) and g2 vanishes inside Bε(z1). Define f1 and f2 from (1.20)

corresponding to g = g1 and g2, respectively, so that

f = f1 + f2.

Then by the previous lemma, for z ∈ Bε(z1), f1 is Ck and satisfies

∂f1

∂z̄
= g1.
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Meanwhile, g2(w)
w−z is in Ck(B̄ε(z1)× Ω̄). By Proposition 1.6.2, f2(z) is also in Ck(Bε(z1)), and

indeed satisfies
∂f2

∂z̄
= 1

2πi ∫Ω

∂

∂z̄
(g2(w)
w − z )dw ∧ dw̄ = 0.

Therefore f = f1 + f2 is in Ck(Bε(z1)), and satisfies

∂f

∂z̄
= ∂f1

∂z̄
= g1 = g.

But z1 ∈ Ω was arbitrary, so we have in fact shown (1.18). �

1.7. The Jacobian of a single-variable holomorphic function. We end our discussion

of single-variable complex analysis with an extremely elementary, but important, remark

about the holomorphicity condition.

Consider C = R2 with the basis {1, i} as above. Let I be the map of R2 given by multipli-

cation by i, or in this basis,

I = ( 0 −1

1 0
) .

We say that a (real)-linear map M ∶ R2 → R2 is I-(anti)-linear if

M(I(v)) = ±I ⋅M(v)
for all v ∈ R2.

Proposition 1.7.1. The space of linear maps R2 → R2 is a direct sum of I-linear and

I-antilinear maps:

(1.21) {( a −b
b a

) ∣ a, b ∈ R} ⊕ {( c d

d −c ) ∣ c, d ∈ R} .

Notice that an element of the first factor corresponds to the map z ↦ (a+bi)⋅z on C, whereas

the second corresponds to z ↦ (c + di) ⋅ z̄.
Now, let (u(x, y), v(x, y))T ∶ R2 → R2, be a differentiable map. The (real) Jacobian is

J(f) =
⎛
⎜⎜⎜
⎝

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

⎞
⎟⎟⎟
⎠
.

Notice that the Cauchy-Riemann equations

∂u

∂x
= ∂v
∂y
,

∂u

∂y
= −∂v

∂x

are precisely the condition that the Jacobian lie in the first factor of (1.21). We conclude

that a holomorphic function is precisely one whose real Jacobian is I-linear, i.e., corresponds

to complex multiplication on C by the “complex Jacobian”

f ′(z) = ∂f
∂z

= ∂u
∂x

+ i∂v
∂x



COMPLEX MANIFOLDS (MTH 935) 21

which is no surprise, given Definition 1.1.1. This characterization of holomorphicity will

extend to several variables.

As a corollary, we have that a single-variable holomorphic function is conformal and

orientation-preserving at points where its derivative does not vanish (because this is true of

multiplication by nonzero complex scalars). Indeed, it is easy to see that

detJ(f) = ∣f ′(z)∣2 ≥ 0.

This formula will be generalized below (see Lemma 2.5.4).
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2. Rudiments of several-variable complex analysis

2.1. Holomorphicity and Hartogs’ Theorem. Let Ω ⊂ Cn be a domain, i.e., a connected

open set. We take real coordinates

x1, y1, x2, y2, . . . , xn, yn

on Cn = R2n, and complex coordinates

z1 = x1 + iy1, . . . , zn = xn + iyn.

We shall refer to a polydisk

Dr1,...,rn(w) = Br1(w1) ×⋯ ×Brn(wn).

and write Dr if ri = r for all i.

Define the operators

∂

∂zi
= 1

2
( ∂

∂xi
− i ∂
∂yi

) , ∂

∂z̄i
= 1

2
( ∂

∂xi
+ i ∂
∂yi

) , i = 1, . . . , n.

Definition 2.1.1. A continuous function f ∶ Ω → C is said to be holomorphic if it is

holomorphic in each variable separately, i.e.,

∂f

∂z̄i
= 0 for i = 1, . . . , n.

Lemma 2.1.2. Let f(z1, . . . , zn) be a continuous function on Ω ⊂ Cn. Then TFAE:

(a) f is holomorphic

(b) The restriction of f to any complex line in Cn is holomorphic

(c) For any polydisk Dr(w) ⋐ Ω, f satisfies the Cauchy Integral Formula:

f(z1, . . . , zn) =
1

(2πi)n ∫∣u1−w1∣=r
⋯∫∣un−wn∣=r

f(u1, . . . , un)
(u1 − z1)(u2 − z2)⋯(un − zn)

du1⋯dun

(d) f is complex-analytic about each w ∈ Ω, i.e., admits a convergent power-series expansion

f(z) =
∞
∑

i1,...,in=0

ai1⋯in(z1 −w1)i1⋯(zn −wn)in .

Proof. (a) ⇒ (c) ⇒ (d) ⇒ (b) ⇒ (a). �

Many of the properties of holomorphic functions carry over to several variables: for in-

stance, the identity principle, the maximum principle, and Liouville’s theorem. Here, how-

ever, is the first big difference.

Theorem 2.1.3 (Hartogs’ Theorem). Let 0 < r < R. Any holomorphic function on DR ∖ D̄r

extends to a holomorphic function on DR.

Proof. Let r < r1 < R. Define

F (z1, z2) =
1

2πi ∫∣u2∣=r1

f(z1, u2)du2

u2 − z2

.
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Then F is clearly holomorphic for z2 ∈ Br1 , and also for z1 ∈ Br1 because

∂f

∂z̄1

(z1, u2) = 0

for

(z1, u2) ∈ Br1 × ∂Br1 ⊂DR ∖ D̄r.

Therefore F (z1, z2) is holomorphic throughout Dr1 .

But, by the 1-variable Cauchy integral formula, F agrees with f on the open subset

(Br1 ∖ B̄r) ×Br1 ⊂Dr1 ∖ D̄r.

Since Dr1 ∖ D̄r is connected, by the identity principle, F (z1, z2) = f(z1, z2) there. Therefore,

F is the desired holomorphic extension of f. �

Corollary 2.1.4. A holomorphic function on the complement of a point in Ω ⊂ Cn, n ≥ 2,

extends to a holomorphic function on Ω.

Corollary 2.1.5. A holomorphic function on a domain in Cn, n ≥ 2, cannot vanish at an

isolated point.

Proof. Apply the previous corollary to 1/f. �

2.2. The Weierstrass Theorems. We now wish to understand the zero set of a holomor-

phic function on Cn, n ≥ 2, which entails finding the correct generalization of the factorization

property (1.15). We shall write

Cn = Cn−1 ⊕C = {(z1, . . . , zn−1,w)}.
Definition 2.2.1. A Weierstrass polynomial of degree d is a holomorphic function on

Cn of the form

(2.1) g(z,w) = wd + a1(z)wd−1 + a2(z)wd−2 + ⋅ + ad(z)

for holomorphic functions a1(z), . . . , ad(z) on a domain Ω′ ⊂ Cn−1 satisfying

(2.2) a1(0) = ⋯ = ad(0) = 0.

Theorem 2.2.2 (Weierstrass Preparation Theorem). Let f(z,w) be holomorphic in a neigh-

borhood of the origin. Assume f(0,w) /≡ 0, and Ord0(f(0,w)) = d. Then there exists a unique

Weierstrass polynomial g(z,w), of degree d, and a holomorphic function h(z,w) on some

neighborhood of the origin, with h(0,0) ≠ 0, such that

(2.3) f(z,w) = g(z,w)h(z,w).



24 ALEX WALDRON

2.2.1. Digression on symmetric polynomials. Before proving the WPT, we need to say a word

about symmetric polynomials. Let u1, . . . , un be formal variables. We say that a polynomial

p(u1, . . . , un) is symmetric if it is invariant under permuting any two coordinates. For

example, we have the elementary symmetric functions

σ1(u1, . . . , un) = u1 +⋯ + un
σ2(u1, . . . , un) = u1u2 + u2u3 + u1u3 + etc.

⋮
σn(u1, . . . , un) = u1u2⋯un

(2.4)

and the power functions

pk(u1, . . . , un) = uk1 +⋯ + ukn.(2.5)

We learn in undergrad algebra that the space of all symmetric polynomials of degree ≤ k is

generated by the elementary symmetric polynomials of degree ≤ k (indeed, the whole algebra

is just a polynomial algebra with generators σ1, . . . , σk). In fact, the following is even easier

to prove.

Lemma 2.2.3. The power functions of degree ≤ k generate all symmetric polynomials of

degree ≤ k. In particular, for each 1 ≤ q ≤ d, there exists a polynomial Pq,n in q variables such

that the identity

σq(u) = Pq,n(p1(u), . . . , pq(u))

holds as polynomials in u = u1, . . . , un.

Proof. It is sufficient to write any symmetric function of the form

uk11 u
k2
2 ⋯u

k`
` + permutations

in terms of the power functions. This goes by induction: for ` = 1, these are exactly the

power functions. We then write

(2.6) uk11 u
k2
2 + permutations = pk1pk2 − const.pk+`.

By the same principle, we may write

uk11 u
k2
2 u

k3
3 + permutations = pk1pk2pk3 − (terms with two factors)

where, by (2.6), the terms with two factors can be written using power functions. Continuing,

we have

uk11 ⋯u
k`
` + permutations = pk1⋯pk` − (terms with ` − 1 factors)(2.7)

which gives us the result by induction.

The existence of the polynomials Pq,n follows trivially, by applying the result to each

symmetric polynomial σq. �
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Although it won’t be necessary here, if one wants to compare the elementary symmetric

functions and the power functions explicitly (e.g. to show using the Lemma that the former

generate all symmetric polynomials), one can appeal to Newton’s identities

kσk(u1, . . . , un) = (−1)k−1pk(u1, . . . , un) +
k−1

∑
i=1

(−1)i−1pi(u1, . . . , un)σk−i(u1, . . . , un).

The proof of Newton’s identities is based on the basic identity

(2.8)
n

∏
i=1

(z − ui) = zn − zn−1σ1(u) + zn−2σ2(u) −⋯ + (−1)n−1σn(u)

which is sometimes taken as an alternative definition of the elementary symmetric functions.

We may now return to the proof of the WPT.

Proof of the Weierstrass Preparation Theorem. Let f(z,w) as in the statement. Then since

f(0,w) is not identically zero, by (1.9), there exist r, δ > 0 such that

∣f(0,w)∣ ≥ δ
for ∣w∣ = r. But then by continuity of f, for ε sufficiently small, we have

∣f(z,w)∣ ≥ δ/2
for ∣w∣ = r and all ∣∣z∣∣ ≤ ε. For such z, we may therefore define

(2.9) Fq(z) =
1

2πi ∫∣w∣=r
wq ∂f∂w
f

dw.

This is holomorphic in ∣∣z∣∣ ≤ ε.
For a fixed z, let

u1, . . . , ud

be the zeroes in w of f(z,w), taken with multiplicity. (Note that by Proposition 1.5.10,

there will remain d such zeroes for all ∣∣z∣∣ ≤ ε, since the integral (1.17) is continuous and

integer-valued, hence locally constant). By Lemma 1.5.9 and the Residue Theorem, we have

Fq(z) = uq1 +⋯ + uqd.
Therefore the power function in the roots of f(z,w) is in fact a holomorphic function of z.

By Lemma 2.2.3, there exists a polynomial Pq,d such that

σq(u1, . . . , ud) = Pq,d(F1(z), . . . , Fq(z)).
But then σq(u1, . . . , ud) = σq(z) is itself a holomorphic function of z, and we may define the

Weierstrass polynomial

g(z,w) = wd − σ1(z)wd−1 +⋯ + (−1)dσd(z).
By the identity (2.8), g(z,w) vanishes on exactly the same set as f(z,w) (in a neighborhood

of the origin).

The quotient

h(z,w) = f(z,w)
g(z,w)
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is, by the construction, a nonvanishing function which is holomorphic in w. But then by the

1-variable Cauchy Integral Formula, we have

h(z,w) = 1

2πi ∫∣u∣=r
h(z, u)
u −w du

which is also clearly continuous and holomorphic in z. This completes the proof of the

existence of g(z,w), satisfying (2.3) as desired.

The uniqueness can be seen as follows: the proof shows that the coefficients of any Weier-

strass polynomial vanishing on the same set as f are determined by the power functions in

the zeroes. But these power sums are determined by f, according to the formula (2.9). �

Corollary 2.2.4. If the zero-set Z of a holomorphic function on Cn = Cn−1⊕C, contains the

origin but does not vanish identically on C, then Z projects surjectively onto a neighborhood

of the origin in Cn−1.4

Corollary 2.2.5 (Holomorphic Implicit Function Theorem, first version). Let f(z,w) be a

holomorphic function in a neighborhood U of the origin, with f(0,0) = 0 but ∂f
∂w(0,0) ≠ 0.

Then there exists a smaller neighborhood U ′ ⊂ U, and a neighborhood of the origin V ⊂ Cn−1

such that

(2.10) Z ∩U ′ = {(z1, . . . , zn−1, f(z1, . . . , zn−1)) ∣ (z1, . . . zn−1) ∈ V }.

Proof. By assumption, f(0,w) has a zero of order exactly one at the origin. From the WPT,

we have that the zero set of f agrees with that of a degree one Weierstrass polynomial

g(z,w) = w + a1(z) near the origin. The result follows by taking f(z) = −a1(z). �

Theorem 2.2.6 (Riemann Extension Theorem). Let Z = {f = 0} be the vanishing set of

a holomorphic function. Suppose g(z,w) is holomorphic on Ω ∖ Z and bounded. Then g

extends to a holomorphic function on Ω.

Proof. Assume wlog that Ω = BR(0),0 ∈ Z, and f(0,w) /≡ 0. Choose r, δ, ε as in the previous

proof, so that ∣f(z,w)∣ ≥ δ for ∣w∣ = r, ∣∣z∣∣ ≤ ε. Then f(z,w) = 0 only if ∣w∣ < r, and so Z does

not meet ∣w∣ = r and g(z,w) is well-defined and holomorphic there.

By Theorem 1.3.12, g(z,w) extends to g̃(z,w). But then by the 1-variable Cauchy integral

formula, the function

(2.11) g̃(z,w) = 1

2πi ∫∣u∣=r
g(z, u)
u −w du

is continuous, and holomorphic in z also, so we are done. �

Theorem 2.2.7 (Weierstrass Division Theorem). Let g(z,w) be a Weierstrass Polynomial

of degree d. For any f holomorphic in a neighborhood of the origin, we can write

(2.12) f = gh + r

on a smaller neighborhood, where r(z,w) is a polynomial in w of degree less than d.

4See Proposition 2.4.2 below for a more precise statement.
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Proof. Choose r, δ, ε as usual, so that g(z,w) does not vanish for ∣w∣ = r, ∣∣z∣∣ ≤ ε. Define

h(z,w) = 1

2πi ∫∣u∣=r
f(z, u)
g(z, u)

du

u −w.

Then h(z,w) is holomorphic, and so is

r ∶= f − gh.

We then write

f(z,w) = f − gh = 1

2πi ∫ (f(z, u) − g(z,w)f(z, u)
g(z, u))

du

u −w

= 1

2πi ∫
f(z, u)
g(z, u) (g(z, u) − g(z,w)

u −w )du
(2.13)

But inspection shows that

p(z, u,w) = g(z, u) − g(z,w)
u −w

is a polynomial of degree less than d in u and w. Therefore

r(z,w) = 1

2πi ∫
f(z, u)
g(z, u)p(z, u,w)du

is also a polynomial of degree < d in w, since w appears only in p(z, u,w) on the RHS. �

2.3. The local ring On. We define the ring of germs of holomorphic functions at z0

(also sometimes called just the local ring at z0) to be the ring On,z0 of equivalence classes

{[(U, f)] ∣ U ∋ z0 open, f ∈ Hol(U)}

where

(U, f) ∼ (V, g) ⇔ f = g on U ∩ V.
The multiplication operation

[(U, f) ⋅ (V, g)] = [(U ∩ V, f ⋅ g)]

is clearly well-defined.

Henceforth, we shall suppress the open set U from our notation, and will simply refer

to a local function f ∈ On,z0 . We will also abbreviate On = On,0 for the ring of germs of

holomorphic functions at origin.

Theorem 2.3.1. The ring On is a local, Noetherian, UFD.

We already know that On is an integral domain, by the identity principle (any holomorphic

function is nonvanishing on an open, dense subset of its domain). It is also clearly a local

ring, meaning that it has a unique maximal ideal, namely:

m = {f ∈ On ∣ f(0) = 0}.
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This is clearly an ideal (i.e. closed under addition and scalar multiplication by elements of

On), and is maximal because for any f with f(0) ≠ 0, 1/f is holomorphic in a neighborhood

of the origin, and therefore belongs to On.

2.3.1. Digression on factorization in polynomial rings. To show that On is Noetherian, and

a UFD, we have to recall some facts from ring theory. For more detailed proofs, one may

consult Artin’s Algebra or Atiyah and MacDonald’s Commutative Algebra (or Wikipedia, for

that matter).

Let R be an integral domain, i.e. a ring without zero-divisors. Recall that an element

f ∈ R is said to be irreducible if for any u and v such that uv = f, either u or v is necessarily

a unit (i.e. an invertible element). A unique factorization domain (UFD) is an integral

domain in which every nonzero element f ∈ R admits a decomposition

(2.14) f =
k

∏
i=1

gi

where gi ∈ R are irreducible, which is unique up to permuting the gi and multiplying by

units.

Assuming that R is a domain in which factorizations into irreducibles (2.14) exist, it is

easy to convince yourself that R is a UFD if and only if every irreducible element is prime,

i.e.

f ∣ uv⇒ f ∣ u or f ∣ v.

Lemma 2.3.2 (Gauss’s Lemma). If R is a UFD, then the polynomial ring R [t] is a UFD.

Proof sketch. Let K be the fraction field of R. It follows from the division algorithm that

the polynomial ring K [t] is a principal ideal domain (choose the element of lowest degree in

a given ideal). But in a PID, any irreducible element is prime, as one shows by the following

famous trick. Assume that f is irreducible and divides uv, so there exists g ∈ R such that

(2.15) fg = uv.
Assume that f and u are relatively prime, i.e. have no common factors other than units.

Then the ideal (f, u) = R is the whole ring, so there exist a and b such that

af + bu = 1.

Multiplying (2.15) by b, we obtain

fgb = buv = (1 − af)v
and

f(gb + av) = v.
Therefore f divides v, if f and u are relatively prime. But otherwise f and u are not relatively

prime, so have a non-unit factor, which is equal to f up to a unit. Therefore f divides u,

which is equally good.

To finish the proof, you just have to lift the question back from K[t] to R[t] by cancelling

denominators (appropriately). This amounts to showing that if f and g are primitive in

R [t] , i.e. each has relatively prime coeffients, then fg is again primitive. To this end, one
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can observe that a polynomial is primitive iff it is nonzero in the integral domain R/(u) for

each irreducible element u ∈ R. �

Lemma 2.3.3 (The resultant of two polynomials). Let R be a UFD. Then two polynomials

u, v ∈ R [t] are relatively prime in K [t] if and only if there exists γ ≠ 0 ∈ R, called the

resultant of u and v, as well as α,β ∈ R [t] , with degα < deg v and degβ < degu, such that

(2.16) αu + βv = γ.
Assuming that α and β are relatively prime in R [t] , the resultant is unique up to multipli-

cation by units. Moreover, the resultant is a polynomial function of the coefficients of u and

v.

Proof. If α and β are relatively prime in K [t] , which is a PID, then the existence of a

solution of (2.16) is clear. One can show using the division algorithm that it is possible to

reduce the degree of α (and so too of β) as stated. The converse is also clear.

Since we can bound the degrees of α and β, solving the equation (2.16) can be reduced

to a matrix equation on the coefficients of α and β whose entries are coefficients of u and v,

as I wrote in class. The determinant of this matrix determines the solvability of (2.16), and

for a matrix A with nonvanishing determinant, we can always solve (2.16) with detA as the

RHS, over the ring R (using the adjugate matrix). �

Definition 2.3.4. Given a polynomial u, define the discriminant D(u) to be the resultant

of u and u′. Then D(u) = 0 if and only if u is coprime to u′. But this is true exactly when

u has multiple roots (in the algebraic closure of K). Hence the discriminant, which is a

polynomial in the coefficients of u, vanishes if and only if the polynomial u has multiple

roots.

Example 2.3.5. For a quadratic polynomial at2 + bt + c, the discriminant is b2 − 4ac. For a

cubic of the form t3+pt+ q (which any cubic is equivalent to under a change of coordinates),

the discriminant is given by

−4p3 − 27q2.

We now end our digression and return to the proof that On is a Noetherian UFD.

Proof that On is a UFD. We proceed by induction on n. We have On = C, which is a field,

hence a UFD.

Assume for induction that On−1 is a UFD. Let f ∈ On, which we may assume (by changing

coordinates, if necessary) is nonvanishing along the w-axis. By the WPT, f = gu, for g ∈
On−1 [w] and u ∈ On a unit. By Gauss’s Lemma, we have a unique factorization g = ∏ gi,

giving

(2.17) f =∏ giu.

Suppose now that

(2.18) f =∏ fi

is another decomposition into irreducibles. We then have fi(0,w) /≡ 0, since otherwise f

would vanish identically. Again by the WPT, we may write fi = g̃iũi. Notice that g̃ = ∏ g̃i is
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again a Weierstrass polynomial, and ũ = ∏ ũi is a unit. We now have

∏ giu = f =∏ g̃iũi

and

gu = g̃ũ.
But by uniqueness in the WPT, we must have g = g̃. Therefore

g =∏ gi =∏ g̃i

and by Gauss’s Lemma, the two factorizations must be the same up to permutations. But this

shows that the factorization (2.18) is equivalent to (2.17), which shows the uniqueness. �

Proof that On is Noetherian. We again proceed by induction on n, the case n = 0 being

trivial. Assume that On−1 is Noetherian. Then by the Hilbert Basis Theorem, On−1 [w] is

again Noetherian.

Let I ⊂ On be a nontrivial ideal. Choose a nonzero f ∈ I with f(0,w) /≡ 0, by changing

coordinates if necessary. By the WPT, we have f = gu for a Weierstrass polynomial g. But

then since u is a unit, we have g ∈ I as well, from which we conclude

Ĩ = I ∩On−1 [w]

is nonempty.

Now, choose a finite generating set {gi}ki=1, consisting of Weierstrass polynomials, for the

ideal

I ∩On−1 [w]
over the ring On−1 [w] . We claim that this is also a generating set for I over On. Let f ∈ I
be arbitrary. We now apply the Weierstrass Division Theorem to divide f by g1, giving

f = g1h + r

for a polynomial r ∈ On−1 [w] . But then r = f − gh also belongs to I, and so to Ĩ , and we

have

r = ∑aigi.

This gives

f = g1(h + a1) +
k

∑
i=2

aigi.

Since f ∈ I was arbitrary, we conclude that I = (g1,⋯, gk) is finitely generated, completing

the induction. �

We end with a last fact, which tells us that factorization and divisibility in the ring On,

although “local” by definition, is not entirely so.

Proposition 2.3.6. If f and g are relatively prime in On,0 they remain relatively prime in

On,x for all x sufficiently close to zero.
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Proof. Assume wlog that f and g are both Weierstrass polynomials of nonzero degree. Then

for z in an open neighborhood, f(z,w) and g(z,w) do not vanish identically in w.

Let γ be the resultant of f and g, so that there exist α,β ∈ On−1 [w] such that

(2.19) αf + βg = γ.
Assume for contradiction that x = (z0,w0) is such that f(z0,w0) = g(z0,w0) = 0, and there

exists a nontrivial common factor h(z,w) in On,(z0,w0), which we may assume is a Weierstrass

polynomial in (w −w0), with h(z0,w0) = 0. This means that h ∣ f and h ∣ g in On,(z0,w0). By

(2.19), which holds in a neighborhood of 0, we have h ∣ γ.
But then h(z,w) must have degree zero in w. (This can be seen by looking at points z

near z0 where γ(z) ≠ 0, but h(z,w) would have nontrivial zeroes if it had positive degree.)

Therefore

h(z0,w) = h(z0,w0) ≡ 0

and so f(z0,w) = 0 = h(z0,w). But this contradicts our observation that f(z0,w) does not

vanish identically in w for z0 near the origin. �

2.4. Analytic germs and ideals in On. We will now give the main payoffs of our study of

On. The first is the following refinement of Corollary 2.2.4 above, which uses the following

slightly informal definition. The meaning will always be clear in context.

Definition 2.4.1. We say that a certain property holds generically (or for a generic point)

if it is true on an open dense subset that is the complement of the vanishing set of a

holomorphic function (or functions).

Proposition 2.4.2. If f ∈ On is irreducible, with Ord0f(0,w) = d < ∞, then the fiber over a

generic point z near the origin of Cn−1 consists of d distinct points. In other words, the zero

set of f is a “branched cover” of a neighborhood of Cn−1.

Proof. Assume without loss that f = g is a Weierstrass polynomial of degree d. If g is

irreducible, then the discriminant D(g)(z) ∈ On−1 is not identically zero. By the above

discussion, for z near the origin such that D(g)(z) ≠ 0, there are d distinct solutions of

g(z,w) = 0, as claimed. �

Theorem 2.4.3 (Weak nullstellensatz). If g(z,w) ∈ On is irreducible, and f ∈ On vanishes

on the zero set {z ∣ g(z) = 0}, then g ∣ f in On.

Proof. We apply the Weierstrass Division Theorem:

f = gh + r
where r ∈ On−1 [w] has deg(r) < d = deg(g).

By the previous proposition, we may choose z ∈ Cn−1 arbitrarily close to zero, such that

#{w ∣ g(z,w) = 0} = d.
By assumption, for any such w, we have

0 = f(z,w) = g(z,w)h(z,w) + r(z,w) = r(z,w).
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But then r(z,w) has at least d distinct roots, which implies that r(z,w) is identically zero

in w. Since z was a generic point close to the origin, we conclude that r vanishes identically.

Therefore f = gh, as desired. �

Recall that our motivation for defining the local ring On was that we had to keep shrinking

the domain in which we could adequately describe the zero set of a holomorphic function.

Since we are shrinking the domain of the functions, it is also convenient to be allowed to

shrink the domain of the zero sets.

