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Abstract. We consider the Lp → Lp
σ boundedness of a model

restricted X-ray transform in R3, associated to a rigid line complex.

We discuss some necessary conditions and, assuming a finite type

condition, we show that the sharp Lp → Lp
1−1/p result holds for

p > 1 close to 1.

1. Introduction

Let I be a compact interval and suppose that γ : I → R2 be a smooth
regular curve (i.e. we assume γ′(s) 6= 0). We say for m ≥ 2 that γ is
of type m at s if γ has contact of order m with its tangent line at γ(s).
The maximal order of contact in I is referred to as the maximal type of
γ in I. For a Schwartz function f ∈ S(R3) and α ∈ I define

(1.1) Rf(x′, α) = χ1(α)
∫ 2

1
f(x′ + sγ(α), s) χ2(s) ds,

where x′ = (x1, x2), and χ1 and χ2 are smooth real valued functions
supported in the interior of I and [1, 2] respectively; we shall assume
that χ2 is nonnegative. The operator R exhibits a partial translation
invariance; i.e. Rf(x′+z′, α) = R[f(·+z′, ·)](x′, α). It serves as a model
case for a more general class of restricted X-ray transforms considered
in [3], [6], [7], [8], [4] and elsewhere. In the well-curved case (i.e. m =
2) these operators are Fourier integral operators with one-sided fold
singularities.
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We are interested in the Lp → Lp
σ mapping properties of R (here Lp

σ

denotes the standard Lp-Sobolev space). Necessary and sufficient condi-
tions for L2-Sobolev inequalities of general restricted X-ray transforms
in the well-curved case are contained in [7], [8], [4]; R maps L2 to L2

1/4

and this is best possible. For results on L2 boundedness in the finite
type case see [11].

Concerning the Lp Sobolev regularity we first state some necessary
conditions.

Proposition 1.1. Suppose that the cutoff functions χ1 and χ2 are not
identically zero and suppose that there is α ∈ I with χ1(α) 6= 0 and γ is
of type m at α. Suppose that R maps Lp boundedly to Lp

σ. Then

(1.2) σ ≤ min{1− 1
p
,
1
4
,

1
mp

}.

The proposition will be proved in §2. We remark that the condition
σ ≤ min{1 − 1/p, 1/mp} is essentially known; see [7] for an example in
the well curved case (where γ′′ 6= 0) and [11] for the finite type case; a
simpler argument is given in §2.2 below. The condition σ ≤ 1/4 seems
to be not have been observed in the nonzero curvature case m = 2
(it is redundant if m ≥ 3). The relevant example is related to one by
Oberlin and Smith [12], for a family of Bessel multipliers in R2 and for
convolutions with arclength measure on a helix in R3; it is also closely
related to examples for a deep inequality on decompositions of cone
multipliers due to Wolff.

We describe this result of Wolff [24] as it is crucial for deriving suf-
ficient conditions for the Lp-Sobolev regularity of R. One considers a
collection {Ψν} of smooth functions supported in disjoint 1 × δ1/2 × δ-
plates that are tangential to the light cone {ξ : ξ2

3 = ξ2
1 + ξ2

2} with the
long side pointing in the radial direction; we assume that the Ψν sat-
isfy the natural size estimates and differentiability properties (see §3.1
below). Let fν be a family of tempered distributions. Wolff’s theorem
states that for sufficiently large q and for all ε > 0 there exists a finite
Cε,q such that

(1.3)
∥∥∥∑

ν

Ψ̂ν ∗ fν

∥∥∥
q
≤ Cε,qδ

− 1
2
+ 2

q
−ε
(∑

ν

∥∥fν

∥∥q

q

) 1
q
.
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In [24] this inequality is established for all q ≥ 74. In what follows
we shall assume the validity of (1.3) for q ≥ qW . We show that the
sharp Lp → Lp

1−1/p inequality holds for p close to 1; the precise range is
determined by the value of qW .

Theorem 1.2. Suppose that γ ∈ Cm+3(I) is of maximal type at most
m, and suppose that 1 < p < min

(
(qW + 2)/qW , (m + 1)/m

)
. Then R

maps Lp(R3) boundedly into Lp
1−1/p(R

3).

This result is somewhat analogous to a recent result by the authors
[16] on convolutions with measures supported on curves with nonvanish-
ing curvature and torsion (see [13] for a prior partial result based on [1],
[22]). A counterexample in [24] shows that necessarily qW ≥ 6 (i.e. (1.3)
does not hold for q < 6). A proof of (1.3) for all q > 6 would imply the
sharp endpoint Lp → Lp

1−1/p for all 1 < p < min{4/3, (m + 1)/m} and
sharp results up to endpoints for larger p. In particular if m > qW /2
(i.e. m > 37 according to [24]) then one obtains an almost complete
result (except for endpoint bounds in the range (m + 1)/m ≤ p < 2).

