CLASSES OF SINGULAR INTEGRAL
OPERATORS ALONG VARIABLE LINES

ANTHONY CARBERY, ANDREAS SEEGER, STEPHEN WAINGER AND JAMES WRIGHT

ABSTRACT. We prove estimates for classes of singular integral operators along variable lines in the plane,
for which the usual assumption of nondegenerate rotational curvature may not be satisfied. The main
LP estimates are proved by interpolating L2 bounds with suitable bounds in Hardy spaces on product
domains. The L? bounds are derived by almost-orthogonality arguments. In an appendix we derive an
estimate for the Hilbert transform along the radial vector field and prove an interpolation lemma related
to restricted weak type inequalities.

1. Introduction

For a special class of non-vanishing smooth vector fields v : R2 — R? we study the Hilbert
transform H along the lines ¢, = {y : y = v — tv(z),t € R}, defined by

& dt
(L.1) Hf(z) = p.v./ flz — tv(m))7 .
We also consider the related maximal operator M defined by
1 h
(1.2) M) =sup i [ 1f@ - to(o)lar
r>0 10 Jo

and it is our objective to prove L? estimates for H and M.

Presently it seems to be an open problem whether for every smooth v the operators H and M
are bounded in LP(R?), for any p € (1,00) (although the globally defined operators (1.1) and (1.2)
may fail to be LP bounded if p < 2, see the remark in §6). If the curvature of the integral curves
of v never vanishes to infinite order (as a function defined on an integral curve) then local versions
of H and M are indeed bounded in LP, for all p € (1,00); see [3], [10] and [11]. We are concerned
here in obtaining estimates in some globally defined model examples as well as in cases in which the
curvature may vanish to infinite order. We shall assume that our vector field depends only on 1,

(1.3) v(@1,22) = (1, a(x1)).
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It is well known that in this case the L? boundedness of H can be derived from Hunt’s extension
of Carleson’s Theorem [8], [16] (this was perhaps first pointed out by Coifman and El-Kohen).
However neither the LP boundedness for p # 2, nor any result on M seems to be a corollary of the
Carleson-Hunt Theorem. In this paper we restrict ourselves to vector fields of the form (1.3) where
a' is monotone for ¢ # to. and lim_,¢ a'(t) = 0 (here we allow the cases tg = £00). It is of course
possible to estimate the Hilbert transform for z; > tg and z; < ty separately, so without loss of
generality we assume that tp < oo and consider the operators

(14 95(0) = Xtomr(a1) [ Flor = s, = sala)
1 h
(15) M (&) = Xitooo (1) sup 3 [ (a1 = 5,20 = saler)lds,
h>0 0

and we assume that a’ is nonnegative, monotonic and increasing in (top,00). Then the monotonicity
of a’ implies the sets
I(r)={t>ty:7/2<d(t) <27}

are intervals for all 7 > 0 and we shall always make the following assumptions. The first hypothesis
is that the length of I(7) is not changing too fast, specifically

@) 120)|
(1.6) 0<% 0]

As a second hypothesis we impose the condition

(1.7) supl/ |I(U)|dcr < 00,
0

>0 Jo [I(7)|

see also Lemma 1.1 for an alternative hypothesis.

Theorem. Let a : (tg,00) — [0,00) be a C function satisfying lim;_,¢, a'(t) = 0 and suppose that
a' is increasing in (ty,00). Suppose that the assumptions (1.6) and (1.7) are satisfied. Then the
operators § and M are bounded on LP(R?) for 1 < p < oco.

Remarks.
(i) If to = 0 and a(t) = t7 then |I(7)| = 1. If tg = —o0 and a(t) = €' then |I(7)| = 1. In
both cases (1.6) and (1.7) are clearly satisfied. The LP version of the theorem is new for globally

defined examples such as a(t) = €.

(ii) Notational changes in our proof yield local versions of the Theorem. Assume to = 0. If we
set

63
Hf(z) = Xjo,1)(71) P-V-/ fler —t 0 — ta(Il))%
-3
1 h
M (@) = xiou (1) sup / (s — b, — ta(ey))|dt
0<h<p 0

and if we assume that (1.6) and (1.7) hold with the modification that the supremum in 7 is only
extended over all 7 < Ty, for suitable Tmax, then H and M are bounded on LP for 1 < p < oo.
This version applies to examples such as a(t) = exp(—1/t) or a(t) = exp(—exp(1/t)), t > 0.
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(iii) Similarly for the global version it is not necessary to assume that a' vanishes at ¢o. If
lim¢—¢, a'(t) = Tmin > 0 then we assume that in (1.6) and (1.7) the supremum in 7 is only extended
to over all 7 > 27y, and the conclusion of the Theorem holds. This version applies to examples
such as a(t) = exp(exp(t)).

We point out that we may always assume that a(to) = 0. To see this let a(t) = a(t)—a(to) and let
§ be as in (1.4) with a replaced by a. Define Az = (z1, 22 + a(to)z1), then Hf(Az) = H[f(A)](z)
and a satisfies our assumptions if and only if @ does. Moreover we may assume without loss of
generality that a'(t) > 0 for ¢ > to. For if @’ vanishes in (¢, d) then the Hilbert transform $f(z)
coincides for x; € (c¢,d) with the translation invariant Hilbert transform along a fixed line and
the LP-boundedness of this operator is of course well known. Assuming these normalizations an
alternative formulation of the Theorem can be obtained from the following result (which states that

the hypothesis (1.6) and (1.7) is then equivalent to the hypothesis (1.6) and (1.9) below).

Lemma 1.1. Let a : [tp,00) — [0,00) be a C' function satisfying limy_;, a(t) = 0 and
limg_,¢, a'(t) = 0 and assume that o' is strictly increasing in (tg,00). Suppose that condition (1.6)
is satisfied. Then there is a positive constant C' such that

(1.8) sup GG <C

ter(r)y  a(t)

for all 7 > 0. Moreover condition (1.7) is satisfied if and only if there exists a positive constant b
such that

(1.9) inf

uniformly in T > 0.

Proof. Let t € I(7) and choose s € I(7/16). Then

at) > alt) — a(s) > /

d'(0)do > Z|I(r/4)| > er|I(1)|
I(7/4) 8

where in the last inequality we have used (1.6).
Suppose now that the expression in (1.7) is D. Then for ¢ € I(7)
2T

a(t) < / a'(s)ds < ¢; Z |I(r2 |27t < cz/ [I(0)|do < caD27|I(27)| < c3Da' (#)|I(T)];

to 10 0

here we have used (1.6) and (1.7). Conversely if (1.9) holds and if ¢ € I(7) and T is the right
endpoint of the interval I(7/8) then

[ ca ¥ rtetice ¥ rtietisa ¥ [ e

—k
2-k<4r 2-k<r/8 2-k<r/g 0 1(27F)

T
< 03/ a'(s)ds = cza(T) < cza(t) < esbra' (t)|I(1)] < egbtr|I(7)|. O
to
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We shall now give an outline of the proof of the Theorem, leaving the main technical details to
§2 and §3. We shall assume that lims_,+, a(t) = 0 and that a'(t) > 0 for ¢ > to; as pointed out above
this is no loss of generality.

