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Abstra
t. We prove estimates for 
lasses of singular integral operators along variable lines in the plane,

for whi
h the usual assumption of nondegenerate rotational 
urvature may not be satis�ed. The main

L

p

estimates are proved by interpolating L

2

bounds with suitable bounds in Hardy spa
es on produ
t

domains. The L

2

bounds are derived by almost-orthogonality arguments. In an appendix we derive an

estimate for the Hilbert transform along the radial ve
tor �eld and prove an interpolation lemma related

to restri
ted weak type inequalities.

1. Introdu
tion

For a spe
ial 
lass of non-vanishing smooth ve
tor �elds v : R

2

! R

2

we study the Hilbert

transform H along the lines `

x

= fy : y = x� tv(x); t 2 Rg, de�ned by

(1.1) Hf(x) = p.v.

Z

1

�1

f(x� tv(x))

dt

t

:

We also 
onsider the related maximal operator M de�ned by

(1.2) Mf(x) = sup

h>0

1

h

Z

h

0

jf(x� tv(x))jdt

and it is our obje
tive to prove L

p

estimates for H and M .

Presently it seems to be an open problem whether for every smooth v the operators H and M

are bounded in L

p

(R

2

), for any p 2 (1;1) (although the globally de�ned operators (1.1) and (1.2)

may fail to be L

p

bounded if p � 2, see the remark in x6). If the 
urvature of the integral 
urves

of v never vanishes to in�nite order (as a fun
tion de�ned on an integral 
urve) then lo
al versions

of H and M are indeed bounded in L

p

, for all p 2 (1;1); see [3℄, [10℄ and [11℄. We are 
on
erned

here in obtaining estimates in some globally de�ned model examples as well as in 
ases in whi
h the


urvature may vanish to in�nite order. We shall assume that our ve
tor �eld depends only on x

1

,

(1.3) v(x

1

; x

2

) = (1; a(x

1

)):
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It is well known that in this 
ase the L

2

boundedness of H 
an be derived from Hunt's extension

of Carleson's Theorem [8℄, [16℄ (this was perhaps �rst pointed out by Coifman and El-Kohen).

However neither the L

p

boundedness for p 6= 2, nor any result on M seems to be a 
orollary of the

Carleson-Hunt Theorem. In this paper we restri
t ourselves to ve
tor �elds of the form (1.3) where

a

0

is monotone for t 6= t

0

. and lim

t!t

0

a

0

(t) = 0 (here we allow the 
ases t

0

= �1). It is of 
ourse

possible to estimate the Hilbert transform for x

1

> t

0

and x

1

< t

0

separately, so without loss of

generality we assume that t

0

<1 and 
onsider the operators

Hf(x) = �

(t

0

;1)

(x

1

)

Z

1

�1

f(x

1

� s; x

2

� sa(x

1

))

ds

s

(1.4)

Mf(x) = �

(t

0

;1)

(x

1

) sup

h>0

1

h

Z

h

0

jf(x

1

� s; x

2

� sa(x

1

))jds;(1.5)

and we assume that a

0

is nonnegative, monotoni
 and in
reasing in (t

0

;1). Then the monotoni
ity

of a

0

implies the sets

I(�) = ft > t

0

: �=2 � a

0

(t) � 2�g

are intervals for all � > 0 and we shall always make the following assumptions. The �rst hypothesis

is that the length of I(�) is not 
hanging too fast, spe
i�
ally

(1.6) 0 < inf

�>0

jI(2�)j

jI(�)j

� sup

�>0

jI(2�)j

jI(�)j

<1:

As a se
ond hypothesis we impose the 
ondition

(1.7) sup

�>0

1

�

Z

�

0

jI(�)j

jI(�)j

d� <1;

see also Lemma 1.1 for an alternative hypothesis.

Theorem. Let a : (t

0

;1) ! [0;1) be a C

1

fun
tion satisfying lim

t!t

0

a

0

(t) = 0 and suppose that

a

0

is in
reasing in (t

0

;1). Suppose that the assumptions (1.6) and (1.7) are satis�ed. Then the

operators H and M are bounded on L

p

(R

2

) for 1 < p <1.

Remarks.