2. Necessary conditions

We begin with two preliminary observations. Consider a multiplier
m(ξ′) depending only on ξ′ = (ξ1, ξ2) and observe that R commutes
with the operator m(D′). Now if R maps Lp to Lp

σ for some p ∈ (1,∞)
and if mk is a standard symbol of order zero in R2 which vanishes for
|ξ′| ≤ 2k, then it follows

(2.1) ‖mk(D′)Rf‖p ≤ Cp2−kσ‖f‖p.

Secondly, let Z∞
k be the set of tempered distributions whose Fourier

transform is supported in {ξ : |ξ| ≥ 2k} (thus distributions in Z∞
k have

cancellation). Let Φ be smooth and supported in {ξ : |ξ| ≤ 2} and
let Φ(ξ) = 1 for |ξ| ≤ 1. Define Pl by P̂lf(ξ) = Φ(2−lξ)f̂(ξ). It is
straightforward to see (using integration by parts arguments for gener-
alized Fourier integrals with so called operator phase functions, see [10])
that there is the estimate

‖PlRf‖p ≤ CN2−Nk‖f‖p if l < k − C1, f ∈ Lp ∩ Z∞
k ,
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and C1 is large. This implies that if R : Lp → Lp
σ is bounded then one

also has for large k

(2.2) ‖Rf‖p . 2−kσ‖f‖p, f ∈ Z∞
k .

In what follows J will always denote a compact interval in (1, 2) so
that χ2(s) > 0 on J . We shall also choose a fixed a0 ∈ I so that
χ1(a0) 6= 0.

2.1. σ ≤ 1− 1/p.
Let η be an even Schwartz function in R2 with η̂(0) = 1 and with

η supported in {ξ′ : 1/2 ≤ |ξ′| ≤ 2}. Let c0 so that η̂(x′) > 1/2 for
|x′| ≤ c0. Let mk(ξ′) = η(2−kξ′), then

mk(D′)Rf(x′, α)

= (2π)−2χ1(α)
∫

22kη̂(2k(x′ − y′ + y3γ(α))f(y)χ2(y3)dy.(2.3)

Now let s0 be in the interior of J so that χ2(s0) > 0 and choose k large
so that χ2(s) ≥ c′ > 0 for |s − s0| ≤ 2−k. Let fk be the characteristic
function of a ball of radius ε2−k centered at (0, 0, s0) and let `(α) be
the line segment {−sγ(α) : s ∈ J}. For small ε let Eα be the set of all
x′ for which dist(x′; `(α)) ≤ ε2−k. As η̂ is positive near the origin we
see that the integrand in (2.3) is ≥ c22k if x′ ∈ Eα. Thus the integral
(2.3) is bounded below by 2−k. Now Eα is of measure ≈ 2−2k and after
integrating in α we see that ‖mk(D′)Rfk‖p & 2−k2−2k/p. Since ‖fk‖p .
2−3k/p we see that the Lp operator norm of R is at least 2−k(1−1/p) and
since η vanishes for |τ | . 2k inequality (2.1) shows that the Lp → Lp

σ

boundedness of R implies σ ≤ 1− 1/p.

2.2. σ ≤ (mp)−1.
Let us assume that γ has contact of order m with its tangent line at

α = a0. Let ζ1 be an even Schwartz function in R so that ζ1 is supported
in {β : 1/2 ≤ |β| ≤ 2} and with the property that ζ̂1(u) ≥ 1/2, |u| ≤ c0.
Let ζ0 be a Schwartz function in R for which ζ̂0 is nonnegative everywhere
and positive in [−1/2, 1/2]. Let ηk be defined by

ηk(τ) = ζ0(2−k〈τ, γ′(a0)〉)ζ1(2−k〈τ, n(a0)〉)

where n = (−γ′2, γ
′
1). The function ηk vanishes for |ξ| ≤ c2k and by (2.1)

it suffices to prove that the Lp operator norm of ηk(D′)R is & 2−k/(mp).
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Now let gk be the characteristic function of the set defined by

|〈y′ − y3γ(a0), γ′(a0)〉| ≤ 2−k/m, |〈y′ − y3γ(a0), n(a0)〉| ≤ 2−k, y3 ∈ J.

We evaluate ηk(D′)Rgk(x′, α) on the set Pk defined by

|〈x′, n(a0)〉| ≤ cε2−k, |〈x′, γ′(a0)〉| ≤ cε2−k/m, |α− a0| ≤ cε2−k/m.