Following [21], [22] we decompose the operator, according to the size of the curvature of the
integral curves. For ¢ € Z let

Ir={t>ty: 277 <d'(t) <274
then I, is an interval by the monotonicity assumption on a’. Let 6 > 0 be such that

106 < |Ipy1|/|Ie| < (106) "

(1.10) 5 < b/10

for all £ € Z. Let x € C§° such that x(¢) > 0 for all ¢, x(¢t) > 0if |¢| < 1/2 and x(¢) = 0 if
|t| > 6 + 1/2. Let s, be the center of I, and let

X(Le| 7 (¢ = 50)
Ymez X(Hm| 7t = 5m))”

Then the family {p,} forms a partition of unity of the interval (to,c0). Moreover

pe(t) =

(1.11) Iy Csupp pe CIp 1 UL Ul
and therefore

(1.12) 2772 </ (t) <272 if t € supp pi;
also supp pg Nsupp pn, = 0 if |¢ — m| > 4. Finally observe that

(1.13) pe(t)] < ClLe|

We choose an odd function ¢ € C* with support in {¢: 1/2 < |¢| < 2}, such that
js—11 r0j s—1 1
D 25 (2067 = -
JEL
and set _ '
Y(t) = 2767 p(2757 ).
Here the factor § is as in (1.10); this normalization is introduced for convenience and simplifies the
notation later; note in particular that supp p¢ +supp ¢; C Ir—1 UI; U Iy if 277 < |I;|. We split
H=9H+9

where

920 = Yopeer) 3 [ 5(0f (@~ t2a ~ talan))d.

¢ 279 <1



Lemma 1.2. § is bounded on LP(R?) for 1 < p < oo.

Proof. For {,m € Z let Ry, = {y € R 1 y; € I, (m — 1)274L2 < y2 < m27YL;|?} and let
fem = [XR,,,- Set

Saenf@) = 3 [ 0500 funlir — t22 ~ tala))de.
2-<| L
Note that |z; — yil|a(z) < 2776716272, < 27YI,)% if 2, € Uf-i}{_llj, z1 — Y1 € supp ¢; and
273 < || (cf. (110)).
Therefore ), fern, () = 0 if 2 does not belong to the union of rectangles Ry, with £—2 < XA < {42
and m — 2 < p < m+ 2. It follows that

192]lr e < Csup ||92,em|lLr—rr;

l,m
hence it suffices to obtain a uniform L? bound for §s ¢,.
Define Appx = ([Ie] 7 (z1 — ui™), 21| 2 (z2 — uf™)) where (u{™,us™) is the center of Ryp,.
Then the affine transformation Ay maps the rectangle Ry, to the unit square @) centered at 0 and
ﬁ2,€mf(x) = ﬁ2,€m [f@m(A[_n}L)] (Afmx) with

D2,emg(21, 22) = Z VN6 (276 Lelt) g (21 — t, 22 — agm(21))dt
279 <L

where apm(z1) = 241 ta(ui™ + |I;|21) and go = gxg. Note that a,, is bounded above and
below, uniformly in ¢, m. This is essentially the case of nonvanishing rotational curvature, however
standard theorems ([10], [11], [15] or [20]) cannot be immediately applied since we are dealing with
a globally defined operator and since a is not smooth enough. Nevertheless standard arguments can
be applied and indeed the operators 2 ¢, and therefore the operators 2 ¢, are uniformly bounded
in LP(R?), 1 < p < oo. More details are carried out in §5. O

The nontrivial contribution comes from the operator $;. We choose a non-negative C'*° function
¢ supported in {p: 1/2 < |p| < 2} with 3 ., ¢(27"u) = 1 for p # 0. Then $); is a sum of operators

1) T = pee) [ = )f ) [ o penteele e vl
where |I;| < 279. We decompose ; = 7 + R where
T= Z Z Z J’rf
€ 20> || r>2j+¢
The operator R = $; — T can be handled by standard arguments from Calderén-Zygmund theory.
Lemma 1.3. R is bounded on LP(R?) for 1 < p < oco.

Proof. We expand e~ #(#1)(z1-¥1) in a power series in pa(r1)(r; — y1) and observe that the terms
(1.14) which contribute to R satisfy 2"|a(z1)(z; —y1)| < eb~ 102" ¢|I;| < ¢'. Define operators &y,
by

Srrglen, @)=Y Y pulwr) /Qﬂj(m —y1)[2"a(ey)(x1 — y1)]*g(y1, x2)dy: .
£ 27951,
r<2j+4



Next define Littlewood-Paley operators L., Er,k in the second variable by I//E” &) = ¢(2_T£2)f(£)

—

and Zr7kf(§) = (2”52)’“%(2”’52)]?(5); here 5 is supported in +(1/4,4) and equals 1 on supp ¢.

Then - -
R=Y" (_,Z,) > LriplLef].

=0 ' rez

By standard Calderén-Zygmund theory

| 5], < o] (Slea) )

for 1 < p < co. By another application of Littlewood-Paley theory it clearly suffices to show that
the vector-valued operator F' = {f,},cz = {Sk, fr }rez maps LP({?) into itself with operator norm
bounded by CB* ! for some positive constant B.

Observe that &y, is essentially dominated by a maximal Hilbert transform in the first variable;
in fact Cotlar’s inequality ([24, p.35]) holds:

Go,r9(2)| < C(Mi[g)(z) + My[Hyg](z));

here M; and H; denote the standard Hardy-Littlewood maximal function and the Hilbert transform
in the first variable, respectively, and C does not depend on r. If £ > 0 and r, £ are fixed then for
T € Iy

Srrg@| <Y Y pilan) / 127 ae) (1 — ) [F 145 (21 — 1) gy, )]y

4 2—j>u£‘
2j4+L>r

<O pelm) Y (2b7'62 )R g(a) < C'BFMig(a).
4 2j4+L>r

By the Fefferman-Stein inequality for sequences of maximal functions ([12]) and a vector valued
inequality for the Hilbert transform

I et ], s e [[(S 1)), (b))
< C’BkH (Z |fr|2)1/2Hp. .