(i) If t

0

= 0 and a(t) = t




then jI(�)j � �

1


�1

. If t

0

= �1 and a(t) = e

t

then jI(�)j � 1. In

both 
ases (1.6) and (1.7) are 
learly satis�ed. The L

p

version of the theorem is new for globally

de�ned examples su
h as a(t) = e

t

.

(ii) Notational 
hanges in our proof yield lo
al versions of the Theorem. Assume t

0

= 0. If we

set

Hf(x) = �

[0;1℄

(x

1

) p.v.

Z

�

��

f(x

1

� t; x

2

� ta(x

1

))

dt

t

Mf(x) = �

[0;1℄

(x

1

) sup

0<h<�

1

h

Z

h

0

jf(x

1

� t; x

2

� ta(x

1

))jdt

and if we assume that (1.6) and (1.7) hold with the modi�
ation that the supremum in � is only

extended over all � < �

max

for suitable �

max

, then H and M are bounded on L

p

for 1 < p < 1.

This version applies to examples su
h as a(t) = exp(�1=t) or a(t) = exp(�exp(1=t)), t > 0.
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(iii) Similarly for the global version it is not ne
essary to assume that a

0

vanishes at t

0

. If

lim

t!t

0

a

0

(t) = �

min

> 0 then we assume that in (1.6) and (1.7) the supremum in � is only extended

to over all � > 2�

min

, and the 
on
lusion of the Theorem holds. This version applies to examples

su
h as a(t) = exp(exp(t)).

We point out that we may always assume that a(t

0

) = 0. To see this let ~a(t) = a(t)�a(t

0

) and let

e

H be as in (1.4) with a repla
ed by ~a. De�ne Ax = (x

1

; x

2

+ a(t

0

)x

1

), then Hf(Ax) =

e

H[f(A�)℄(x)

and a satis�es our assumptions if and only if ~a does. Moreover we may assume without loss of

generality that a

0

(t) > 0 for t > t

0

. For if a

0

vanishes in (
; d) then the Hilbert transform Hf(x)


oin
ides for x

1

2 (
; d) with the translation invariant Hilbert transform along a �xed line and

the L

p

-boundedness of this operator is of 
ourse well known. Assuming these normalizations an

alternative formulation of the Theorem 
an be obtained from the following result (whi
h states that

the hypothesis (1.6) and (1.7) is then equivalent to the hypothesis (1.6) and (1.9) below).

Lemma 1.1. Let a : [t

0

;1) ! [0;1) be a C

1

fun
tion satisfying lim

t!t

0

a(t) = 0 and

lim

t!t

0

a

0

(t) = 0 and assume that a

0

is stri
tly in
reasing in (t

0

;1). Suppose that 
ondition (1.6)

is satis�ed. Then there is a positive 
onstant C su
h that

(1.8) sup

t2I(�)

a

0

(t)jI(�)j

a(t)

� C

for all � > 0. Moreover 
ondition (1.7) is satis�ed if and only if there exists a positive 
onstant b

su
h that

(1.9) inf

t2I(�)

a

0

(t)jI(�)j

a(t)

� b

uniformly in � > 0.

Proof. Let t 2 I(�) and 
hoose s 2 I(�=16). Then

a(t) � a(t)� a(s) �

Z

I(�=4)

a

0

(�)d� �

�

8

jI(�=4)j � 
� jI(�)j

where in the last inequality we have used (1.6).

Suppose now that the expression in (1.7) is D. Then for t 2 I(�)

a(t) �

Z

t

t

0

a

0

(s)ds � 


1

X

l�0

jI(�2

�l

)j�2

�l

� 


2

Z

2�

0

jI(�)jd� � 


2

D2� jI(2�)j � 


3

Da

0

(t)jI(�)j;

here we have used (1.6) and (1.7). Conversely if (1.9) holds and if t 2 I(�) and T is the right

endpoint of the interval I(�=8) then

Z

�

0

jI(�)jd� � 


1

X

2

�k

�4�

2

�k

jI(2

�k

)j � 


2

X

2

�k

��=8

2

�k

jI(2

�k

)j � 


3

X

2

�k

��=8

Z

I(2

�k

)

a

0

(s)ds

� 


3

Z

T

t

0

a

0

(s)ds = 


3

a(T ) � 


3

a(t) � 


3

b

�1

a

0

(t)jI(�)j � 


4

b

�1

� jI(�)j: �
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We shall now give an outline of the proof of the Theorem, leaving the main te
hni
al details to

x2 and x3. We shall assume that lim

t!t

0

a(t) = 0 and that a

0

(t) > 0 for t > t

0

; as pointed out above

this is no loss of generality.