Definition 2.4.4 (Analytic germs). The germ of a set X at the origin is the equivalence

class of X under the relation that two sets X ≡ Y if and only if there exists an open set U ∋ 0

such that

X ∩U = Y ∩U.
Given a finite collection f1, . . . , fk ∈ On, we define the germ of the zero set

Z0(f1, . . . , fk) = [{z ∣ 0 = f1(z) = ⋯ = fk(z)}]
to be the germ of the common vanishing set of the fi. A germ X is said to be analytic if it

is of the form

X = Z0(f1,⋯, fk)
for such a finite collection. In the case that

X = Z0(f)
for a single function f, we say that X is the germ of a hypersurface at the origin. The

ideal I(X) ⊂ On of an analytic germ is equal to

I(X) = {f ∈ On ∣ f(z) = 0∀ z ∈X}.
Conversely, given an ideal I ⊂ On, the germ of the zero-set of I is given by

Z0(I) ∶= ∩f∈IZ0(f).
Lemma 2.4.5. For any ideal I ⊂ On,Z0(I) is an analytic germ. In particular, we have

Z0(I(X)) =X
Z0(I(X) + I(Y )) =X ∩ Y
Z0(I(X) ∩ I(y)) =X ∪ Y

X ⊂ Y ⇒ I(Y ) ⊂ I(X).
Proof. Since On is Noetherian, the ideal I is finitely generated by f1, . . . , fk, and so

Z0(I) = Z0(f1, . . . , fk)
is indeed analytic. The remaining claims are tautological. �

It remains to determine I(Z0(I)), for an ideal I ⊂ On. This is the content of a deep theorem

due to Hilbert, which we have already proved in a special case: assume that I = (g) is a

principal ideal, with g irreducible. Then Z0((g)) = Z0(g) is the germ of a hypersurface. The

Weak Nullstellensatz above exactly states that if f ∈ I(Z0(g)) = I(Z0(I)) then f ∈ (g) = I.
The version for general analytic germs is as follows; we will not give the proof of this result,

although it is in the same spirit as the weak version (with more algebra).
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Theorem 2.4.6 (General Nullstellensatz). Let I ∈ On be an ideal. If f ∈ I(Z0(I)) (i.e. f

vanishes on the zero set of I), then fn ∈ I for some n ≥ 0. Restated, f belongs to the radical√
I of I.

Lastly, to finish the correspondence between germs of functions and germs of sets, recall

that an ideal p is said to be prime if uv ∈ p⇒ u or v ∈ p.

Definition/Lemma 2.4.7. We say that an analytic germ X is irreducible if it cannot

be written as X = X1 ∪X2 for two proper subsets X1,X2 ⊂ X that are themselves analytic

germs. An analytic germ Z0(I) is irreducible if and only if the ideal I is prime.

Proof. The proof is straightforward, and no different from the case of hypersurfaces (where

I = (f) is prime iff f is irreducible). �

Proposition 2.4.8. Let X be the germ of a hypersurface. Then X has a unique decompo-

sition

X =X1 ∪⋯ ∪Xk

into irreducible germs of hypersurfaces.

Proof. Let f = fk11 ⋯fk`` be a decomposition of f ∈ On into irreducibles, which exists since On

is a UFD. Then clearly

X = Z0(f) = Z0(f1) ∪⋯ ∪Z0(f`)

is the desired irreducible decomposition.

We can show the uniqueness of the decomposition as follows: let

X = Y1 ∪⋯ ∪ Yp

be another such decomposition into irreducible analytic germs. Then we must have Y1 ⊃ Xi

for some i, because

Y1 = Y1 ∩X = ∪`i=1 (Y1 ∩Xi) .

If Y1 ∩Xi is a proper analytic subset of Y1 for each i, then their union is again a proper

subset, because Y1 is assumed irreducible. Hence we must have Y1 ⊃ Xi for some i. By the

weak nullstellensatz, we have I(Y1) ⊂ (fi) ⊂ On, so I(Y1) = (fi) ⋅ I ′ for some ideal I ′ /⊂ (fi). If

I ′ is not the whole On, then Z0(I ′) is a proper analytic germ. But then Y1 =Xi ∪Z0(I ′) is a

proper decomposition into analytic germs, which is a contradiction. Therefore I(Y1) = (fi),
and Y1 = Z0(fi) =Xi. Continuing, one gets the uniqueness of the decomposition. �

Remark 2.4.9. The last result holds for general analytic germs as well, as one can show

using factorization by prime ideals and the general Nullstellensatz.

We note that the last several facts form the basis of a subject called “algebraic geometry,”

which I strongly recommend you to pursue (at a later time).
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2.5. The holomorphic Implicit Function Theorem. We now turn to the question of

when an analytic germ is in fact the germ of a smooth (indeed, a complex) manifold. We

begin with the following Lemma, which could have been proved much sooner.

Lemma 2.5.1 (Chain rule for complex-valued functions). Let h(w) = h(w1, . . . ,wn) ∶ Cn → C
be a complex-valued function, and let w(z) = (w1(z), . . . ,wn(z)) ∶ C → Cn be an n-tuple of

complex-valued functions. Then

∂h(w(z))
∂z

= ∂h

∂wi
∂wi

∂z
+ ∂h

∂w̄i
∂w̄i

∂z
∂h(w(z))

∂z̄
= ∂h

∂wi
∂wi

∂z̄
+ ∂h

∂w̄i
∂w̄i

∂z̄
.

(2.20)

Proof. Let z = x + iy and wj(z) = uj(z) + ivj(z). Then by the real chain rule, we have

∂h

∂x
= ∂h

∂uj
∂uj

∂x
+ ∂h

∂vj
∂vj

∂x
∂h

∂y
= ∂h

∂uj
∂uj

∂y
+ ∂h

∂vj
∂vj

∂y
.

(2.21)

This gives

∂h

∂z
= 1

2
(∂h
∂x

− i∂h
∂y

) = 1

2
( ∂h
∂uj

∂uj

∂x
+ ∂h

∂vj
∂vj

∂x
− i( ∂h

∂uj
∂uj

∂y
+ ∂h

∂vj
∂vj

∂y
)) .(2.22)

On the other hand, we have

∂h

∂wj
∂wj

∂z
+ ∂h

∂w̄j
∂w̄j

∂z
= 1

2
( ∂h
∂uj

− i ∂h
∂vj

)(1

2
(∂u

j

∂x
+ i∂v

j

∂x
− i(∂u

j

∂y
+ i∂v

j

∂y
)))

+ 1

2
( ∂h
∂uj

+ i ∂h
∂vj

)(1

2
(∂u

j

∂x
− i∂v

j

∂x
− i(∂u

j

∂y
− i∂v

j

∂y
)))

= 1

2

∂h

∂uj
(∂u

j

∂x
− i∂u

j

∂y
) + 1

2

∂h

∂vj
(∂v

j

∂x
− i∂v

j

∂y
) .

(2.23)

Observe that (2.22) agrees with (2.23), giving the first equation of (2.20). The second is

proved similarly. �

Definition 2.5.2. We say that a continuous map f ∶ Cn → Cm is holomorphic if f i(z1, . . . , zn)
is holomorphic, for i = 1, . . . ,m. Define the complex Jacobian to be the m × n matrix of

complex numbers

J (f)(z) = (∂f
i

∂zj
) i=1,...,m
j=1,...,n

.

Lemma 2.5.3. Given two holomorphic functions

Cp g→ Cn f→ Cm

we have the holomorphic chain rule

J (f ○ g)(z) = J (f)(g(z)) ⋅J (g)(z)

where ⋅ denotes matrix multiplication.
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Proof. Fix i and j. The holomorphic chain rule as stated is equivalent to the claim that

(2.24)
∂f i(g(z))

∂zj
= ∂f i

∂wk
(g(z))∂g

k

∂zj
(z).

Setting h(w) = f i(w), and wk(z) = gk(z1, . . . , z, . . . , zm), with z in the j’th place, and apply-

ing the previous lemma, we see that all but the first term on the RHS of (2.20) drop out.

This gives (2.24). �

We should now compare the real and the complex Jacobians. Let J(f)(z) be the real

Jacobian, considered as a map from TzR2n → Tf(z)R2m. With respect to the bases

B1 = { ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn
}

for TzR2n, and

B2 = { ∂

∂u1
, . . . ,

∂

∂um
,
∂

∂v1
, . . . ,

∂

∂vm
}

for Tf(z)R2m, the matrix of J(f) is given by

(2.25) (J(f))B1,B2
=
⎛
⎜⎜⎜
⎝

∂ui

∂xj
∂ui

∂yj
∂vi

∂xj
∂vi

∂yj

⎞
⎟⎟⎟
⎠
.

If we complexify the tangent spaces, then the map J(f) extends canonically to a map

TzR2n ⊗R C→ Tf(z)R2m ⊗R C.

which we shall continue to denote by J(f). Letting zj = xj + iyj and wk = uk + ivk, we may

choose the complex bases

B′
1 = { ∂

∂z1
, . . . ,

∂

∂zn
,
∂

∂z̄1
, . . . ,

∂

∂z̄n
}

for TzR2n ⊗R C, and

B′
2 = { ∂

∂w1
, . . . ,

∂

∂wm
,
∂

∂w̄1
, . . . ,

∂

∂w̄m
}

for TzR2m⊗RC. With respect to this basis, Lemma 2.5.1 (or an equivalent calculation) implies

that the matrix of J(f) is given by

(J(f))B′
1,B

′
2
=
⎛
⎜⎜⎜
⎝

∂f i

∂zj
∂f i

∂z̄j

∂f̄ i

∂zj
∂f̄ i

∂z̄j

⎞
⎟⎟⎟
⎠

=
⎛
⎝

J (f) 0

0 J (f)
⎞
⎠

(2.26)

if f is holomorphic. This gives the following:

Lemma 2.5.4. If f ∶ Cn → Cn is holomorphic, then

(2.27) detJ(f)(z) = ∣detJ (f)(z)∣2.
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Proof. The determinant of J(f) is unchanged under complexification and change of basis,

and the relation (2.27) holds for any matrix that is block-diagonal of the form (2.26). �

Theorem 2.5.5 (Holomorphic Inverse Function Theorem). Let f ∶ Ω → Ω′ ⊂ Cn be a holo-

morphic map between two domains of Cn, and let z0 ∈ Ω be such that

(2.28) detJ (f)(z0) ≠ 0.

Then there exists a neighborhood U ′ ∋ f(z0) ⊂ Ω′ and an inverse map f−1 ∶ U ′ → Ω that is

holomorphic.

Proof. According to Lemma 2.5.4 and (2.28), the determinant of the real Jacobian is nonzero

at z0. By the real inverse function theorem, there exists a C∞ inverse map f−1 as stated. It

remains to check that f−1 is holomorphic. We have

z = f−1(f(z))

0 = ∂

∂z̄j
f−1(f(z))

= ∂f
−1

∂wk
∂fk

∂z̄j
+ ∂f

−1

∂w̄k
∂f̄k

∂z̄j

where we have applied Lemma 2.5.1. But ∂fk

∂z̄j
= 0, and we are left with

0 = ∂f
−1

∂w̄k
∂fk

∂zj
.

Since J (f) is nonsingular, the complex conjugate ∂fk

∂zj
is as well. We conclude that ∂f−1

∂w̄k
= 0

for all k, as desired. �

Theorem 2.5.6 (Holomorphic Implicit Function Theorem). Given f 1, . . . , fk ∈ On,z0 with

(2.29) det(∂f
i

∂zj
(z0))

1≤i,j≤k
≠ 0

there exist open sets U ⊂ Cn−k, V ⊂ Ck, with z0 ∈ U ×V, and g ∶ U → V holomorphic such that

(2.30) f i(z) = f i(z0) for i = 1, . . . , k ⇔ z = (g(zk+1, . . . , zn), zk+1, . . . , zn)
for z ∈ U × V.

Proof. This follows from the Inverse Function Theorem in the usual way. Define a map

f̃ ∶ Cn → Cn by

f̃ i(z) = (f 1(z), . . . , fk(z), zk+1, . . . , zn) .
Then

J (f̃) =
⎛
⎝

J (f)
0 Id

⎞
⎠

and detJ (f̃)(z0) = det (∂f i
∂zj

(z0))
1≤i,j≤k

≠ 0. By the Inverse Function Theorem, there exists

a holomorphic inverse f̃−1(z) in a neighborhood. We let

g(zk+1, . . . , zn) = f̃−1 (f 1(z0), . . . , fk(z0), zk+1, . . . , zn) .



COMPLEX MANIFOLDS (MTH 935) 37

Then (2.30) holds by definition, as one can check, and g is clearly holomorphic since f̃−1

is. �

2.6. Generic smoothness and biholomorphisms. We now turn briefly back to analytic

germs, to make another point using the Implicit Function Theorem. Recall the informal

definition of the term “generic” made in Definition 2.4.1, whose meaning will be clear in

each statement. (Or if not in the statement, then definitely in the proof.)

Lemma 2.6.1 (Generic smoothness). Let X = Z0(f) be the germ of a hypersurface. Then

the generic point of X is smooth.

Proof. Assume first that X = Z0(f) is irreducible, i.e., f ∈ On is irreducible.

We may assume without loss that f = f(z,w) is an irreducible Weierstrass polynomial.

Then f is relatively prime to ∂f
∂w , hence the discriminant D(f)(z) ∈ On−1 (i.e. the resultant

of f and ∂f
∂w ) does not vanish identically.

The vanishing locus Z0(D(f)(z)) is an analytic germ at the origin in Cn−1. For any point

z0 outside Z0(D(f)(z)), the polynomials f(z0,w) and ∂f
∂w(z0,w) have distinct roots in w.

This means that for any w0 such that f(z0,w0) = 0, we have ∂f
∂w ≠ 0. By the implicit function

theorem, the vanishing set {f(z,w) = 0} near (z0,w0) is a smooth manifold, as claimed.

For the case that X is not irreducible, by Proposition 2.4.8, it is a finite union of irreducible

analytic hypersurfaces. But these are generically smooth, and the finite union of generically

smooth things is again generically smooth (because a finite intersection of analytic germs is

again an analytic germ, and a finite union of dense open sets is again open and dense). �

Remark 2.6.2. Generic smoothness is also true of general analytic germs.

Lastly, we turn to the following converse of the inverse function theorem. Note that the

result fails over the real numbers, as seen from the map x ↦ x3 (which is bijective over R,
but not over C).

Theorem 2.6.3. Let f ∶ Ω → Ω′ ⊂ Cn be a bijective holomorphic map between two domains

in Cn. Then the Jacobian determinant detJ(f)(z) ≠ 0 for all z ∈ Ω. In particular, f is a

biholomorphism, i.e., there exists a holomorphic inverse map f−1 ∶ Ω′ → Ω.

Proof. We proceed by induction on the dimension n. The base case n = 1 goes as follows.

Given z0 ∈ Ω, we know that there exists N ≥ 0 such that f(z) = f(z0) + (z − z0)N f̃(z), where

f̃(z0) ≠ 1. Since f̃(z0) ≠ 0, we may choose an N ’th root g(z) of f̃(z) in a neighborhood of

z0. Then

f(z) = f(z0) + ((z − z0)g(z))N

and ((z − z0)g(z))′ (z0) ≠ 0, so by the Inverse Function Theorem, (z − z0)g(z) is a bijection

in a neighborhood. But the composition of a bijection with an N -to-1 map is N -to-1. So if

f(z) is bijective, we must have N = 1. Then indeed the Jacobian f ′(z0) does not vanish, as

claimed.
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Next, we assume that the result has been established for 1 ≤ k < n. We first claim that for

z ∈ Ω, the implication

(2.31) detJ (f)(z) = 0 ⇒ J (f)(z) = 0

holds. We can show this using the induction hypothesis and the implicit function theorem,

as follows.

Assume for contradiction that detJ (f)(z0) = 0, but 1 ≤ k = rkJ (f)(z0) < n. We may

choose coordinates so that

(2.32) det(∂f
i

∂zj
(z0))

1≤i,j≤k
≠ 0.

Then the implicit function theorem gives the existence of g(zk+1, . . . , zn) such that

f i(g(zk+1, . . . , zn), zk+1, . . . , zn) = f i(z0)
for 1 ≤ i ≤ k. Define the holomorphic function

h ∶ Cn−k → Cn−k

h(zk+1, . . . , zn) = (fk+1(g(zk+1, . . . , zn), zk+1, . . . , zn), . . . , fn(g(zk+1, . . . , zn), zk+1, . . . , zn)) .

(2.33)

Since f is bijective, f(g(zk+1, . . . , zn), zk+1, . . . , zn) must be bijective from {(z1
0 , . . . , z

k
0)}×U ′

to {(f 1(z0), . . . , fk(z0))} × V ′. Therefore h is also a bijection between these neighborhoods.

But some thought using the chain rule shows that the Jacobian of h must vanish, by our

assumptions on f. This contradicts our induction hypothesis, establishing the implication

(2.31).

Now, let z0 be a point where detJ(f)(z0) = 0. Then X = Z0(detJ(f)(z)) is the germ of a

nontrivial analytic hypersurface at z0. By Lemma 2.6.1, we can choose a point z1 close to z0

with detJ(f)(z1) = 0 but such that X is smooth near z1, i.e., there exists a bijective map

g ∶ U →X for a neighborhood of the origin U ⊂ Cn−1. But then we have

(2.34) J (f ○ g) = J (f) ⋅J (g) = 0

because J (f) ≡ 0 on X, by (2.31). A holomorphic map with vanishing Jacobian is constant;

therefore f(z) is constant along X, which is a contradiction to the bijectivity (since n > 1

and therefore X is not an isolated point). This completes the induction. �
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3. Complex structures and differential forms

In this section, we will add a layer of abstraction to what we have already (essentially)

done, before moving onward to geometry.

3.1. Complex structures and complexification. Let V be a 2n-dimensional real vector

space. A complex structure is an endomorphism I ∶ V → V with

I2 = −1.

Notice that if V carries a complex structure I, then it also carries the structure of an

n-dimensional C-vector space, by the rule

(3.1) (a + bi) ⋅ v = av + bI(v)
which one can check gives a valid scalar multiplication. However, for reasons which will

become apparent, we shall not use the complex multiplication (3.1) but will continue to refer

to the action of I by name.

We now let

(3.2) VC = V ⊗R C.

Then V is naturally contained in VC by the map v ↦ v⊗1. Also, VC has a complex conjugation

map

v ⊗ λ = v ⊗ λ̄.
The real subspace V ⊂ VC is precisely the fixed set of the conjugation map.

We now canonically extend the complex structure I to the vector space VC, by the rule

(3.3) I(v ⊗ λ) = I(v) ⊗ λ.
Then VC has two complex structures, I and i, the first given by (3.3), and the second given

by complex multiplication using the attached scalars:

(3.4) i ⋅ (v ⊗ λ) = v ⊗ (iλ).
When multiplying elements of VC by i, we shall always mean in the sense of (3.4).

Because I2 = −1, its eigenvalues must be ±i. The eigenspaces are therefore subspaces of

VC, given by

V 1,0 = {v ∈ VC ∣ I(v) = i ⋅ v}, V 0,1 = {v ∈ VC ∣ I(v) = −i ⋅ v}.

Lemma 3.1.1. We have

VC = V 1,0 ⊕ V 0,1

and V 1,0 = V 0,1. In particular, V 1,0 and V 0,1 are both complex subspaces of dimension n.

Proof. Since V 1,0 ∩ V 0,1 = 0, the canonical map

κ ∶ V 1,0 ⊕ V 0,1 → VC

is injective. But we also have projection maps

π1,0 ∶ VC → V 1,0

v ↦ 1

2
(v − iI(v))
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and

π0,1 ∶ VC → V 0,1

v ↦ 1

2
(v + iI(v))

which one checks yield elements of the claimed eigenspaces. Then the map

π1,0 ⊕ π0,1 ∶ VC → V 1,0 ⊕ V 0,1

is a right-inverse of κ, since

κ(π1,0 ⊕ π0,1(v)) =
1

2
(v − iI(v)) + 1

2
(v + iI(v)) = v.

Therefore κ is also surjective, hence an isomorphism.

To see that conjugation exchanges the factors, note that by definition, we have I(v) = I(v̄).
Letting v ∈ V 1,0, we have

v = π1,0(v) =
1

2
(v − iI(v))

and

v̄ = 1

2
(v̄ + iI(v̄)) = π0,1(v̄).

Hence v̄ ∈ V 0,1, as claimed. �

Definition 3.1.2. Let (V, I) and (W,J) be vector spaces with complex structures. We say

that a real-linear map α ∶ V →W is complex-linear if

(3.5) α(I(v)) = J(α(v))
for all v ∈ V.
Remark 3.1.3. Notice that by definition, the natural map

V → VC → V 1,0

gives a complex-linear map between (V, I) and (V 1,0, i). The two are therefore canonically

isomorphic as complex vector spaces.

Proposition 3.1.4. Fix two vector spaces (V, I) and (W,J) with complex structures, and a

complex-linear map α ∶ V →W. Then the canonical extension α ∶ VC →WC satisfies

α(v) = α(v̄)
α(V 1,0) ⊂W 1,0

α(V 0,1) ⊂W 0,1.

Proof. The first identity is by definition, and the next two are also easy to check. �

Theorem 3.1.5. Any complex-linear map α ∶ (V, I) → (V, I) is orientation-preserving.

Proof. Denote the canonical extension of α to VC again by α. Choose any basis v1, . . . , vn for

V 1,0 and pick the basis

(3.6) B = {v1, . . . , vn, v̄1, . . . , v̄n}
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for VC = V 1,0 ⊕ V 0,1. Then by the previous Proposition, in the basis (3.6), the matrix of α is

of the form

(3.7) (α)B = ( A 0

0 Ā
) .

Since the determinant of α is unchanged under complexification, we have

(3.8) detα = detAdet Ā = detAdetA = ∣detA∣2 > 0.

Therefore the map α is orientation-preserving, i.e., the two orientations are equivalent. �

Remark 3.1.6. Notice that the proof of Theorem 3.1.5 gives a streamlined proof of Lemma

2.5.4.

Corollary 3.1.7. A complex structure I induces a canonical orientation on V.

Proof. Let {e1, . . . , en} ⊂ V be nonzero vectors such that

(3.9) {e1, . . . , en, I(e1), . . . , I(en)}

form a basis for V ; such a choice is clearly possible. Define the orientation on V to be given

by the ordered basis (3.9).

We claim that any two bases chosen in this way induce the same orientation on V. Given

{ei} and {e′i} as above, we may define an endomorphism of V by

α ∶ ei ↦ e′i
I(ei) ↦ I(e′i).

One checks that this is I-linear. By the Theorem, it is orientation-preserving; so the two

choices induce the same orientation on V. �

3.2. Dual spaces and exterior powers. Let V ∗ = HomR(V,R) be the (real) dual space of

V. We give this a complex structure by the rule

(3.10) I(α)(v) = α(I(v))

for α ∈ V ∗, v ∈ V. Then

(V ∗)C = V ∗ ⊗R C = HomR (V,C) = HomC (VC,C) = (VC)∗

where the last ∗ is in the complex sense. Through this identification (V ∗)C = (VC)∗ , we have

(V ∗)1,0 = {f ∈ HomR(V,C) ∣ f(I(v)) = if(v)}
= HomC ((V, I),C)
≅ (V 1,0)∗ .

In fact, the natural pairing

(3.11) (V ∗)C ⊗C VC → C
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induces isomorphisms

(V ∗)1,0 ≅ (V 1,0)∗

(V ∗)0,1 ≅ (V 0,1)∗ .
(3.12)

This follows because for α ∈ (V ∗)1,0 and β ∈ V 0,1, we have

α(β) = −iI(α)(β) = −iα(Iβ) = (−i)2α(β = −α(β)
which implies that α(β) = 0.

Next, we have the real and complex exterior algebras on V and VC, respectively, given by

Λ∗V =
2n

⊕
k=0

Λk
RV ⊂ ⊗∗

RV

Λ∗VC =
2n

⊕
k=0

Λk
CVC ⊂ ⊗∗

CVC

= Λ∗V ⊗R C.

(3.13)

Definition/Lemma 3.2.1. Define the subspace of alternating elements of type (p, q):

Λp,qV ∶= ΛpV 1,0 ⊗C ΛqV 0,1 ⊂ Λp+qVC.

We then have

ΛkVC = ⊕
p+q=k

Λp,qV

Λp,qV = Λq,pV

∧ ∶ Λp,qV ⊗C Λr,sV → Λp+r,q+sV.

(3.14)

Proof. These all follow formally from the direct sum decomposition VC = V 1,0 ⊕ V 0,1. �

Define the operator

(3.15) I = ⊗kI ∶ ΛkV → ΛkV.

Then for ω = α⊗ β ∈ Λp,qV, we have

(3.16) I(ω) = I(α⊗ β) = ipα⊗ i−qβ = ip−qω.
Therefore Λp,qV ⊂ Λp+qV lies inside the eigenspace with eigenvalue ip−q inside the (p+q)-forms

Λp+qVC.
We may perform the exterior power operations for V ∗ in an identical manner. Then the

natural pairing

Λ∗V ∗
C ⊗C Λ∗VC → C

induces isomorphisms

(3.17) Λp,q (V ∗) ≅ (Λp,qV )∗

for each p and q. This just means that for ω ∈ Λp,q (V ∗) and η ∈ Λr,sV, we have ω(η) ≠ 0 only

if p = r and q = s, and the pairing is nondegenerate. The isomorphism (3.17) follows formally

from the k = 1 case, given by (3.12).
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3.3. Holomorphic (co)tangent spaces. We now come to the key example of the con-

structions of the previous subsection: given a point z ∈ Cn, let

V = TzCn.

Then we have the standard basis for V as a real vector space:

{ ∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn
,
∂

∂yn
} .

The standard complex structure is given by the rule

I ( ∂

∂xj
) = ∂

∂yj
, I ( ∂

∂yj
) = − ∂

∂xj
.

The action of the complex structure on the dual space V ∗ = T ∗
z Cn, i.e. the cotangent space,

is determined by

(3.18) I(dxj) ( ∂

∂yj
) = dxj (I ( ∂

∂yj
)) = dxj (− ∂

∂xj
) = −1

and so is

(3.19) I(dxj) = −dyj, I(dyj) = dxj.

According to Lemma 3.1.1, we have a splitting

(3.20) TC,zCn ∶= (TzCn) ⊗R C = T 1,0
z Cn ⊕ T 0,1

z Cn

where T 1,0
z Cn is called the holomorphic tangent space of Cn at z. A basis for T 1,0

z Cn may

be given by the projections

{π1,0 (
∂

∂xj
)}

n

j=1

= {1

2
( ∂

∂xj
− i ∂
∂yj

)}
n

j=1

= { ∂

∂zj
}
n

j=1

.

Similarly, a basis for the anti-holomorphic tangent space T 0,1
z is given by { ∂

∂z̄j
}n
j=1
.

We also have the holomorphic cotangent space (T ∗
z )

1,0 Cn as well as (T ∗
z )

0,1 Cn. These

are spanned by the dual bases to the above, dzj = dxj + idyj and dz̄j = dxj − idyj, j = 1, . . . , n,

respectively.

Proposition 3.3.1. Let f ∶ U → V be a holomorphic map between open subsets U ⊂ Cn and

V ⊂ Cm. Then the C-linear extension of the differential J(f)(z) ∶ TzCn → Tf(z)Cm respects

the above decomposition, i.e.

J(f)(z) (T 1,0
z Cn) ⊂ T 1,0

f(z)C
n, J(f)(z) (T 0,1

z Cn) ⊂ T 0,1
f(z)C

n.

Proof. The real Jacobian of a holomorphic map is I-linear, for the standard complex struc-

tures on Cn and Cm (exercise). Then the claims follow from Proposition 3.1.4. �
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3.4. Differential forms on Cn. We now come back to complex analysis. Given a domain

Ω ⊂ Cn, write AkR(Ω) for the space of C∞ real-valued differential k-forms on Ω. We shall

write

Ak(Ω) = AkR(Ω) ⊗R C
for the space of C∞ complex-valued differential forms on Ω.