Our main estimates concern the operator 7 and we shall introduce a further decomposition. For
nonnegative integers s and n let

(1.15) Ay = {(j,0) : 2777° > |I,| > 277°71}
and
(116) Tan = Z T]?[j%—@-i—n;

(4,0)€2s

then 7 = Z;onzo Tan.-

Here and in the sequel C will denote some absolute “constant” which may depend on p and whose value may
change from line to line.
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Proposition 1.4. Let 1 <p <2,y <1—1/p. Then for all f € LP
1 Tenfllp < Copp2 " min{1, 2003 £]], if B<1/2
and

1 Tornfllp < Crpp2 ™ min{1, 2041 fll,  ifB<1-1/p.

Clearly the Theorem follows from Lemmas 1.2, 1.3 and Proposition 1.4. The appropriate L?
estimates for Proposition 1.4 will be derived in §2. The difficulty in obtaining LP estimates is
the absence of a Calderén-Zygmund theory on a suitable space of homogeneous type. Fortunately
in our present analysis we can interpolate the L? estimates with somewhat weaker estimates on
multiparameter Hardy spaces. These are derived in §3. In §4 we shall discuss the modifications
needed to estimate the maximal operator 9. §5 contains the estimates needed to complete the
proof of Lemma 1.2 above. The final section is an appendix where we study the Hilbert transform
along the radial vector field, including a general interpolation lemma related to restricted weak type
estimates.

2. L2-estimates for oscillatory integral operators

The following result is a straightforward consequence of the almost-orthogonality lemma by
Cotlar and Stein (see [24, p.280]); in our application below we will be able to choose € = 1/2.

Lemma 2.1. Suppose that 0 < e <1,0 < C; <+/Cs. Let {T}} be a collection of bounded operators
on a Hilbert space H such that
751 < C

and '
max { || (T%)*[], | (T5)* T} < Co27el =]

for all j,k € Z. Then the partial sums Z;V:_N T; converge in the strong operator topology to a
bounded operator T as N — oo and T satisfies the bound

IT]| < 10e*Cy logy (1 + 1/Cy/Ch).

Proof. By the Cotlar-Stein lemma

TN < D" sup max {[|Z5(Z) "1, 11(25) " Tull/? -

n=0 |]_k|:n

Let N = 2¢ !log,(1 + 1/C2/C1). We dominate the n'® term in the series by Cy if n < N and by
VCy27<"/2 if . > N. Hence

IT[] < Cilogy(1 4+ /Ca/Cr)(2e" + (1 —27/2)71).
This implies the asserted inequality. O

In what follows we consider oscillatory integral operators acting on functions g € L?(R). Suppose
that ¥; € C?(R x R) and that

(2.1) U(z,y) =0if |z —y| > 0277 or [z —y| < 527772
where ¢ is as in (1.10). Suppose also that
(2.2) 050, (z,y)| < A2727%, k=0,1,2.
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Lemma 2.2. For given n € Z and A € R let j — £(j) denote a function defined on a subset 3 of Z
satisfying |\|/2 < 20020t < 2|\ and (j,£(5)) € As for all j € 3 (here U is as in (1.15)). Define
an operator P; acting on Schwartz functions of one variable by

(23 Pro(@) = puy (@) [ €208, 0, )gly) dys
here ¥; is as in (2.1), (2.2). Then P; is bounded on L? and for all g € L*(R)
(2.4) 1Pjgll2 < CAmin{27*/2,27"/2}||g||,

where C' does not depend on j and the particular function £. Moreover (P;)*P, =0 for |j —k| > 10
and the L* operator norm of P; P} satisfies

(2.5) 1P, PE oy < CA%2 Vi H/2,
Finally if P =3 ;. Pj then P is bounded on L*(R) with norm < CA(1+s+mn) min{2-%/2 2-1/2}.
Proof. The asserted L? bound for P follows from (2.4), (2.5) and Lemma 2.1. The modulus of the
kernel K of P; Py is given by
(2.6) Kk (2, 2)| = ‘Pe(j)(ﬂf)Pe(k) (z)/‘I’j(ﬂf;Z/)‘I’k(z;Z/)fﬂy[a(w)*a(z)]dy :
A crude estimate yields | Ky (z,z)| < CA? min{2/,2*} and in turn
2.7) /|Kjk(x,z)|d;v+/|Kjk(:v,z)|dz < CA29-s,
If j = k then |a(z) — a(2)] ~ 27D |z — 2| and if |z — 2| > 27+ X1 we may improve the previous
estimate by integrating by parts twice. This yields

|Kj(z,2)| < CA?min{27, 257260 \=2|3 — 2|72}
and therefore

/|ij(m,z)|dm+/|ij(a:,z)|dz < CA2HHO) Nt < 0 A%,

This together with (2.7) implies (2.4).

Now assume that |j — k| > 10; then also [£(j) — ¢(k)| > 10. By taking adjoints we may without
loss of generality assume that k¥ < j. There is an interval I; between I;(;) and I,;) which does not
intersect either Iy or Iy;) but satisfies |l — £(j)] < 5. Then by assumption (1.6) we obtain

la(@) = a(z)] 2 277 |1] 2 27 V)L )|
if 2 € supp py(;) and z € supp py(r). Integrating by parts once in (2.6) yields the pointwise bound
2j+k|)\|71
[ ey 274

For fixed z we integrate over x € supp py(;) and obtain

|K i (2, 2)| < CA? < A27m 2R

/|Kjk(m,z)|dm < CAZ2 ki,

If we also use (2.7) we obtain by the continuous version of Schur’s lemma the asserted estimate (2.5),
where A is actually replaced by the smaller value A2-(+/4

The usefulness of the following Lemma has been demonstrated for example in [19]. It follows by
a two-fold application of Plancherel’s theorem.
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Lemma 2.3. Let m € L™ (R), let {Py\} be a family of bounded linear operators on L*(R). Suppose
that for every f in the Schwarz space S(R?) the function (x1,y2,\) — Py [f(,yz)](ml) is continuous

and suppose that the L? operator norms of Py are uniformly bounded by B. For Schwartz functions
f € S(R?) define T by

T1) = [ [ mNeXe B B Gl iy,

Then T extends to a bounded operator on L?(R?) with operator norm bounded by cB.

Corollary 2.4. The operator Ty, defined in (1.16) is bounded on L?*(R?) with operator norm <
C(1 4 s 4 n)min{2-7/2 2-5/2},

Proof. We write 7, = Z?:o Tsn,i where Ty ; is as in (1.16), with the additional specification that
only values of £ with £ =i mod 5 occur in the sum. As an immediate consequence of Lemma 2.2
and Lemma 2.3 we obtain the L? boundedness of Tsn,i» with the required bounds.