Following [21℄, [22℄ we de
ompose the operator, a

ording to the size of the 
urvature of the

integral 
urves. For ` 2 Z let

I

`

= ft > t

0

: 2

�`�1

< a

0

(t) � 2

�`

g;

then I

`

is an interval by the monotoni
ity assumption on a

0

. Let Æ > 0 be su
h that

(1.10)

10Æ < jI

`+1

j=jI

`

j < (10Æ)

�1

Æ � b=10

for all ` 2 Z. Let � 2 C

1

0

su
h that �(t) � 0 for all t, �(t) > 0 if jtj � 1=2 and �(t) = 0 if

jtj > Æ + 1=2. Let s

`

be the 
enter of I

`

and let

�

`

(t) =

�(jI

`

j

�1

(t� s

`

))

P

m2Z

�(jI

m

j

�1

(t� s

m

))

:

Then the family f�

`

g forms a partition of unity of the interval (t

0

;1). Moreover

(1.11) I

`

� supp �

`

� I

`�1

[ I

`

[ I

`+1

and therefore

(1.12) 2

�`�2

� a

0

(t) � 2

�`+2

if t 2 supp �

`

;

also supp �

`

\ supp �

m

= ; if j`�mj � 4. Finally observe that

(1.13) j�

0

`

(t)j � CjI

`

j

�1

:

We 
hoose an odd fun
tion  2 C

1

with support in ft : 1=2 � jtj � 2g, su
h that

X

j2Z

2

j

Æ

�1

 (2

j

Æ

�1

t) =

1

t

and set

 

j

(t) = 2

j

Æ

�1

 (2

j

Æ

�1

t):

Here the fa
tor Æ is as in (1.10); this normalization is introdu
ed for 
onvenien
e and simpli�es the

notation later; note in parti
ular that supp �

`

+ supp  

j

� I

`�1

[ I

`

[ I

`+1

if 2

�j

� jI

`

j. We split

H = H

1

+ H

2

where

H

2

f(x) =

X

`

�

`

(x

1

)

X

2

�j

�jI

`

j

Z

 

j

(t)f(x

1

� t; x

2

� ta(x

1

))dt :

4



Lemma 1.2. H

2

is bounded on L

p

(R

2

) for 1 < p <1.

Proof. For `;m 2 Z let R

`m

= fy 2 R

2

: y

1

2 I

`

; (m � 1)2

�`

jI

`

j

2

< y

2

� m2

�`

jI

`

j

2

g and let

f

`m

= f�

R

`m

. Set

H

2;`m

f(x) =

X

2

�j

�jI

`

j

Z

 

j

(t)f

`m

(x

1

� t; x

2

� ta(x

1

))dt :

Note that jx

1

� y

1

ja(x

1

) � 2

�j

b

�1

Æ2

�`+2

jI

`

j � 2

�`

jI

`

j

2

if x

1

2 [

`+1

j=`�1

I

j

, x

1

� y

1

2 supp  

j

and

2

�j

� jI

`

j (
f. (1.10)).

Therefore H

2

f

`m

(x) = 0 if x does not belong to the union of re
tangles R

��

with `�2 � � � `+2

and m� 2 � � � m+ 2. It follows that

kH

2

k

L

p

!L

p

� C sup

`;m

kH

2;`m

k

L

p

!L

p

;

hen
e it suÆ
es to obtain a uniform L

p

bound for H

2;`m

.

De�ne A

`m

x = (jI

`

j

�1

(x

1

� u

`m

1

); 2

`

jI

`

j

�2

(x

2

� u

`m

2

)) where (u

`m

1

; u

`m

2

) is the 
enter of R

`m

.