Notice that if y ∈ supp(gk) and (x′, α) ∈ Pk then

|〈x′ − y′ + γ(α)y3, n(a0)〉| ≥ c′2−k

since 〈γ(α) − γ(a0), n′(a0)〉 = O(2−k) by the contact of order m as-
sumption. Thus ζ1(2k〈x′ − y′ + γ(α)y3, n(a0)〉) ≥ c′ if y ∈ supp(gk) and
(x′, α) ∈ Pk. Because of the positivity assumption on ζ0 we see that for
(x′, α) ∈ Pk and for fixed y3, α the integral∫

η̂k(x′ − y′ − γ(α)y3)gk(y′, y3)dy′

is nonnegative, and if y3 ∈ J it is bounded below by a positive constant.
Thus |ηk(D′)Rgk(x′, α)| ≥ c1 on Pk and therefore ‖ηk(D′)Rgk‖p ≥
c22−k(m+2)/(mp). Since ‖gk‖p . 2−k(m+1)/mp we deduce our necessary
condition σ ≤ (mp)−1.

2.3. σ ≤ 1/4.
By a change of variable we may assume that γ is parametrized by

arclength. We pick a closed interval I0 in the support of χ1 so that the
curvature is bounded below in I0, i.e.

(2.4) |κ(α)| = |γ′′1 (α)γ′2(α)− γ′1(α)γ′′2 (α)| ≥ c > 0.

for α ∈ I0. Suppose that |γ(α)| ≤ B for all α. Let ρ be an even C∞

function with the property that ρ(x) ≥ 1 for |x| ≤ 4B and so that ρ̂ is
compactly supported.

We fix a positive integer n which will be chosen large (depending on
the geometry). Let k � 2n. Let {αν} be a maximal set of points in I0

which have mutual distance 2n−k/2. Define

(2.5) ξν = (γ′2(αν),−γ′1(αν), γ′1(αν)γ2(αν)− γ1(αν)γ′2(αν))

and define

fk,ν(x) = ρ(x)ei2k〈ξν ,x〉
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so that f̂k,ν(ξ) = ρ̂(ξ − 2kξν). Let {rν} be the sequence of Rademacher
functions and define for ω ∈ [0, 1]

fω
k (x) =

∑
ν

rν(ω)fk,ν(x);

then by the usual Lp inequalities for the Rademacher functions [20]

(2.6)
(∫ 1

0

∥∥fω
k

∥∥p

p
dω
)1/p

≈
∥∥∥(∑

ν

|fk,ν |2
)1/2∥∥∥

p
≈ 2k/4−n/2‖ρ‖p.

Observe that
(2.7)

Rfk,µ(x′, α) = χ1(α)
∫

ρ(x′ + sγ(α), s)ei2k〈ξ′µ,x′+sγ(α)〉+sξµ3χ2(s)ds.

Now define v
(1)
ν = (γ(αν), 1), v

(2)
ν = (γ′(αν), 0) and check that both

〈ξν , v
(1)
ν 〉 = 0, 〈ξν , v

(2)
ν 〉 = 0. Moreover 〈ξ′ν , γ′′(αν)〉 = κ(αν) and thus

(2.8) 〈ξ′ν , γ(α)〉+ ξν3 =
κ

2
(α− αν)2 + O(α− αν)3.

Observe that if |x′| ≤ 1 and s ∈ J then |x′ + sγ(α)| ≤ 4B; moreover,
by (2.8), we have |ei〈ξ′ν ,γ(α)〉+ξν3 − 1| ≤ 1/2 if |α− αν | ≤ c2−k/2 and c is
small. By (2.7),

Re
(
Rfk,ν(x′, α)

)
≥ c1 if |α− αν | ≤ c2−k/2, |x′| ≤ 1,

and consequently

(2.9)
(∑

ν

∫
|α−αν |≤2−k/2

∫
|x′|≤1

|Rfk,ν(x′, α)|pdαdx′
)1/p

≥ c22−n/p.

Now we find an upper bound for |Rfk,µ(x′, α)| when |α−αν | . 2−k/2

and µ 6= ν. We use (2.7), (2.8) and apply integration by parts to see
that

|Rfk,µ(x′, α)| ≤ CN (2k|αν − αµ|2)−N , if |α− αν | ≤ c2−k/2, µ 6= ν.

Thus by the separation property of the αµ

(2.10)(∑
ν

∫
|α−αν |≤2−k/2

∫
|x′|≤1

[∑
µ 6=ν

|Rfk,µ(x′, α)|
]p

dαdx′
)1/p

≤ CN2−nN .

