
RICCI FLOW AND SPHERE THEOREMS

ANDONI ROYO ABREGO

ABSTRACT. These are the notes from a talk given at the Ricci flow reading seminar in
UW Madison on the 5th of November 2024. They are based on [5, 6, 8, 2, 4].

1. SPHERE THEOREMS

A Sphere Theorem seeks for a geometric condition on a (closed) Riemannian man-
ifold that forces it to be equivalent to the the round sphere Sn. Equivalent could mean
isometric, diffeomorphic or homeomorphic. A classic example of the first is

Theorem 1.1 (H. Hopf [7]). Let (Mn, g) be a closed, simply connected Riemannian
manifold with constant sectional curvature equal to 1. Then, (Mn, g) is isometric to
Sn.

A natural follow-up question H. Hopf posed was the following: what if all the
sectional curvatures of (Mn, g) are very close to 1? This question kept Riemannian
geometers occupied for a long time, until a satisfactory answer was given by M. Berger
and W. Klingenberg in the early sixties, building on work of H. E. Rauch [10]:

Theorem 1.2 (M. Berger [1], W. Klingenberg [9]). Let (Mn, g) be a closed, simply
connected Riemannian manifold with sectional curvature 1

4
< K ≤ 1. Then, (Mn, g)

is homeomorphic to Sn.

Theorem 1.2 is sharp in the sense that any compact symmetric space of rank one
admits a metric with 1

4
≤ K ≤ 1. Since the work of J. Milnor we know that there

exist homeomorphic Riemannian manifolds that are not diffeomorphic to each other.
Then the next natural question is: can we strengthen homeomorphic in Theorem 1.2 to
diffeomorphic? Hamilton’s Ricci flow provided a powerful tool to answer such question
and it indeed culminated with a complete answer:

Theorem 1.3 (Brendle–Schoen [3]). Let (Mn, g) be a closed, simply connected Rie-
mannian manifold with sectional curvature 1

4
< K ≤ 1. Then, (Mn, g) is diffeomorphic

to Sn.
1
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It follows in particular that exotic spheres do not admit Riemannian metrics with
1
4
< K < 1.

The goal of this talk is to see how Ricci flow can be used to prove diffeomor-
phic sphere theorems in general and show a weaker version of Theorem 1.3 due to G.
Huisken [8].

2. GENERAL CONVERGENCE CRITERION

In this section we describe a general principle for which an appropriately rescaled
Ricci flow will converges to a spherical space form, that is, a Rimannian manifold
constant sectional curvature. The technique is due to R. Hamilton [5, 6], but it has
been generalized and extended to other geometric flows by many authors. For a more
powerful and abstract version, see section 5 of [6] or section 5.4 of [2].

The Riemann curvature tensor admits a well-known orthogonal decomposition

Rm = W + V + U ,

where W is traceless, V has vanishing second traces and U is contains only double
traces. Denoting R̊c = Rc− 1

n
R g the traceless Ricci tensor, these are defined by

Uijkl =
1

n(n− 1)
R
(
gikgjl − gilgjk

)
,

Vijkl =
1

n− 2

(
R̊ikgjl − R̊ilgjk − R̊jkgil + R̊jlgik

)
,

Wijlk = Rijkl −Vijkl − Uijkl .

We also use the notation R̊m = Rm−U = W + V for the non full-trace part or the
Riemann tensor. We recall that a Riemannian manifold has constant sectional curvature
if and only if Rm = U .

Theorem 2.1 (General Convergence Criterion). Let
(
Mn, g(t)

)
be a Ricci flow on a

maximal time interval t ∈ [0, T ) with n ≥ 3 and T < ∞. Suppose there exist some
0 < σ < 1 and C0 < ∞ such that

(1) |R̊m|2 ≤ C0R
2−σ

holds on M × [0, T ). Then, the rescaled metrics 1
2(n−1)(T−t)

g(t) converge smoothly as
t → T to a metric of constant sectional curvature equal to 1 on M .
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Observe that (1) breaks the scaling invariance: if R → ∞ as t → T , then

|R̊m|2

R2 ≤ C0R
−σ → 0 .

This means that in regions where the scalar curvature is becoming unbounded, it dom-
inates over W and V . Later we will see that the pinching (1) further implies that the
scalar curvature must blow-up as t → T .

Lemma 2.2 (Algebraic estimate).

|∇Rc |2 ≥ 3n− 2

2(n− 1)(n− 2)
|∇R |2

Proof. Algebraic trace decomposition of ∇Rc. □

Proposition 2.3 (Gradient estimate). There exists some η0 > 0 depending only on
n and C0 with the following property. For every 0 < η ≤ η0 there exists some Cη

depending on n, σ, η, C0 and the initial data such that

|∇R |2 ≤ ηR3+Cη .