Definition 3.4.1. Define the space of (p, q)-differential forms

(3.21) Ap,q(Ω) = {ω ∈ Ap+q(Ω) ∣ ω ∈ Λp,qT ∗
z Cn∀ z ∈ Ω} .

Note that this is a module over the space of complex-valued smooth functions A0(Ω).
As above, we canonically extend the exterior derivative operator d to complex-valued forms

Ap,q. We now define two new operators

(3.22) ∂ = πp+1,q ○ d, ∂̄ = πp,q+1 ○ d.
Explicitly, these operators are given as follows. We use the following notation for a (p, q)-
form:

(3.23) α = αIJ(z)dzI ∧ dz̄J = ∑
{i1<⋯<ip}⊂{1,...,n}

{j1<⋯<jq}⊂{1,...,n}

αi1⋯iqj1⋯jp(z)dzi1 ∧⋯ ∧ dzip ∧ dz̄j1 ∧⋯ ∧ dz̄jq .

Then we have

∂α = ∂αIJ
∂zk

dzk ∧ dzI ∧ dz̄J

∂̄α = ∂αIJ
∂z̄k

dz̄k ∧ dzI ∧ dz̄J .
(3.24)

Notice that we now have a more manifestly coordinate-invariant definition of holomorphicity,

namely:

(3.25) f(z) is holomorphic ⇔ ∂̄f(z) = 0.

The algebraic properties of the operators ∂ and ∂̄ can be summarized as follows.

Proposition 3.4.2. We have

d = ∂ + ∂̄
∂2 = 0, ∂̄2 = 0, ∂∂̄ = −∂̄∂.

We have also the following commutation rules, for α ∈ Ap,q and β ∈ Ar,s ∶
∂̄ (α ∧ β) = ∂̄α ∧ β + (−1)p+qα ∧ ∂̄β
∂ (α ∧ β) = ∂α ∧ β + (−1)p+qα ∧ ∂β.

Proof. We can either use the explicit formulae above, or argue as follows. Letting f ∈ A0,

from Lemma 1.2.9 (or now simply by definition), we have

df = ∂f + ∂̄f.
The case of α ∈ Ap,q follows from the formula

(3.26) d(αIJdzI ∧ dz̄J) = d (αIJ) ∧ dzI ∧ dz̄J .
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The next claim follows by writing

0 = d2 = ∂2 + ∂̄2 + ∂∂̄ + ∂̄∂

and observing that the forms of each type must vanish individually. The commutation rules

are proved similarly. �

The point of defining these spaces and operators is the following invariance property:

Proposition 3.4.3. Let Ω ⊂ Cn and Ω′ ⊂ Cm be domains, and f ∶ Ω → Ω′ a holomorphic

map. Then for α ∈ Ap,q(Ω′), we have

f∗α ∈ Ap,q(Ω)
∂̄ (f∗α) = f∗ (∂̄α) .

Proof. The first claim follows from the fact that the Jacobian of a holomorphic map is

complex-linear: by Proposition 3.1.4, it preserves the (anti)-holomorphic tangent spaces,

and by duality, so too the cotangent spaces and all exterior powers. More explicitly, one can

simply pull back the formula (3.23) using the fact that

df i = ∂f i, df̄ i = ∂̄f̄ i.

This gives

f∗α(z) = αi1⋯ipj1⋯jq(f(z))d (f i1) ∧⋯ ∧ d (f ip) ∧ d (f̄ j1) ∧⋯ ∧ d (f̄ jq)

= αi1⋯ipj1⋯jq(f(z))
∂f i1

∂zk1
dzk1 ∧⋯ ∧ ∂f

ip

∂zkp
dzkp ∧ ∂f̄

j1

∂z̄k1
dz̄k1 ∧⋯ ∧ ∂f̄

jq

∂z̄kq
dz̄kq

= αi1⋯ipj1⋯jq(f(z))
∂f i1

∂zk1
⋯∂f

ip

∂zkp
⋅ ∂f̄

j1

∂z̄k1
⋯∂f̄

jq

∂z̄kq
dzk1 ∧⋯ ∧ dzkp ∧ dz̄k1 ∧⋯ ∧ dz̄kq

which is again a (p, q)-form.

The second identity follows from the first identity and the property d ○ f∗ = f∗ ○ d of the

ordinary exterior derivative operator. �

3.5. The ∂̄-Poincaré Lemma in several variables. We now prove the general version of

Theorem 1.6.4. Recall that we denote a polydisk of radius r by

Dr = Br ×⋯ ×Br ⊂ Cn.

We shall write β ∈ Ap,q(D̄r) for the subspace of (smooth) forms in Ap,q(Dr) that extend

continuously to the boundary.

Lemma 3.5.1 (∂̄-Poincaré Lemma in a closed polydisk). Let β ∈ Ap,q(D̄r), with q ≥ 1, satisfy

∂̄β = 0. Then there exists α ∈ Ap,q−1(Dr) such that

∂̄α = β.
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Proof. Notice that if β = gIJdzI ∧dz̄J , then ∂̄β = (−1)pdzI ∧ ∂̄ (gIJdz̄J) vanishes if and only if

∂̄ (gIJdz̄J) = 0 for each I. Moreover, if α = fIJ ′dzIdz̄J ′ , then ∂̄α = (−1)pdzI ∂̄ (fIJ ′dz̄J ′) . Hence

∂̄α = β if and only if ∂̄ (fIJ ′dz̄J ′) = (gIJdz̄J) for each I. It therefore suffices to consider the

case p = 0. We shall also prove only the case n = 2, since the general case is only notationally

more complex.

First, let q = 2. Then β = g(z1, z2)dz̄1 ∧ dz̄2. By Theorem 1.6.4, we may solve

∂

∂z̄1
f(z1, z2) = g(z1, z2)

by the formula

(3.27) f(z1, z2) = 1

2πi ∫Br
g(w, z2)
w1 − z1

dw ∧ dw̄.

Letting α = f(z1, z2)dz̄2, we have

∂̄α = ∂f

∂z̄1
dz̄1 ∧ dz̄2 = gdz̄1 ∧ dz̄2 = β

as desired.

Next, let q = 1. Then β = g1(z1, z2)dz̄1 + g2(z1, z2)dz̄2. By (3.27), we may let f2 solve

∂

∂z̄1
f2(z1, z2) = g2(z1, z2).

Then ∂̄f2 = ∂
∂z̄1f2dz̄1 + g2dz̄2, and we have

β̃ ∶= β − ∂̄f2 = (g1 −
∂f2

∂z̄1
)dz̄1 + (g2 − g2)dz̄2

=∶ g̃1(z1, z2)dz̄1.

This still solves

∂̄β̃ = ∂̄β − ∂̄2f2 = 0

= ∂g̃1

∂z̄2
dz̄2 ∧ dz̄1.

Therefore

(3.28)
∂g̃1

∂z̄2
= 0.

Now let f1 solve
∂f1

∂z̄1
= g̃1

by (3.27). Then

∂f1

∂z̄2
= 1

2πi ∫Br

∂
∂z̄2 g(w, z2)
w − z1

dw ∧ dw̄ = 0

by (3.28). Hence

∂̄f1 =
∂f1

∂z̄1
dz̄1 + ∂f1

∂z̄2
dz̄2 = g̃1dz̄

1 = β̃ = β − ∂̄f2.

Now let α = f1 + f2. Then

∂̄α = ∂̄f1 + ∂̄f2 = (β − ∂̄f2) + ∂̄f2 = β
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as desired. This completes the case n = 2, q = 1.

The case n > 2 follows by a similar strategy of knocking off the factors dz̄k from β one-by-

one. �

Theorem 3.5.2 (∂̄-Poincaré Lemma in an open polydisk). Let β ∈ Ap,q(Dr), with q ≥ 1,

satisfy ∂̄β = 0. Then there exists α ∈ Ap,q−1(Dr) such that

∂̄α = β.

Proof. As before, it suffices to prove the theorem for p = 0.

Choose an increasing sequence rm ↗ r, and write Dm =Drm ⋐Dr =D.
Claim 1. For each m, there exists αm ∈ Ap,q−1(D) with ∂̄αm = β on Dm.

Since β is continuous on Dm, by the previous lemma, there exists α′m ∈ Ap,q−1(Dm+1) with

∂̄α′m = β on Dm+1. Choose a smooth cutoff ψ with suppψ ⊂Dm+1 and ψ ≡ 1 on Dm, and let

(3.29) αm = ψα′m.

This proves Claim 1.

We now proceed by induction on q. We will do the induction step first; so fix q > 1 and

assume that the Theorem has been proven for 1, . . . , q − 1.

Claim 2. For q > 1, it is possible to choose {αm} such that

αm+1 = αm
on Dm−1.

Assume that α1, . . . , αm have already been chosen. As in Claim 1, may choose α̃m ∈
A0,q−1(D) such that ∂̄α̃m+1 = β on Dm+1. Then

∂̄ (αm − α̃m+1) = β − β = 0

on Dm. By the induction hypothesis, there exists γ ∈ A0,q−2 such that

∂̄γ = αm − α̃m+1.

Let

αm+1 = α̃m+1 + ∂̄(ψγ).
We then have

∂̄αm+1 = ∂̄α̃m+1 + 0 = β
on Dm+1, and

αm+1 = α̃m+1 + ∂̄γ = αm
on Dm−1, as claimed.

We now have a sequence αm which agree on the open sets Dm, hence converge trivially to

α ∈ A0,q−1(D) satisfying ∂̄α = β. This proves the theorem for q > 1, assuming it also holds for

q = 1.

Claim 3. For q = 1, we can choose a sequence αm ∈ A0(D) with ∂̄αm = β on Dm, and

(3.30) ∣αm+1 − αm∣Cm(Dm) < 2−m.
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Assume α1, . . . , αm have been chosen. Let α̃m+1 ∈ A0(D) such that ∂̄α̃m+1 = β on Dm+1 as

before. Then

∂̄ (αm − α̃m+1) = 0

on Dm+1. But αm are now functions, hence we conclude that αm − α̃m+1 is holomorphic on

Dm+1. It therefore has a uniformly convergent Taylor series on Dm. We can truncate the

series to obtain a polynomial P = P (z1, . . . , zn) such that

(3.31) ∣αm − α̃m+1 − P ∣Cm(Dm) < 2−m.

We now let αm+1 = α̃m+1 + P, which is well-defined on D, and satisfies

(3.32) ∂̄αm+1 = ∂̄α̃m+1 = β
on Dm+1. Moreover, by (3.31), αm+1 satisfies (3.30), which proves Claim 3.

By (3.30), the sequence {αm} is uniformly convergent in Ck(Dn) for each n, k > 0. We

therefore have αm → α ∈ A0(D), satisfying ∂̄α = β on D, as desired. �

Remark 3.5.3. Notice that the proof also works with r = ∞, so with Cn replacing Dr. We

will also need the following generalization. We write C∗ = C∖ {0}. (The theorem also works

with C replaced by a ball and C∗ replaced by an annulus.)

Theorem 3.5.4. Let r, s ∈ N with r + s = n, and put

Ω = Cr × (C∗)s ⊂ Cn.

Let β ∈ Ap,q(Ω), with q ≥ 1, satisfy ∂̄β = 0. Then there exists α ∈ Ap,q−1(Ω) such that

∂̄α = β.

Proof. The proof is the same as that of Theorem 3.5.2, except that one uses a truncation of

the Laurent series instead of the Taylor series in (3.31). �
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4. Complex manifolds

This section finally begins the main business of the class, which is the study of complex

manifolds. We shall be particularly interested in compact complex manifolds. The first clear

differences between the categories of compact smooth (i.e. real) manifolds and compact

complex manifolds are as follows.

(1) Any holomorphic function on a compact complex manifold is locally constant.

(2) It is impossible to holomorphically embed a compact complex manifold of positive di-

mension in CN , for any N.

(3) The coordinate charts of a complex manifold cannot always be taken to be Cn.

(4) There exist holomorphic families of compact complex manifolds that are not isotrivial,

i.e., in which nearby members are not isomorphic.

The corresponding (false) statements in the smooth category are obtained by replacing “holo-

morphic” by “smooth” and C by R.
We will establish (1-4) over the course of this section.

4.1. Definitions and first properties. Let M be a smooth manifold of real dimension 2n,

with an atlas of coordinate charts U = {Uα, ϕα}. Recall that an atlas is an open cover of M,

together with maps ϕα ∶ Uα → ϕ(Uα) ⊂ R2n that are homeomorphisms onto their images, for

which the transition functions

ϕα ○ ϕ−1
β ∶ ϕβ(Uα ∩Uβ) → ϕα(Uα ∩Uβ)

are smooth maps. We say that an atlas is holomorphic if, identifying R2n = Cn in the

standard way (as above), the transition functions are holomorphic maps in the sense of

Definition 2.5.2. Two holomorphic atlases U and V are equivalent if the union U ∪V is again

a holomorphic atlas.

Definition 4.1.1. A complex manifold M of (complex) dimension n is a smooth manifold

of real dimension 2n, equipped with an equivalence class of holomorphic atlases. A complex

manifold of dimension n = 1 is called a Riemann surface.

Definition 4.1.2. A continuous map f ∶M → N between two complex manifolds is said to

be holomorphic if it restricts to a holomorphic map between coordinate charts. In other

words, for charts U ⊂M,V ⊂ N and ϕ ∶ U → Cn, ψ ∶ V → Cp, the map

(4.1) ψ ○ f ○ ϕ ∶ ϕ(f−1(V ) ∩U) → ψ(V )

is holomorphic.

We say that f is biholomorphic if it is also bijective. By Theorem 2.6.3, such an f

has a holomorphic inverse function f−1, hence is an isomorphism in the category of complex

manifolds and holomorphic maps.

Lastly, a holomorphic function on M is a holomorphic map f ∶M → C. In particular,

on any coordinate chart, f restricts to a holomorphic function on a domain in Cn.
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Theorem 4.1.3. Any holomorphic function f on a connected, compact, complex manifold

M is constant.

Proof. Since M is compact, ∣f ∣ attains its maximum at a point p lying inside some coordinate

chart U. But U is a domain in Cn, so by the maximum principle, f is constant on U. Since

M is connected, the usual argument shows that f must be constant throughout M. �

Corollary 4.1.4. If M is connected, the image of any holomorphic map M → CN is a point.

Proof. Given a holomorphic map f ∶M → CN , each coordinate function on CN pulls back to

a holomorphic function on M, which must be constant by the Theorem. �

Definition 4.1.5. Let π ∶ M → N be a holomorphic submersion, i.e., a holomorphic map

whose differential is surjective at all points—equivalently, by (2.26), whose complex Jacobian

J (π) is surjective. Theorem 2.5.6 implies that for each t ∈ N, the fiber Mt = π−1(t), is a

complex manifold, where the coordinate charts are obtained from those of M by restricting

to coordinate hyperplanes appropriately. A holomorphic family of complex manifolds,

parametrized by N, is simply the collection of fibers {Mt}t∈N of a holomorphic submersion.

The dimension of the fibers is

dimMt = dimM − dimN.

Definition 4.1.6. Recall that for any point p in a smooth manifold M, the tangent space

TpM is simply the tangent space to Tϕi(p)Cn in any coordinate chart, where tangent vectors

are identified under pushforward by the transition functions. Since these functions are holo-

morphic, they preserve the (1,0) and (0,1) parts of the complexification TC,pM = TpM ⊗RC,
by Proposition 3.1.4. We may therefore define the holomorphic tangent space

T 1,0
p M = (TpM)1,0

.

As discussed in Remark 3.1.3, the space TpM is canonically isomorphic to T 1,0
p M. We can

therefore expect all the geometry of a complex manifold to be reflected in the holomorphic

tangent spaces.

Similarly, we may define the (anti)-holomorphic cotangent spaces (T ∗
p )1,0M and (T ∗

p )0,1M

at each point, and the spaces of (p, q)-differential forms

Ap,q(U) = {ω ∈ Ap+q(U) ∣ ω ∈ Λp,qT ∗
pCn∀p ∈ U}

for any open set U ⊂M. Moreover, we may define the operators ∂ and ∂̄ exactly as in (3.22),

which again satisfy the conclusions of Proposition 3.4.2.

Definition 4.1.7. Given an open set U ⊂M, define the space

Zp,q

∂̄
(U) = ker ∂̄ ⊂ Ap,q(U).

Since ∂
2 = 0 (Proposition 3.4.2), we know that the image ∂̄Ap,q−1(M) is contained in Zp,q

∂̄
(M).

We may therefore define the Dolbeault cohomology groups of M by

(4.2) Hp,q

∂̄
(M) =

Zp,q

∂̄
(M)

∂̄Ap,q−1(M)
.
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By the ∂̄-Poincaré Lemma (Theorem 3.5.2), for an open polydisk Dr ⊂M and any p ≥ 0, q ≥ 1,

the kernel Zp,q

∂̄
(Dr) of the ∂̄ operator is identical to its image, ∂̄Ap,q−1(Dr), and therefore

Hp,q

∂̄
(Dr) = 0.

In this sense, the Dolbeault cohomology groups with q ≥ 1 are “locally trivial,” and can

be expected to detect the global holomorphic “shape” of M. As we shall see (in part), the

Dolbeault groups are a refinement of the DeRham cohomology groups (where d is in place

of ∂̄ in (4.2)) in the holomorphic category. In particular, they are functorial with respect to

holomorphic maps:

Proposition 4.1.8. Dolbeault cohomology defines a contravariant functor from the category

of complex manifolds to the category of complex vector spaces. In other words, given a

holomorphic map f ∶ M → N between complex manifolds, the pullback map on differential

forms induces a linear map

(4.3) Hp,q

∂̄
(N) f∗→Hp,q

∂̄
(M)

which is functorial. In particular, f∗ is an isomorphism if f is a biholomorphism.

Proof. By Proposition 3.4.3, we have f∗Zp,q(N) ⊂ Zp,q(M) and ∂̄f∗Ap,q−1(N) = f∗∂̄Ap,q−1(N).
Therefore f∗ descends to a well-defined map Hp,q

∂̄
(N) → Hp,q

∂̄
(M), which retains its functo-

riality properties. �

Definition 4.1.9. Define the Hodge numbers

hp,q(M) = dimCH
p,q

∂̄
(M).

These are the most basic invariants (i.e., biholomorphism invariants) of a complex manifold.

4.2. Examples. This section describes the first few examples in the subject.

Example 4.2.1. The Riemann sphere CP1 = C ∪ {∞} has two coordinate charts

U = C

with coordinate z, and

V = C∗ ∪ {∞}
with coordinate w = 1/z, and w(∞) = 0. The transition function is holomorphic on the

overlap

U ∩ V = C∗.

Example 4.2.2. The n-dimensional projective space is given by

CPn = {C-lines through the origin in Cn+1}
= {[Z] ∣ Z ≠ 0 ∈ Cn+1}/ ([Z] ∼ [λZ] for λ ∈ C∗) .

(4.4)

We shall denote points of CPn by equivalence classes [Z] = [Z0, . . . , Zn] , where

(4.5) [Z0, . . . , Zn] ∼ [λZ0, . . . , λZn]
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for any λ ≠ 0 ∈ C.
We have n + 1 standard coordinate charts on CPn, given by

Ui = {[Z0, . . . , Zn] ∣ Zi ≠ 0}
for i = 0, . . . , n, with coordinate maps

ϕi ∶ Ui
∼→ Cn = {(z0, . . . , ẑi, . . . , zn)}

[Z0, . . . , Zn] ↦ (Z
0

Zi
, . . . ,

Ẑi

Zi
, . . . ,

Zn

Zi
) .

The notation “ẑi” means that we omit that element of the sequence. Notice that ϕi is

well-defined under the equivalence relation (4.5). The inverse map is given by

ϕ−1
i ∶ (z0, . . . , ẑi, . . . , zn) ↦ [z0, . . . ,1, . . . , zn]

where 1 is in the i’th coordinate entry. The transition function on

Ui ∩Uj = {[Z] ∣ Zi ≠ 0, Zj ≠ 0}
is given by

ϕj ○ ϕ−1
i ∶ (z0, . . . , ẑi, . . . , zn) ↦ (z

0

zj
, . . . ,

ẑj

zj
, . . . ,

1

zj
, . . . ,

zn

zj
)

which is holomorphic, as required.

Notice that we may write

CPn = Cn ⊔CPn−1

= U0 ⊔ {[0, Z1, . . . , Zn]} .
(4.6)

In this way, CPn can be seen as a compactification of Cn by adding a “plane at infinity,”

whose points in turn correspond to complex lines through the origin in Cn.

Given an injective linear map

(aij) 1≤i≤n+1
1≤j≤k+1

∶ Ck+1 → Cn+1

we obtain a holomorphic inclusion

CPk ↪ CPn

[w0, . . . ,wk] ↦ [a0
jw

j, . . . , anjw
j] .

which we refer to as a projective k-plane. Notice that any k + 1 linearly independent

points in Cn+1 determine a projective k-plane. A projective (n − 1)-plane in CPn is called a

hyperplane. The space of hyperplanes is parametrized by the dual projective space

CPn∗ = (Cn+1)∗ ∖ {0}/ ∼
which is of course biholomorphic to CPn, but not canonically.

Example 4.2.3. Given a complex manifold M and a group Γ acting on M properly discon-

tinuously by biholomorphisms, the quotient space M/Γ is again a complex manifold, with

coordinate charts inherited from M. For example, let m ∈ Z act on Cn by

(z1, . . . , zn) ↦ (2mz1, . . . ,2mzn).
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The quotient Cn/Z is called a Hopf manifold, and is easily seen to be diffeomorphic to

S1 × S2n−1.

Example 4.2.4. Let Λ ⊂ C be a lattice, i.e.

Λ = {mτ1 + nτ2 ∣m,n ∈ Z} ⊂ C

for τ1/τ2 /∈ R. Then the quotient C/Λ is a one-dimensional complex torus. In particular,

for τ /∈ R, we let

Λτ = ⟨1, τ⟩
and

Xτ = C/Λτ .

Exercise: Show that there can be no holomorphic, injective map from C to Xτ .

Lemma 4.2.5. For a complex torus X = C/Λ, we have h1,0(X) = 1.

Proof. Observe that the space of holomorphic (1,0)-forms on X contains the element dz.

Since dz spans T
(1,0)
z X at each point z ∈ X, any holomorphic 1-form on X is of the form

α(z)dz for a doubly periodic holomorphic function α(z) (see Problem 1.5.12 above). By

Liouville’s Theorem, α(z) must be constant. Therefore

H1,0(X) = {cdz ∣ c ∈ C}
which has rank one, as claimed. �

Proposition 4.2.6. Given two lattices Λ and Λ′ ⊂ C, the complex tori X = C/Λ and Y = C/Λ′

are biholomorphic if and only if there exists c ∈ C∗ such that c ⋅Λ = Λ′.

Proof. Let f ∶ X → Y be a biholomorphism. Then f lifts to a holomorphic map f̃ ∶ C → C,
which we may choose with f̃(0) = 0, so f̃(Λ) = Λ′. But then f∗dz is a holomorphic differential

on X, which is equal to cdz by the Lemma. On C, we have

f∗dz = cdz = f̃ ′(z)dz.
Therefore f̃(z) = cz, and f̃(Λ) = cΛ = Λ′, as desired. �

According to the proposition, the set of isomorphism classes of complex tori is identical

to the set of lattices in C modulo complex scalars. Given any such Λ, we may assume, after

multiplication by a scalar, that 1 ∈ Λ is an element of shortest length. With this choice, Λ

will have nontrivial intersection with the strip

S = {z ∈ C ∣ −1/2 ≤ Re z ≤ 1/2, Im z > 0, ∣z∣ ≥ 1} .
Letting τ ∈ Λ∩S be the element with minimal imaginary part, we have Λ = Λτ . It is easy to

convince yourself that for τ ∈ S, Λτ is unique up to isomorphism, except for the identifications

τ ∼ τ + 1

and

τ = eiθ ∼ ei(π−θ).
These identifications only affect the boundary of S. We have shown the following:
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Theorem 4.2.7. The set of all isomorphism classes of one-dimensional complex tori is given

by

{Xτ ∣ τ ∈ S/ ∼} .

Exercise: Show that

(S ∖ {1 +
√

3i

2
,
1 −

√
3i

2
, i})/ ∼

parametrizes a holomorphic family of complex tori, in the sense of Definition 4.1.5.

4.3. Subvarieties and submanifolds. A closed subset V ⊂M is called an analytic sub-

variety if, for each p ∈ V, the germ of V at p is analytic in the sense of Definition 2.4.4.

Equivalently, for each p ∈ V, there exists a coordinate neighborhood U ∋ p and holomorphic

functions f 1, . . . , fkp such that

(4.7) S ∩U = {f 1(z) = ⋯ = fkp(z) = 0} =∶ Z(f 1,⋯, fkp).

We say that V is an analytic hypersurface if kp = 1 for all p ∈ V.
Definition 4.3.1. A complex submanifold S ⊂ M of codimension k is an analytic sub-

variety such that for all p ∈ S, we have kp = k, and for f 1, . . . , fk as in (4.7), the matrix

(4.8) (∂f
i

∂zj
(p))

has full rank (equal to k). By Theorem 2.5.6, S is a complex manifold in its own right, of

dimension n − k.
Notice that the fibers of a holomorphic family, per Definition 4.1.5, are complex subman-

ifolds of the total space. Indeed, this is the special case where the functions f 1, . . . , fk are

each defined on an open neighborhood of S inside M.

A point on an analytic subvariety where (4.8) holds is called a smooth point, as opposed

to a singular point. According to Lemma 2.6.1, at least in the hypersurface case, the generic

point of an analytic variety is smooth. In this sense, an analytic variety is a submanifold

with “analytic singularities” along a proper subset.

Definition 4.3.2. Given an entire holomorphic function f ∶ Cn → C, the vanishing locus

X = Z(f) ⊂ Cn is called an affine analytic hypersurface. If f is a polynomial, then X is

called an affine algebraic hypersurface.

Notice that if zero is a regular value, i.e., for each p ∈ Cn with f(p) = 0, there exists zi

such that

(4.9)
∂f

∂zi
(p) ≠ 0,

then Z(f) is a smooth hypersurface in Cn.

Example 4.3.3. Consider the affine algebraic hypersurface Xλ = Z(Pλ) ⊂ C2, where

Pλ(x, y) = y2 − x(x − 1)(x − λ).
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We have

∂Pλ
∂y

= 2y

∂Pλ
∂x

= −((x − 1)(x − λ) + x(x − λ) + x(x − 1)) .

Then ∂Pλ
∂y is nonvanishing except at (0,0), (1,0), and (λ,0). But if λ ≠ 0 or 1, then ∂Pλ

∂x is

nonvanishing at these points and we conclude that Xλ is a complex submanifold. As λ varies,

these form a holomorphic family of smooth affine hypersurfaces {Xλ} called elliptic curves,

which is intimately related to the family {Xτ} of Example 4.2.4.