If n is chosen sufficiently large a combination of (2.9) and (2.10) yields
that ‖Rfω

k ‖p ≥ c(p) > 0 uniformly in ω. Since ρ̂ has compact support
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and |ξν | ≥ 1 the Fourier transforms of the functions fω
k are supported

in {ξ : |ξ| ≥ c32k} if k is sufficiently large. Using (2.6) we see that for
large k

sup{‖Rf‖p : ‖f‖p ≤ 1, f ∈ Z∞
k ∩ Lp} & 2−k/4

and thus by the consideration leading to (2.2) the operator R does not
map Lp to Lp

σ if σ > 1/4.

3. Lp regularity

3.1. Preliminaries. We begin by describing an extension of Wolff’s
inequality proved in [16]. Let α 7→ g(α) = (g1(α), g2(α)) ∈ R2 be a
C3 curve on the plane defined on a closed subinterval I of [−1, 1]. We
assume that for positive constants b0, b1, b2,

(3.1) ‖g‖C3(I) ≤ b0, |g′(α)| ≥ b1, |g′1(α)g′′2(α)− g′2(α)g′′1(α)| ≥ b2.

Given α ∈ I, we define three vectors

(3.2) u1(α) = (g(α), 1), u2(α) = (g′(α), 0), u3(α) = u1(α)× u2(α),

so that a basis of the tangent space of the cone Cg = {rg(α)} is given
by {u1(α), u2(α)}. Then for given λ > 0 and 0 < δ � 1, the (δ, λ)-plate
at α, denoted by Pα

δ,λ is defined to be the parallelepiped

Pα
δ,λ = {ξ : λ/2 ≤ |〈u1(α), ξ〉| ≤ 2λ, |〈u2(α), ξ − ξ3u1(α)〉| ≤ λδ1/2,

|〈u3(α), ξ〉| ≤ λδ}.

Note that Pα
δ,λ has dimension ≈ λ in the radial direction tangent to the

cone Cg, dimension ≈ λδ1/2 in the tangential direction perpendicular
to the radial direction, and is supported in a neighborhood of width
≈ λδ of the cone. An A-extension of the plate Pα

δ,λ is a parallelepiped
that is localized between heights ξ3 = λ/(2A) and ξ3 = 2Aλ of Cg,
and whose widths along (g′(α),−〈u1(α), u2(α)〉) and u3(α) are Aλδ1/2

and Aλδ respectively. For θ and σ with σ ≤ δ1/2 ≤ θ, a (δ, λ, θ)-plate
family associated to g is a finite collection of (δ, λ)-plates P = {Pαν

δ,λ}
N
ν=1

satisfying (i) |αν − αν′ | ≥ δ1/2 and (ii) maxν{αν} − minν{αν} ≤ θ.
An admissible bump function associated to Pα

δ,λ is a C∞ function φ
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supported in Pα
δ,λ satisfying the estimates

(3.3)
|〈u1(α),∇〉n1〈u2(α),∇〉n2〈u3(α),∇〉n3φ(ξ)| ≤ λ−n1−n2−n3δ−n2/2−n3 ,

0 ≤ n1 + n2 + n3 ≤ 4.

The Wolff inequality in this general context says that

(3.4)
∥∥∥ ∑

P∈P
F−1[φP f̂P ]

∥∥∥
q
≤ C(ε)δ

2
q
− 1

2
−ε
(∑

P∈P
‖fP ‖q

q

)1/q
,

where {φP } is a collection of admissible bump function associated to
the plates in P. Wolff [24] proved this for the light cone, i.e. g(α) =
(cos α, sinα) (when q > 74) but the authors showed in §2 of [16] that if
(3.4) holds for the light-cone and some q then it holds for the same q for
every curved cone generated by g as in (3.1) (with a different constant
Ã(ε)). The proof involves various rescaling and an induction on scales
argument.

We now describe the structure of the wavefront set of the Schwartz
kernel of the operator R. We shall assume that our curve γ is para-
metrized by arclength. Moreover we deal with the case m = 2 of Theo-
rem 1.2 and assume the lower bound (2.4) for the curvature everywhere
in supp(χ1). It will be convenient to work with the adjoint operator R∗,
and we write out the convolution kernel by expanding a Dirac measure
in two dimensions by a Fourier integral; thus

R∗f(x) = χ2(x3)
∫

f(x′ − x3γ(y3), y3) χ1(y3) dy3

= χ2(x3)
∫

eiϕ(x,y,τ)χ1(y3) f(y) dτ dy,(3.5)

where x = (x′, x3), y = (y′, y3), τ = (τ1, τ2), and

(3.6) ϕ(x, y, τ) =
2∑

i=1

τi(yi − xi + x3γ(y3)).