Proof. We begin by computing

∂

∂t
|∇R |2 = 2Rc(∇R,∇R) + 2

〈
∇R,∇

(
∆R+2|Rc |2

)〉
= ∆|∇R |2 − 2|∇2R |2 + 6Rc(∇R,∇R) + 4

〈
∇R,∇|Rc |2

〉
≤ ∆|∇R |2 − 2|∇2R |2 + C

(
n,C0

)
R |∇Rc |2 .

In the last inequality we have used the basic inequality |∇R | ≤ C(n)|∇Rc | as well
as |Rc | ≤ C

(
n,C0

)
R due to the pinching (1). Since the scalar curvature will remain

positive, we may compute

∂

∂t

(
|∇R |2

R

)
≤ 1

R

(
∆|∇R |2 − 2|∇2R |2 + C

(
n,C0

)
R |∇Rc |2

)
− 1

R2 |∇R |2
(
∆R+2|Rc |2

)
which combined with

∆

(
|∇R |2

R

)
=

∆|∇R |2

R
− 2

⟨∇R,∇|∇R |2⟩
R2 − |∇R |2∆R

R2 + 2
|∇R |4

R3

=
∆|∇R |2

R
− 2

R
|∇2R |2 − |∇R |2∆R

R2 +
2

R3

∣∣∣R∇2R−∇R∇R
∣∣∣2
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it yields(
∂

∂t
−∆

)(
|∇R |2

R

)
≤ − 2

R3

∣∣∣R∇2R−∇R∇R
∣∣∣2 + C1(n,C0)|∇Rc |2

In order to control the bad term on the right-hand-side, we compute the evolution of∣∣R̊c∣∣2 = |Rc |2 − 1
n
R2. We begin with

∂

∂t
|Rc |2 = 4Rij Rip R

p
j +2

〈
Rc,∆Rc+2Ripjq R

pq −2Rip R
p

j

〉
= ∆|Rc |2 − 2|∇Rc |2 + 4Ripjq R

ij Rpq

and
∂

∂t
R2 = 2R∆R+4R |Rc |2 = ∆R2−2|∇R |2 + 4R |Rc |2

separately and put them together with the Lemma 2.2 to obtain

∂

∂t

∣∣R̊c∣∣2 = ∆
∣∣R̊c∣∣2 − 2

(
|∇Rc |2 − 1

n
|∇R |2

)
+ 4

(
Ripjq R

ij − 1

n
RRpq

)
Rpq

≤ ∆
∣∣R̊c∣∣2 − (n− 2)2

(3n− 2)n
|∇Rc |2 + 4Ripjq R

ij R̊
pq
.

Note that C2(n) :=
(n−2)2

(3n−2)n
≥ 0 for n ≥ 3. Using the pinching assumption (1) we may

estimate the last term too as

Ripjq R
ij R̊

pq
= Ripjq R̊

ij
R̊

pq
+

1

n
R R̊pqR̊

pq

≤ C(n)
(
|W ||V |2 + |V |3 +R |V |2

)
≤ C3

(
n,C0

)
R3−σ ,

leading to (
∂

∂t
−∆

) ∣∣R̊c∣∣2 ≤ −C2|∇Rc |2 + C3R
3−σ .

Finally, we can combine all these estimates to obtain that the function

f =
|∇R |2

R
+

2C1

C2

∣∣R̊c∣∣2 − ηR2

satisfies (
∂

∂t
−∆

)
f ≤ −C1|∇Rc |2 + C3R

3−σ +2η|∇R |2 − 4ηR |Rc |2

≤
(
−C1 + C(n)η

)
|∇Rc |2 + C3R

3−σ −4η

n
R3 ,
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simply by |∇R |2 ≤ C(n)|∇Rc |2 from Lemma 2.2 and |Rc |2 ≥ 1
n
R2. For each

0 < η ≤ C1/C(n) it follows, using Young’s inequality, that(
∂

∂t
−∆

)
f ≤ C3R

3−σ −4η

n
R3 ≤ C4(n, σ, η, C0)

and the maximum principle implies that

f ≤ sup
M

f(0) + C4T .

In particular,
|∇R |2

R
≤ ηR2+C5T

with C5 depending on C4 and the initial data. Multiplying by R and using Young’s
inequality we end up with

|∇R |2 ≤ ηR3+C5RT ≤ 2ηR3+η−1
(
C5T

)3/2
and the claim follows after redefining η and bounding T with the initial lower bound of
the scalar curvature. □

Proposition 2.4. As t → T it holds that

Rmax → ∞ and
Rmax

Rmin

→ 1 .