The following variant of Lemma 2.3 will be used when f has some cancellation property with
respect to the y, variable.

Lemma 2.5. Let {Py\} be a family of bounded linear operators on L*(R) satisfying the assumptions
of Lemma 2.8. For Schwartz functions f € S(R?) and fized us define S, by

Srfle) = / / B(2 TN )N (=N — =) Py[£(., )] (1 ) dAdys.

Then
T 2 2 1/2
1507l < OB ( [ o2 = w7 w)dy)

where C does not depend on us.

Proof. We write the difference of exponentials as an integral over a derivative and see that S, =
fol Sr.odo where

Srofla) =—i / Ap(27" N)eMemLma)uamou2) (yy i) Py[f (-, y2)] (1) dyo dA.

Set Gu(y1) = [e#¥2(y, —us) fy1,y2) dy> = F2[(- — u2) f(y1,-)] (1) where F» denotes the Fourier
transform in the y» variable. Then

Sraf@) =i [ Ag(2 TN 1D PG (o) d.

From applications of Plancherel’s theorem and Fubini’s theorem it follows that
. . 1/2
I5no1l = V2R ( [[ P2 NP Gralon) [ draar)
‘ ‘ 1/2
< VEr ([ [ 1oz 0 PlGas ) Pdrdn)

1/2
< Co 22 ( [ 102 - wall7w)Pdy)

and the desired estimate is obtained by integrating in 0. O



3. Estimates for rectangle atoms

The LP estimates for 7, and their adjoints are derived by interpolation of the L? estimates
in the previous section with appropriate estimates on the Hardy space le)md(]R x R) with the
multiparameter dilation structure. The interpolation theorem can be found in [9]. In order to prove
the H! estimates we use the version of Calderén-Zygmund theory as developed by Journé [17]. A
particularly elegant variant of it which is valid in two parameters was proved by R. Fefferman [12].
In this setting it suffices to check the behavior of the singular integral operator on rectangle atoms.

Let R = J; x J2 be a rectangle with edges parallel to the coordinate axes and center (u,uz).
Then f is called a rectangle atom associated to R if f is supported in R, if

I£ll2 < |R|I7Y?
and if

/f(xl,:rg)d:rl = 0 for almost every x5 € Jo,

/f(xl,:rg)d:rg = 0 for almost every z; € .J;.

Let wr(z) = H?zl(l + |@; — u;i]/|Ji])¢- Suppose that the operator T' is bounded on L? and
suppose that there is € > 0 such that for all R and all rectangle atoms fg associated to R

(3.1) /|TfR(m)|wR7E(m)dm <B

where B does not depend on R. Then according to Fefferman’s theorem the operator 7" maps

H}oq(R x R) to L'(R?*) and there is the estimate

||T||H1—)L1 S c||T||L2—)L2 + CEB

In what follows we fix a rectangle atom f associated to a rectangle R and estimate 7y, f in rectangular
regions in the complement of R. Given m = (m1,m2) with nonnegative integers m1, ms and given
a rectangle R = J; x Jo as above we define J;(m1), J2(m2) and R(m) by

. i\m;) =
{Ii : 2mi+3|.]i| < |Iz — ’U,¢| < 2mi+4|.]i|} if m; >0
and
(33) R(m) = ._71(m1) X j2(m2).

It is our objective to prove the following proposition which together with Corollary 2.4 implies
Proposition 1.4.

Proposition 3.1. Let f be a rectangle atom associated to the rectangle R = Jy X Jo with center
(u1,uz) and let R(m) be as in (3.3). Then for 0 < e <1/2

(3.4) / | Tonf (@) dw < C22(sFmegmelmtma) min {1, 2(n=2)/2}
R(m)

(3.5) / T f(2)| da < C.22(Hmeg—elmitma),

10



Consequently Ty, and T;, map le)rod(]R x R) boundedly into L* and, for every a > 0, the operator
norms are bounded by Cy2°™ and Cy2%517) | respectively.

We now decompose Ty, = ), 7, where

T __ T
Tow= >, Th

(4,6) €A
+2j=r—n

Lemma 3.2. Let f be a rectangle atom associated to the rectangle R = Jy X Jy with center (uy, us)
and let R(m) be as in (3.3). Then

(3.6) N TonfllLrmimy + 71D " I Ton f s reny) < C(L+ s +mn))20m+m2)/2 min{22/2 27/},
and the same estimates hold if Tsy, and T, are replaced by their adjoints.

Proof. We have already proved the L? bounds for Ty, in §2 (see Corollary 2.4), and the asserted
estimate for T, follows by the Cauchy-Schwarz inequality and the size estimate for the atom.
Similarly, in view of the y, cancellation of f we can use Lemma 2.5 instead of Lemma 2.3 to obtain
also the estimate for 7. O

Lemma 3.3. Let f be a rectangle atom associated to the rectangle R = Jy X Jy with center (u1, us)
and let Ja(ms) be as in (3.2). Then for M =0,1,2,...

) 1/2
e [ (] s@rdn)” de
J2(m2) ~J J1(0)

. 2nmz\ M ‘
< On2P(L+ s+ ”>(W) min{1, 20" /2} min{1; 2'|Js| + 272} Fll 12
2

where || fllLrzy = [ (f |f(m1,m2)|2dm1)1/2dm2. The same estimates remain true when T, is re-
placed by its adjoint.

Proof. Denote by K]Tl the kernel of the operator Tjrl. By an integration by parts with respect to

the frequency variable A and the Leibniz rule we express K7, = Zf,\fgl K7,,, where
(3.8) K (2,y) = pl(ml)ﬁl(ml)/r)\,M+l(m2 — y2) T (w1, yr)erH @m0 gy
where Ty a1 (u) = e?MuM~1 and

U (@1, y1) = cope(an) (alr) (mr — y1)) 27" MH=) gL (X0=TY ) (g — )5

here py(z1) is supported in U?__,I;4; and equal to 1 on the support of p,. If £ = r —n — 2j the
functions ¥; , » satisfy (2.2) with A = A, where

AI/ S C(|Il|2flfj)u2fr(M+lfu) S Cl2fsu2f(2j+l)u2fr(M+l71/) S Cll2fsu2(n7r)(M+1)
and C may depend on M. We fix v and A € supp ¢(27") and define an oscillatory integral operator
by

Papg(u) = Z pz(u)/\Iljﬂ,)\(u,w)e*“‘“(“)(“*w)g(w)dw.