The theorem will be proved if we can show that R∗ maps Lq
−1/q to Lq

(or more generally Lq
β−1/q to Lq

β for all β), for q > (qW + 2)/2.
We record a few standard facts about R∗ that will be used in the

analysis. We denote (x, ξ)-space by T ∗R3
L and (y, η)-space by T ∗R3

R and
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the canonical relation associated to R∗ is given by

C = {(x, ϕx, y,−ϕy) : ϕτ = 0}

=
{
(x, ξ, y,−η) : ξ′ = −τ, ξ3 = 〈τ, γ(y3)〉, y′ = x′ − x3γ

′(y3),

η′ = τ, η3 = x3〈τ, γ′(y3)〉
}
.

Let πL, πR be the projections of C to T ∗R3
L and T ∗R3

R, respectively.
The structure of the projections πL, πR for more general X-ray trans-
form satisfying a version of the Gelfand admissibility condition has been
investigated in [6], [7], [9] (see also the survey [15]), namely πL is a fold
and πR is a blowdown. In particular the L2

a → L2
a+1/4 estimates are

shown in these references (and in our model case this result is rather
straightforward as RR∗ is a convolution operator).

Let Cdeg be the variety where detπL = 0 (equivalently det dπR = 0);
then Cdeg is a conic submanifold of C and the restriction of πL to Cdeg is
locally a diffeomorphism onto a conic hypersurface of T ∗R3

L. Moreover
the sets Σx = {ξ : (x, ξ) ∈ πLCdeg } are smooth two-dimensional cones
in each fiber. In our special case the condition det dπL/R = 0 reduces to

(3.7) 〈τ, γ′(y3)〉 = 0

and the cones Σx are given by

Σ =
{
ξ ∈ R3 : ξ = λ(γ′2,−γ′1,−γ1γ

′
2 + γ′1γ2), λ ∈ R

}
.

Recall that for our example in §2.3 the points ξν from (2.5) were chosen
to lie on Σ.

A simple computation shows that the cone Σ has one principal non-
vanishing curvature. Indeed after suitable localization and rotation we
may assume |γ′1(y3)| > 1/2 for all y3 ∈ I. Then

(3.8) g(α) =
(
− γ′2(α)

γ′1(α)
,
γ1(α)γ′2(α)

γ′1(α)
− γ2(α)

)
parametrizes the curve that is the cross-section ξ2 = 1 of Σ, and the
curvature property of Σ can be expressed in terms of the curvature of
g. A computation shows that

det

(
g′1(α) g′2(α)
g′′1(α) g′′2(α)

)
= − κ2(α)

(γ′1(α))3
6= 0.
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Thus g satisfies all the conditions of (3.1), with b0, b1 and b2 depending
only on ‖γ‖C2 and lower bounds of |κ|. We also observe that Σ is the
cone dual to Cγ ; indeed a normal vector to Σ at r(γ′2,−γ′1, γ

′
1γ2−γ1γ

′
2) =

(γ′, 0)× (γ, 1) is given by (γ(α), 1).

3.2. Dyadic estimates. We first decompose the oscillatory integral
(3.5) dyadically in τ and then we introduce a further decomposition
in terms of the size of |det πL| ≈ |〈τ, γ′(y3)〉|. In what follows mk(τ) will
be a standard multiplier symbol of order 0 supported where |τ | ≈ 2k,
and

Rkf(x) = χ2(x3)
∫

eiϕ(x,y,τ)χ1(y3) mk(τ)dτ f(y) dy,

where ϕ is as in (3.6).
We shall prove here (under the assumption (2.4)) that

(3.9) ‖Rkf‖q ≤ Cq2−k/q‖f‖q, q > (qW + 2)/2,

which implies an estimate for R∗ on Besov spaces. The Sobolev esti-
mates will be briefly discussed in §3.3.

To describe our further decomposition let η0 ∈ C∞
0 (R) be an even

function so that η0(s) = 1 if |s| ≤ 1/2 and supp(η0) ⊂ (−1, 1), and let
η1(s) = η0(s/2)− η0(s). Define

(3.10) ak,l(y3, τ) = mk(τ)η1(2l−k〈γ′(y3), τ〉)

and

bk(y3, τ) = mk(τ)
(
1−

∑
l<k/2

η1(2l−k〈γ′(y3), τ〉)
)
.

Let

Rk,lf(x) = χ2(x3)
∫

eiϕ(x,y,τ)χ1(y3) ak,l(τ)dτ f(y) dy,

and define R̃k similarly, with ak,l replaced by bk.

Proposition 3.1. For qW < q < ∞,

‖Rk,lf‖q ≤ Cε2−k/q2−l/q+lε‖f‖q, l < k/2,(3.11)

‖R̃kf‖q ≤ Cε2−3k/(2q)+kε‖f‖q.(3.12)

The constants Cε depend only on ε, ‖γ‖C2 and the lower bound in (2.4).
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Proof. We give the proof of (3.11). The proof of (3.12) is similar, with
mainly notational changes. We note that Rk,l = 0 for l < −C and
that the asserted bound for small l follows from standard estimates for
generalized Radon transforms or Fourier integral operators ([10]).