For λ = 1, X1 = {y2 = x(x − 1)2} is no longer a submanifold, but an affine analytic

hypersurface singular at (1,0). In fact, X1 can be parametrized by

(4.10) x = t2, y = t(t2 − 1), t ∈ C.

This map is 1-to-1 except for ±1 ↦ (1,0). Hence, X1 is isomorphic to C with two points

identified (this is called a rational nodal curve).

Definition 4.3.4. Given k homogeneous polynomials

P 1(Z0, . . . , Zn), . . . , P k(Z0, . . . , Zn)

the common vanishing set

X = Z(P 1, . . . , P k) ⊂ CPn

is well-defined under the equivalence relation (4.5). This is called a projective algebraic

variety. In particular, X is an analytic subvariety of CPn ∶ for example, on the coordinate

chart U0 ≅ Cn, we clearly have

X ∩U0 = Z (P 1(1, u1, . . . , un), . . . , P k(1, u1, . . . , un)) .
Example 4.3.5. Let

P̂λ(X,Y,Z) = ZY 2 −X(X −Z)(X − λZ)

and put

X̂λ = Z(P̂λ(X,Y,Z)) ⊂ CP2.

Then clearly X̂λ ∩ U2 = Xλ, per Example 4.3.3. Notice that X̂λ ∖ U2 = {[0,1,0]}, and on

U1 = {[x,1, z]}, we have

X̂λ ∩U1 = Z (z − x(x − z)(x − λz)) .
Then ∂Pλ(x,1,z)

∂z (0,0) = 1, hence [0,1,0] is a smooth point as well. For λ ≠ 0,1, X̂λ is therefore a

smooth projective algebraic variety in CP2 (also called a smooth projective curve). Since CP2

is compact and X̂λ is a closed subset, it is also compact; hence, X̂λ is a “compactification”

of Xλ.

Every affine algebraic variety can be compactified to a projective algebraic variety in a

similar way. It is easy to check whether a projective variety is smooth, using the following

criterion:
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Proposition 4.3.6. Let X = Z (P 1, . . . , P k) be a projective algebraic variety. Then X is

smooth if and only if

(4.11) (∂P
i

∂Zj
)

1≤i≤k
0≤j≤n

has rank k at each point of X.

Proof. On U`, let pi(z0, . . . , ẑ`, . . . , zn) = P i(z0, . . . ,1, . . . , zn). Then X ∩ U` = Z(p1, . . . , pk),
and

(4.12)
∂pi

∂zj
(z0, . . . , ẑ`, . . . , zn) = ∂P

i

∂Zj
(z0, . . . ,1, . . . , zn), 1 ≤ i ≤ k,0 ≤ j ≠ ` ≤ n.

But for any homogeneous polynomial of degree d, we have the identity

d ⋅ P = Zk ∂P

∂Zk
.

For a point Z ∈ U` where P i(Z) = 0, we have

∂P i

∂Z`
(Z) = −Zj

Z`

∂P i

∂Zj
(Z).

The vector (∂P i
∂Z`

(Z))
k

i=1
is therefore a linear combination of the vectors ( ∂P i

∂Zj
(Z))

k

i=1
, for j ≠ `.

It follows that the matrix (4.12) has the same rank as (4.11), which gives the result. �

Notice that there is a difference between the definition of an analytic hypersurface in

Cn, which may be defined by a different function near each point, and an affine analytic

hypersurface, which is defined by a single entire function. This brings up the following

question:

Problem 4.3.7 (Cousin problem). Is every analytic hypersurface in Cn an affine analytic

hypersurface?

Note that an analytic hypersurface in a compact complex manifold can never be the zero

locus of an entire function, since this would necessarily be constant. In the case of projective

space, we have the following analogue of the above question:

Problem 4.3.8. Is every analytic subvariety of CPn a projective algebraic variety?

The first question will be answered (affirmatively) below in §6.4.1, and the second will be

partially answered by Theorem 9.2.4.
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5. Sheaves

5.1. Motivation. At the end of the last section, we saw two problems that have to do with

passing from local to global data. We begin this section by describing another, more central,

motivating problem, which (in some form or other) will occupy us for most of the rest of the

semester.

Let Σ be a Riemann surface and {pβ} a discrete collection of points. Choose coordinate

charts {Uα} for Σ such that each pβ is contained in exactly one Uβ, and corresponds to the

origin in this chart. For each β, fix a “principal part”

(5.1) Qβ(z) =
Nβ

∑
i=1

aβi z
−i.

Problem 5.1.1 (Mittag-Leffler). Does there exist a global meromorphic function5 on Σ

which is holomorphic on Σ ∖ {pβ} and has principal part Qβ(z) at pβ, for each β?

Notice that the problem is locally trivial, since on the patch Uβ, we may take the function

Qβ(z) as our solution. In fact, it is also trivial in the cases Σ = C and Σ = CP1. However, we

have seen in Problem 1.5.12 that for Σ = C/Λ, there does not exist a meromorphic function

with a single, simple pole; so the answer to the global question is sometimes negative. The

goal is to describe a general approach—in fact, two approaches that will turn out to be

equivalent—which will allow us in principle either to solve the problem or to identify the

“obstruction” to the existence of a solution in a given case.

5.1.1. Approach via Čech cohomology. Let U = {Uα} be the open cover of Σ described above.

Choose Qβ per (5.1), and let

Qαβ = Qα −Qβ,

which is a holomorphic function on Uα ∩Uβ, for each α and β. Notice that on Uα ∩Uβ ∩Uγ,
we have

(5.2) Qαβ +Qβγ +Qγα = 0.

To make a global solution, we need to find a holomorphic function gα on Uα, for each α, such

that

(5.3) Qα + gα = Qβ + gβ
on Uα ∩Uβ, for each α and β. This would give a well-defined meromorphic function f with

f = Qα + gα
on each chart Uα.

Notice that (5.3) is equivalent to

(5.4) gβ − gα = Qαβ.

Define

Z1 (U,O) = {{fαβ} ∣ fαβ ∈ Hol(Uα ∩Uβ), fαβ + fβγ + fγα = 0}

5See 5.3.9 below for the formal definition.
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and

B1 (U,O) = {{fαβ} ∣ fαβ = gβ − gα, for some {gα}} .
In this formulation, the obstruction to choosing {gα} as required lies in the quotient group

(5.5) Ȟ1(U,O) = Z
1 (U,O)

B1 (U,O) .

5.1.2. Approach via Dolbeault cohomology. Assume that the cover Uα is locally finite, and

choose smooth cutoff functions ρα ∈ C∞
c (Uα) such that ρα ≡ 1 in a neighborhood of pα. Let

β = ∑
α

∂̄ (ραQα) .

Observe that this is a global, smooth (0,1)-form (vanishing identically near pα), and satisfies

∂̄β = 0.

If we can solve

∂̄α = β
for α ∈ C∞(M), then

f = ∑
α

ραfα − γ

will satisfy ∂̄f = 0, with the required principal parts at pα. In this setup, the obstruction to

solving the problem therefore lies in the Dolbeault cohomology group (4.2) already defined

above:

(5.6) H0,1

∂̄
(Σ) =

Z0,1

∂̄
(Σ)

∂̄A0(Σ)
.

5.2. Presheaves and sheaves. Let M be a topological space. A presheaf F on M assigns

to each open set U ⊂M a set F (U), together with restriction maps

rV U ∶ F (V ) →F (U)
for each U ⊂ V, satisfying

i) rUU = Id

ii) rV U ○ rWV = rWU for each triple U ⊂ V ⊂W.
For an element s ∈ F (W ), we shall often write s∣U = rWU(s). When the sets F (U) are

endowed with an algebraic structure and the restriction maps are morphisms in the relevant

category, we say that F is a presheaf of abelian groups, rings, modules, etc.

Let U = {Uα} be an open cover of U ⊂ M. We say that F is a sheaf if it satisfies two

further axioms, for any such open cover:

iii) If f, g ∈ F (U) satisfy f ∣Uα = g∣Uα for each α, then f = g.
iv) If fα ∈ F (Uα) satisfy

fα∣Uα∩Uβ = fβ ∣Uα∩Uβ
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for each α,β, then there exists f ∈ F (U) such that

f ∣Uα = fα
for all α.

Example 5.2.1. The sheaf of continuous functions C 0
M assigns to each open set U ⊂M

the set of continuous functions on U ∶
C 0
M(U) = C0(U).

This clearly satisfies the axioms, and is a sheaf of rings.

Example 5.2.2. More generally, given any continuous map π ∶X →M between topological

spaces, define the sheaf of sections X of M by

X (U) = {σ ∶ U →X continuous ∣ π ○ σ = IdU} .
It is trivial to check that this is a sheaf of sets. If the fibers of X are endowed with additional

structure (such as if X is a vector bundle over M), then X is naturally a sheaf of abelian

groups (or modules over C0(M)).
The previous example can be recovered by taking X = M × R, and π the projection to

the first factor. Indeed, you will show on the homework that any sheaf is isomorphic to the

sheaf of sections of some map of topological spaces X →M.

Example 5.2.3. Consider the constant presheaf R, which assigns R(U) = R for each open

subset. If the space M = U ⊔V is disconnected, then this is a presheaf, but not a sheaf. For,

we have sections 0 ∈ R(U) and 1 ∈ R(V ), but no section exists in R(M) that restricts to

each.

To remedy the situation, define the sheaf of locally constant functions, R, by the

prescription

R(U) = C0(U,Rdiscrete).
By the previous example(s), R is clearly a sheaf. This is an example of sheafification—see

Definition 5.3.7 below.

We may similarly define locally constant sheaves for any abelian group, such as Z or C.

Example 5.2.4. On any smooth manifold, we have the following sheaves:

C∞, the sheaf of complex-valued smooth functions

C ∗, the sheaf of nonvanishing smooth functions, viewed as a sheaf of groups under multi-

plication

A k, the sheaf of smooth k-forms

Z p
d , the sheaf of closed k-forms.

The first and third are sheaves of modules over the C∞.

Example 5.2.5. On any complex manifold, we have also the following sheaves:

O, the sheaf of holomorphic functions

O∗, the sheaf of nonvanishing holomorphic functions, viewed as a sheaf of groups under

multiplication

Ωp, the sheaf of holomorphic p-forms, i.e., ∂̄-closed (p,0)-forms

A p,q, the sheaf of smooth (p, q)-forms
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Z p,q

∂̄
, the sheaf of ∂̄-closed (p, q)-forms

IV , the sheaf of holomorphic functions vanishing along an analytic subvariety V ⊂M.

All but the second are sheaves of modules over O.

5.3. Basic constructions in the sheaf category.

Definition 5.3.1. Given x ∈M, define the stalk of F at x by

Fx = {(U, s) ∣ x ∈ U, s ∈ F (U)} / ∼
where (U1, s1) ∼ (U2, s2) if and only if there exists x ∈ U ⊂ U1 ∩U2 such that

s1∣U = s2∣U .
Notice that any section s ∈ F (U) defines a canonical element sx ∈ Fx, for each x ∈ U.
Moreover, according to the sheaf axiom iii) above, these images uniquely determine the

section s.

Example 5.3.2. The stalk at x ∈M of the sheaf of holomorphic functions Ox is isomorphic

to the ring of germs of holomorphic functions On of §2.3.

Definition 5.3.3. Let F ,G be presheaves. A morphism (or map of sheaves

α ∶ F → G

is given by a map αU ∶ F (U) → G (U) for each U ⊂M, satisfying

(5.7) αU ○ rF
V U = rG

V U ○ α
for any U ⊂ V. We say that α is injective (resp. surjective) if the induced maps on stalks

αx ∶ Fx → Gx

are injective (resp. surjective), for each x ∈M.

Proposition 5.3.4. If F is a sheaf and α ∶ F → G is injective, then for any U ⊂ M, the

induced maps

αU ∶ F (U) → G (U)
are injective.

Proof. Let s ∈ F (U) be an element with α(s) = 0. We have αx(sx) = α(s)x = 0 for all x ∈ U.
But αx is injective by assumption, so we conclude that sx = 0 for all x ∈ U. By sheaf axiom

iii), this implies that s ≡ 0. �

Definition 5.3.5. We define the Kernel Kerα of a sheaf morphism by the prescription:

(Kerα)(U) = Ker (αU ∶ F (U) → G (U)) .
One can check using axiom (iv) that Kerα is a sheaf, and indeed there exists a canonical

injective map of sheaves

Kerα →F .

In other words, Kerα is a subsheaf of F .
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Example 5.3.6. Define the exponential map

exp ∶ O → O∗

f ↦ e2πif

This is a surjective map of sheaves, per Definition 5.3.3. However, notice that the element

z ∈ O∗(C ∖ {0})

is not the image of an element f ∈ O(C ∖ {0}). For, if z = e2πif , then dz/z = 2πidf. But then

2πi = ∫
S1

dz

z
= 2πi∫

S1
df = 0

by the fundamental theorem, which is a contradiction.

We conclude that a surjective map of sheaves is not necessarily surjective on sections over

each open set. One consequence is that the image presheaf im(α) is not necessarily a sheaf:

in other words, there can exist elements t ∈ G such that imFx ∋ tx for all x ∈ U, but for which

there exists no s ∈ F (U) with α(s) = t, violating axiom iv). This is a fundamental problem

in sheaf theory.

A first step toward remedying the problem is to make the following definition.

Definition 5.3.7. Given a presheaf F on M, we define the sheafification F + by declaring

that F +(U) consists of the set of all maps s → ⊔x∈UFx, with s(x) ∈ Fx, such that for all

x ∈ U there exists an open subset x ∈ V ⊂ U and a section t ∈ F (V ) such that ty = s(y) for

all y ∈ V.
Equivalently, a section s ∈ F +(U) is given by an open cover U = {Uα} of U, together with

sections sα ∈ F (Uα) for which

(5.8) sα∣Uα∩Uβ = sβ ∣Uα∩Uβ
modulo equivalence under refinements. From this perspective, it is clear that F + is a sheaf.

Moreover, one checks that the obvious map

F →F +

induces isomorphisms on all stalks:

Fx →F +
x .

Lastly, the sheafification has the property that if G is a sheaf, then any morphism α ∶ F → G
factors as F →F + → G , agreeing with α on stalks.

Definition 5.3.8. Define the image sheaf Imα = imα+. This is naturally a subsheaf of G .
Define the cokernel Cokerα to be the sheaf associated to the presheaf

U ↦ G (U)/α (F (U)) .
Definition 5.3.9. Define the sheaf of meromorphic functions M on M to be the sheaf

associated to the presheaf

U ↦ Frac(OU)
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where Frac(OU) is the fraction field of the ring of holomorphic functions on U. We denote by

M ∗ the multiplicative sheaf of meromorphic functions that are not identically zero on any

connected component of M.

5.4. The sheaf of divisors. This subsection gives another important example of a sheaf of

abelian groups.

Definition 5.4.1. A divisor D on an open set U ⊂ M is, by definition, a formal linear

combination

D = ∑
β

nβZβ,

where nβ ∈ Z, Zβ is an irreducible analytic subvariety of U, and the sum is locally finite. We

say that a divisor D is effective if nβ ≥ 0 for all β. The sheaf of divisors Div on M assigns

to each open set U ⊂M the abelian group Div(U) of divisors on U. In particular, the stalk

Divx is the group of finite formal linear combinations of irreducible analytic germs at x.

Given any meromorphic function f on U, we may define an element

div(f) ∈ Div(U)

as follows. By Theorem 2.3.1, for any open set x ∈ U, there exists V ∋ x such that

f = hn1
1 ⋯hnkk

gm1
1 ⋯gm``

on V, with hi and gi all relatively prime in Ox. We define the stalk of the map div by

div(f)x =
k

∑
α=1

nαZ0(hα) −
`

∑
β=1

nβZ0(gβ).

One can prove using Proposition 2.3.6 that this gives a well-defined, surjective map of sheaves

div ∶ M ∗ → Div.

Definition 5.4.2. A (global) divisor D on M is said to be a principal divisor if there

exists a global meromorphic function f on M such that

D = div(f).

5.5. Complexes and the global sections functor. We say that a sequence of maps of

sheaves

⋯ →Fi
αi→Fi+1

αi+1→ Fi+2 → ⋯
is a complex if αi+1 ○αi = 0 for all i. The complex is said to be exact if Kerαi+1 = Cokerαi
for each i. A short exact sequence is an exact sequence of the form

0→ E →F → G → 0.
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Example 5.5.1. Given any map of sheaves α ∶ F → G , the sequence

0→ Kerα →F
α→ G → Cokerα → 0

is exact.

Example 5.5.2. The exponential exact sequence is given on any complex manifold by

0→ Z→ O
exp→ O∗ → 0.

Example 5.5.3. Given a complex submanifold S, the ideal sheaf IS fits into a short exact

sequence:

0→IS → OM → OS → 0.

Here OS is the “extension by zero” of the sheaf of holomorphic functions on S, whose sections

are given by

IS(U) = OS(U ∩ S).
Example 5.5.4. The ordinary Poincaré Lemma implies that the complex of sheaves

0→ R→ C∞ d→ A 1 d→ A 2 → ⋯→ A n → 0

is a long exact sequence.

Example 5.5.5. The ∂̄-Poincaré Lemma implies that the complex of sheaves

0→ Ωp → A p,0 ∂̄→ A p,1 ∂̄→ A p,2 → ⋯→ A p,n → 0

is a long exact sequence.

Definition 5.5.6. Define the global sections functor Γ ∶ {sheaves on M} → Ab by

Γ(F ) = F (M).
As we have seen in Example 5.3.6 above, the global sections functor is not always right-exact,

i.e., from a short exact sequence of sheaves only gives an exact sequence of abelian groups:

(5.9) 0→ Γ (E ) → Γ (F ) → Γ (G ) .
Example 5.5.7. We may define the sheaf of principal parts PP as the cokernel of the

inclusion map

(5.10) 0→ O →M →PP → 0.

In the Riemann surface case, this is exactly the set of “Mittag-Leffler data.” We may

therefore reformulate the Mittag-Leffler Problem 5.1.1 as one of determining the image

Γ(M ) → Γ(PP).
Example 5.5.8. The sheaf of divisors Div on M fits into a short exact sequence

(5.11) 0→ O∗ →M ∗ div→ Div → 0.

We may therefore formulate the Cousin Problem 4.3.7 as one of determining the part of the

image

Γ(M ∗) → Γ(Div)
that is also effective; i.e., the space of effective principal divisors on M.
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6. Sheaf cohomology

Sheaf cohomology gives a way to remedy the failure of right-exactness of the global sections

functor. There are many equivalent definitions. Our approach will be to list a set of axioms

guaranteeing that the groups have the desired properties, and also defining them uniquely

up to isomorphism (if they exist). We will then give a construction of the groups and check

that they satisfy the axioms.

We shall assume henceforth that all sheaves are sheaves of abelian groups (possibly with

additional structure). We shall also assume always that M is paracompact, i.e., every open

cover has a locally finite subcover.

6.1. Axioms. A sheaf cohomology theory is an assignment of abelian groups H i(F ), for

i = 0, . . . ,∞, to any given sheaf F , together with certain maps between the groups, satisfying

several axioms.

Axiom 1. For each i = 0, . . . ,∞, the sheaf cohomology group H i(−) is a (covariant) functor

from the category of sheaves to the category of abelian groups.

Axiom 2. H0(−) = Γ(−).
Axiom 3. Given any short exact sequence of sheaves

0→ E →F → G → 0

on M, there exist maps δi∗ ∶H i(G ) →H i+1(E ), so that the sheaf cohomology groups form a

long exact sequence

(6.1) 0→ Γ(E ) → Γ(F ) → Γ(G ) δ
0∗
→ H1(E ) →H1(F ) →H1(G ) δ

1∗
→ H2(E ) → ⋯.

This assignment gives a functor from the category of short exact sequences of sheaves to

long exact sequences of abelian groups.

Before stating the remaining axioms, we need to make the following definitions.

Definition 6.1.1. A sheaf I on M is said to be faithful if, given any exact sequence of

sheaves

0→I →F → G → 0

on M, and any open set U ⊂M, the induced sequence of abelian groups

0→I (U) →F (U) → G (U) → 0

is exact. We say that a sheaf I is acyclic (for the given theory) if H i(I ) = 0 for all i ≥ 1.

Axiom 4. Any faithful sheaf I satisfies H1(I ) = 0.

Axiom 5. On a compact space M, any faithful sheaf is acyclic.

For a more detailed set of axioms, determining the sheaf cohomology groups up to canonical

isomorphism, see Warner, Foundations of differentiable manifolds and Lie groups, Bredon,

Sheaf Theory, or any of the many other books covering the subject.
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6.2. The Čech cohomology groups. We now give a concrete construction of sheaf coho-

mology, which we will take as our definition of the groups.

Let U be a locally finite open cover of M. Given a sheaf F on M, define the abelian groups

C0(U,F ) = ΠαF (Uα)
C1(U,F ) = Πα≠βF (Uα ∩Uβ)

⋮
Cp(U,F ) = Πα0≠⋯≠αpF (Uα0 ∩⋯ ∩Uαp)

⋮

We call Cp(U,F ) the group of p-cochains, an element of which is denoted

σ = {σI ∈ F (∩pk=0Uik)}#I=p+1.

Define the coboundary operator

δ ∶ Cp(U,F ) → Cp+1(U,F )

(δσ)i0⋯ip+1 =
p+1

∑
j=0

(−1)j σi0⋯ı̂j⋯ip+1 ∣Ui0∩⋯∩Uip .
(6.2)

For example, if τ = {τU} is a 0-cycle, we have

(δτ)UV = τV − τU .

If σ = {σUV } is a 1-cycle, we have

(δσ)UVW = σVW − σUW + σUV .

Notice that

(δ2τ)
UVW

= τW − τV − (τW − τU) + τV − τU = 0.

In general, we have

Proposition 6.2.1. δ2 = 0.

Proof. We calculate

(δ2σ)
i0⋯ip+2 =

p+2

∑
k=0

(−1)k (δσ)i0⋯ı̂k⋯ip+2

=
p+2

∑
k=0

(−1)k
⎛
⎝
k−1

∑
j=0

(−1)jσi0⋯ı̂j⋯ı̂k⋯ip+2 +
p+1

∑
j=k

(−1)jσi0⋯ı̂k⋯ı̂j+1⋯ip+2
⎞
⎠

= ∑
j<k

(−1)k+jσi0⋯ı̂j⋯ı̂k⋯ip+2 + ∑
k<j′

(−1)k+j′−1σi0⋯ı̂k⋯ı̂j′⋯ip+2

= 0

as claimed. �

The proposition shows that the Čech complex

C●(U,F ) ∶ 0→ C0(U,F ) δ→ C1(U,F ) δ→ C2(U,F ) → ⋯
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is a complex of abelian groups. We define the Čech cohomology groups of F with

respect to U as

(6.3) Ȟ i(U,F ) = hi (C●(U,F )) = Ker (δ ∶ Ci(U,F ) → Ci+1(U,F ))
Im (δ ∶ Ci−1(U,F ) → Ci(U,F )) .

The elements of the numerator of the RHS of (6.3) are called Čech cocycles, and the elements

of the denominator are called Čech coboundaries.

To satisfy all of the required axioms, we must remove the dependence on the open cover

U, which can be done as follows. We say that U ′ = {U ′
β} is a refinement of the open cover

U if, for each β, we have

(6.4) U ′
β ⊂ Uα

for some some α. For each β, we may choose ϕ(β) = α per (6.4), and define a map

ρϕ ∶ Cp(U,F ) → Cp(U ′,F )
(ρϕ(σ))β0⋯βp = σϕ(β0)⋯ϕ(βp)∣Uβ0∩⋯∩Uβp .

This is clearly a chain map C●(U,F ) → C●(U ′,F ), hence gives a map on cohomology

(6.5) ρ ∶Hp(U,F ) →Hp(U ′,F ).
One can check that ρ is independent of the choice of map ϕ on the indexing set of the

refinement.

Definition 6.2.2. The p’th sheaf cohomology group of F is defined to be the direct limit

Hp(F ) = lim
Ð→
U

Ȟp(U,F )

over refinements of open covers of M. This simply means that we consider Čech classes for

all open covers, where two elements are equivalent if they agree under a common refinement.

Lemma 6.2.3. Let U be a locally finite open cover of M. Given an open set V ⊂ M, let

V = U ∪ {V }.
Suppose that F is a sheaf on M such that the restriction F ∣V satisfies

Ȟp(U, F ∣V ) = 0

for all p ≥ 1. Then

Ȟp(U,F ) ≅ Ȟp(V ,F )
for all p ≥ 1.

Proof. By the definition of the Čech complex above, we have an exact sequence of complexes:

0→ C●−1 (U, F ∣V ) → C● (V ,F ) → C● (U,F ) → 0.

Since

C●−1 (U, F ∣V ) ∶ 0→F (V ) → C0 (U ∣V , F ∣V ) → ⋯
is exact by assumption, the Snake Lemma yields the stated identity of Čech groups. �

Theorem 6.2.4. The groups Hp(−) of Definition 6.2.2 satisfy Axioms 1-5 of the previous

section.
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Proof. Axiom 1 is clear from the definition.

For Axiom 2, given any open cover U, we in fact have

Ȟ0(U,F ) = {{gα} ∣ gα − gβ = 0 on Uα ∩Uβ}
= F (M) = Γ(F )

by the sheaf axioms iii) and iv). This persists in the direct limit.

For Axiom 3, given a short exact sequence of sheaves

0→ E
α→F

β→ G → 0

we obtain an exact sequence between the Čech complexes:

(6.6) 0→ C●(U,E ) α●→ C●(U,F ) β●→ C●(U,G ).

It is often possible to choose the cover U so that the maps β● are also surjective, i.e., (6.6)

forms an exact sequence with → 0 on the right. In this case, the existence of the connecting

maps δ∗ forming the long exact sequence follows directly from the Snake Lemma.

In general, the connecting maps δ∗ can be defined by passing to a refinement, as follows.

Because the sheaf map β is surjective, given a class [σ] ∈H i(U,G ), it is possible to choose a

refinement U ′ such that there exists τ ∈ Ci(U ′,F ) with β(τ) = σ∣Ci(U ′,G ) . Since σ is a Čech

cocycle, we have

β(δ(τ)) = δ(β(τ)) = δ(σ) = 0.

Therefore δ(τ) = α(µ), for some µ ∈ Ci+1(U ′,E ). We then have

α(δ(µ)) = δ(α(µ)) = δ2(τ) = 0.

But since α is injective, we conclude that δ(µ) = 0, and [µ] represents a class in hi (C●(U ′,E )) =
Ȟ i(U ′,E ). We then define

δ∗([σ]) = [µ] .
Imitating the proof of the Snake Lemma, one can check that this class is independent of

the various choices of cocycle representatives, and gives the required long exact sequence of

cohomology groups.

For Axiom 4, we argue as follows; let I be a faithful sheaf. Given an open cover U, we

define a “sheafy” Čech complex

0→ C 0(U,I ) → C 1(U,I ) → C 2(U,I ) → ⋯

where

C 0(U,I ) = Πα I ∣Uα
C 1(U,I ) = Πα≠β I ∣Uα∩Uβ

⋮

and the differentials are defined as in (6.2).