(4,0)€As
{=r—nm—2j
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The left hand side of (3.7) is bounded by a linear combination of terms of type

/J (m2) |1’2 - y2|7M71 / ||7D)\,I/[f(;yl)]”LZ(R)dAdyldmZa

note also that Py, [f(-,y2)] = 0 if 27"\ ¢ supp ¢. The operator norm of Py, is bounded by
min{27%/2,27"/2}(s + n + 1) A,; this follows from Lemma 2.2. Therefore we obtain

) 1/2
| ([1ms@pdn) i,
J2(mz2)

. n—m2\ M Ry . 1/2
g0M2"/2(n+s+1)(m) min{1,2(" )/2}/(/|f(m1,m2)|2dm1) dz».

This proves one of the estimates claimed in (3.7). If we also use the cancellation of the atom in the
y2 variable we may replace the term 'y pr41 (22 — y2) in (3.8) by

Cam+1(@2 — y2) — o g (@2 — up) = O(] 1|22 — ya| M |y — gt + IAIT)

and the previous argument yields the second estimate in (3.7), with the factor 27|J,| + 27™2. The
same argument applies to the adjoint operator. [

Lemma 3.4. Let f be a rectangle atom associated to the rectangle R = J; x Jo with center (u1,us).
Let My > 0 and let R(m) be as in (3.3). Assume |I;| < 277. Then 17, f(z) = (T7,)"f(z) = 0 if
x € R(m) and 27|Jy| > 27™.

Ifr =0+2j+n and (j,0) € As then for 0 < 01,0, <1

(3.9) /R(m) T}, f()lde < C275(1+277%)" (27 1) (27| Je])*
(3.10) /R(m) |(T70)"f (2)ldz < C(L+ 2" +2°)" (27| (27 12)";
moreover if also 27| Jy| > 10b12"7527™2 then

(3.11) /R( ) T} f (@)ldz < O27°(1+27%)" (2] J1]) " (2227 | Jo )~

(3.12) /m T T @lde < OO %27 420 @AD" 2| l)

Proof. The first statements are obvious and we give the proof for (3.9-12). It suffices to prove these
inequalities for 6,60, € {0, 1}; the general case then follows by taking geometric means. Denote by
K7, and K7, the kernels of 17, and (17,)", respectively. Then K7, (z,y) = KJ,(y,z) and

K]re(l';y) = pe(z1)Yj (21 — y1)27’}-71¢(2r($2 —y2 —a(z1)(z1 —y1)))
where !¢ is the inverse Fourier transform of ¢. Let w, ar(z,y) = 27 (1 + 27|22 — y2 — a(z1)(z1 —
y1)]) ™. Then it is straightforward to check from (1.11-1.13) that for 6,,6, € {0,1}

|0y 0y K Jo(2,9)| < O (27 + 27 | L) 272w, 01 (, )

1051052 K7y (w,y)| < O (27 + 2777 4 |1 =) 27w, i (y, ).
12



Since K]’.’[(m, y) = 0if |zy —y1| > C277 or z; ¢ supp pe we use the cancellation properties of the
atom to obtain

[ 15f1ds < Cme 1+ 2 @A) 2
J 1 i < O+ 20673 2L @0 2]

which implies (3.9) and (3.10).
Note that if also 27|Jo| > 10671275272 then 2™2|J5| > b=127¢=J|I;| and therefore

wnM(m;y) +WT7M(IU;33) S CM2T(]- + 2T|m2 - y2|)_M

for x € R(m), y € R. Now the previous argument yields also (3.11) and (3.12). O

We now decompose Tgn, =) . T} sn Where

- _ l+254+n
Tiom= >, T

£:(5,0) €A

J

The proof of the following Lemma is similar to the proof of Lemma 3.4.

Lemma 3.5. Let f be a rectangle atom associated to the rectangle R = Jy X Jy with center (_ul,uQ)
and let J1(m1) be as in (3.2). Assume |I;] < 279, Then Tjsnf(xz) =0 if x € R(m) and 27|.J;| >
2™ moreover for 0 <0 <1

(3.13)
1/ /2
/ /|Tsnf $1,$2)| dl‘g) d:L‘l S 0278(14'2”78) 2‘7|J1 / /|f | dy2 yl
J1(ma)
(3.14)

1/2
/ /|T*sn 1'1,1'2)| dl’z) dl’l
J1(ma)

Proof. The first statement is obvious. Let £(zy1,y1,A) = pe(71)1h;(z1 — y1)er @) (@1=81)  then

IN

2
C(1+2" +29)(29],) //|f )2dye)

E(@1,91,A) = E@1,u1, N)| < C2 (27 + 27 1| |\]) |1

E(@1,y1,A) — E(ur,y1, A < C2 (L]~ +27 + 277 |A[) |4
Note that in the present case, if |\| & 2" then 27¢|[;||\| < C29t7=s 27— |)\| < 2/%" and |[,|~! <
2its,

Let Faf denote the Fourier transform of f in the second variable. If 27].J;] < 1 we use the the
cancellation of f in the y; variable and we obtain the estimate

(/|73'7n,sf($1,962)|2dx2>1/2 <
Omin{lv(l+2”’s)2j|J1|}/(/‘Z¢(2ﬂ)f2f(y1,A>\2dA)1/2dy1

13



where the sum is extended over all r that can be written as r = £ 4+ 2j + n with (j,£) € 2. Also
note that the expression on the left hand side is supported on I;,. We apply Plancherel’s theorem
and perform the z; integration to arrive at (3.13), with # = 1. The general case follows by taking
geometric means. A similar argument yields also (3.14). O

Proof of Proposition 3.1. Since (3.4) implies (3.1) we only have to prove the estimate for rectangle
atoms by Fefferman’s theorem. This in turn follows from the above Lemmas by applications of the
Cauchy-Schwarz inequality and by summing geometric series. Specifically we use Lemma 3.2 for T,
if mi +mg <10+ (n+1)(1 +€). For my <10 and ma > (n + 1)(1 + €) we estimate the operators
TS, and their adjoints and then sum in r. Here we use Lemma 3.2 if 27|J3| < 272, Lemma 3.3
with M = 0 if 27™2 > 27| .J,| < 272™2¢ and Lemma 3.3 with M = 10/e if 27|.Jy| > 272m=¢,

For my <10 and my > (n + 1)(1 + €) we estimate the operators 7;5, and T, ,
in 5. Only terms with 2/[.J;| < C27™ will occur and the desired estimate follows from Lemma 3.5,
with 6 = e.