By a calculation with Fourier transforms we get
(3.13)

FR3

[
Rk,lf

]
(ξ′, ξ3) =

∫
χ̂2(ξ3 + 〈γ(y3), ξ′〉)ak,l(y3, ξ

′)FR2f(−ξ′, y3)dy3

In view of the fast decay of χ̂2 we further split χ2 in a low and a high
frequency part. Define ϑk,l by

ϑ̂k,l(β) = η0(2−k+2l(1−ε)β)χ̂2(β)

and split

(3.14) Rk,l = Tk,l + Ek,l

where Tk,l is similarly defined as Rk,l but with χ2(x3) replaced by ϑk,l(x3).
The error term Ek,l is easily handled; we claim that given any q ≥ 2

and N ≥ 1, there exists Cq,N > 0 such that

(3.15) ‖Ek,lf‖q ≤ Cq,N2−(k−2l+2lε)N/q‖f‖q.

Indeed by an integration by parts it is easy to see that Ek,l is bounded
on L∞. Thus, by interpolation it suffices to consider the case q = 2. We
use the formula analogous to (3.13), with χ2−ϑk,l in place of χ2, and the
fact that the Fourier transform of χ2−ϑk,l vanishes for |β| > c2k−2l+2lε.
Consequently, by the Cauchy-Schwarz inequality and Plancherel’s theo-
rem

‖Ek,lf‖2
2 ≤ CN

∫ ∫
|ξ3+〈γ(y3),ξ′〉|

&2k−2l+2lε

|FR2f(−ξ′, y3)|2

|ξ3 + 〈γ(y3), ξ′〉|2N
dξdy3

≤ CN2−l2−(k−2l+2lε)(2N−1)‖f‖2
2

which is (3.15)
In order to estimate the main term Tk,l in (3.14) we further decompose

ak,l into pieces supported on 2−l subintervals of I. Let ζ ∈ C∞
0 be

supported in (−1, 1) so that
∑

ν∈Z ζ(· − ν) ≡ 1. We set

ak,l,ν(y3, τ) = ζ(2ly3 − ν)ak,l(y3, τ)
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so that ak,l ≡
∑

ν ak,l,ν , and let

Tk,l,νf(x) = ϑk,l(x3)
∫

eiϕ(x,y,τ)χ1(y3) ak,l,ν(τ)dτ f(y) dy,

Notice the natural estimates for the derivatives of ak,l,ν , namely if
|α− 2−lν| ≤ 2−l and if n(α) = (−γ′2(α), γ′1(α)) then

(3.16)
∣∣〈γ′(α),∇τ 〉n1〈n(α),∇τ 〉n2ak,l,ν(y3, τ)

∣∣ ≤ Cn1,n22
(l−k)n12−kn2 .

Moreover, the Fourier transforms of the functions Tk,l,νf have support
properties which are favorable for the application of Wolff’s inequality.
Let αν = 2−lν, and let {u(1)

ν , u
(2)
ν , u

(3)
ν } be an orthonormal basis where

u
(3)
ν is parallel to (γ(αν), 1), u

(1)
ν is orthogonal to both (γ(αν), 1) and

(γ′(αν), 0). Thus if ξ = r(γ′2,−γ′1, γ
′
1γ2 − γ1γ

′
2)(αν) then u

(3)
ν is normal

to Σ at ξ and u
(1)
ν , u

(2)
ν are tangent vectors. One now verifies that the

Fourier transform of Tk,l,νf is supported in a set where

C−1 ≤ |〈 ξ
|ξ| , u

(1)
ν 〉| ≤ C,(3.17a)

|〈 ξ
|ξ| , u

(2)
ν 〉| ≤ C2−l,(3.17b)

|〈 ξ
|ξ| , u

(3)
ν 〉| ≤ C2−2l+2lε.(3.17c)

Indeed we have

(3.18) FR3

[
Tk,l,νf

]
(ξ′, ξ3)

=
∫

ϑ̂k,l(ξ3 + 〈γ(y3), ξ′〉)ak,l,ν(y3, ξ
′)FR2f(−ξ′, y3)dy3.

