RICCI FLOW AND SPHERE THEOREMS

ANDONI ROYO ABREGO

ABSTRACT. These are the notes from a talk given at the Ricci flow reading seminar in
UW Madison on the 5th of November 2024. They are based on [5. (6, 8} 2} |4]].

1. SPHERE THEOREMS

A Sphere Theorem seeks for a geometric condition on a (closed) Riemannian man-
ifold that forces it to be equivalent to the the round sphere S™. Equivalent could mean

isometric, diffeomorphic or homeomorphic. A classic example of the first is

Theorem 1.1 (H. Hopf [7]). Let (M™, g) be a closed, simply connected Riemannian

manifold with constant sectional curvature equal to 1. Then, (M™,g) is isometric to

S

A natural follow-up question H. Hopf posed was the following: what if all the
sectional curvatures of (M", g) are very close to 1? This question kept Riemannian
geometers occupied for a long time, until a satisfactory answer was given by M. Berger

and W. Klingenberg in the early sixties, building on work of H. E. Rauch [[10]]:

Theorem 1.2 (M. Berger [1], W. Klingenberg [9]). Let (M",g) be a closed, simply
connected Riemannian manifold with sectional curvature ; < K < 1. Then, (M™, g)

is homeomorphic to S".

Theorem [I.2]is sharp in the sense that any compact symmetric space of rank one
admits a metric with % < K < 1. Since the work of J. Milnor we know that there
exist homeomorphic Riemannian manifolds that are not diffeomorphic to each other.
Then the next natural question is: can we strengthen homeomorphic in Theorem [1.2|to
diffeomorphic? Hamilton’s Ricci flow provided a powerful tool to answer such question

and it indeed culminated with a complete answer:

Theorem 1.3 (Brendle-Schoen [3]). Let (M™, g) be a closed, simply connected Rie-

mannian manifold with sectional curvature i < K < 1. Then, (M™, g) is diffeomorphic
to S".



RICCI FLOW AND SPHERE THEOREMS 2

It follows in particular that exotic spheres do not admit Riemannian metrics with
I<K<1.

The goal of this talk is to see how Ricci flow can be used to prove diffeomor-
phic sphere theorems in general and show a weaker version of Theorem [1.3|due to G.
Huisken [8]].

2. GENERAL CONVERGENCE CRITERION

In this section we describe a general principle for which an appropriately rescaled
Ricci flow will converges to a spherical space form, that is, a Rimannian manifold
constant sectional curvature. The technique is due to R. Hamilton [} 6], but it has
been generalized and extended to other geometric flows by many authors. For a more

powerful and abstract version, see section 5 of [6] or section 5.4 of [2].
The Riemann curvature tensor admits a well-known orthogonal decomposition

Rm=W+V+4+U,

where W is traceless, V' has vanishing second traces and U is contains only double

traces. Denoting Rc = Re —% R g the traceless Ricci tensor, these are defined by

1
Uiji = R(gikgji — 9agjk) »
Jkl n(n _ 1) (g kdji g lg]k)
1 N o o o
Vijki = p— (Rixgji — Ragjr — Rijega + Rugar) ,

Wik = Rijri —Vijr — Uijia -

We also use the notation Rm = Rm — U = W + V for the non full-trace part or the
Riemann tensor. We recall that a Riemannian manifold has constant sectional curvature
if and only if Rm = U.

Theorem 2.1 (General Convergence Criterion). Ler (M™, g(t)) be a Ricci flow on a
maximal time interval t € [0,T) withn > 3 and T < oo. Suppose there exist some
0 <o < 1landCy < oo such that

(1) IRm|? < CyR*™

holds on M x [0,T). Then, the rescaled metrics m g(t) converge smoothly as

t — T to a metric of constant sectional curvature equal to 1 on M.
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Observe that (I)) breaks the scaling invariance: if R — oo as ¢t — T, then

Rm|?
| m’ <C()R_U—>O.