For my > 10 and m1 > (n + 1)(1 + €) we estimate T}, with £ = r —2j —n, (j,£) € 2, using
Lemma 3.4 with #; = ¢ and sum in r,j; again only terms with 27|J;| < C27™ will occur. We
consider 7, and distinguish two cases, depending on whether 2"~™2/210b~! is large or small. In
the first case where 27~™2/210b"1 > 1 we have also 2™2 < C2?" and we use (3.9) with 8, = 1 if
2" Jy] <277, (3.9) with 6 = 0if 27" < 27| J2| < 1067127, and (3.11) if 2"|Jz| < 106~'2". In the
second case where 27 2/210b"! < 1 we use (3.9) with 6y = 1 if 27| Jy| < 277 ™2/2106"1, (3.11)
with @ = 1 if 27|.Jy| > 27"~™2/210b='. Finally this analysis applies also to the operator (T7,)" if in
the previous argument we replace (3.9) by (3.10) and (3.11) by (3.12). O

and then sum

Remarks.

(i) It should be possible to extend our result to cover similar classes of vector fields in R".
Instead of Fefferman’s theorem one would have to use the version of Calderén-Zygmund theory in
[5]. In our two-dimensional setting we used Fefferman’s theorem for convenience, but we verified in
effect the hypotheses of Theorem 1 in [5].

(ii) There is the open problem of LP boundedness for the Hilbert transform associated to an
arbitrary C* vector field. As a first step one might try to find a version of our Theorem for vector
fields v which do not necessarily depend on only one variable.

(iii) It would be interesting whether there is an underlying Calderén-Zygmund theory for our
operators which is different from the product theory. In a different context such variants have been
considered in [6].

4. The maximal operator

The arguments in the previous sections apply equally well to prove the LP boundedness for the
maximal operator 9; in fact some of those arguments simplify. Let ¥ be a nonnegative C'**° function
with support in (1/2,2) and assume that ¥(t) = 1 for t € (1/v/2,V/2). Let ¥;(t) = 276~ 10 (275 1¢).
Then it is straightforward to see that

Mi(e) < Csup 3 pulor) [ 4501 Far — 2 tale)
)
and we may clearly assume that f is nonnegative. Then the estimate

(4.1) (/‘Zpg(azl) sup /lI’j(t)f(azl —t, 2 —ta(azl))dt‘pdm)l/p < Olflly
4

279 <L
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follows by the rescaling argument in Lemma 1.2 and known estimates for maximal operators in the
case of nonvanishing rotational curvature.

Let S}, be defined as T}, in (1.14), but with ; replaced by ¥;. For k£ =0,1,... define

STy (&) = pelay) / (@ a(@) (@ — y0)* T (e — 1) F) / (27" )k B2 e vl dpudy

so that S, = 322, (—i)*(k!)~'S7,,. In order to complete the proof we have to show that
L\
(4.2) (] > o X si) | <l
Joe2-i>|L|  r>2j+t P

(43) | X0 s | 3 Sjut|| <GB Il
l

F27I> Ll g

Note that the cancellation of 1) was not used in the estimates for 7 and in fact straightforward
modifications of the arguments in §2 and §3 also yield (4.2). In order to see (4.3) we argue as in the
proof of Lemma 1.3. Let M;, M, be the Hardy-Littlewood maximal operators acting in the first
and the second variable, respectively, and let

Lrf(z) = sup ‘ Z Er,kLTf(x)‘

r<m
where L., an are as in the proof of Lemma 1.3. Then Cotlar’s inequality ([24, p.35]) applies:

Tk f(z)] < CMaf(x) + CMz[ Y LyiL,f](x);

r=—00

moreover

> Siuf(@)] < C10F LTS (@),

r<2j+¢{

Z pe(z1) sup
¢

27j>‘12‘

Since the operator Y >° Er,kLr is bounded on LP with norm O(c,B¥) and suitable B the two
previous inequalities imply (4.3). The asserted estimate for the maximal operator 9t follows from
(4.1), (4.2) and (4.3).

5. The case of nonvanishing rotational curvature, revisited

We consider the operator defined for smooth functions by

(5.1) Tf(x) = x(21) Z/‘I’j(xl,yl)f(yl,xz + S(@1,y1))x(y1)dys -

Jj=0
Here x and ¥; are C? functions; x is supported in the interval [—1,1], and ¥;(z1,y:1) = 0 unless

27973 < |z —y1]| < 277F3. We assume that (2.2) holds and that ¥; has the additional cancellation
property

(5.2) /\Ifj(x,y)dy - /\I'j(x,y)dx ~0.

As a model case for S we consider the example S(z1,y1) = —a(z1)(z1 —y1), and with the approptiate
choice of ¥; we recover a local version of the Hilbert transform in (1.1). The assumption of rotational
curvature is that the mixed derivative S;, 4, does not vanish from below.
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Proposition 5.1. Suppose that S is a C* function on [—1,1]? and assume that the partial derivatives
Seryrs Seryiyrs Seryiyiy, €2ist and are continuous in [—1,1]. Assume that S,,,, does not vanish in
[-1,1]. Then T extends to a bounded operator on LP, 1 < p < 0.

As previously mentioned the proof is quite standard, and we shall be sketchy. If ¢ is as in
(1.14) then we define ¢ (x,y) = 2"F 1 [9](2"(x2 — y2 + S(x1,41))) and O =1 -3 _, (. Then
T =73 ,T,+1T> where

Tunf(@) = Y [ xo)x(wn) s, (e,) f0)dy

Jj=0
T.1(@) = 3 [ XX (1,02)02 () ().
j=0
It turns out that for 1 < p <2
(5.3) 1Ty nfllp < Cpn HH2/P27 0 1/0) |,
(5.4) 1T fllp < Cpllfllp

and that the same estimates hold for the adjoint operators. This of course proves Proposition 5.1. O

By Lemma, 2.3 the case p = 2 can be reduced to estimates for certain oscillatory integral operators
in one dimension. Let A be fixed, |A| > 1/2 and define the operator

Prg(u) = x(u) / NSO (1, w) y (w)g(w) d.

For the first result we assume that ¥; is as above, but we do not actually need the cancellation
condition (5.2).

Lemma 5.2. Suppose that S is a C* function on [—1,1]? and assume that the partial derivatives
Suws Suww, Swwww exist and are continuous in [—1,1]%. Assume that Sy does not vanish in [—1,1]?.
Then for 2% < |\| the L?> — L? operator norm of P; is bounded by C A27|\|~1/2,

Proof. This is a version of the argument in Lemma 2.2. One writes out the kernel Kj;(u, z) of the

operator P;PF, and integrates by parts twice if [u — z| > 2N 7L If @(u,w, 2) = S(u,w) — S(z,w)

then our assumptions guarantee that |®,,(u,w, z)| is bounded below by c|u — z| and that ®,,, and

D ww are O(Ju — z]). Therefore a consequence of the integration by parts is the pointwise estimate
|Kj(u, ) < 27(1+ |A277 (u = 2)[) 7"

and the desired estimate follows by Schur’s Lemma. O

In the next Lemma we use the cancellation of the ¥; but not the assumption of rotational
curvature.