We claim that

(6.7) 0→I → C 0(U,I ) → C 1(U,I ) → C 2(U,I ) → ⋯
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is an exact sequence of sheaves. To see this, let x ∈M and consider the induced sequence on

stalks:

0→Ix → C 0(U,I )x → C 1(U,I )x → ⋯
Let σ = (σα0⋯αp) ∈ Ker δx. Choosing an index β such that Uβ ∋ x, define the stalk of a cochain

at x by

τα0⋯αp−1 = σβα0⋯αp−1 .

Then τ is a well-defined element of C p−1(U,I )x, which one can check satisfies δxτ = σ.
Because I is a faithful sheaf and Γ(C p(U,I )) = Cp(U,I ), we get from (6.7) a short

exact sequence of groups:

0→ Γ(I ) → C0(U,I ) → C1(U,I ) → Ker (C1(U,I ) → C2(U,I )) → 0.

This shows that Ȟ1(U,I ) = 0 for all open covers U, and therefore H1(I ) = 0.

To verify Axiom 5, assume that the base space M is compact. This allows us to restrict

to finite open covers (after taking refinements) and argue by induction. The result is trivial

for a cover with one element. Assume that the result has been established for all covers with

n elements, and let V be a cover of M with n + 1 elements. Choosing any open set W ∈ V ,
write V = U ∪ {W} and U = ∪Uα. We have an exact sequence of sheaves

0→I → I ∣U ⊕ I ∣W → I ∣U∩W → 0.

Since I is faithful, we obtain an exact sequence of Čech complexes:

(6.8) 0→ C● (V ,I ) → C● (V , I ∣U) ⊕C● (V , I ∣W ) → C● (V , I ∣U∩W ) → 0.

But for the faithful sheaves I ∣U , I ∣W , and I ∣U∩W , the cover V has at least one “redun-

dant” open set. By Lemma 6.2.3 and the induction hypothesis, we get that the cohomology

groups Ȟp(V , I ∣U), Ȟp(V , I ∣W ), and Ȟp(V , I ∣U∩W ) are all zero, for p ≥ 1. Applying the

Snake Lemma to (6.8), we conclude that Ȟp(V ,I ) = 0 for all p ≥ 2, as required. �

6.3. Resolutions. Underlying the Čech definition of sheaf cohomology is the complex of

sheaves (6.7), which is an example of the following. We say that a complex

(6.9) A ● ∶ 0→ A 0 → A 1 → A 2 → ⋯
is a resolution of a sheaf F if there exists an injective map F → A 0 such that the complex

(6.10) 0→F → A 0 → A 1 → ⋯
is exact. If the sheaves in the resolution have a certain property, for instance, are acyclic,

then (6.9) is said to be an acyclic resolution.

Theorem 6.3.1. Given an acyclic resolution A ● of a sheaf F , we have

(6.11) Hp(F ) = hp (Γ (A ●))
for p ≥ 0. In other words, the sheaf cohomology groups are equal to the cohomology groups of

the complex of global sections of an acyclic resolution.



COMPLEX MANIFOLDS (MTH 935) 69

Proof. For i ≥ 1, let K i = Ker (A i → A i+1) . Then K 0 = F , and we have exact sequences

of sheaves

(6.12) 0→K i → A i →K i+1 → 0

for each i ≥ 0. Applying the long exact sequence in cohomology to (6.12), for i = 0, gives

0→H0(F ) →H0(A 0) →H0(K 1)
→H1(F ) → 0→H1(K 1)
→H2(F ) → 0→H2(K 1)
→H3(F ) → 0→ ⋯.

This gives

H0(F ) = Ker (Γ(A 0) → Γ(A 1)) = h0(Γ(A ●))
and

H1(F ) = h1 (Γ(A ●))
which is the desired result, for p = 0,1.

The long exact sequence corresponding to the i’th short exact sequence in (6.12) reads

0→H0(K i) →H0(A i) →H0(K i+1)
→H1(K i) → 0→H1(K i+1)
→H2(K i) → 0→ ⋯

This gives

H1(K i) ≅ hi+1(Γ(A ●))
and

Hp(K i) ≅Hp−1(K i+1).
for each p ≥ 2. Therefore, we have

Hp(F ) ≅Hp(K 0) ≅Hp−1(K 1)
≅Hp−2(K 2)
⋮

≅H1(K p−1)
≅ hp(Γ(A ●))

(6.13)

as desired. �

Corollary 6.3.2. Given a faithful resolution I ● of a sheaf F over a compact base space

M, we have

Hp(F ) = hp(Γ(I ●))
for p ≥ 0.

Proof. By Axiom 5, a faithful resolution over a compact base is acyclic. �
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Remark 6.3.3. It follows from the previous corollary that, at least for any sheaf that admits

a faithful resolution, the sheaf cohomology groups over a compact space are determined up

to isomorphism by the axioms. An alternative approach (originating in the famous “Tohoku

paper” of Grothendieck) is to define the sheaf cohomology groups directly using a resolution

by sufficiently flexible sheaves. This puts sheaf cohomology in the more general framework

of “right-derived functors;” the reader may consult Hartshorne, Ch. 3.

As another application of Theorem 6.3.1, we can do away with the need for taking direct

limits over the open covers U in the definition of Čech cohomology.

Corollary 6.3.4 (Leray Theorem). Let F be a sheaf, and let U be an open cover such that

for any choice of indices α0, . . . , αp, the restriction

F ∣Uα0∩⋯∩Uαp
is acyclic. Then

Hp(F ) = Ȟp(U,F ).

Proof. Under this assumption, the sheafy Čech complex (6.7) is an acyclic resolution of F .

The complex of abelian groups obtained by taking global sections therefore computes the

sheaf cohomology; but this is just the Čech complex with respect to the open cover U. �

6.4. Fine resolutions and the DeRham and Dolbeault Theorems. We will now de-

scribe the class of faithful/acyclic sheaves that is most relevant to our situation. A sheaf of

abelian groups F is said to be fine if, for any open set U ⊂M and locally finite open cover

U of U, there exist maps ηα ∶ F (Uα) →F (U) such that:

For any τ ∈ F (Uα), the support of ηα(τ) is contained in Uα,
6 and;

For any σ ∈ F (U), we have

∑
α

ηα(σ∣Uα) = σ.

Proposition 6.4.1. The sheaf A p (resp. A p,q) on a smooth (resp. complex) manifold is

fine.

Proof. Let U ⊂ M and U be a locally finite cover of U. Choose a partition of unity {ρα} ∈
C0 (U,C∞) subordinate to U, and define

ηα(τ) = ρατ
for τ ∈ A p(,q)(Uα). Then ηα(τ) is a global section of A p(,q) supported on Uα, and we have

∑
α

ηα(σ∣Uα) = ∑
α

ρα (σ∣Uα)

= ∑
α

(ρασ)

= (∑
α

ρα)σ = σ

6The support of a section σ is the set of all x such that σx ≠ 0.
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as desired. �

Theorem 6.4.2. A fine sheaf F is faithful and acyclic.

Proof. Given an exact sequence 0→F →H → G → 0 of sheaves, we claim that the induced

sequence

0→F (U) →H (U) → G (U) → 0

is exact. For µ ∈ G (U), we have an open cover U and elements σα ∈ H (Uα) such that

σα ↦ µ∣Uα . Let

σαβ = σβ − σα ∈ F (Uα ∩Uβ)
and let

τα = ∑
β

ρβσβα,

which is a well-defined element of F (Uα). Then

τγ − τα = ∑
β

ρβ (σβγ − σβα)

= ∑
β

ρβσγα

= ∑
β

ρβσγα

= σα − σγ
on Uα ∩ Uγ. Therefore {σα + τα} glues to form a well-defined section of F (U) that maps to

µ ∈ H (U). This shows that F is faithful, which implies that it is acyclic if the base M is

compact.

To show that F is acylic in general, one can use a similar trick: given a cocycle σ, one

defines

(6.14) τα0⋯αp−1 = ∑
β

ρβσβα0⋯αp−1

to obtain an element with δτ = σ. �

Corollary 6.4.3 (DeRham Theorem). For a smooth manifold M, we have

(6.15) Hp(RM) ≅Hp
dR(M)

where RM is the locally constant sheaf on M.

Proof. Let A p
R be the sheaf of smooth real-valued p-forms as above. By the Poincaré Lemma,

the complex

0→ A 0
R

d→ A 1
R

d→ A 2
R → ⋯→ A n

R → 0

is a resolution of the locally constant sheaf R. By Proposition 6.4.1, this is a fine resolution,

which is acyclic by Theorem 6.4.2. By Theorem 6.3.1, the sheaf cohomology of R is isomor-

phic to the cohomology of the global sections of this complex, which are simply the DeRham

cohomology groups of M. �
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Remark 6.4.4. Strictly speaking, the DeRham Theorem asserts the equivalence between

singular cohomology and DeRham cohomology of a manifold. See p. 42 of Griffiths and

Harris for a simple proof that Hp(Z) computes CW cohomology, which is equal to singular

cohomology (as you know from Hatcher, presumably).

Corollary 6.4.5 (Dolbeault Theorem). For a complex manifold M, we have

(6.16) Hq(Ωp
M) ≅Hp,q

∂̄
(M).

Proof. By the ∂̄-Poincaré Lemma, the complex

0→ A p,0 ∂̄→ A p,1 ∂̄→ A p,2 → ⋯→ A p,n → 0

is a fine resolution of the sheaf of holomorphic p-forms on M. As in the proof of Corollary

6.4.3, the global sections compute sheaf cohomology. �

Corollary 6.4.6. If M is a complex manifold of dimension n, then

Hq(Ωp
M) = 0, q > n.

6.4.1. Solution of the Cousin problem. Consider the long exact sequence in cohomology

associated to the exponential sheaf sequence (Example 5.5.2) on Cn ∶

(6.17) ⋯ →Hq(OCn) →Hq(O∗
Cn) →Hq+1(Z) → ⋯.

By the Dolbeault Theorem and the Poincaré Lemma, we have

Hq(OCn) =H0,q

∂̄
(Cn) = 0

for q ≥ 1. By the DeRham Theorem, we have Hq+1(Z) = 0 on Cn. Therefore, for q ≥ 1, (6.17)

implies

Hq(O∗
Cn) = 0.

Now, consider the long exact cohomology sequence associated to (5.11):

⋯ → Γ(M ∗) div→ Γ(Div) →H1(O∗) = 0.

This shows that the map div is surjective on global sections. Hence, every divisor on Cn

is equal to div of a global meromorphic function; in particular, an effective divisor is the

vanishing set of an entire holomorphic function.

6.5. Calculations using Čech cohomology. We can now use the Leray Theorem in con-

junction with the Dolbeault Theorem to make a few cohomology calculations.

Theorem 6.5.1.

Hq (Ωp
CP1) =

⎧⎪⎪⎨⎪⎪⎩

C p = q = 0 or 1

0 otherwise.
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Proof. As for any compact complex manifold, we have H0(OCP1) = C.
Choose the standard cover {U0, U1} for CP1, with coordinate z on U0 ⊂ CP1 and w = 1/z

on U1 ⊂ CP1. We have H0(OCP1) = H1,0

∂̄
(CP1) = 0 by Problem 4 of HW # 3, or as follows:

let

α∣U0
=

∞
∑
i=0

aiz
idz

be a holomorphic 1-form on U0. Then on U0, we have dz = −dw/w2, which gives

α∣U1
=

∞
∑
i=0

aiw
−i−2dw.

This is holomorphic if and only if ai ≡ 0 for all i.

Now, notice that U0 ∩ U1 = C∗, so by the Dolbeault Theorem7 and the general version of

the Poincaré Lemma (Theorem 3.5.4), we have

Hq(Ωp∣U0∩U1
) ≅Hp,q

∂̄
(C∗) = 0.

Therefore {U0, U1} is an acyclic cover of CP1. By the Leray Theorem, we can use it to

compute the remaining cohomology groups.

A Čech 1-cochain for OCP1 is represented by a holomorphic function h ∈ Hol(C∗). By

Corollary 1.5.2, there exist P (z) ∈ Hol(U0) and Q(w) ∈ Hol(U1) such that

h = P +Q

Therefore, h = δ{P,Q} is a Čech coboundary. We conclude that

H1(OCP1) = 0.

Given a holomorphic 1-form h(z)dz, with h(z) ∈ Hol(C∗), representing a 1-cochain for Ω1
CP1 ,

we may write

h(z) =
∞
∑
i=−∞

aiz
i

uniquely by Laurent expansion. The image under δ of a 0-cochain

{
∞
∑
i=0

biz
idz,

∞
∑
i=0

ciw
idw}

is
∞
∑
i=0

biz
idz −

∞
∑
i=0

ciz
−2−idz.

Therefore h(z) is a coboundary if and only if a−1 = 0, which gives

H1(Ω1
CP1) = C

as claimed. �

Proposition 6.5.2. Hq(OCPn) = 0, q ≥ 1.

7Strictly speaking, we are not using the Dolbeault Theorem as stated, but rather the fact that A p,●
∣U0∩U1

is a fine resolution of Ωp
∣U0∩U1

(over M).
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Proof. We will only prove that H1(OCP2) = 0; the general case requires more bookkeeping.

Write

CP2 = {[X0,X1,X2]}.
Choose the standard cover U = {U0, U1, U2}, which is acyclic as above. We then have U0 ≅
C∗ ×C and U0 ∩ U1 ≅ (C∗)2, etc. Any holomorphic function on these sets has a convergent

Laurent series in the local coordinates, which are ratios of the homogeneous coordinates Xi.

So for example, any holomorphic function f on U0 has a unique Laurent expansion of the

form

f =
∞
∑
i=−∞

∑
i+j+k=0
j,k≥0

aijkX
i
0X

j
1X

k
2 .

A 1-cocycle σ is therefore given by

σ01 = ∑
i+j+k=0
k≥0

aijkX
i
0X

j
1X

k
2

σ12 = ∑
i+j+k=0
i≥0

bijkX
i
0X

j
1X

k
2

σ20 = ∑
i+j+k=0
j≥0

cijkX
i
0X

j
1X

k
2 .

(6.18)

We may assume without loss of generality that a000 = b000 = c000 = 0. We then have

0 = (δσ)012 = ∑
i,j,k

(aijk + bijk + cijk)X i
0X

j
1X

k
2 .

Since bijk = cijk = 0 if i, j < 0, we conclude that aijk = 0; so aijk = 0 unless either j, k ≥ 0 or

i, k ≥ 0. Similar conclusions hold for b and c. The expression reduces to

0 = ∑
i<0,j,k≥0
i+j+k=0

(aijk + cijk)X i
0X

j
1X

k
2 + ∑

j<0,i,k≥0
i+j+k=0

(aijk + bijk)X i
0X

j
1X

k
2 + ∑

k<0,i,j≥0
i+j+k=0

(bijk + cijk)X i
0X

j
1X

k
2 .

We conclude

aijk = −cijk, i < 0

bijk = −aijk, j < 0

cijk = −bijk, k < 0.

(6.19)

We can let

τ0 = ∑
i<0

aijkX
i
0X

j
1X

k
2

τ1 = ∑
j<0

bijkX
i
0X

j
1X

k
2

τ2 = ∑
k<0

cijkX
i
0X

j
1X

k
2

which define holomorphic functions on U0, U1, U2, respectively. One checks from (6.19) that

the 0-cochain τ = (τi)i=0,1,2 satisfies

δτ = σ.
We have shown that Ȟ1(U,OCP2) = 0, and the result follows from the Leray Theorem. �
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Remark 6.5.3. With more work (which we may carry out later), one can show

Hq (Ωp
CPn) =

⎧⎪⎪⎨⎪⎪⎩

C p = q ≤ n
0 otherwise.

This result also follows from the Hodge Theorem, which we would prove next semester.

Example 6.5.4. Let M = C2 ∖ {0}. Take the cover U1 = {z1 ≠ 0}, U2 = {z2 ≠ 0}, which is

acyclic as before. Then O(U1 ∩U2) consists of Laurent series

(6.20) f(z1, z2) =
∞
∑

m,n=−∞
amn(z1)m(z2)n

but, for example, O(U1) consists of series

(6.21) f(z1, z2) = ∑
m≥0

bmn(z1)m(z2)n.

Therefore all the terms with m,n < 0 in (6.20) represent cohomology classes, and

(6.22) dimH1(OM) = ∞.
By contrast, according to Hartogs’ Theorem, every class in H0(OM) extends to H0(OC2).

6.6. The Euler characteristic. Recall the Rank-Nullity Theorem, which states that for an

exact sequence

0→ A→ B → C → 0

of finite-dimensional vector spaces, we have

(6.23) dimB = dimA + dimC.

Given a complex of finite-dimensional vector spaces

(6.24) C● ∶ 0→ Cn αn→ Cn+1 αn+1→ ⋯→ ⋯ αm−1
→ Cm → 0

we obtain
m

∑
i=n

(−1)ihi(C●) = ∑(−1)i (dim kerαi − dim im αi−1)

= ∑(−1)i (dim kerαi + dim im αi)
= ∑(−1)i dimCi.

(6.25)

The best-known instance of this formula is when (6.24) is the CW chain complex of a finite

CW complex M. Then (6.25) is the topological Euler characteristic

χtop(M).
The right-hand side of (6.25) is given in terms of the concrete data of the CW cochain

complex C●, but the left-hand side is given in terms of cohomology groups, which depend

only on the topology of M. The conclusion is that χtop(M), which is trivial to compute from

a particular CW structure, is a homotopy invariant.

We now make the following generalization to sheaves.
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Definition 6.6.1. Given a sheaf F of vector spaces on a topological space M such that

dimH i(F ) < ∞ for all i and H i(F ) = 0 for i sufficiently large, define the (sheaf) Euler

characteristic

(6.26) χ(F ) = ∑(−1)i dimH i(F ).
According to the DeRham Theorem, for a manifold M of finite topological type (and indeed

for any finite CW complex), we have

χtop(M) = χ (RM)
where RM is the locally constant sheaf on M ; so this is a strict generalization of the topo-

logical Euler characteristic.

We have the following generalization of the Rank-Nullity Theorem.

Lemma 6.6.2. Given an exact sequence of sheaves

0→ E →F → G → 0

each with finite Euler characteristic, we have

χ(F ) = χ(E ) + χ(G ).

Proof. The long exact sequence in sheaf cohomology reads:

(6.27) 0→H0(E ) →H0(F ) →H0(G ) δ
0∗
→ H1(E ) →H1(F ) →H1(G ) δ

1∗
→ H2(E ) → ⋯.

Applying (6.24), since the sequence is exact, we obtain

0 =H0(E ) −H0(F ) +H0(G ) −H1(E ) +H1(F ) −H1(G ) +⋯
= (H0(E ) −H0(F ) +H0(G )) − (H1(E ) −H1(F ) +H1(G )) +⋯
= χ(E ) − χ(F ) + χ(G )

as desired. �

As in the topological case, the Euler characteristic of a sheaf is often easier to compute

than the individual cohomology groups. It is also sufficient for many applications.
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7. Holomorphic vector bundles

The constructions of the last two sections are most commonly applied to sheaves of sections

of holomorphic vector bundles, which we now introduce. We focus on theory in this section,

and will defer any nontrivial concrete examples to §8.

7.1. Definitions. Recall that a (topological) vector bundle of rank r is given by a surjec-

tive map π ∶ E →M of topological spaces, where each fiber Ex = π−1(x) has the structure of

an r-dimensional complex vector space. For each x ∈M, we require the existence of a neigh-

borhood U ∋ x and a local frame of sections {ei}ri=1 of π over U—meaning that {ei(x)}ri=1

forms a basis for each fiber Ex, and for any V ⊂ U, the space of sections of π over V is given

by

(7.1) {
r

∑
i=1

siei∣V ∣ {si}ri=1 ∈ C0
C(V )r } .

A vector bundle of rank r = 1 is called a line bundle.

If E and M are smooth (resp. complex) manifolds, and all the objects mentioned are

smooth (resp. holomorphic), then we say that E is a smooth (resp. holomorphic)

vector bundle.

Example 7.1.1. The trivial bundle of rank r over M is given by the Cartesian product

M ×Cr. If M is a complex manifold, this is naturally a holomorphic vector bundle.

Given two smooth (resp. holomorphic) vector bundles E and F over M, a bundle map

ϕ ∶ E → F is a smooth (resp. holomorphic) map such that ϕ(Ex) ⊂ Fx, for all x, and ϕ

induces a complex-linear map ϕ(x) ∶ Ex → Fx with rkϕ(x) independent of x. Two bundles

are isomorphic if this map has an inverse, which is equivalent to being a linear isomorphism

on each fiber (exercise).

Now, let U = {Uα} be an open cover of M by coordinate charts, over which E has local

frames {eαi }ri=1. Notice that for each α, the map

Uα ×Cr → E∣Uα

(x, (z1, . . . , zr)) ↦
r

∑
i=1

ziei(x) ∈ Ex
(7.2)

is a bundle isomorphism over Uα, also known as a local trivialization of E. For this reason,

the condition in Definition 7.1 above is known as local triviality.

Applying (7.1) with U = Uβ, V = Uα, and s = eαj , we may write

(7.3) eαj ∣Uα∩Uβ = ∑
i

(gαβ)ij eβi

in order to define the transition functions (gαβ)ij on Uα ∩Uβ. For any section

s
loc= ∑

j

(sα)j eαj

we get from (7.3) the transformation law

(7.4) (sβ)i = ∑
j

(gαβ)i j (sα)j .
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By definition, the transition functions satisfy the cocycle conditions8

(7.5) gβγ ⋅ gαβ = gαγ
on Uα ∩Uβ ∩Uγ, where ⋅ denotes matrix multiplication.

Conversely, given any collection of invertible matrix-valued functions satisfying (7.5), one

can define a vector bundle E →M by gluing together the trivial bundles Uα ×Cr according

to (7.4), which is an equivalence relation. Moreover, if the transition functions (gαβ)i j are

holomorphic on each coordinate chart, then E will be a holomorphic vector bundle.

We now come to the following meta-theorem: any canonical construction that can be

made with vector spaces carries over naturally to (holomorphic) vector bundles. In each

case, the naturality of the construction will imply that the transition functions satisfy the

cocycle condition (7.5), making the bundle well-defined.

Examples 7.1.2. Let E and F be vector bundles over M. Let U,V ⊂ M be open subsets

over which both are trivial, and denote the respective transition functions by g(x) and h(x),
for x ∈ U ∩ V.
1. The direct sum E ⊕ F has fiber Ex ⊕ Fx, and transition function

⎛
⎝
g(x) 0

0 h(x)
⎞
⎠
.

2. The dual bundle E∗ has fiber E∗
x = HomC(Ex,C), and transition function (gT )−1

. A

bundle map E → F induces a bundle map F ∗ → E∗ of the same (constant) rank.

3. The tensor product E ⊗ F has fiber Ex ⊗C Fx, with transition function g(x) ⊗ h(x).
4. The alternating product ∧kE ⊂ ⊗kE has transition function ∧kg(x). In particular, we

define the determinant line bundle

detE = ∧rkEE

with transition function given by det g(x). In this case, (7.5) follows from multiplicativity of

the determinant of a matrix.

5. Given a subbundle E ⊂ F (i.e. the image of an injective bundle map), we may define the

quotient bundle F /E, with fiber Fx/Ex, as follows. After possibly shrinking our coordinate

neighborhoods, we may choose a frame for F of the form

{e1, . . . , er, er+1, . . . , es}
where the first r sections are a frame for E. Then the transition function is necessarily of

the form

(7.6) h(x) =
⎛
⎝
g(x) `(x)

0 k(x)
⎞
⎠
.

We may take the (s − r) × (s − r) matrix k(x) as the transition function for F /E, since

the cocycle condition on h implies it for k. Moreover, if both E and F are holomorphic,

8Notice the similarity with (5.2); see also Theorem 8.2.1 below.
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then the quotient is holomorphic by this construction, independently of the choices involved

(exercise).

There is another construction of central importance in the study of vector bundles: given

a map f ∶ N →M and a bundle E →M, define the pullback bundle

(7.7) f∗E = E ×M N → N.

The fibers are

(f∗E)x = Ef(x)
for x ∈ N. Given local frames (Uα,{eαi }) for E, local frames for f∗E may be given by

(f−1(Uα),{eαi (f(x))}ri=1) .

Lastly, given a holomorphic vector bundle π ∶ E →M, we denote its sheaf of holomorphic

sections, in the sense of Example 5.2.2, by E . We shall often abuse notation and denote the

holomorphic bundle itself by E , since this sheaf carries the same data. When we refer to a

holomorphic bundle E , we will write E for the underlying smooth vector bundle. We shall

also sometimes use the notation

Γ(U,E) = E (U)
to denote the space of holomorphic sections of E over an open set U.

Remark 7.1.3. One has to be slightly careful with sheaves of sections when discussing

canonical operations. For instance, the sheaf of sections of E ⊗C F is the tensor product

E ⊗OM F

in the category of sheaves of OM -modules, i.e., the sheaf associated to the presheaf U ↦
E (U)⊗O(U)F (U). This means that E⊗F may have more global sections than just Γ(E )⊗Γ(O)
Γ(F ); in fact, this is a key feature of the subject.

There is also a potential for confusion between the fiber Ex of a vector bundle at x, which

is an r-dimensional complex vector space, and the stalk Ex of the corresponding sheaf of

sections, which is a free module of rank r over the local ring On,x. At least it turns out that

any sheaf with the latter property is the sheaf of sections of a vector bundle—see Huybrechts,

Proposition 2.2.19.

7.2. The (co)tangent bundle and the (co)normal sequence. Given a complex mani-

fold M, the (holomorphic) tangent bundle TM consists of the collection of all tangent

spaces {TxM ∣ x ∈ M}, with local trivializations inherited from the coordinate charts. Re-

call that TxM is canonically isomorphic to the holomorphic tangent space T
(1,0)
x M ; in a

coordinate chart U = {z1, . . . , zn}, we therefore have the local frame

{ ∂

∂z1
, . . . ,

∂

∂zn
}
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for TM. Given a different coordinate chart V = {w1, . . . ,wn}, the transition function for TM

on U ∩ V is given by the holomorphic Jacobian matrix

(∂w
i

∂zj
)
i,j=1,...,n

.

In this way, the tangent bundle TM canonically inherits the structure of a holomorphic

vector bundle from the complex manifold M.

Similarly, the cotangent bundle T ∗M = TM∗ is holomorphic, as are the exterior powers

ΛkT ∗M. The sheaf of sections of the latter is of course Ωk
M , the sheaf of holomorphic k-forms

studied above. The canonical line bundle of M is defined to be

KM = Ωn
M = detT ∗M.

The canonical bundle is of central importance in complex geometry.

Now, given a complex submanifold S ⊂M, the tangent bundle TS has a natural inclusion

into TM over points of S. We define the normal bundle via the following exact sequence

of holomorphic vector bundles on S ∶

(7.8) 0→ TS → TM ∣S → NS → 0.