To see the assertion on the support we first note that (3.17a) follows
since our symbols are supported near Σ and away from the origin. Next
|〈ξ, u(3)

ν 〉| ≈ |ξ3+〈γ(αν), ξ′〉| so that (3.17c) is an immediate consequence
of the support property of ϑ̂k,l and the fact that αν ∈ supp ak,l,ν(·, ξ′).
To show (3.17b) let tν = (γ′(αν), 0)) and observe that u

(2)
ν belongs to the

span of tν and u
(3)
ν . By the definition of ak,l,ν we have 〈tν , ξ〉 = O(2k−l)

and this together with (3.17c) implies (3.17b).
By (3.17), the Fourier transforms of T̂k,l,νf are supported in C-exten-

sions of plates Pν which form a family of (2k, 2−2l+2lε) plates generated
by g as in (3.8). After a straightforward reduction we may apply our
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variant of Wolff’s inequality (3.4) and get for q > qW

(3.19)
∥∥∥∑

ν

Tk,l,νf
∥∥∥

q
≤ Cε2

2l
“

1
2
− 2

q
+ε

”(∑
ν

∥∥Tk,l,νf
∥∥q

q

)1/q
.

In order to finish the proof we need to prove that

‖Tk,l,ν‖L2→L2 ≤ C2(l−k)/2,(3.20)

‖Tk,l,ν‖L∞→L∞ ≤ C2−l.(3.21)

These inequalities imply the stronger bound

(3.22)
(∑

ν

‖Tk,l,νf‖q
q

)1/q
. 2−l(1−3/q)2−k/q‖f‖q.

For q = 2 (3.22) follows from (3.20) and the almost disjointness of the
supports of y3 7→ ak,l,ν(τ, y3). For 2 ≤ q < ∞ it follows by interpolation
with the `∞(L∞) bound from (3.21). The asserted estimate for Rk,l

follows then by combining (3.19) and (3.22).
We conclude by proving (3.20) and (3.21). To see (3.20) we recall that

|〈γ′(y3), τ〉| ≈ 2k−l on the support of ak,l,ν and write ak,l,ν = a+
k,l,ν+a−k,l,ν ,

where a±k,l,ν further localize to the regions where 〈γ′(y3), τ〉 is positive
and negative, respectively. Consequently we get a decomposition Tk,l,ν =
T+

k,l,ν +T−
k,l,ν . We only work with T ≡ T+

k,l,ν , the other case being similar.
Let

K(x, τ, y3) = ϑk,l(x3)
∫

ei[〈x−z,ξ〉+〈τ,−z′+z3γ(y3)〉]ak,l,ν(y3, ξ
′) dz dξ,

= e−i〈τ,x′−x3γ(y3)〉ϑk,l(x3)ak,l,ν(y3,−τ);

then T f(x) =
∫

K(x, y3, τ)FR2f(τ, y3)dτdy3 and by Schur’s lemma and
Plancherel’s theorem

‖T ‖2
L2→L2 ≤ sup

τ,y3

∫∫ ∣∣∣ ∫ K(x, τ, y3)K(x, ζ ′, z3)dx
∣∣∣dζ ′dz3

. ‖a+
k,l,ν‖∞

∫ ∣∣∣ ∫ eix3〈γ(y3)−γ(z3),τ〉|ϑk,l(x3)|2a+
k,l,ν(z3,−τ)dx3

∣∣∣dz3
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which is controlled by

sup
τ

∫ |a+
k,l,ν(z3,−τ)|

(1 + |〈γ(y3)− γ(z3), τ〉|)2
dz3

≤ C sup
y3

∫
dz3

(1 + 2k−l|y3 − z3|)2
. 2l−k.(3.23)

Here we integrated by parts twice in x3 and for the last estimate we used
|〈γ(y3)−γ(z3), τ〉| = |y3−z3||〈γ′(w), τ〉| ≈ 2k−l|y3−z3|; the point w lies
between y3 and z3, and since we work with a+

k,l,ν the quantity 〈γ′(·), τ〉
does not change sign in [y3, z3]. (3.23) yields the L2 bound (3.20).

For the L∞ estimate, we integrate by parts in τ using the direc-
tional derivatives 〈γ′(αν),∇τ 〉 and 〈n(αν),∇τ 〉 and the symbol estimates
(3.16). This gives

‖T f‖∞ ≤ sup
x

∣∣∣∣∫ [∫ ei〈τ,y′−x′+x3γ(y3)〉ϑk,l(x3)a(y3,−τ) dτ

]
f(y) dy

∣∣∣∣
. ‖f‖∞ sup

x

∫
supp(a)

(1 + 2k|〈n(αν), y′ − x′ + x3γ(y3)〉|)−2×

(1 + 2k−l|〈γ′(αν), y′ − x′ + x3γ(y3)|)−2 dτdy

and we integrate first in y′ and then in y3, τ over the set where

|〈γ′(αν), τ〉| . 2k−l, |〈n(αν), τ〉| . 2k, |y3 − αν | . 2−l.