Lemma 5.3. Suppose that ¥; is as above and satisfies the additional cancellation property (5.2)
Suppose that S is a C* function on [—1,1]* and assume that the partial derivative Sy, exists and is
continuous in [—1,1]. Then the operator Y ,.;~, P; is bounded on L?.

Proof. We verify that || P} Pyl + ||P; Pyl < 271kl provided that 2% > [A], 22% > |A|. We may
assume j > k. The kernel of PPy is given by

K ji(u, ) = X(@)x(2) / e (1, 2, ) (u, w)dy
16



where g, (u, 2, w) = eAS(Ww)=SZW] |y () |2Wy (z,w). Observe that for u,z € supp p, |w —u| < 277,

|w — z| < 27% we have |5, (u,w) — Sy(z,w)| < C27* and, since A272F <1,
lar (u, 2, w) — qi(u, z,u)| < C2% + IN(S, (u,w) — Sy(2z,w))| < C'2%.

Now using the cancellation of ¥; in the second variable we see that [|K(u,z)|dz < 2797% and
J 1K (u, 2)|du < 2777 and the desired estimate for P P; follows.

Next, the kernel of P; P} is given by
Lol 2) = X [ 7,2, 0) T3 wid

where 7 (u, z,w) = |x(w)|?eS(W¥)=5W:2) g, (), z). The desired estimate follows from the cancel-
lation of ¥; in the first variable since |9, 7| = O(JA]27F + 1) = O(2F). O

The L? estimates for T}, and T» immediately follow from the two previous Lemmas and Lemma
2.3. In order to show the LP estimates one shows that T» and its adjoint are of weak type (1,1),
moreover T4 , and its adjoint satisfy a weak-type inequality with constant O(n). From this the L?
estimates follow by the Marcinkiewicz interpolation theorem.

The weak-type estimates rely on Calderén-Zygmund theory in [—1,1] x R which is made into
a suitable space of homogeneous type (cf. [24, ch.I]). The underlying distance function is d(z,y) =
|1 — 1|+ |22 —y2 + S(x1,y1)|Y/?, with the balls B(y,d) = {z : d(z,y) < §}. Our assumption is that
S € C' and the mixed derivative S,,,, exists and is continuous. Then the standard properties of
this metric were derived in [14], in a more general context; see also [19]. In particular d is essentially
symmetric, d(z,y) = d(y,z). Let K;,(z,y) = x(@x1)xv1)¥;(x1,y1)Cj+n(z,y) and Li(z,y) =
X(@1)x (Y1) ¥ (21,y1)025(x,y). It is a straightforward exercise to verify that for suitable large D
and for y' € B(y,0)

/ \Kjn(2,y") = Kjnl(z,y)|de < Cmin{l,2"275,2"279571}

R2\B(y,D$¢)

/ |L;(z,y") — Lj(z,y)|de < Cmin{276,277671};
R2\B(y,Dd)

we omit the details. This implies the asserted weak-type estimates for 17 ,, 7> and by the symmetry
of the situation the estimates for the adjoints follow in the same way.

Similar considerations can be applied to the analogous maximal operator, defined by
(5.5) M f(x) = sup |4; f ()]
J

where
Ajf(z) = x(z1) / @ (1, y1) f(yr, w2 + S(w1,y1))x(y1)dys;

here S satisfies the assumptions of Proposition 5.1, and ®; is as ¥; above, but does not necessarily
have any cancellation property. Let dy be an even Schwartz function on the real line such that
do(A) =1 for || < 1. Let

Bjf(z) = x(z1) // @ (w1,y1)2% 60 (2% y2) f(y1, w2 — y2 + S(w1,y1)) X (Y1) dy1dys;
17



then

(5.6) Mf(x) < sup |B; f(z)| + (Z |4; f(z) — ij(x)l2)1/2-

j20

The maximal function sup |B; f| is pointwise controlled by the Hardy-Littlewood maximal function
with respect to the nonisotropic balls B(y,d) defined above; it is bounded on L? for 1 < p < oc.
The square-function in (5.6) can be considered as the ¢? norm of a vector valued singular integral
and the L? boundedness follows as above.

6. Appendix

6.1. The Hilbert transform in the radial direction.

We now study the operators H and M for the radial vector field v(z) = z/|z|, in d dimensions,
d>2,i.e.

(6.1) Hf(z) = p.v. /_Oo f(x+ta,~/|a,~|)%

and the maximal operator M defined by

1 h
(6.2) M@ =swp s [ Ifa tafla)l .

For this example the critical exponent for LP boundedness turns out to be the dimension d, and
for p = d we prove a restricted weak type inequality (for a similar result on the Kakeya maximal
operator acting on radial functions see [4]). In what follows let LP-? denote the Lorentz space.

Proposition. Let H and M be as in (6.1), (6.2), respectively. Then H is bounded on LP(R?) if
and only if d < p < oco. M is bounded on LP(R?) if and only if d < p < oo.

Moreover H and M map LYY(RY) to L4 (RY) if and only if ¢ = 1 and r = co.

Proof. The proof of these results is elementary. One introduces polar coordinates to reduce mat-
ters to standard estimates for Hilbert transforms, maximal operators and Hardy operators in one
dimension. We shall only give the proof for the operator H. The proof for the maximal operator M
is similar.
We split
H=H, + Hy+ H;3

where

H f(x) = p.v./ f(x+tx/|x|)%

|t|>4]z|

Hyf(z) = pv. /“

Fla+ tafla) S
—lx|/4

dt
mfw=[ e

18



We first show that H; is bounded on LP(R?) for 1 < p < co. For 1 =0,1,2,... set
dt
Hyf(z) = [l +ta/|z])—,
2042 z| <[t <2'+3]a] ¢

then Hy = > ,_oHi;. Let Fy(s,0) = f(s6)s%Y/P and let M; denote the Hardy-Littlewood
maximal operator in the s-variable. Then

it < ([ 1) 7+ 0]
Sd-1xR+ 20+2p ¢ <2t3p
< ca a0l ( // [/ F((r + £)6) (r + 1) (4=D/) ] “dr dy)
sa-1xr+ LJortapc)r<artsy lt]
1/
v [ s o)) )
Sd-1xR+
1/
savn( [ Rmerda)” < ez,
Sd-1xR+
and the LP boundedness of H; follows.
Next, we show that Hs is bounded on LP(R?) for 1 < p < co. For a function of two variables