(See Example 7.1.2.5 for the definition of the quotient as a holomorphic bundle.) This is

known as the normal sequence. Taking duals, we obtain the conormal sequence

(7.9) 0→ N∗
S → T ∗M ∣S → T ∗S → 0

which is again an exact sequence of holomorphic vector bundles on S, by Example 7.1.2.2

above.

Notice that, given any holomorphic bundle E and a global section s ∈ Γ(E ), the vanishing

set Z(s) is an analytic subvariety of M. For, in any coordinate chart Uα over which E is

trivial, we have

Z(s) ∩Uα = Z ((sα)1, . . . , (sα)r) .
Since the local components are holomorphic (by definition), and {Uα} cover M, this is indeed

analytic, according to the definition in §4.3. We say that a global section s ∈ Γ(E ) vanishes

transversely if S = Z(s) is a complex submanifold defined by the local components of s,

per Definition 4.3.1.

The relationship between holomorphic bundles and subvarieties will be explored further

in §8.

7.3. Finiteness theorem. We now come to the following fundamental theorem.

Theorem 7.3.1. For a holomorphic vector bundle E over a compact complex manifold, we

have

dimH i(E ) < ∞
for all i ≥ 0.
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This result can be approached either via Čech or via Dolbeault cohomology. Although

the Dolbeault approach is more powerful, it requires PDE techniques that we would not

develop until next semester. The Čech approach requires only complex variables and a bit

of functional analysis, and has the virtue of generalizing to coherent analytic sheaves (see

Gunning and Rossi).

For starters, we can prove the i = 0 case of the Theorem.

7.3.1. Proof of finiteness of H0(E ). We make H0(E ) into a Hilbert space as follows. Choose

a finite open cover U = {Uα} of M over which E is locally (holomorphically) trivialized, as

well as a refinement V = {Vα} with the property that

Vα ⋐ Uα

for each α. Denote by zα ∶ Uα → Cn the local coordinate on Uα, whose image we assume to be

a bounded domain; we may also assume that all the transition functions of E are bounded.

Given two 0-cocycles f = {f iα}, g = {giα} ∈ H0(V ,E ) ≅ H0(E ) (i.e. global sections of E ),

define the Hermitian inner product:

(f, g) = ∑
α,i
∫
Vα
f iα(zα)giα(zα)dV olzα .

This inner product is finite: because H0(V ,E ) ≅ H0(U,E ), each fα is the restriction of a

holomorphic function on Uα, and therefore has finite L2 norm on Vα. By Corollary 1.4.4,

H0(E ) is a Hilbert space.

We claim that the unit ball in H0(E ) is relatively compact, by the following argument.

Given a sequence fk of cocycles in H0(E ) for which ∥fk∥ = 1 in the above norm, each fk is

represented by a cocycle {(fk)iα} ∈ C0(U,E ) for which (fk)iα also has uniformly bounded L2

norm on the chart Uα (because, modulo transition functions, fkα is equal to fkβ in any over-

lapping chart). By Montel’s Theorem 1.4.1, there exists a subsequence of fk that converges

uniformly on Vα, for each α, and this subsequence converges with respect to the above inner

product. This establishes the claim.

It is clear (by choosing an orthonormal basis) that a Hilbert space whose unit ball is

relatively compact is finite-dimensional. �

7.3.2. Digression on Fréchet spaces. The proof for higher cohomology groups is similar in

spirit, but requires some deeper functional analysis. It is necessary to make the space of Čech

cochains into a topological vector space, which is most naturally done within the following

framework. We follow Appendix B of Gunning and Rossi.

Let {pn} be a sequence of pseudonorms on a vector space X, i.e., norms that are allowed

to have pn(x) = 0 for some nonzero x ∈ X. We define a basis of open neighborhoods of X

from the open balls with respect to the pseudonorms pn. So, a subset U ⊂ X is open if and

only if for each x ∈ U, there exist n, δ > 0 such that the δ-neighborhood of x with respect to

pn is contained in U. In particular, a subsequence converges in X if and only if it converges

with respect to every pseudonorm pn.
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Definition 7.3.2. We say that the vector spaceX with the topology defined by the pseudonorms

{pn} is a Fréchet space if pn(x) = 0∀n⇒ x = 0 (i.e. X is Hausdorff), and X is complete

in the topology defined above.

Examples 7.3.3. 1. The space of C∞ functions is often considered as a Fréchet space,

defined by the Ck norms. Completeness follows from the Arzela-Ascoli theorem.

2. Given an open set U ⊂ M in a complex manifold, we make the space of holomorphic

functions O(U) into a Fréchet space based on the collection of pseudonorms defined by

∥f∥K = sup
x∈K

∣f(x)∣

where K is any compact subset of U. Completeness follows from the Montel Theorem, as in

§7.3.1 above.

Lemma 7.3.4 (Open mapping theorem). Let X and Y be Fréchet spaces and ϕ ∶ X → Y a

continuous, surjective map. Then ϕ is an open map.

Proof. See G & R Appendix B, Lemma 6. �

Theorem 7.3.5. Every locally compact topological vector space has finite dimension.

Proof. See Rudin, Functional Analysis, Theorem 1.22 on p. 17. �

Definition 7.3.6. A continuous map ψ ∶X → Y of Fréchet spaces is said to be compact if

there exists a neighborhood V of the origin in X such that the image ψ(V ) in Y has compact

closure.

Theorem 7.3.7 (L. Schwartz). Let ϕ,ψ ∶ X → Y be continuous linear transformations

between Fréchet spaces, with ϕ surjective and ψ compact. Then ϕ +ψ has closed range, and

the cokernel

Y / (ϕ + ψ) (X)
is finite-dimensional.

Proof. For the closed range statement, see the proof in G & R, Appendix B, Theorem 12,

which follows from Lemma 7.3.4 and the corresponding statement for Banach spaces.

Since the range is closed, Y ′ = Y / (ϕ + ψ) (X) is again a Fréchet space. By Theorem 7.3.5,

it suffices to show that Y ′ is locally compact, i.e., for any N, ε > 0 and any sequence {yn} ∈ Y
with pN(yn) < ε, the sequence {[yn]} ⊂ Y ′ has a convergent subsequence. Let V ⊂ X be the

neighborhood of the origin in the statement of Definition 7.3.6 for the map ψ. By Lemma

7.3.4, we may choose ε sufficiently small and N sufficiently large that for each yn, there exists

xn ∈ V such that

ϕ(xn) = yn.
Then, by choice of V, {ψ(−xn)} has a convergent subsequence (again labelled xn). But in

Y ′, we have

[yn] = [ϕ(xn)] = − [ψ(xn)] .
Therefore [yn] has a convergent subsequence, as claimed. �
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We can now return to Theorem 7.3.1. The proof uses Leray coverings, i.e., open covers

satisfying the condition of Corollary 6.3.4. These in fact exist generally for complex man-

ifolds, as shown in G & R, Ch. VI. For Riemann surfaces, any open covering by simply

connected open sets with simply connected overlaps is sufficient: by the Riemann mapping

theorem and the ∂̄-Poincaré Lemma, these are acyclic.9

7.3.3. Proof of Theorem 7.3.1. Let U = {Uα} and V = {Vα} each be finite Leray covers of M,

chosen such that

Vα ⋐ Uα

for each α.

According to Example 7.3.3.2, spaces of holomorphic sections are Fréchet, as are the spaces

of p-cochains Cp (U,E ) and Cp (V ,E ) , with the product topology. (This requires the covers

to be finite.) Moreover, since the Čech differential δ is continuous, the space of cocycles

Zp (U,E ) = ker δ ⊂ Cp (U,E )

is a closed subspace, and so too a Fréchet space. Denote the restriction map

ψ ∶ Zp (U,E ) → Zp (V ,E ) .

By Montel’s Theorem, this is a compact map.

By the Leray Theorem, the restriction map

Hp (U,E ) →Hp (V ,E )

is an isomorphism. This implies that the sum

ϕ = (ψ ⊕ δ) ∶X = Zp (U,E ) ⊕Cp−1 (V ,E ) → Zp (V ,E )

is surjective. But we then have

0⊕ δ = ϕ − (ψ ⊕ 0) .

By Theorem 7.3.7, the cokernel

Zp (V ,E ) / (0⊕ δ) (X) = Zp (V ,E ) /δ (Cp−1 (V ,E ))

is finite-dimensional. Since V is a Leray cover, this implies the claim.

9In fact, for the Leray Theorem on a Riemann surface, no assumption on the cohomology of the overlaps

is necessary—see Forster, Theorem 12.8. We also note that in the case of Riemann surfaces, the finiteness

theorem can be proved without introducing Fréchet spaces—see Forster, Theorem 14.9, or (simpler yet)

Gunning, Lectures on Riemann surfaces, Theorem 7 on p. 64.
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7.4. The ∂̄-operator and integrability. As mentioned above, it is also extremely fruit-

ful to study holomorphic bundles via Dolbeault cohomology, i.e., using real analysis. Let

A p,q(E) denote the sheaf of E-valued (p, q)-forms, meaning the sheaf of smooth sections of

the vector bundle Λp,qT ∗M ⊗E.
The basic observation is as follows: every holomorphic bundle, E , comes with a canonical

differential operator

(7.10) ∂̄E ∶ A p,q(E) → A p,q+1(E).
This is simply defined to agree with the ordinary ∂̄-operator in any holomorphic trivialization.

So, given a local holomorphic frame eαi for E, we write

∂̄E ∶ A 0,0(E) → A 0,1(E)
∂̄E (sieαi ) = (∂̄si) eαi

(7.11)

where we are using the Einstein summation convention. One has to check that (7.11) is

well-defined: given an equivalent frame eβj = gijeαi , we get

∂̄E (sjeβj ) = ∂̄E (sjgijeαi )
= (∂̄sj) gijeαi + sj (∂̄gij) eαi
= (∂̄sj) gijeαi
= (∂̄sj) eβj

since gij is holomorphic. This shows that the definition did not depend on the choice of

frame. The maps (7.10) on (p, q)-forms are defined via the Leibniz rule:

(7.12) ∂̄E (sα) = (∂̄E s) ∧ α + s ∂̄α.
Here s is a smooth section of E and α ∈ A p,q.

Now, given the expression (7.11), we clearly have ∂̄2
E = 0. Moreover, since the operator is

identical to (several copies of) ∂̄ in local coordinates, the proof of the ∂̄-Poincaré Lemma

carries over without change. We conclude that complex

(7.13) 0→ A p,0(E) ∂̄E→ A p,1(E) ∂̄E→ A p,2(E) → ⋯ → A p,n(E) → 0

is an acyclic resolution of the sheaf Ωp ⊗ E . By Theorem 6.3.1, we obtain the following

generalization of Theorem 6.4.5:

Theorem 7.4.1. Hq(Ωp ⊗ E ) ≅Hp,q

∂̄E
.

Corollary 7.4.2. For a holomorphic vector bundle E over an n-dimensional complex man-

ifold, we have

H i(E ) = 0, i > n.

Proof. This follows from the p = 0 case of the previous theorem, and the fact that the acyclic

resolution (7.13) terminates after n steps. �

Corollary 7.4.3. For a holomorphic vector bundle E over an n-dimensional compact com-

plex manifold, the Euler characteristic χ(E ) is finite.
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Proof. We have seen in Theorem 7.3.1 that each cohomology group is finite-dimensional, and

Corollary 7.4.2 implies that only finitely many are nonzero. �

Remark 7.4.4. The analytic approach receives a major bonus from the following result,

which shows that holomorphic vector bundles live and die by the ∂̄-operator.

Theorem 7.4.5. Let E be a smooth vector bundle together with a differential operator ∂̄E
of the form (7.11), satisfying the Leibniz rule (7.12) and

∂̄2
E = 0.

Then there exists a holomorphic structure E on E such that ∂̄E = ∂̄E .

For a beautiful proof, see Donaldson and Kronheimer, The geometry of four-manifolds, pp.50-

53.

Remark 7.4.6. There is a deeper integrability question in the subject, which asks when a

smooth manifold M that admits an “almost-complex structure,” i.e. a bundle map I ∶ TM →
TM with I2 = −1, is a complex manifold, i.e. possesses a holomorphic atlas. For instance,

although the 6-sphere possesses an almost-complex structure (coming from the octonionic

cross product on R7), we still do not know if it is a complex manifold.
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8. Line bundles, divisors, and linear systems

Recall that a (holomorphic) line bundle is simply a (holomorphic) vector bundle of rank

one. The equivalent formulations of this concept are very ample, as we now describe.

8.1. Main examples. We have already seen that any complex manifold M carries a canon-

ical line bundle, KM = Ωn
M , whose sections are holomorphic forms of top degree. In general,

the canonical bundle and the trivial bundle are the only line bundles that are guaranteed

to exist on a complex manifold. However, in the most important cases—compact Riemann

surfaces and projective varieties—the following constructions guarantee that nontrivial line

bundles will always be floating around.

Example 8.1.1. The tautological bundle O(−1) on CPn is the subbundle of the trivial

bundle Cn+1 = CPn ×Cn+1 given by

{(`, t) ∣ t ∈ `} ⊂ Cn+1.

The fiber over a point ` ∈ CPn is exactly the corresponding line. A holomorphic frame for

O(−1) over the standard chart Uα = {[z0, . . . , ẑα, . . . , zn]} may be given by

eα ([z0, . . . , ẑα, . . . , zn]) = (z0, . . . ,1, . . . , zn) .
The transition function (per 7.3) is then given on Uα ∩Uβ by

gαβ = zβ =
Zβ
Zα

in homogeneous coordinates.

The dual of the tautological bundle is denoted by

O(1) = O(−1)∗.
This is sometimes called the hyperplane bundle (see Example 8.3.1 below). Given k ∈ Z,
we will denote the tensor power by

O(k) = O(1)⊗k

where O(0) = O, and for k < 0, we mean O(k) = O(−1)⊗∣k∣. Given any holomorphic vector

bundle E on CPn, it is standard to write

E (k) = E ⊗O(k).
Also, given any projective variety X ⊂ CPn, we shall denote the restriction to X by

OX(k) = O(k)∣X = ι∗XO(k)
where ιX ∶X ↪ CPn is the inclusion. By the pullback construction (7.7), this is a holomorphic

line bundle on X. We shall see later that OX(k) is a nontrivial bundle for all k ≠ 0, if

dimX > 0.

Example 8.1.2. Let Σ be a Riemann surface. Given a point p ∈ Σ, we define the point

bundle O(p) as follows. Let U be a coordinate chart in which p = z0, and let V = Σ ∖ {p}.
Then O(p) is defined to be trivial on the two open sets U and V, with transition function

gUV = (z − z0)−1



COMPLEX MANIFOLDS (MTH 935) 87

where z is the coordinate on U. This is holomorphic and nonvanishing on U ∩ V = U ∖ {p},
and satisfies the cocycle condition (7.5) trivially. Hence, O(p) is a holomorphic line bundle.

We claim that if Σ is compact, then O(p) is a nontrivial bundle. For, we may construct

a global holomorphic section:

sU = z − z0

sV = 1.
(8.1)

This clearly satisfies (7.4). However, s has an isolated zero at p, so is not identically constant,

as would necessarily be the case if O(p) were the trivial bundle (whose sections are global

holomorphic functions on Σ).

In fact, given any meromorphic function f(x) on Σ that is holomorphic on V and has a

pole of order at most one at p, we may define a holomorphic section of O(p) by

sU = (z − z0)f
sV = f.

By Lemma 1.5.6, sU and sV are holomorphic on their respective domains.

Conversely, given any holomorphic section s of O(p), we may define a meromorphic func-

tion by

f ∣U = (z − z0)−1sU

f ∣V = sV .
We conclude that this sheaf has the following equivalent description:

(8.2) O(p) ≅ (
sheaf of meromorphic functions on Σ

with a pole of order at most one at p
) ⊂ M .

We also define

(8.3) O(−p) = O(p)∗.

Either by a similar argument or directly from (8.3), we can obtain that O(−p) is isomorphic

to the sheaf of holomorphic functions vanishing at p ∈ Σ.

Example 8.1.3. Now fix a divisor

(8.4) D = ∑
α

nαpα −∑
β

mβqβ

where nα,mβ ∈ N, and {pα},{qβ} are discrete sets of points on the Riemann surface Σ. We

may define the line bundle associated to D:

(8.5) O(D) =⊗
α

O(pα)⊗nα ⊗⊗
β

O(−qβ)⊗mβ .

As in Example 8.1.2, we then have:

(8.6) O(D) ≅
⎛
⎜⎜
⎝

sheaf of meromorphic functions with

poles of order at most nα at pα and

zeroes of order at least mβ at qβ

⎞
⎟⎟
⎠
⊂ M .
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It is very convenient that this subsheaf of M is isomorphic to the sheaf of sections of a line

bundle.

This construction will be carried out in §8.3 below for divisors in complex manifolds of

general dimension, with almost no essential changes.

Remark 8.1.4. Note that in the previous examples, O(number) and O(divisor) have dif-

ferent (although closely related) meanings.

8.2. The Picard group and the first Chern class. It is a special feature of line bundles,

as opposed to general holomorphic bundles, that the tensor product of two line bundles is

again a line bundle. The tensor product is of course associative and commutative, up to

isomorphism. Moreover, for any line bundle L, there is a natural isomorphism

(8.7) L∗ ⊗L ≅ O

coming from the fact that L∗ ⊗ L ≅ Hom (L,L) , which has an obvious nonvanishing global

section. The set of isomorphism classes of holomorphic line bundles on M is thus an abelian

group, with multiplication given by the tensor product and inversion given by taking duals.

This is called the Picard group Pic(M).
The Picard group has the following very handy cohomological interpretation. Given an

isomorphism class [L] represented by a line bundle L, choose a cover U = {Uα} of M over

which L is trivialized. The transition functions

{gαβ}
determine a Čech 1-cochain with values in O∗, and the compatibility condition (7.5) states

precisely that this cochain is a multiplicative cocycle, lying in Ž1(U,O∗).

Theorem 8.2.1. The above correspondence determines a natural isomorphism

Pic(M) ≅H1(O∗
M).

Proof. We claim that the cocycle g = {gαβ} gives a well-defined element in H1(O∗). Let

L′ ∈ [L] , with an isomorphism ϕ ∶ L → L′. Then there exists a refinement V = {Vα} of

U = {Uα} over which both L and L′ are trivialized, with frames eα and fα, respectively, and

ϕ is given by

ϕ(eα) = qα(z)fα

for nonvanishing holomorphic functions qα(z), for each α. Define a 0-cochain q = {qα}. Let

hαβ be the transition functions of L′, defined by

fα = hαβfβ.
Then we have

fα = q−1
α ϕ (eα) = q−1

α ϕ (gαβeβ) = q−1
α gαβϕ (eβ) = q−1

α gαβqβf
β (no summation)

which gives

hαβ = q−1
α gαβqβ.
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Therefore the cocycles g and h differ by δ (q) , which implies that the class in H1(O∗)
determined above is well defined.

Conversely, given a class in H1 (O∗) represented by a cocycle {gαβ}, these satisfy (7.5)

by definition, and can be used to construct a holomorphic line bundle. Changing by a

coboundary only changes the resulting bundle by an isomorphism, and this construction is

clearly inverse to the one above. Hence we have the claimed isomorphism. �

Recall the exponential sequence of Example 5.5.2 above. The long exact cohomology

sequence reads:

(8.8) ⋯ →H1(Z) →H1(OM) expÐ→H1(O∗
M) ≅ Pic(M) →H2(Z) → ⋯.

Notice that H1(OM) is a complex vector space, whereas H2(Z) ≅ H2(M,Z) is a Z-module.

In this sense, Pic(M) has both a “continuous” and a “discrete” part. The latter is encoded

by:

Definition 8.2.2. The first Chern class c1(L) is defined to be the image of [L] ∈ Pic(M)
in H2(M,Z), via (8.8).

Proposition 8.2.3. We have

c1(L⊗L′) = c1(L) + c1(L′)
c1(L∗) = −c1(L)
c1(f∗L) = f∗c1(L)

(8.9)

for a map f ∶ N →M.

Proof. The first two items follow because c1(⋅) is a group homomorphism, by Theorem 8.2.1

and the definition. The third item follows from the fact that the transition functions of

f∗L (and the corresponding cocycle in H1(N)) are given by the pullbacks of the transition

functions of L. �

Remark 8.2.4. Notice that none of the previous discussion required L to be holomorphic:

indeed, smooth line bundles are classified by H1(A ∗), where A ∗ is the space of nonvanishing,

complex-valued smooth functions. We have the exponential sequence

(8.10) 0→ Z→ A → A ∗ → 0

which gives the first Chern class of a smooth bundle as above. Since the holomorphic

exponential sequence is a subsequence of (8.10), this agrees with the above definition for

a holomorphic bundle. However, by Proposition 6.4.1, H1(A ) = 0, so the sequence (8.8)

becomes an injective map:

0→H1(A ∗) →H2(Z) → ⋯.

We conclude that a smooth line bundle is determined up to isomorphism by its first Chern

class. In particular, any holomorphic line bundle with vanishing first Chern class is trivial

as a smooth bundle, even while it might not be nontrivial as a holomorphic bundle.
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8.3. Div, Pic, and linear equivalence. Recall from §5.4 and Example 5.5.8 that the sheaf

of divisors DivM on a complex manifold, M, assigns to each open subset U the abelian group

of divisors on U, per Definition 5.4.1. We shall denote its group of global sections by

Γ(DivM) = Div(M)

which consists of the set of locally finite linear combinations of global irreducible hypersur-

faces in M.

According to Example 5.5.8, the sheaf Div is precisely the quotient sheaf M ∗/O∗ (as

argued above, because any divisor is locally defined by a meromorphic function, uniquely

up to multiplication by nonvanishing holomorphic functions). The corresponding long exact

sequence in cohomology reads:

(8.11) 0→ Γ(O∗) → Γ(M ∗) divÐ→ Div(M) O(⋅)Ð→H1(O∗) ≅ Pic(M) →H1(M ∗) → ⋯.

In particular, we have a natural map

Div(M) → Pic(M)
D ↦ [O(D)] .

The map defined by this cohomological procedure directly generalizes the construction given

by Example 8.1.3. Explicitly, let {Uα} be an open cover of M such that D has a local defining

function fα on each Uα, i.e., fα generates ID,x ⊂ Ox for each x ∈ Uα. Define the transition

functions of O(D) by

gαβ =
fβ
fα
.

By the Nullstellensatz, these extend to nonvanishing holomorphic functions on Uα∩Uβ. This

construction makes O(D) well defined up to isomorphism.

The bundle O(−D) = O(D)∗, for D an irreducible effective divisor, is easier to describe:

it is isomorphic to the ideal sheaf ID ⊂ O of holomorphic functions vanishing along D.

Example 8.3.1. Let H ≅ CPn−1 be any hyperplane in CPn. Then

O(H) ≅ O(1).

For, assume that H is defined by the the linear equation

(8.12) `(Z) = a0Z0 +⋯ + anZn = 0

and choose fα = `(Z)
Zα

for its defining function on Uα. Then the transition functions are clearly

identical to those of O(1), per Example 8.1.1 above. More generally, we have

(8.13) O(kH) ≅ O(k).
Definition 8.3.2. Given a global meromorphic function f on M, it is standard to write

(f) = div(f).

We say that two divisors D and D′ are linearly equivalent if there exists a global mero-

morphic function f ∈ Γ (M ) such that

(8.14) D′ =D + (f).
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In this case, according to the above cohomological construction, the bundles O(D) and

O(D′) should be isomorphic. Indeed, if {fα} is a system of defining functions for D, then

according to (8.14), {ffα} will be a system of defining functions for D′, which gives the

bundles the same transition functions.

Definition 8.3.3. A meromorphic section of a line bundle L is a section of the sheaf

L ⊗OM M . Explicitly, such a section is given by meromorphic functions {(sα)i} in each

coordinate chart, obeying the compatibility conditions (7.4). We shall sometimes write

div(s) for the divisor of zeroes and poles of a meromorphic section of a line bundle.

Caution. In the case L ≅ O(D), a meromorphic section s of L corresponds via (8.6) to

a meromorphic function on M. In this case, div(s) and (s) have different meanings; in

particular

(s) = div(s) +D.
We can summarize the essential points of this construction as follows.

Theorem 8.3.4. (a) For each divisor D ∈ Div(M), there exists a line bundle O(D), unique

up to isomorphism, such that O(D) carries a global meromorphic section s with div(s) =D.
If D ∼D′, then O(D) ≅ O(D′); in other words, the map D ↦ O(D) descends to an injective

homomorphism

(8.15) Div(M)/ ∼ ↪ Pic(M).

(b) Conversely, if a line bundle L has a nontrivial10 global meromorphic section s, then

L ≅ O(D)
where D = div(s).

If the divisors concerned are effective then the sections are holomorphic, and vice-versa.

Corollary 8.3.5. A divisor D is principal if and only if O(D) ≅ O.

Remark 8.3.6. We shall see in §10 that for compact Riemann surfaces, the map (8.15) is

an isomorphism. The same is true for projective varieties, although we would not develop

the tools to prove this until next semester.

8.4. Linear systems and maps to projective space. There is yet another viewpoint on

line bundles and divisors that is important for applications.

Definition/Lemma 8.4.1. Given a holomorphic line bundle L→M and a nonzero subspace

V ⊂ Γ(M,L), the linear system associated to V is the family of effective divisors

DivV = {div(s) ∣ s ∈ V }.
The base locus of V is defined to be

Bs(V ) = ∩D∈DivVD = {x ∈M ∣ s(x) = 0∀ s ∈ V }.
10By a nontrivial section, we mean one that does not vanish identically on any connected component of

M.
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A linear system is said to be complete if V = Γ(M,L). Given a divisor D on M, write ∣D∣
for the complete linear system associated to H0(O(D)); equivalently,

∣D∣ = {D + (f) ≥ 0 ∣ f ∈ M (M)}

is the set of all effective divisors linearly equivalent to D.

Proof. The equivalence follows by interpreting O(D) ⊂ M according to (8.6), which is of

course not limited to Riemann surfaces. �

Notice that a subspace V of dimension d + 1 on M defines a holomorphic map

M ∖Bs(V ) → CPd.

For, we can choose a basis s0, . . . , sd, and send

(8.16) x↦ [s0(x), . . . , sd(x)] .

Since the transition functions are scalars, this gives a well-defined map away from the base

locus. One can avoid choosing a basis for V by instead associating to x ∈ M ∖ Bs(x) the

linear functional

(8.17) s↦ s(x) ∈ Lx ≅ C.

This gives an element in the dual space V ∗ of V that is well-defined up to the choice of

isomorphism in (8.17). Hence, we actually have a canonical map

ϕV ∶M ∖Bs(V ) → P(V ∗).

If once does choose a basis for V, hence an isomorphism of V with V ∗, then this agrees with

(8.16).

Lastly, one can observe that the pullback of the hyperplane bundle on CPn is the line

bundle L:

ϕ∗V O(1) ≅ L.