R? —

This means that in regions where the scalar curvature is becoming unbounded, it dom-
inates over I and V. Later we will see that the pinching (T]) further implies that the
scalar curvature must blow-up as ¢t — 7.

Lemma 2.2 (Algebraic estimate).
3n — 2
2(n—1)(n—2)

|[VRc|?* > IVR|?

Proof. Algebraic trace decomposition of V Re. U

Proposition 2.3 (Gradient estimate). There exists some 1y > 0 depending only on
n and Cy with the following property. For every 0 < n < 1 there exists some C,
depending on n, o, 1, Cy and the initial data such that

IVR2<nR¥+C,.

Proof. We begin by computing
%WRF =2Rc(VR,VR) +2(VR,V(AR+2|Rc|?))
=A|[VR[|* = 2|V*R[*+6Rc(VR,VR) + 4(VR, V|Rc[*)
<AIVR]?=2|V*R[*+C(n,Co) R|[VRe .
In the last inequality we have used the basic inequality |V R | < C(n)|V Rc| as well

as |Re| < C(n,Cp) R due to the pinching (I). Since the scalar curvature will remain

positive, we may compute
0 [|[VR? 1 5 9o 12 )
— L) <« _
8t( & )_ R(AWR\ 2|V2R | +C(n,co)RyVRc\)
1
—@|VR|2<AR+2|RC|2>

which combined with
2 2 2 2 4
A(WR] ):A|VR| _2<VR,V|VR|)_|VR]2AR+2\VI§|

R R R? R R
AVR]? 2 _,_ ., |VR]PAR 2 ) 2
=" S IVR|PP-L— == —’R R-VRVR
= R|v | R +R3 \Y% VRV
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it yields
0 VR 2 2
== A) (P ) £ 55| RVPR-VRVR| +Ci(n, Co)| V Re
(5-2) (55 < + Cu(n, o)V Re
In order to control the bad term on the right-hand-side, we compute the evolution of
IRe|” = |Re |2 — L R2. We begin with

0
§| Re|? = 4RV Ry R,” +2(Re, ARc+2R;pj R —2R;, R,”)
= A|Rc|? — 2|V Rec |* + 4 Rypj, RV R

and

0
§R2 =2RAR+4R|Rc|?=AR*-2|[VR|* + 4R |Re?

separately and put them together with the Lemma [2.2]to obtain
O o . 1 |
&}RCF = A‘Rc‘g — 2 <\V Re > — EWR‘Q) +4 (Riqu RY - Rqu> RP4

2)?

2 (n— 9 ij P
SA‘RC‘ —m’VRC‘ +4R,iquR]R .

Note that Cy(n) = (22:22))271 > (0 for n > 3. Using the pinching assumption (1)) we may

estimate the last term too as
Ripje RYR™ = Ry R'R™ + = RR,,R™
n

< C)(IWIVE + [VF + RIV2) < Cy(n, Co) R*,

leading to
19, o
(& — A) IRe|” < —Co|VRe[? + G4 R .
Finally, we can combine all these estimates to obtain that the function
VR 201, 2 9
f:T+F2|RC| —77R
satisfies

(% - A) f<—=Ci[VRc]” + C3R*™7 42| VR | — 4n R | Re |?

4
< (=Cy + C(n)n)|VRe|? + CsR*7 I R?

n
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simply by [VR|? < C(n)|VRc|? from Lemma 2.2 and |Rc|* > L1 R®. For each
0 <n < C;/C(n) it follows, using Young’s inequality, that

ot

and the maximum principle implies that

(2 . A) f<Com MR < im0, )

f <sup f(0) + CuT .
M

In particular,
[VR|?
R
with C5 depending on Cy and the initial data. Multiplying by R and using Young’s