Proof. By the pinching assumption (1) we know that Rmax → ∞ as t → T . Thus, for
any η > 0 there is some 0 ≤ t̄ < T such that the constant on the right-hand-side of
Proposition 2.3 satisfies Cη ≤ ηR3

max for all t̄ ≤ t < T . Therefore, we may safely
assume (after redefining η) that for any small η > 0

|∇R | ≤ η2R3/2
max

holds for all times close enough to T . Fix a point p ∈ M where R assumes its maximum
and let γ be any geodesic with γ(0) = p. Then,

R
(
γ(s)

)
= R

(
γ(0)

)
−
∫ s

0

d

dθ

∣∣R(γ(θ))∣∣ dθ
≥ Rmax−η2R3/2

max Lg(γ)

and it follows that R ≥ (1 − η) Rmax at all points at distance at most L = η−1R−1/2
max .

Now, since the hypothesis (1) implies (exercise) the Ricci pinching Rc ≥ C2
1(n, σ, C0) R g,

the inequality

Rc ≥ C2
1(1− η) Rmax g ≥ C2

1

4
Rmax g
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holds along the geodesics γ (w.l.o.g. η < 3
4
). Myers Theorem then implies that

geodesics of length greater than L0 = 2C−1
1 R−1/2

max contain conjugate points. It fol-
lows that we can cover the whole manifold by geodesics of length L by choosing η > 0

small enough and establish
Rmin ≥ (1− η) Rmax

for all times close to T . Since η > 0 was arbitrary, the claim follows. □

Proposition 2.5. For any ε > 0 there exists some δ > 0 such that

(1− ε)
(n
2
+ ε

)
≤ (T − t) R ≤ n

2

holds for all T − δ < t < T .

Proof. From the evolution equation,

∂

∂t
R = ∆R+2|Rc |2 ≥ ∆R+

2

n
R2

we get by ODE comparison that

R−1(s)− R−1(t) ≤ − 2

n
(s− t)

and the upper bound follows by letting s → T and using Proposition 2.4 to say that
R(s) → ∞ everywhere.

For the lower bound, we use Proposition 2.4 to say that for each fixed ε > 0 there
is some time δ > 0 such that

Rσ
min ≥ 2C0 ε and Rmin ≥ (1− ε) Rmax

for all T − δ ≤ t < T and therefore

|Rc |2

R2 =
|R̊c|2

R2 +
1

n
≤ C0R

−σ ≤ ε

2
+

1

n
.

It follows that
∂

∂t
R = ∆R+2|Rc |2 ≤ ∆R+

(
ε+

2

n

)
R2

max

and thus the maximum of the scalar curvature satisfies (justify rigorously)

∂

∂t
Rmax ≤

(
ε+

2

n

)
R2

max

and consequently

Rmax ≥
(
ε+

2

n

)
1

T − t
.
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Then, for all times T − δ < t < T

Rmin ≥ (1− ε) Rmax ≥ (1− ε)
(n
2
+ ε

)
as clamed. □

Finally we are ready to prove the General Convergence Critirion.

Proof Theorem 2.1. Combining the pinching condition (1) and Proposition 2.5, we ob-
tain the bound

|Rm |2 = |W |2 + |V |2 + |U |2 ≤ C
(
n,C0

)
R2 ≤ C(n,C0)

(T − t)2
.

In other words, the singularity is Type I. This implies that the rescaled metrics

ḡ(t) =
1

2(n− 1)(T − t)
g(t)

satisfy uniform curvature bounds

sup
M×[0,T )

|Rmḡ(t) |ḡ(t) = 2(n− 1) sup
M×[0,T )

(T − t)|Rmg(t) |g(t) ≤ C(n,C0)

and the usual long time existence obstruction theorem implies that the metrics ḡ(t)

converge smoothly as t → T to a smooth limit metric ḡ(T ). Since the ratio Rmax /Rmin

is scaling invariant, Proposition 2.4 and Proposition 2.5 imply that Rḡ(T ) = n(n− 1) in
the whole M . Moreover, by Proposition 2.5

|R̊mḡ(t)|2ḡ(t) = 4(n− 1)2(T − t)2|R̊mg(t)|2g(t)
≤ 4(n− 1)2(T − t)2C0R

2−σ ≤ 4(n− 1)2C0(T − t)σ

and it follows that Rmg(T ) = Ug(T ). We conclude that
(
M, g(T )

)
has constant sectional

curvature equal to 1. □

3. HUISKEN’S PINCHING

With Theorem 2.1 at hand, one aims to find conditions on the initial data such that
(1) holds on M × [0, T ). In three dimensions, Rc > 0 is one such condition [5]. In
higher dimensions, one has
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Theorem 3.1 (G. Huisken [8]). Let (Mn, g) be a closed Riemannian manifold of di-
mension n ≥ 4 with R > 0 satisfying

(2) |R̊m|2 < 2δn
n(n− 1)

R2

with
δ4 =

1

5
, δ5 =

1

10
, δn =

2

(n− 2)(n+ 1)
.