So, in fact, the divisors in the linear system are just “hyperplane sections” of the image

ϕV (M).
Definition 8.4.2. We say that a holomorphic line bundle L is ample if, for some k > 0, the

complete linear system associated to Lk is an embedding. The bundle L is said to be very

ample if L itself gives an embedding.

By definition, a compact complex manifold is projective if and only if it admits an ample

line bundle. This point of view leads to the Kodaira embedding theorem, which we would

prove next semester.
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8.5. The degree of a line bundle on a Riemann surface. Before moving on, we should

actually calculate the first Chern class of the bundle O(D) constructed in Examples 8.1.2-

8.1.3.

Let Σ be a Riemann surface, and fix p ∈ Σ. Let (U, z) be a coordinate neighborhood

identified with B1(0) ⊂ C, with p corresponding to the origin in the z coordinate. Let

V = Σ ∖ [0,1]
W = Σ ∖ [−1,0] .

Then {U,V,W} is an open cover of Σ. Notice that

U ∩ V ∩W = U ∖R = U+ ∪U−
where U± corresponds to the part of B1 within the upper (resp. lower) half-plane.

To compute c1 (O(p)) using this cover, we must calculate the connecting homomorphism

in the exponential sequence, applied to the cocycle

g = {gUV = z−1, gUW = z−1, gVW = 1} ∈H1 ({U,V,W},O∗) .

Choose σ ∈ C1({U,V,W},O) such that e2πiσUV = gUV , etc., as follows:

σUV = − log r − θV i
2πi

, −π < θV < π

σUW = − log r − θW i
2πi

, 0 < θW < 2π

σVW = 0.

We then have

ωUVW ∶= (δσ)UVW = σVW − σUW + σUV

= 1

2πi
(log r + θW i − log r − θV i)

= θW − θV
2π

=
⎧⎪⎪⎨⎪⎪⎩

0 z ∈ U+
1 z ∈ U−

and ωUWV = −ωUVW , etc. Then ω ∈H2 ({U,V,W},Z) represents c1(O(p)).
Now, assuming that Σ is compact, we have

H2 (Z) ≅H2 (Σ,Z) ≅ Z.

We need to evaluate the class ω against the fundamental class [Σ] ∈H2(Σ,Z), which requires

unpacking the DeRham isomorphism of Corollary 6.4.3. To this end, we choose a special

partition of unity subordinate to {U,V,W}. Let ϕ(r) be a smooth, compactly-supported

function on the unit ball U, with

ϕ(r) =
⎧⎪⎪⎨⎪⎪⎩

1 0 ≤ r ≤ 1/4
0 3/4 ≤ r.
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Let ψ(x) be a smooth function on Σ with 0 ≤ ψ(x) ≤ 1 as follows: assume that for 1/4 ≤ r ≤ 1,

ψ(r, θ) = ψ(θ) is independent of r, and satisfies

ψ(θ) =
⎧⎪⎪⎨⎪⎪⎩

1 −π/4 ≤ θ ≤ π/4
0 3π/4 ≤ θ ≤ 5π/4.

Let

ρU = ϕ, ρV = (1 − ϕ)ψ, ρW = (1 − ϕ) (1 − ψ) .
Then ρU , ρV , and ρW have compact support in U,V, and W, respectively, and clearly satisfy

ρU + ρV + ρW = 1

i.e., they form a partition of unity subordinate to {U,V,W}.
Now, per the proof of Theorem 6.3.1, we need to trace through the isomorphisms coming

from the exact sequences:

(8.18) 0→ R→ A 0 →Z 1
d → 0

and

(8.19) 0→Z 1
d → A 1 →Z 2

d → 0.

By the proof of Theorem 6.4.2, we know that the 1-cocycle η ∈H1(Z 1
d ) defined by

ηβγ = d(∑
α

ραωαβγ) = ∑
α

dραωαβγ

satisfies δ(η) = ω, in the long exact sequence associated to (8.18). Then, the 0-cocycle

τ ∈H0 (Z 2
d ) defined by

(8.20) τγ = d
⎛
⎝∑β

ρβηβγ
⎞
⎠
= ∑
α,β

dρβ ∧ dραωαβγ

satisfies δ(τ) = η, in the long exact sequence associated to (8.19). Therefore τ ∈ H2
DR(Σ)

represents the class of ω under the DeRham isomorphism.

From (8.20), we see that the support of τ is contained in the support of ω, so lies within

U− ⊂ U, where τ = τU . We have

τ = τU = dρW ∧ dρV ωVWU + dρV ∧ dρWωWV U

= −2dρV ∧ dρWωUVW .
We calculate

dρV = −dϕψ + (1 − ϕ)dψ
dρW = −dϕ(1 − ψ) − (1 − ϕ)dψ

dρV ∧ dρW = ψ(1 − ϕ)dϕ ∧ dψ − (1 − ϕ)(1 − ψ)dψ ∧ dϕ
= (1 − ϕ) (ψ + 1 − ψ)dϕ ∧ dψ
= (1 − ϕ)dϕ ∧ dψ

= −1

2
d (1 − ϕ)2 ∧ dψ.
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This yields

τ = d (1 − ϕ)2 ∧ dψ ωUVW
= d (1 − ϕ)2 ∧ dψ ∣

U−
.

Since the support of d (1 − ϕ)2
is contained in 1/4 ≤ r ≤ 3/4, we have ψ = ψ(θ) by assumption.

Integrating over Σ, we obtain

∫
Σ
τ = ∫

U−
d(1 − ϕ(r))2 ∧ dψ(θ)

= ∫
1

0

d

dr
(1 − ϕ(r))2

dr ⋅ ∫
0

−π
d

dθ
ψ(θ)dθ

= 1.

If Σ is compact then, because it is orientable, it has a fundamental homology class [Σ] gen-

erating H2(Σ,Z) ≅ Z. Let ⟨, ⟩ denote the natural pairing between H2(Σ,R) and H2(Σ,R),
which on DeRham classes is just given by integration. Then the result of the above calcula-

tion is:

⟨c1(O(p)), [Σ]⟩ = 1.

This will generalize to line bundles associated to a divisors, per Example 8.1.3, as soon as

we make the following definition.

Definition 8.5.1. The degree of a divisor D on a Riemann surface is defined by

deg(D) = ∑
α

nα −∑
β

mβ

where D is of the form (8.4).

Theorem 8.5.2. For a divisor D on a compact Riemann surface Σ, we have

⟨c1(O(D)), [Σ]⟩ = degD.

Proof. This follows immediately from the definition (8.5), Proposition 8.2.3, and the above

calculation of c1(O(p)). �

Corollary 8.5.3. Let L be a holomorphic bundle on a compact Riemann surface, Σ. For

any nontrivial meromorphic section s of L, we have

deg div(s) = ⟨c1(L), [Σ]⟩.
In other words, the number of zeroes minus the number of poles of any meromorphic section

of L, counted with multiplicity, is given by evaluating the first Chern class.

Proof. According to Theorem 8.3.4b, a line bundle with a nontrivial meromorphic section, s,

is isomorphic to O(div(s)). The claim then follows from the previous theorem. �

Corollary 8.5.4. On a compact Riemann surface, Σ, we have a commutative diagram

Div(Σ)/ ∼ //

deg
&&

Pic(Σ)
⟨c1(⋅),[Σ]⟩
��

Z
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where the maps to Z are surjective. In particular, for a meromorphic function f ∈ M (Σ) ,
we have deg((f)) = 0.
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9. Bundles and divisors on CPn

This section discusses the basics of line bundles and divisors on projective space (and some

projective varieties).

9.1. The topology of projective space. Recall that CP1 ≃ S2 and therefore has (co)homology

Z in degrees 0 and 2. More generally, according to (4.6), CPn can be decomposed as:

CPn = Cn ⊔CPn−1

= Cn ⊔Cn−1 ⊔CPn−2

⋮
= Cn ⊔Cn−1 ⊔⋯ ⊔C ⊔ {pt}.

The disjoint unions can be extended continuously to give a CW decomposition of CPn. Since

each cell has even dimension, we get

(9.1) Hi(CPn,Z) =
⎧⎪⎪⎨⎪⎪⎩

Z i even

0 i odd.

Notice that according to this description, a k-plane (CPk) generates H2k(CPn).
As there is no torsion, the cohomology also takes the form (9.1). It is instructive to write

down generators for the DeRham cohomology groups. To this end, define the Fubini-Study

form

(9.2) ω = i

2π
∂∂̄ log ∣Z ∣2

where ∣Z ∣2 = Z2
0 +⋯ +Z2

n. This requires some explanation. A priori, ω is only a well-defined

differential form on Cn+1 ∖ {0}, but we claim that it descends to a differential form on CPn
(in the following way).

Let U ⊂ CPn be any open set such that there exists a holomorphic section of the projection

Cn+1 ∖ {0} → CPn, which we denote again by Z(x), for x ∈ U. (For instance, U = Uα can

be taken to be a standard coordinate chart). Then ω descends to U ⊂ CPn via the formula

(9.2). One must then check that the resulting form on CPn does not depend on the choice

of section: let f ⋅ Z an another such section, where f = f(x) is a nonvanishing holomorphic

function on U. By shrinking U, we may choose a branch of log that is well-defined on f(U).
Then we have

i

2π
∂∂̄ log ∣fZ ∣2 = i

2π
∂∂̄ log ff̄ ∣Z ∣2

= i

2π
∂∂̄ (log f + log f̄ + log ∣Z ∣2)

= i

2π
(∂∂̄ log f − ∂̄∂ log f̄ + ∂∂̄ log ∣Z ∣2)

= i

2π
∂∂̄ log ∣Z ∣2 = ω.

This shows that ω indeed descends to a well-defined, closed form of type (1,1) on CPn.
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To show that [ω] is the integral generator of the second cohomology, we just need to

integrate against CP1; in other words, we may assume without loss that n = 1. In a standard

coordinate chart C ⊂ CP1, we have

ω = i

2π
∂∂̄ log (1 + ∣z∣2)

= i

2π
∂ (z dz̄

1 + ∣z∣2)

= i

2π

dz ∧ dz̄
1 + ∣z∣2 (1 − zz̄

1 + ∣z∣2)

= i

2π

dz ∧ dz̄
(1 + ∣z∣2)2

= 1

π

r dr

(1 + r2)2 .

This clearly integrates to 1 over C = R2.

On a standard coordinate chart of CPn, a similar calculation gives the coordinate expres-

sion

ω(z) = i

2π
[dz

i ∧ dz̄i
1 + ∣z∣2 − z̄

jdzj ∧ z`dz̄`
(1 + ∣z∣2)2

]

where i, j, and ` are summed over. Notice that at the point 0 ∈ Cn, and for the coordinate

plane Ck = {(z1, . . . , zk,0, . . . ,0)} , we have

ωk(0)∣Ck = k!( i

2π
)
k

dz1 ∧ dz̄1 ∧⋯ ∧ dzk ∧ dz̄k

which is a positive multiple of the volume form on Ck. Since ω is invariant under the bi-

holomorphism group SU(n + 1) of CPn, which acts transitively, we conclude that the same

is true at any point. This implies that

∫
CPk

ωk > 0.

Hence ωk represents a nonzero cohomology class; in fact, one can check directly that the

value of this integral is 1. The ring structure on the cohomology of CPn is therefore given by

H∗(CPn) = Z [ω] / [ω]n+1
.

The Fubini-Study form (metric) plays a starring role in complex geometry, as we would see

next semester.

9.2. Cohomology of the line bundles on CPn. One consequence of the above discussion

is the following:

Lemma 9.2.1. c1(O(k)) = k [ω] .
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Proof. First assume n = 1. Then OCP1(1) = OCP1(pt), which by Theorem 8.5.2, has first Chern

class 1 ∈H2(CP1,Z), corresponding to the DeRham class [ω] . Therefore c1(OCP1(k)) = k [ω] .
For n ≥ 1, let ι ∶ CP1 → CPn be the inclusion of a line. Then by Proposition 8.2.3, we have

ι∗c1 (OCPn(k)) = c1(ι∗OCPn(k)) = c1 (OCP1(k)) = k [ωCP1] .

But ι∗ ∶ Z→ Z is an isomorphism, with ι∗ωCPn = ωCP1 , so we conclude that

c1(OCPn(k)) = k [ω]

as claimed. �

Remark 9.2.2. We would see a direct proof of this fact using Chern-Weil theory in the

next semester.

Theorem 9.2.3. Pic(CPn) ≅ Z ≅ {[O(k)] ∣ k ∈ Z} .

Proof. Recall from Proposition 6.5.2 that H1(OCPn) = 0. From the long exact sequence (8.8)

defining the first Chern class, we see that c1 ∶ Pic(CPn) → H2(CPn,Z) is injective. But,

by the previous subsection, we have H2(CPn,Z) ≅ Z. Lemma 9.2.1 then implies that O(1)
generates the group, as claimed. �

We now calculate the global sections of O(k). Given a nonzero linear functional `(Z) ∶
Cn+1 → C of the form (8.12), we obtain a nonzero linear function on O(−1) ⊂ Cn+1 by

restriction. Hence `(Z) defines a global section of O(1). More generally, for each k ≥ 0, any

homogeneous polynomial P (Z) of degree k defines a linear functional on (Cn+1)⊗k , and on

O(−k) = O(−1)⊗k ⊂ (Cn+1)⊗k by restriction. This gives an injective map from homogeneous

polynomials of degree k to global sections of O(k) ∶

(9.3) C [Z0, . . . , Zn]
k
→H0 (O(k)) .

Theorem 9.2.4. The above map is an isomorphism. We therefore have

dimH0 (OCPn(k)) = (n + k
k

).

Proof. It remains to show that (9.3) is surjective.

Let π ∶ Cn+1∖{0} → CPn be the projection. Notice that the pullback π∗O(−1) ⊂ (Cn+1 ∖ 0)×
Cn+1 is trivial, with a nonvanishing section given by e = (x,x). The pullback π∗O(−k) also

has a nonvanishing section e⊗k.
Given a section s ∈H0(O(k)), the pullback π∗s is a global section of π∗O(k) ≅ (π∗O(−k))∗ .

We may therefore evaluate

f = π∗s(e⊗k)
to obtain a nontrivial holomorphic function f(Z) on Cn+1 ∖0. The construction implies that

f is k-homogeneous, i.e.

f(λZ) = λkf(Z).
But, by Hartogs’s Theorem, f(Z) extends to a holomorphic function on Cn+1. Any k-

homogeneous smooth function on Cn+1 must be a k-homogeneous polynomial (since its k+1-st
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partials are −1-homogeneous, and must therefore vanish). We conclude that f(Z) is a ho-

mogeneous polynomial, which implies that s is precisely the image of f(Z) under the map

(9.3). �

Corollary 9.2.5. Any analytic hypersurface X ⊂ CPn is algebraic, i.e., is the vanishing

locus of a homogeneous polynomial P (Z). If P (Z) has no repeated factors, then it is unique

up to multiplication by a constant, and vanishes transversely at a generic point of X.

Proof. By Theorem 8.3.4, any hypersurface X defines a line bundle O(X), which carries a

section s that vanishes to order one along X. But by Theorem 9.2.4, we have O(X) ≃ O(k)
for some k ≥ 0, and s = P (Z) is given by a homogeneous polynomial of degree k. The ratio

of any two such polynomials defining X is holomorphic on CPn, hence constant.

Lastly, since P (Z) has no repeated factors, p(z) = P (1, z1, . . . , zn) will also not have re-

peated factors as long as deg p = degP, which can be arranged by changing coordinates.

Then p and ∂p
∂z1 (say) are relatively prime as polynomials, and their discriminant (see Defi-

nition 2.3.4) D(z2, . . . , zn) does not vanish identically. So p vanishes transversely (and X is

smooth) at all points not lying over the vanishing locus of the discriminant. �

Remark 9.2.6. This is the first instance of Serre’s GAGA11 principle: see Griffiths and

Harris, pp. 164-171.

Next, we calculate the higher cohomology groups of these line bundles. Let H ≅ CPn−1 be

a hyperplane in CPn. Recall that we have O(−1) ≅ O(−H) ≅ IH , the ideal sheaf of H. The

ideal sheaf sequence of Example 5.5.3 therefore takes the form

0→ O(−1) → O → OH → 0.

Here we are abusing notation and writing OH = ι∗OH for the pushforward of the structure

sheaf of OH . (By an exercise on your homework, this does not change the cohomology.)

Hence, the above sequence is not an exact sequence of vector bundles over CPn, but is still

an exact sequence of O-modules, to which we can apply cohomology. Tensoring by O(k),
we obtain a more general exact sequence (homework exercise):

(9.4) 0→ OCPn(k − 1) → OCPn(k) → OCPn−1(k) → 0.

Theorem 9.2.7. We have

dimHq (OCPn(k)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n+k
k
) q = 0, k ≥ 0

( −k−1
−k−1−n) q = n, k ≤ −n − 1

0 otherwise.

Proof. The case q = 0 has already been established in Theorem 9.2.4, and the case k = 0 in

Proposition 6.5.2. We can prove the remaining items of the formula by induction, using the

formula (9.4).

For the base case n = 0, we have CP0 = pt, and H0(Opt(k)) = C for all k, which agrees

with the formula.

11Géométrie Algébrique et Géométrie Analytique.
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We first prove the result for k ≥ 1 by a double induction. Assume that the result is

established for up to n − 1 and k − 1. The long exact sequence associated to (9.4) reads:

0→H0 (O(k − 1)) →H0 (O(k)) →H0 (OCPn−1(k))
→0→H1 (O(k)) → 0

→⋯
(9.5)

which gives Hq(O(k)) = 0 for q ≥ 1.

Next, let n = 1 and k < 0. The long exact sequence is

0→ 0→H0 (OCP1(k + 1)) → C
→H1 (OCP1(k)) →H1 (OCP1(k + 1)) → 0.

(9.6)

This gives H1 (OCP1(−1)) = 0, and dimH1(OCP1(k)) = dimH1(OCP1(k + 1)) + 1, for k ≤ −2,

which gives

dimH1(OCP1(k)) = −k − 1

agreeing with the formula.

Finally, let n ≥ 2 and k ≤ −1, and assume that the result is known up to n − 1 and down

to k + 1. The long exact sequence reads:

0→H0 (O(k)) →H0 (O(k + 1)) →H0 (OCPn−1(k + 1))
→H1 (O(k)) → 0→ 0

→⋯→
→Hn−1 (O(k)) → 0→Hn−1 (OCPn−1(k + 1))
→Hn (O(k)) →Hn (O(k + 1)) → 0

(9.7)

This gives Hq(O(k)) = 0 for all 1 ≤ q ≤ n − 1, and

dimHn(O(k)) = ( −k − 2

−k − n − 1
) + ( −k − 2

k − n − 2
)

= ( −k − 1

−k − n − 1
)

by “inclusion-exclusion,” establishing the formula by induction. �

Remark 9.2.8. The dimension formula of Theorem 9.2.7 can also be established using the

Serre duality theorem, which we will prove below in the special case of Riemann surfaces,

and the Kodaira vanishing theorem, which we would prove next semester.

9.3. The Euler sequence and the adjunction formula. Now that we know all the line

bundles on CPn, it is worth determining which one is the canonical bundle. For this, we

need a global description of the tangent bundle TCPn.
Recall that we have a holomorphic submersion

π ∶ Cn+1 ∖ {0} → CPn.
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The tangent bundle TCn+1 has the global frame { ∂
∂Zi

}ni=0. Given a point Z = (Z0, . . . , Zn) ∈
Cn+1, the images π∗,Z ∂

∂Zi
span T[Z]CPn. Moreover, the kernel is given by the 1-dimensional

subspace

(9.8) kerπ∗,Z = (Zi ∂

∂Zi
)

where the summation convention is used. For, this vector is clearly annihilated by the

projection map, which has rank n, so its kernel must have dimension one.

Observe that for any linear functional `(Z) on a fiber W ≅ C ⊂ Cn+1 over [Z] ∈ CPn, the

vector field

X(Z) = `(Z) ∂

∂Zi

on W descends to a well-defined tangent vector on CPn. This is because for λ ≠ 0 ∈ C,
(Z,X(Z)) and (λZ,X(λZ)) = λ(Z,X(Z)) correspond to the same tangent vector to CPn.
At the bundle level, this means that for any holomorphic section s of O(1) over CPn, the

expression

s(x) ∂

∂Zi

gives a well-defined, holomorphic (as one could check) section of TCPn.
This discussion can be summed up by the existence of an exact sequence of holomorphic

vector bundles

(9.9) 0→ O → O(1)⊕(n+1) → TCPn → 0

called the Euler sequence. The first map sends 1 ↦ Zi ∂
∂Zi

, and the second sends an

(n + 1)-tuple of sections (s0(x), . . . , sn(x)) to si(x) ∂
∂Zi

. Dualizing (9.9), we obtain

(9.10) 0→ Ω1
CPn → O(−1)⊕(n+1) → O → 0.

Lemma 9.3.1. Given an exact sequence of holomorphic vector bundles

0→ E → F
f→ G→ 0

we have a canonical isomorphism:

(9.11) detF ≅ detE ⊗ detG.

Proof. (Cf. HW 2 # 8.) Write s = rkE, r = rkF, and let U be a sufficiently small open set

containing a given point. Over U, one defines a map

detE ⊗ detG→ detF

α1 ∧⋯ ∧ αs ⊗ γ1 ∧⋯ ∧ γr−s ↦ α1 ∧⋯ ∧ αs ∧ γ̃1 ∧⋯ ∧ γ̃r−s
where γ̃i ∈ Γ(U,F ) are chosen such that f(γ̃i) = γi. This map is manifestly holomorphic on

U, and well-defined: changing γ̃i to γ̃i + α, for α ∈ Γ(U,E), we have

α1 ∧⋯ ∧ αs∧γ̃1 ∧⋯ ∧ (γ̃i + α) ∧⋯ ∧ γ̃r−s
= α1 ∧⋯ ∧ αs ∧ γ̃1 ∧⋯ ∧ γ̃r−s + α1 ∧⋯ ∧ αr ∧ γ̃1 ∧⋯ ∧ α ∧⋯ ∧ γ̃r−s
= α1 ∧⋯ ∧ αs ∧ γ̃1 ∧⋯ ∧ γ̃r−s

since α1∧⋯∧αr∧α = 0. Since the map is well-defined, it gives the global isomorphism (9.11).

Alternatively, one can examine the transition functions directly from (7.6). �
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Proposition 9.3.2. KCPn ≅ O(−n − 1).

Proof. This follows by applying the Lemma to the dual Euler sequence (9.10). �

Next, we return for a moment to the general situation: let E be a holomorphic vector

bundle over a complex manifold M.

Lemma 9.3.3. Given a submanifold S ⊂M along which a global section s ∈ Γ(E ) vanishes

transversely, we have

E∣S ≅ NS.

Proof. Choose coordinates and a local frame for E. Then

ds = (∂s
α

∂zj
)

gives a well-defined map TM ∣S → E∣S , as one checks from the fact that s(x) = 0 for x ∈ S.
By assumption, this matrix has full rank, so gives a surjective, holomorphic bundle map

whose kernel is precisely TS. We therefore have a holomorphic bundle isomorphism

E∣S ≅ TM ∣S /TS ≅ NS

as claimed. �

Theorem 9.3.4 (Adjunction formula). The canonical bundle of a complex submanifold S ⊂
M is given by

(9.12) KS ≅ KM ∣S ⊗ detNS.

In particular, if S is the zero-set of a transverse section of a vector bundle E, we have

(9.13) KS ≅ KM ⊗ detE∣S .

Proof. Applying Lemma 9.3.1a to the conormal sequence (7.9) yields

KM ∣S ≅KS ⊗ detN∗
S .

Tensoring with detNS and using the fact that detNS ⊗ detN∗
S ≅ O gives the adjunction

formula (9.12). Applying Lemma 9.3.3 gives (9.13). �

Corollary 9.3.5. Let S ⊂ CPn be a smooth projective hypersurface (i.e., the transverse

vanishing locus of a homogeneous polynomial) of degree d. Then

KS ≅ OS(d − n − 1).

Proof. Since S ⊂M is a hypersurface, NS is a line bundle, and we have detNS = NS ≅ OS(d).
Then (9.13) reads

KS ≅ KCPn ⊗O(d)∣S
= OS(−n − 1 + d)

as claimed. �
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9.4. Plane curves. A hypersurface X ⊂ CP2 is referred to as a plane curve. By Theorem

9.2.4, any such Y is the vanishing locus of a homogeneous polynomial P of degree d without

repeated factors, unique up to a constant multiple. We will always assume that defining

polynomials have no repeated factors, and will sometimes refer equally to d as the degree

of X (not to be confused with the degree of a divisor on a Riemann surface, per Definition

8.5.1).

It is convenient at this point to make the following definition.

Definition 9.4.1. Let X and Y be plane curves defined by polynomials P and Q of degree

d and e, respectively. Given p ∈ C ∩X, define the intersection multiplicity

ιp (X,Y ) = dimC OCP2,p/ (P,Q)p .
This notation requires some explanation. Since P is a section of O(d) and Q is a section of

O(e), after choosing frames near the point p, they give elements of the local ring Op, well-

defined up to multiplication by nonvanishing functions. So the ideal (P,Q)p is well-defined

in Op. (Note that the intersection multiplicity may be infinity.)

Lemma 9.4.2. For X and Y as above, if p ∈ X is a smooth point (where P vanishes

transversely), then

(9.14) ιp (X,Y ) = Ordp Q∣X .
Here, Q∣X denotes the restriction to X of Q, which is a section of OX(e).

Proof. We claim that R = OCP2,p/(P )p ≅ O1, the ring of germs of holomorphic functions at

the origin in C1. For, by the implicit function theorem, there exists a local chart {(z,w)}
near p in which P (z,w) = w. Hence R is isomorphic to the ring of convergent power series

in the z variable, as claimed. Then the restriction of Q is given by Q(z) = zmg(z), with

g(0) ≠ 0, where m computes both sides of (9.14). �

Lemma 9.4.3. Given a smooth plane curve X of degree d, we have

(9.15) ⟨c1 (OX(k)) , [X]⟩ = dk.
In particular, for any divisor D ∈ ∣OX(k)∣, we have

(9.16) deg(D) = dk.

Proof. Notice that by Theorem 8.5.2 and (8.13), (9.15) and (9.16) are equivalent; it suffices

to prove (9.16). In fact, by additivity of the Chern class, we may assume k = 1 without loss

of generality.

Let P be the defining polynomial of X. Choose a hyperplane H ≅ CP1 not contained in

X. By the Fundamental Theorem of Algebra, the restriction of P to H vanishes in d = degP

points, counted with multiplicity. By Lemma 9.4.2, this gives:

∑
p∈H∩X

ιp (H,X) = d.

But, by definition, we have

(9.17) ιp(H,X) = ιp(X,H).
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Let Q be the linear functional (section of O(1)) defining H, and let D be the divisor of

zeroes of the restriction of Q to X. Again by Lemma 9.4.2, and (9.17), we have

deg(D) = ∑
p∈X∩H

ιp (X,H) = ∑
p∈H∩X

ιp (H,X) = d

which is the desired statement, for k = 1. The statement for general k follows by additivity

of the degree (Chern class) under tensor products. �

We have the following direct application of Lemma 9.4.3.