< n R2 +C5T

inequality we end up with
IVR? <nR*+C5RT < 29R®+9 1 (C5T)**

and the claim follows after redefining 7 and bounding 7" with the initial lower bound of

the scalar curvature. O

Proposition 2.4. Ast — T it holds that

RTI’LCL$

— 1.
Rmin

Ryae — 00 and

Proof. By the pinching assumption (I)) we know that R, — oo as t — T Thus, for
any 1 > 0 there is some 0 < ¢ < T such that the constant on the right-hand-side of
Proposition satisfies C, < nR3 forall £ <t < T. Therefore, we may safely

assume (after redefining 7)) that for any small > 0
IVR| < n*R3?2

max

holds for all times close enough to 7T'. Fix a point p € M where R assumes its maximum
and let v be any geodesic with 7(0) = p. Then,

RO (5) = ROO) - [ HROO)]|d0

0
Z Rmam _772 R3/2 Lg(’)/)

max

and it follows that R > (1 — 1) Ry, at all points at distance at most L = 5~ ' R/2,

Now, since the hypothesis (T) implies (exercise) the Ricci pinching Re > C%(n, o, Cy) R g,

the inequality
02
Re > C¥(1 =) Rinaz g > IlRmawg
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holds along the geodesics v (w.l.o.g. 1 < %). Myers Theorem then implies that

-1/2
max

geodesics of length greater than Ly = 2C;' R contain conjugate points. It fol-
lows that we can cover the whole manifold by geodesics of length L by choosing > 0
small enough and establish

Riin > (1 = 1) Rinae

for all times close to 7'. Since n > 0 was arbitrary, the claim follows. U

Proposition 2.5. For any € > ( there exists some 6 > 0 such that
(1—¢) <g+€> < (T—t)Rgg

holds forall T — 6 <t <T.

Proof. From the evolution equation,

0 2
—R=AR+2|Rc|* > AR+-R?
ot n
we get by ODE comparison that

2

R7'(s)—R7Yt) < —=(s—1)

n

and the upper bound follows by letting s — 7" and using Proposition [2.4] to say that

R(s) — oo everywhere.
For the lower bound, we use Proposition [2.4] to say that for each fixed € > 0 there

is some time ¢ > 0 such that

o
Rmin

>2Cpe and Rym > (1 —¢) R

forall T' — § <t < T and therefore

|Re|>  |Ref?
R  R?

1
+-<CRT<
n

S|

_|_

YRS

It follows that

2
2R=AI{+2\E1<:\2 < AR+ <€+—) R}
ot n

and thus the maximum of the scalar curvature satisfies (justify rigorously)
0 2
. Rmaac < - R2
(22

2 1
Rmaxz - .
<€+n) T—1

and consequently
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Then, for all times T —d <t < T
Rinin = (1 — ) Rypaz > (1 — ) (g —|—5>

as clamed. U
Finally we are ready to prove the General Convergence Critirion.

Proof Theorem[2.1] Combining the pinching condition (T)) and Proposition[2.5 we ob-
tain the bound

C(n,C
R 2 = WP+ V2 + [U]2 < C(n, Co) R? < —<T(”_’ t;g) |
In other words, the singularity is Type I. This implies that the rescaled metrics
1
g(t) = t

satisfy uniform curvature bounds

sup |Rmygg) [g0) = 2(n — 1) sup (T"—t)[Rmy) o) < Cn, Co)
Mx[0,T) Mx[0,T)

and the usual long time existence obstruction theorem implies that the metrics g(?)
converge smoothly as t — T to a smooth limit metric (7). Since the ratio R,,00 / Rinin
is scaling invariant, Proposition 2.4/ and Proposition [2.5]imply that Ry(z) = n(n — 1) in
the whole M. Moreover, by Proposition
’ng(t)‘?](t) =4(n — 1>2(T - t)2|ng(t) ’52;(15)
<d(n—1)*(T —t)2CoR* 7 < 4(n —1)*’Co(T —t)°

and it follows that Rmg 1) = Uy(). We conclude that (M ,9(T )) has constant sectional
curvature equal to 1. U