Then, there exist constants 0 < σ < 1 and C0 < ∞ depending only on n and the initial
data such that the unique solution to Ricci flow with initial data g satisfies

|R̊m|2 ≤ C0R
2−σ

on M × [0, T ), where T < ∞ is the maximal time of existence.

Combined with the general convergence criterion it follows

Corollary 3.2. Every closed Riemannian manifold of positive scalar curvature satisfy-
ing (2) is diffeomorphic to a spherical space form.

In the remaining, let us discuss the proof of Theorem 3.1. By the maximum prin-
ciple, we know that the scalar curvature will remain positive for all future times, so we
may consider the function

fσ =
|R̊m|2

R2−σ

for some 0 ≤ σ < 1
2
. This way, our task reduces to showing that fσ is bounded above

for some σ > 0. Since M is compact and the inequality (2) is strict, there exists some
ε > 0 depending on the initial data such that

(3) f0 ≤ (1− ε)2
2δn

n(n− 1)

holds at t = 0. A lengthy but straightforward computation gives

Lemma 3.3.(
∂

∂t
−∆

)
fσ =

2(1− σ)

R
⟨∇R,∇fσ⟩ −

2

R4−σ

∣∣R∇Rm−Rm∇R
∣∣2

− σ(1− σ)

R4−σ |R̊m|2 + 4

R3−σ

(
P +

σ

2
|R̊m|2|Rc |2

)
where

P = 2RRijkl R
ipkq R j l

p q +
1

2
RRijkl R

klpq R ij
pq −|Rm |2|Rc |2 .

In order to apply the maximum principle, we would like to estimate the absolute
term P . This can be successfully done by inserting the Rijkl = Wijkl + Vijkl + Uijkl in
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the definition and using the pinching condition Eq. (2). The following purely algebraic
Lemma is indeed where the hard work of the result is:

Lemma 3.4. Suppose there exists some ε > 0 such that

|R̊m|2 ≤ δn(1− ε)2|U |2 .

Then,
P ≤ − ε

n
R2 |R̊m|2 .

In other words, we have the estimate

P ≤ − ε

n
R4−σ fσ

provided that f0 ≤ (1− ε)2 2δn
n(n−1)

.

CLAIM 1. The estimate (3) holds for all t > 0.

Proof. Since (3) holds at t = 0, in particular the strict inequality

f0(0) < (1− ε+ η)2
2δn

n(n− 1)

holds for all 0 < η ≤ ε
2
. Suppose now there is some first event (x0, t0) ∈ M × (0, T )

such that
f(t0, x0) = (1− ε+ η)2

2δn
n(n− 1)

for some η > 0. Then, by Lemma 3.3 and Lemma 3.4

0 ≤
(

∂

∂t
−∆

)
f0(x0, t0) ≤ 4

P (x0, t0)

R3(x0, t0)
≤ −(ε− η)

n
R(x0, t0)f

2
0 (x0, t0) < 0 ,

which is a contradiction. Therefore, f0 < (1− ε + η)2 2δn
n(n−1)

for all 0 < t < T and all
0 < η ≤ ε

2
and the claim follows by letting η → 0. □

At this point, Lemma 3.4 allows us to deduce that P ≤ − ε
n
R2 |R̊m|2 for all future

times and hence we can show

CLAIM 2. There exists σ > 0 small enough such that fσ(t) ≤ supM fσ(0) holds
for all 0 ≤ t < T .

Proof. Using that P ≤ − ε
n
R2 |R̊m|2 and f0 < 2δn

n(n−1)
we estimate the last term in the

evolution equation of fσ0 as

4

R3−σ

(
P +

σ

2
|R̊m|2|Rc |2

)
≤ 4

R1−σ

(
− ε

n
+

σ

2

|Rc |2

R2

)
|R̊m|2
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≤ 4

R1−σ

[
− ε

n
+

σ

2

(
f0 +

1

n

)]
|R̊m|2

≤ 4

R1−σ

[
− ε

n
+

σ

2n

(
2δn
n− 1

+ 1

)]
|R̊m|2 .

Choosing σ > 0 small enough depending only on n and ε the right-hand-side becomes
negative and the claim follows by the maximum principle. □

This completes the proof of Theorem 3.1.
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