The result is the asserted bound ‖T f‖∞ . 2−l‖f‖∞. This concludes
the proof of the proposition. �

The proposition, and a further interpolation yield

Corollary 3.2. For q > (qW + 2)/2, there is ε0 = ε0(q) > 0 such that

(3.24) ‖Rk,lf‖q ≤ Cq2−k/q2−ε0l/q‖f‖q.

Proof. By the almost disjointness of the plate families and the L2 bounds
in (3.20) we see that the L2 operator norm of Tk,l is O(2(l−k)/2), and by
(3.15) this also holds for Rk,l. Interpolating this with the Lq bounds of
Proposition 3.1 yields the assertion. �
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3.3. Bounds in Sobolev spaces. We now complete the proof of Theo-
rem 1.2 in the nonvanishing curvature case; here we still have to put the
estimates (3.24) for different k together. We wish to show that R∗ maps
Lq

β to Lq
β+1/q for q > (qW + 2)/2, and by duality (with β = −1/q) this

will imply the asserted Lp → Lp
1−1/p for R. By a vector-valued version

of the Fefferman-Stein inequality for the #-function, Littlewood-Paley
theory and standard integration by parts arguments (as in [10] or [18],
p. 695) one reduces matters to an estimate for
(3.25)

SlF (x) = sup
Q�x

1
|Q|

∫
Q

(∑
k≥2l

∣∣∣2k/q
[
Rk,lfk(w)− 1

|Q|

∫
Rk,lfk(z)dz

]∣∣∣2)1/2

where F = {fk}k∈N and the supremum is taken over all cubes Q con-
taining x. The assertion follows from

(3.26) ‖SlF‖q ≤ 2−lε(q)‖F‖Lq(`2),
qW + 2

2
< q < ∞.

One splits SlF (x) into three parts. The main part is concerned with
the terms where 2−Cl ≤ |2kdiam(Q)| ≤ 2Cl for some large C; here one
applies Hölder’s inequality in k and uses the dyadic Lq estimates above
(cf. Corollary 3.2). The terms with |2kdiam(Q)| > 2Cl or < 2−Cl are
dealt with by standard L2 and L∞ → BMO bounds for generalized
Radon transforms. We omit the details which are very similar to those
in §3 of [16] (based on arguments in [17] in a different context).

3.4. Extension to curves of finite type. We now relax the curvature
assumption on γ and assume that γ is of finite maximal type ≤ m. In the
terminology of [18] the operatorR satisfies a right finite type condition of
order ≤ m+1, while in the terminology of [19] the underlying incidence
relation is of type � (m, 1). Finally in Comech’s terminology [2] the
projection πR (for the canonical relation associated to R) is of type
≤ m− 1 (while πL as a blowdown is not of finite type).

We may relax the finite type assumption a bit by not necessarily
assuming that γ′ 6= 0. We shall fix a0 ∈ I and estimate R under the
assumption that χ1 is supported in a small neighborhood of α0. Assume

γ(a0 + α) = γ(a0) + (β1α
n1ϕ1(α), β2α

n2ϕ2(α)),
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where 1 ≤ n1 < n2 ≤ m, β1 and β2 are nonzero constants and ϕi ∈
Cm+5−ni with ϕi(0) = 1. We may reduce Theorem 1.2 to this case
(with n1 = 1) by localization and perhaps a rotation. Furthermore, we
may assume that 1/2 ≤ ϕi ≤ 3/2, i = 1, 2 on supp(χ1).

We work with a dyadic partition of unity ζj(α) = ζ(2j(α−a0)) where
ζj is supported in the two intervals where |α| ≈ 2−j . Let Rjf(x′, α) =
ζj(α)Rf(x′, a). We claim that for 1 < p < (qW + 2)/qW

(3.27)
∥∥Rjf‖Lp

1−1/p
≤ C2j(m−m+1

p
)‖f‖p;

this clearly yields the assertion of the theorem. We use a simple scaling
argument. For |u| ≈ 1 define

Γj(u) =
(
β1u

n1φ1(a0 + 2−ju), β2u
n2φ2(a0 + 2−ju)

)
;

and let

Tjf(x′, u) = ζ(u)
∫

χ2(s)f(x′ + sΓj(u), s)ds.

Notice that det(Γ′j(u), Γ′′j (u)) ≈ β1β2u
n1+n2(1 + O(2−j)) and that the

derivatives of Γj are uniformly bounded above. Thus by our estimate for
the nonvanishing curvature case the operators Tj map Lp to Lp

1−1/p, 1 <

p < (qW +2)/qW , with bounds uniform in j. A short computation shows
that Rjf(2−jn1x1, 2−jn2x2, a0 +2−ju) = χ1(a0 +2−ju)Tjfj(x′, u) where
fj(y) = f(2−jn1y1, 2−jn2y2, y3). Since max{n1, n2} ≤ m the inequality
(3.27) follows quickly. �
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