3. HUISKEN’S PINCHING

With Theorem [2.1] at hand, one aims to find conditions on the initial data such that
(1) holds on M x [0,7"). In three dimensions, Rc > 0 is one such condition [5]. In
higher dimensions, one has
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Theorem 3.1 (G. Huisken [8]). Let (M",g) be a closed Riemannian manifold of di-
mension n. > 4 with R > 0 satisfying

20y,

° 12 2
2) IRm|* < e R
with . . 5
04 = = 0s = —, 0, = .
U5 100 YT (n=2)(n+ 1)

Then, there exist constants 0 < o < 1 and Cy < 0o depending only on n and the initial

data such that the unique solution to Ricci flow with initial data g satisfies
IRm|? < CyR*™“
on M x [0,T), where T' < ¢ is the maximal time of existence.

Combined with the general convergence criterion it follows

Corollary 3.2. Every closed Riemannian manifold of positive scalar curvature satisfy-

ing ) is diffeomorphic to a spherical space form.

In the remaining, let us discuss the proof of Theorem By the maximum prin-
ciple, we know that the scalar curvature will remain positive for all future times, so we

may consider the function
[Rm|”
fa = R270’

for some 0 < 0 < % This way, our task reduces to showing that f, is bounded above

for some o > 0. Since M is compact and the inequality (2) is strict, there exists some
€ > 0 depending on the initial data such that
20,
n(n—1)
holds at ¢ = 0. A lengthy but straightforward computation gives

3) fo<(1—¢g)?

Lemma 3.3.

ot R

B 0(1; o)

R

(ﬁ —A) == R vy, - %{RVRm—RmVR]Q

IRm|? +

= (P + 3 |Rm[ Re[?)

where
ipkq gl 1 klpq ij 2 2
PZQRR@‘MR qu +§RRZ']MR qu —|Rm| |RC| .

In order to apply the maximum principle, we would like to estimate the absolute
term P. This can be successfully done by inserting the R;ji; = Wiji + Viju + Usjm in
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the definition and using the pinching condition Eq. (2). The following purely algebraic
Lemma is indeed where the hard work of the result is:

Lemma 3.4. Suppose there exists some ¢ > 0 such that
IRm|? < 6, (1 — &)?|UJ>.
Then,
P < -SR?Rmf.
n
In other words, we have the estimate
€
P S = R4fo' fa
n

provided that fy < (1 — 8)2%-

CLAIM 1. The estimate (3]) holds for all ¢ > 0.

Proof. Since (3) holds at ¢ = 0, in particular the strict inequality

20y,

0) <(1- 2 T
holds for all 0 < n < 5. Suppose now there is some first event (z,%9) € M x (0,7

such that 05
=(1— 2_-m
f(to,l’o) ( 8_'_77) n(n_ 1)

for some 77 > 0. Then, by Lemma [3.3|and Lemma 3.4

0< (% - A) folan.to) < 4 0L < EZM R ) . 10) <0,

R?(x0,t0) ~
which is a contradiction. Therefore, fo < (1 — & + 7])2% forall 0 <t < 7' and all
0 <n < § and the claim follows by letting  — 0. U

At this point, Lemma allows us to deduce that P < —% R? \Romlz for all future
times and hence we can show

CLAIM 2. There exists ¢ > 0 small enough such that f,(¢) < sup,, f,(0) holds
forall 0 <t <T.

Proof. Using that P < —< R?|Rm|? and f, < —2»_ we estimate the last term in the
n n(n—1)

evolution equation of f,, as
g ° 2 2 4 g o | RC |2 © 2
(P G ) < s (5 + 5 )

4
R3—0’
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4 e o 1 o
< —— 4+ = +— ]| |Rm/?
< |2+ 5 (ot 3 )| im

4 € o 20, o
< |42 "o 2.
—R”{ n+2n(n—1+ )]'Rm|

Choosing o > 0 small enough depending only on n and ¢ the right-hand-side becomes

negative and the claim follows by the maximum principle. U

This completes the proof of Theorem 3.1}
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