denote by H, the maximal Hilbert transform in the first variable. Let xj be the characteristic
function of the interval [25=3, 2F+4]. Let Fy ,(s,6) = 28(*=D/P f(s0) 1 (s). Then

k1 e
[Hafll, < (Z/gdfl /2’e ‘p.v./ f(x+t0)%‘prd*1drd0)l/p
k

dt] a1 g, d0) 1/p

1/p

—lz|/4

C(/Sd,1 ;/ |H. Fp p(r,0) + My (Fy. ) (r, 0)|p dr d0) He

1
< C(/ Z/|Fk,p(8,0)|pdsd9) L < el
§d-1

IN

Finally we estimate H3 where the restriction p > d is needed. Observe that

4 —r/4 b, 1/
IHs fll, < (// [—/ |f((r+t)0)|dt] rd 1drd0)
Sd-1xR+ T J_4p
4 41‘ p 1/p
<2 - 0)|ds| ritdrdo) .
< (//Sd_1XR+[T/O 1£(s6)| s dr de)
Let for j =0,1,...
1
Sjg(r) = —/ _ - g(s)ds.
T Jo-itir<|s|<2=it2r
Then

9—i+2,

o0 1/
([ issatmran) ™ < cosomm ([T 7 T asar)”
0 2—i+lp

c2~ j(1— d/p)(/ | ( )|p8d 1d$) /P'
0
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Now for f € LP(R?) define Hs ; by H; ; f(rf) = S;[f(-6)](r). Then |H;f(rf)| < Z;io [Hs ;[ f1](r0)]
and Hs ; is bounded on LP(R?) with operator norm < C©2/(~1+4/p)  This implies the asserted L?

estimate for p > d. It also implies that Hj is of restricted weak type (d,d) , that is 75 maps L%!
into L%, see §6.2 below.

We now turn to the necessary conditions. It is easy to see that H does not map L*° to L*°. In
order to check the sharpness of the LP estimates we test H on the characteristic function x of the
ball of radius 1, centered at the origin. Then ||f||, < C and |H f(x)| > c|z| for |z| > 2. This implies
that LP boundedness only holds for p > d, moreover if H maps L%? to L%" then necessarily r = co.
We still have to show that L%? — L% boundedness can only hold for ¢ = 1. Since by interpolation
the above estimates show that H; and H, are bounded on all LP¢ spaces for 1 < p < oo, it suffices
to consider Hs. For large N define fy(z) = 1/]z| if 1 < || < N and fy(z) = 0 otherwise. Then
| fn]|Lee = [log N4 and for 10 < || < N/2 we have |Hsfn(z)| > c|z| *log N. This shows that
| Hz fllpae /|| fN ]| Laa > Cllog N]*=1/4. Now if H is bounded from L%9 to L% then Hj is bounded
from L% to L% and this can only happen if g = 1. O

Remark. One may construct a C* vector field which coincides with v(z) = z/|z| if || > 1 and
|za| > |z|/2. There are the same obstructions to LP boundedness as for the radial vector field and
in fact LP boundedness for the Hilbert transform (1.1) will fail if p < d. The same remark applies
to the maximal function (1.2). These obstructions are not present if one considers local versions of
the Hilbert transform or the maximal operator.

6.2. An interpolation lemma.

Suppose A = (Ag, A1), B = (By, B1) are two couples of normed vector spaces, compatible in
the sense of interpolation theory. Suppose that we are given a sequence of operators T mapping
Ay + A; to By + Bj such that

(6.3) ITyalls, < M2

alla,, s=0,1

where ap < 0 < a;. Then it is easy to see that T = ) T; maps Ao N A1 to By + B;. In fact if
a € Ag N Ay, we obtain

) . Jjo ja
|5 ]+ 5 5 = 5 W+ it
j>m Jj<m j>m

j<m

(6.4) < C[Mo2m|al|a, + tM12™ ||af| 4,].
Recall the definition of the Peetre K-functional

K(t,a,A) = inf{||ag||a, + tl|a1]|a, : @ = ap + a1, ap € Ay, a1 € A}

and the definition of the real interpolation space Ay, = Ky ,(A) with norm

lallz,, = ([ 'K med) ",

with the natural modification in the case ¢ = oco.

If for fixed ¢ we choose m in (6.4) such that 2™(“1=%0) ~ My ||al|a,/(tM1||a||4,) We see that for
0 =ap/(cg—a1) €(0,1) and a € Ag N4,

(65 Tl . =suwpt "K(t.Ta,B) < CM;~ M|jal i, el
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This inequality is an extension of an inequality implicitly in [2], for L? spaces. For the concrete case
Ay = B, = LP<, s = 0,1 we may apply (6.5) for a being the characteristic function of a measurable
set and then (6.5) becomes a restricted weak type inequality. This implies ([26, ch. V]) that 7" maps
the Lorentz space LP! into LP* if (1 —6)/po +6/p1 = 1/p and 0 = ap/(ag — a1).

The following lemma is an abstract extension of this interpolation result. It implies (6.5), since
Ky is an interpolation functor of exponent 6 (see [1, p.40]).

Lemma. Let {T;} be a sequence of operators mapping Ao + A1 to By + By and satisfying (6.3),
with ag < 0 < a1. Let § = o /(g — a1). Then T = ) T} extends to a bounded operator mapping
Z(Ll to anoo, with operator norm bounded by C’M&%Mlo; here C = O((ay — a0)2(°‘1*°‘0)9).

Proof. Since ApN A; is dense in Ay (see [1, p. 47]) it suffices to prove the required inequality for
a € AgN A;. Fix t and for every j € Z split a = a}) + a] such that

(6.6) ladlla, + 2720, Mg ladLa, < 2K (29 =20 ¢0 M a, A).

Then

t’K(t,Ta,B) <t° [H zj:Tja{)HBO + tH ;Tja{‘

Bl]

<t? [ZMO?“"IIaéllAO +tZM12f“1||a{'||A1]

J J
< My Yy (27 008) 7 [laf L, + 27~ ey Mg ad -
J
By (6.6) and the monotonicity of the K functional one easily obtains
(@ (@=290) a4, + 2 =000 /Mol L]
(G+1)(a1—ag)y

2 ag /2 _ — ds
_ sT'K(sMy/My,a, A)—
T a1 — Qo 200 — 1 2i(a1—ag) ( 1/ 0 ) S

and therefore

© —. ds _
1Tallg, . < CMO/ s 0K(5M1/M0,a,A)? = OM; 0M19||a||zs’1. a
0
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