Theorem 9.4.4 (Bézout’s Theorem). Let X ≠ Y be plane curves in CP2 of degree d and

e, respectively, defined by homogeneous polynomials f and g, and assume that X is smooth.

Then

∑
p∈X∩Y

ιp(X,Y ) = de.

Proof. Let Q be a defining equation for Y. Since X is connected (exercise), and X ≠ Y,

the restriction of Q to X does not vanish identically, and its divisor of zeros D on X is

well-defined. But by Lemmas 9.4.2 and 9.4.3, we have

∑
p∈X∩Y

ιp(X,Y ) = deg(D) = de

as claimed. �

Remark 9.4.5. By developing intersection theory topologically (see Griffiths and Harris,

pp. 49-65), this result becomes obvious, and can be vastly generalized.

Next, we have another very classical result:

Theorem 9.4.6 (“Degree-genus formula”). Let X be a smooth plane curve of degree d. The

first Chern class of the canonical bundle KX is given by

(9.18) ⟨c1(KX), [X]⟩ = d(d − 3).
In particular, the divisor of zeroes and poles of any meromorphic 1-form on X has degree

d(d − 3).
We also have

(9.19) h1,0(X) = h0,1(X) = (d − 1

2
).

Proof. By Corollary 9.3.5, we have KX ≅ OX(d − 3). Then (9.18) follows from Lemma 9.4.3.

To prove (9.19), consider the ideal sheaf sequence of X, which takes the form

0→ OCP2(−d) → OCP2 → OX → 0.

The exact sequence in cohomology is:

H1(OCP2) = 0→H1 (OX) ∼→H2(OCP2(−d)) → 0.(9.20)

By Theorem 9.2.7, this gives

dimH1 (OX) = h0,1(X) = (d − 1

d − 3
) = (d − 1

2
)
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as claimed. By Theorem 9.2.4 and a similar exact sequence argument, we also have

h1,0(X) = dimH0(KX) = dimH0 (OX(d − 3)) = dimH0(OCP2(d − 3)) = (d − 3 + 2

d − 3
) = (d − 1

2
)

as claimed. �

Remark 9.4.7. Since TX =K∗
X , (9.18) implies that

(9.21) ⟨c1(TX), [X]⟩ = d(3 − d).
Because X is a compact Riemann surface, (9.21) determines its topology entirely, as can be

seen in many different ways. The main point is that the Chern class of the tangent bundle

is equal to the Euler class, which gives the topological Euler characteristic when evaluated

against [X] . So (9.21) is equivalent to

χtop(X) = d(3 − d).
Now, recall that the Euler characteristic of a smooth, compact, orientable surface of topo-

logical genus g is equal to 2 − 2g. We therefore have

d(3 − d) = 2 − 2g

2g = d2 − 3d + 2 = (d − 1)(d − 2)

g = (d − 1

2
).

By Theorem 9.4.6, we obtain the fundamental identity

(9.22) h1,0(X) = h0,1(X) = g
in the case that X is a smooth plane curve. By the end of the next section, we will have

proved (9.22) for general compact Riemann surfaces.
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10. The Riemann-Roch Theorem

We will now apply our modern technology to prove the classical theorem about meromor-

phic functions on a Riemann surface. The goal is to effectively solve the following version of

the Mittag-Leffler problem (5.1.1):

Given a finite collection of points {pα} on a compact Riemann surface Σ, and integers nα,

what is the dimension of the space of meromorphic functions with poles of order at most nα
at pα?

Notice that this problem has two aspects. The first is to determine the number of “con-

straints” on the principal parts of such a meromorphic function (i.e., to bound the dimension

from above); the second is to actually “construct” meromorphic functions with controlled

poles (i.e., to bound the dimension from below). We shall see that our cohomological tools

can handle both aspects in a remarkable way.

10.1. Motivation for the formula. Let Σ be a compact Riemann surface. For a divisor

D = ∑
α

nαpα −∑
β

mβqβ

we shall write

`(D) = dimH0 (O(D)) = dim{f ∈ M (M) ∣ (f) ≥D} .
for the dimension of the space of meromorphic functions with poles of order at most nα at

pα, and zeroes of order at least mβ at qβ. Recall that if D ∼D′ are linearly equivalent, then

O(D) ≅ O(D′), and consequently `(D) = `(D′).
Assume for the moment that D is effective, of degree d = ∑nα. We want to make an

estimate of `(D). First of all, notice that

(10.1) `(D) ≤ d + 1

for obvious reasons: the principal part of a meromorphic function at pα has dimension nα,

and any two functions with the same principal parts differ by a holomorphic function, which

must be constant.

We have seen above (Problem 1.5.11) that for the case of CP1, there are no further con-

straints, and (10.1) is sharp. But a general Riemann surface Σ may carry holomorphic differ-

ential forms, which impose constraints in the following way. Given a meromorphic function

f with (f) ≥ D, and a holomorphic differential form ω, we obtain a global meromorphic

differential form by taking the product:

(10.2) η = fω.

Lemma 10.1.1. Given a meromorphic differential form η on a compact Riemann surface

Σ, with poles at {pα}, we have

(10.3) ∑
α

Respαη = 0.

Here Respαη is defined to be the coefficient a−1 in the Laurent expansion

η =
∞
∑
i=−nα

aiz
i dz
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with respect to any local coordinate z in which pα = 0.

Proof. Choose a triangulation of Σ such that each face ∆γ is contained in a coordinate chart,

and each pα is in the interior of a face. Then, since Σ is closed, we have

0 = ∂Σ = ∂∑
γ

∆γ = ∑
γ

∂∆γ.

Integrating η over this 1-chain, we get

0 = ∑
γ
∫
∂∆γ

η = ∑
α

2πiRespαη

by the Residue Theorem, applied in each face ∆γ. �

As discussed above, since a meromorphic function is determined by its principal parts, up

to a constant, we have:

0→ C→H0(O(D)) → Cd.

Putting this together with the assignment (10.2), by Lemma 10.1.1, gives a complex:

0→ C→H0(O(D)) → Cd →H0(Ω1
Σ)∗.

We can also determine the cokernel of the right-hand map: a holomorphic form has residue

zero at pα, when multiplied by any possible principal part, if and only if it vanishes to order

nα at pα. We therefore obtain a complex

(10.4) 0→ C→H0(O(D)) → Cd →H0(Ω)∗ →H0(Ω (−D))∗ → 0

which is exact, except possibly at Cd. By (6.25), we obtain

(10.5) `(D) − 1 ≤ d − h1,0 + dimH0 (Ω (−D)) .
The Riemann-Roch Theorem states that (10.5) is an equality (and so the complex (10.4)

was indeed exact).

Having provided this motivation, we will now attempt to give a maximally efficient proof

of the theorem.12

10.2. First version. Recall that for a holomorphic line bundle L , we write

L (D) = L ⊗O O(D)
which is again isomorphic to a line bundle. If D = ∑α nαpα is effective, there is (by definition)

an exact sequence of sheaves of O-modules

(10.6) 0→L →L (D) → ⊕α (Cnα)pα → 0.

Here (Cnα)pα is the “skyscraper sheaf” whose sections are Cnα for open sets containing pα
and zero otherwise. We also write

h0,1 = h0,1
Σ =H1(OΣ)

12This approach has the disadvantage of making it slightly difficult to see the connection between the

proof and the motivation. For a proof more directly connected to the above residue argument, see Griffiths

and Harris, Ch. 2.
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as above. This number, sometimes called the “arithmetic genus” of Σ, is finite by Theorem

7.3.1.

Theorem 10.2.1 (Riemann-Roch, first version). For a holomorphic line bundle L over a

compact Riemann surface Σ, we have

(10.7) dimH0(L ) − dimH1(L ) = ⟨c1(L ), [Σ]⟩ + 1 − h0,1
Σ .

Proof. Recalling the definition (6.6.1) of the Euler characteristic, notice that the LHS of

(10.7) is simply χ(L ). We have seen in Corollary 7.4.3 that this is a finite quantity.

Let D0 be any effective divisor of degree d, and consider the exact sheaf sequence (10.6).

Applying the additivity of the Euler characteristic, Lemma 6.6.2, we obtain

(10.8) χ(L (D0)) = χ(L ) + d.
Taking d > −χ(L ), we conclude that

χ(L (D0)) =H0(L (D0)) −H1(L (D0)) > 0

and therefore

H0(L (D0)) > 0.

Consequently, the bundle L (D0) has nontrivial global holomorphic sections, which corre-

spond to nontrivial meromorphic sections of L . Letting s be any such section of L and

D = div(s), we conclude from Theorem 8.3.4b that

L ≅ O(D).
Therefore, all line bundles on Σ are isomorphic to O(D) for some divisor; it suffices to prove

the theorem for bundles of this form.

We can now prove the formula by induction. The base case L = O reads:

dimH0(O) − dimH1(O) = 0 + 1 − h0,1

which is true by definition. Now, let

D =D0 −D1

be an arbitrary divisor, where D0 and D1 are both effective, and write d = degD = d0 − d1.

By (10.8), since O = (O(−D1)) (D1), we have

χ(O) = χ(O(−D1)) + d1

and

χ(O(−D1)) = −d1 + 1 − h0,1.

Applying (10.8) again, we obtain

χ(O(D)) = χ(O(−D1)) + d0 = d0 − d1 + 1 − h0,1

= d + 1 − h0,1

as desired. �

Corollary 10.2.2. Every holomorphic line bundle L over Σ is isomorphic to O(D) for

some divisor D.
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Proof. This was shown during the proof of the last theorem. �

Remark 10.2.3. In view of the previous corollary, we will refer to the “degree” of any

holomorphic line bundle L as the degree of any divisor such that L ≅ O(D). By Theorem

8.5.2, this is just the first Chern class of L evaluated against [Σ] .

Corollary 10.2.4. Given any divisor D with deg(D) > h0,1, there exists a nonconstant

meromorphic function f with (f) ≥ −D.

Proof. This follows because H1(O(D)) (fortunately) appears with a negative sign on the

right-hand side of (10.7), so the assumption implies that `(D) ≥ 2. �

Corollary 10.2.5. Any Riemann surface with h0,1 = 0 is biholomorphic to CP1.

Proof. For any point p ∈ Σ, we have dimH0(O(p)) ≥ 2, so there exists a nonconstant mero-

morphic function f with a simple pole at p. Then

[1, f]
defines a holomorphic map from Σ to CP1, and the degree of this map is clearly one (since

f has a simple pole). Hence, by Theorem 2.6.3 (or much more elementary arguments), this

is a biholomorphism. �

10.3. Serre vanishing and projective embeddings. Theorem 10.2.1 gives us a powerful

method for manufacturing meromorphic functions on a Riemann surface. To gain more pre-

cise control over the output, we need to better understand the groups H1(L ), in particular

the group H1(O) whose dimension appears negatively on the RHS of (10.7).

We will first give a direct proof of a vanishing theorem due to Serre. The following lemmas

will prove convenient.

Lemma 10.3.1. For any holomorphic map13 between line bundles

(10.9) ψ ∶ L →N

over Σ, there exists an effective divisor D such that ψ factorizes as

(10.10) L →L (D) ∼→N

where the first map is the canonical inclusion and the second is an isomorphism.

Proof. This is a simple exercise in the definitions, using the local description (1.9) of a

single-variable holomorphic function. �

Lemma 10.3.2. Any nonzero holomorphic bundle map ψ as in (10.9) induces an epimor-

phism

H1(L ) ↠H1(N ).
13This means a map of OΣ-modules that is not necessarily a “bundle map,” per §7.1. Locally, it is just

given by a holomorphic function that may have zeroes.
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Proof. Let D be the effective divisor produced by the previous lemma. Consider the long

exact sequence in cohomology associated to (10.6), which was implicitly used in the proof of

Theorem 10.2.1:

(10.11) 0→H0(L ) →H0(L (D)) → ⊕αCnα →H1(L ) →H1(L (D)) → 0.

This shows that H1(L ) →H1(L (D)) is an epimorphism. But ψ factorizes as (10.10), and

so the induced map on cohomology also factorizes as

H1(L ) ↠H1(L (D)) ∼→H1(N ).
Since the first map is surjective and the second is an isomorphism, the composition is sur-

jective. �

Theorem 10.3.3 (Serre vanishing). Let L be a line bundle on Σ and D any divisor with

(10.12) degD = d ≥H1(L ) + h0,1.

Then

H1(L (D)) = 0.

In particular, we have

H1(O(D)) = 0

for all divisors with degD ≥ 2h0,1.

Proof. Let N = L (D). By HW 5 # 8, we have

HomO (L ,N ) ≅H0 (L ∗ ⊗N ) =H0 (O(D)) .
Here, Hom is the space of all holomorphic maps L → N . By Lemma 10.3.2, any nonzero

map ψ ∶ L →N induces a surjective map on cohomology, and so an injective map on dual

spaces:

ψ∗ ∶H1 (N )∗ ↪H1 (L )∗ .
Assume, for the sake of contradiction, that H1 (N ) ≠ 0, and let λ ≠ 0 ∈ H1 (N )∗ be a

nonzero element. Since, for any nonzero ψ as above, the induced map ψ∗ is an injection, the

element ψ∗(λ) is nonzero. We therefore obtain an injective map

H0 (O(D)) ↪H1 (L )∗

ψ ↦ ψ∗(λ).
(10.13)

But Theorem 10.2.1 gives

(10.14) dimH0 (O(D)) ≥ d + 1 − h0,1.

Hence, if

d − h0,1 ≥ dimH1 (L )
then (10.13) cannot possibly be injective. We conclude that λ = 0 for d as in (10.12). Since

λ was arbitrary, we are done. �

Corollary 10.3.4. For degD = d ≥ 2h0,1, we have

`(D) = d + 1 − h0,1.
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Recall from §8.4 that spaces of holomorphic sections of line bundles (or equivalently, linear

systems of divisors on Σ) define maps to projective space in an obvious way. We can easily

use Corollary 10.3.4 to obtain the following result.

Theorem 10.3.5. For any divisor D with degD ≥ 2h0,1 + 2, the map to CPh0,1+2 associated

to the complete linear system ∣D∣ is an embedding.

Proof. There are three things to check. First, we must verify that the base locus Bs(∣D∣) =
∩D′∈∣D∣D′ is empty, so that the map is defined on all of Σ. This is equivalent to showing

that for each point p ∈ Σ, there exists a section s ∈ H0(O(D)) with s(p) ≠ 0. Supposing the

contrary, we would have

H0(O(D − p)) =H0(O(D)).
But this is impossible, by Corollary 10.3.4, since deg (D − p) = degD−1 for degD ≥ 2h0,1+1,

as we have assumed. Therefore Bs(∣D∣) = ∅.
Next, we must check that the map associated to ∣D∣ is injective. This is equivalent to

showing that for any two points p ≠ q ∈ Σ, there is a section s with s(p) = 0 but s(q) ≠ 0.

(This is called “separating points.”) But again by our degree assumption, we have

dimH0(O(D − p)) > dimH0(O(D − p − q))

so not all sections that vanish at p also vanish at q.

Lastly, we must check that the derivative of the map associated to ∣D∣ is nonvanishing at

every point p ∈ Σ. With a tiny bit of thought, this is equivalent to showing that some section

s vanishes at p to order exactly one (i.e. the derivative of this coordinate is nonzero at p).

Again, there must be such a section, because

dimH0(O(D − p)) > dimH0(O(D − 2p))

by Corollary 10.3.4. We have shown that the map is an embedding, as required. �

Remark 10.3.6. We will see below that the degree thresholds in these theorems can be

improved by one.

Corollary 10.3.7. Every line bundle L of positive degree on a Riemann surface is ample

(per Definition 8.4.2).

Corollary 10.3.8. Every compact Riemann surface is biholomorphic to a smooth projective

variety.

10.4. Second version (with Serre duality). Although we know that it is finite and

vanishes for effective divisors of high-enough degree, the cohomology group H1 (O(D)) ap-

pearing in (10.7) is still a bit mysterious. We can reinterpret it geometrically as follows.

Recall from §7.4 that the Dolbeault isomorphism H1 (L ) ≅H0,1

∂̄L
holds for any line bundle;

therefore any class H1 (L ) is represented by an equivalence class of (0,1)-forms on Σ with
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values in the underlying smooth bundle, L. Notice that since Σ is a Riemann surface, any

such form is ∂̄-closed. We now define the following pairing:

A 1,0 (L∗) ⊗A 0,1 (L) → C

(α⊗ λ,β ⊗ s) ↦ ∫
Σ
λ(s)α ∧ β.

(10.15)

Notice that the integral makes sense, because λ(s) is a scalar and α ∧ β is a 2-form.

Lemma 10.4.1. The pairing (10.15) descends to a pairing

⟨, ⟩ ∶H0 (Ω⊗L ∗) ⊗H1 (L ) → C.

Moreover, the induced map

(10.16) ι ∶H0 (Ω⊗L ∗) →H1 (L )∗

is injective.

Proof. The first claim amounts to the statement that given any holomorphic section ω ∈
Γ (Ω⊗L ∗) , the function ⟨ω,−⟩ vanishes identically on the image ∂̄ (A 0 (L)) . To see this,

write

⟨ω, ∂̄s⟩ = ∫
Σ
ω ∧ ∂̄L s

= ∫
Σ
∂̄ (ω (s))

= ∫
Σ
d (ω (s))

= 0.

Here we have used the Leibniz rule and the assumption that ω is holomorphic:

∂̄ (ω (s)) = (∂̄Ω⊗L ∗ω) (s) + ω ⊗ ∂̄Lω = ω ⊗ ∂̄Lω.

This is sufficient to show that the pairing ⟨, ⟩ induced by (10.15) is well defined.

To show the injectivity, let ω ≠ 0 ∈H0 (Ω⊗L ∗) , and let p ∈ Σ be a point where ω(p) ≠ 0.

Choose a coordinate chart U and local frame near p = 0, in which we have

ω = λ(z)dz

with λ(0) ≠ 0. We may choose a smooth section s of L over U, such that λ(s)(z) ≡ 1 for z

in a neighborhood U ′ ⋐ U of p. Let χ ≥ 0 be a smooth cutoff supported on U ′, with χ(0) = 1,

and let

η = χλdz̄.
This is an element of A 0,1(L) with ∂̄L η = 0 (trivially). We then have

⟨ω, η⟩ = ∫
U ′
χλ(s)(z)dz ∧ dz̄

= ∫
U ′
χdz ∧ dz̄ ≠ 0.

(10.17)

Therefore the functional ⟨ω,−⟩ is not identically zero, as claimed. �
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This simple argument establishes that nonzero global holomorphic 1-forms pair nontriv-

ially with cohomology classes. The question is then whether any cohomology class pairs

nontrivially with a holomorphic 1-form. This is a famous theorem of Serre, which can be

seen as a complex version of the Poincaré Duality Theorem for an orientable smooth mani-

fold.

Theorem 10.4.2 (Serre duality). The pairing ⟨, ⟩ above is a perfect pairing, i.e. the map ι

of (10.16) is an isomorphism. In particular, we have

dimH1 (L ) = dimH0 (Ω⊗L ∗) .

We will prove a special case of this result in §10.4.1, and the general case in §10.5.

Corollary 10.4.3. We have

h1,0 (Σ) = h0,1(Σ).

Proof. This is the case L = O in the previous Theorem. �

Definition 10.4.4. Define the genus of Σ by

g = gΣ = h0,1 (Σ) = h0,1(Σ).

We shall write

K =KΣ

for the divisor of any meromorphic section of ΩΣ, the canonical bundle of Σ, called a canon-

ical divisor (really a linear equivalence class of divisors).

We can now rephrase the Riemann-Roch Theorem using Serre duality.

Theorem 10.4.5 (Riemann-Roch, second version). For any divisor D on Σ of degree d, we

have

`(D) − `(K −D) = d + 1 − g

Corollary 10.4.6. The degree of the canonical bundle of Σ is given by

degK = 2g − 2.

10.4.1. Proof of Serre duality for plane curves. For the special case of plane curves, there is

a quick-and-dirty proof of Theorem 10.4.2 that goes as follows. According to Remark 9.4.7,

we have already seen by direct calculation that the degree of the canonical bundle is

degK = d(d − 3) = 2(d − 1

2
) − 2 = 2g − 2

agreeing with Corollary 10.4.6, where the “genus” g is given by Definition 10.4.4. (From the

analytic perspective, this is actually the central point of the whole theory.)

Notice that by Lemma 10.4.1, it is sufficient to establish that the dimensions of the two

spaces are equal. Also, applying Lemma 10.4.1 with L = O(D), we have

(10.18) dimH0 (Ω(−D)) = `(K −D) ≤ dimH1 (O(D)) .
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Putting this together with Theorem 10.2.1, we get14

(10.19) `(D) − `(K −D) ≥ `(D) − dimH1(O(D)) = d + 1 − g.

Applying (10.19) with K −D in place of D, we obtain

(10.20) `(K −D) − `(D) ≥ (2g − 2 − d) + 1 − g = −d − 1 + g.

Adding (10.19) and (10.20), we obtain

0 ≥ 0.

But this implies that the inequality (10.18) must have been an equality. �

10.5. Proof of Serre duality. We will now give a clever proof of Theorem 10.4.2 for a

general Riemann surface, relying on a similar trick to the proof of Serre vanishing above

(Theorem 10.3.3). I learned the proof from Forster’s book (§17).

Recall that given a holomorphic map ψ ∶ L0 → L between line bundles, not identically

zero, the induced map H1 (L0) → H1 (L ) is a surjection, by Lemma 10.3.2. The corre-

sponding map on dual spaces

(10.21) ψ∗ ∶H1 (L )∗ ↪H1 (L0)∗

is therefore an injection. We also have a natural inclusion

(10.22) H0 (Ω⊗L ∗) ↪H0 (Ω⊗L ∗
0 )

induced by the dual holomorphic map L ∗ →L ∗
0 . The following Lemma is crucial.

Lemma 10.5.1. Let ψ as above and ω ∈ H0 (Ω⊗L ∗
0 ) . If the element ι (ω) = ⟨ω,−⟩ ∈

H1(L0)∗ lies in the image of H1(L )∗ under ψ∗ (per (10.21)), then ω lies in the image of

H0 (Ω⊗L ∗) under (10.22).

Proof. By Lemma 10.3.1, we may assume without loss of generality that L0 = L (−D), for

D an effective divisor, and L0 → L is the natural map. In fact, we can assume that D = p
is an effective divisor of degree one, and the general result will follow by induction. Then

to show that ω ∈ H0 (L ∗
0 ) belongs to H0 (L ∗) = H0 (L ∗

0 (−p)) , we must simply show that

ω(p) = 0.

As in the proof of Lemma 10.4.1, let (U, z) be a coordinate neighborhood of p on which

L0 is trivialized. Let χ be a cutoff supported in U with χ ≡ 1 on a ball B ∋ p. Consider the

element

η = ∂̄ (χ
z
) ∈ Z0,1

∂̄L0

.

Notice that since L = L0(p), η belongs to the image ∂̄A 0(L), and is therefore equivalent

to zero in H0,1

∂̄L
≅H1 (L ) . So the assumption on ι(ω) implies that

⟨ω, η⟩ = 0.

14For an effective divisor, we could also finish the proof here by combining this inequality with (10.5),

which goes in the opposite direction.
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But, writing ω = f(z)dz on U, we have

0 = ∫
U
f(z)dz ∧ ∂̄ (χ

z
)

= −∫ ∂̄ (χf(z)dz
z

)

= ∫
∂B

f(z)
z

dz

= 2πif(0)

by the Cauchy Integral Formula (!). Therefore f(0) = 0 and ω vanishes at p, as claimed. �

Proof of Theorem 10.4.2. Let λ ≠ 0 ∈H1 (L )∗ . We must produce a section ω ∈H0 (Ω⊗L ∗)
such that ι (ω) = λ, where ι is the injective map defined by (10.16).

Let

(10.23) n = max [deg L + 1,3h0,1 − deg Ω] .

Choose any line bundle L0 with

deg L0 + n = deg L .

(For instance, we may take any effective divisor D0 of degree n, and let L0 = L (−D0).) We

shall write ι0 = ιL0 .

The space of holomorphic maps L0 → L is isomorphic to the space of global sections of

the tensor product:

HomO (L0,L ) ≅ Γ (L ∗
0 ⊗L ) .

Since

deg L ∗
0 ⊗L = −deg L0 + deg L0 + n = n

we have

(10.24) dim Hom (L0,L ) ≥ n + 1 − h0,1

by Theorem 10.7.

Given ψ ∶ L0 → L , let ψ∗ ∶ H1 (L )∗ → H1 (L0)∗ be the induced map (10.21). Consider

the subspace

(10.25) Λ = {ψ∗λ ∣ ψ ∈ Hom (L0,L )} ⊂H1 (L0)∗

By Lemma 10.3.1, ψ∗ is is an injection for ψ ≠ 0, so ψ∗λ ≠ 0. Therefore we have an isomor-

phism

Hom (L0,L ) ∼→ Λ

ψ ↦ ψ∗λ.

From (10.24) and Theorem 10.2.1, we obtain

(10.26) dim Λ ≥ n + 1 − h0,1.
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Now, by Theorem 10.2.1 the space of holomorphic sections of Ω⊗L ∗
0 has dimension

(10.27) dimH0 (Ω⊗L ∗
0 ) ≥ (deg Ω − deg L + n) + 1 − h0,1.

Define the subspace

I = ι0 (H0 (Ω⊗L ∗
0 )) ⊂H1 (L0)∗ .

Recall from Lemma 10.4.1 that the map ι0 is an injection, so (10.27) gives

(10.28) dim I ≥ deg Ω − deg L + n + 1 − h0,1.

On the other hand, since n > deg L by (10.23), we have deg L0 < 0, and Theorem 10.2.1

gives

−dimH1 (L0) = deg L − n + 1 − h0,1

and

(10.29) dimH1 (L0) = n + h0,1 − 1 − deg L .

Combining (10.26) and (10.28), we now have

dim I + dim Λ ≥ 2n + 2 + deg Ω − deg L − 2h0,1.(10.30)

Comparing (10.30) and (10.29), the assumption (10.23) guarantees that the sum of the

dimensions of the two subspaces I and Λ is greater than that of H1 (L0)∗ . Consequently,

there exists a nonzero element

λ0 ∈ I ∩Λ ⊂H1 (L0)∗

and, by definition, a section ω ∈ H0 (Ω⊗L ∗
0 ) and a holomorphic map ψ ∶ L0 → L , such

that

(10.31) ι0 (ω) = λ0 = ψ∗λ.
But, using ψ to identify L0 as a subsheaf of L , Lemma 10.5.1 implies that in fact ω ∈
H0 (Ω⊗L ∗) , where L ∗ →L ∗

0 is induced by ψ. Then ω satisfies

ι (ω) = λ
as desired. �
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11. Applications to Riemann surfaces

11.1. The Riemann-Hurwitz formula.

11.2. Genus one.

11.3. Genus two and three.

11.4. The Hodge Theorem. Michigan State University, East Lansing, MI 48823

E-mail address: awaldron@msu.edu
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