Then the aÆne transformation A

`m

maps the re
tangle R

`m

to the unit square Q 
entered at 0 and

H

2;`m

f(x) =

e

H

2;`m

�

f

`m

(A

�1

`m

�)

�

(A

`m

x) with

e

H

2;`m

g(z

1

; z

2

) =

X

2

�j

�jI

`

j

Z

2

j

jI

`

jÆ

�1

 (2

j

Æ

�1

jI

`

jt)g

Q

(z

1

� t; z

2

� a

`m

(z

1

))dt

where a

`m

(z

1

) = 2

`

jI

`

j

�1

a(u

`m

1

+ jI

`

jz

1

) and g

Q

= g�

Q

. Note that a

0

`m

is bounded above and

below, uniformly in `; m. This is essentially the 
ase of nonvanishing rotational 
urvature, however

standard theorems ([10℄, [11℄, [15℄ or [20℄) 
annot be immediately applied sin
e we are dealing with

a globally de�ned operator and sin
e a is not smooth enough. Nevertheless standard arguments 
an

be applied and indeed the operators

e

H

2;`m

and therefore the operators H

2;`m

are uniformly bounded

in L

p

(R

2

), 1 < p <1. More details are 
arried out in x5. �

The nontrivial 
ontribution 
omes from the operator H

1

. We 
hoose a non-negative C

1

fun
tion

� supported in f� : 1=2 � j�j � 2g with

P

r2Z

�(2

�r

�) = 1 for � 6= 0. Then H

1

is a sum of operators

(1.14) T

r

j`

f(x) = �

`

(x

1

)

Z

 

j

(x

1

� y

1

)f(y)

Z

�(2

�r

�)e

i�[x

2

�y

2

�a(x

1

)(x

1

�y

1

)℄

d� dy

where jI

`

j < 2

�j

. We de
ompose H

1

= T +R where

T =

X

`

X

2

�j

>jI

`

j

X

r�2j+`

T

r

j`

The operator R = H

1

� T 
an be handled by standard arguments from Calder�on-Zygmund theory.

Lemma 1.3. R is bounded on L

p

(R

2

) for 1 < p <1.

Proof. We expand e

�i�a(x

1

)(x

1

�y

1

)

in a power series in �a(x

1

)(x

1

� y

1

) and observe that the terms

(1.14) whi
h 
ontribute to R satisfy 2

r

ja(x

1

)(x

1

�y

1

)j � 
b

�1

Æ2

r�j�`

jI

`

j � 


0

. De�ne operators S

k;r

by

S

k;r

g(x

1

; x

2

) =

X

`

X

2

�j

>jI

`

j

r<2j+`

�

`

(x

1

)

Z

 

j

(x

1

� y

1

)[2

r

a(x

1

)(x

1

� y

1

)℄

k

g(y

1

; x

2

)dy

1

:
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Next de�ne Littlewood-Paley operators L

r

,

e

L

r;k

in the se
ond variable by

d

L

r

f(�) = �(2

�r

�

2

)

b

f(�)

and

\

e

L

r;k

f(�) = (2

�r

�

2

)

k

e

�(2

�r

�

2

)

b

f(�); here

e

� is supported in �(1=4; 4) and equals 1 on supp �.

Then

R =

1

X

k=0

(�i)

k

k!

X

r2Z

e

L

r;k

S

k;r

[L

r

f ℄:

By standard Calder�on-Zygmund theory










X

r

e

L

r;k

h

r










p

� 


p

10

k










�

X

r

�

�

L

r

h

r

�

�

2

�

1=2










p

for 1 < p < 1. By another appli
ation of Littlewood-Paley theory it 
learly suÆ
es to show that

the ve
tor-valued operator F = ff

r

g

r2Z

7! fS

k;r

f

r

g

r2Z

maps L

p

(`

2

) into itself with operator norm

bounded by CB

k

,

1

for some positive 
onstant B.

Observe that S

0;r

is essentially dominated by a maximal Hilbert transform in the �rst variable;

in fa
t Cotlar's inequality ([24, p.35℄) holds:

�

�

S

0;r

g(x)

�

�

� C

�

M

1

[g℄(x) +M

1

[H

1

g℄(x)

�

;

hereM

1

and H

1

denote the standard Hardy-Littlewood maximal fun
tion and the Hilbert transform

in the �rst variable, respe
tively, and C does not depend on r. If k > 0 and r, ` are �xed then for

x

1

2 I

`

�

�

S

k;r

g(x)

�

�

� C

X

`

X

2

�j

>jI

`

j

2j+`>r

�

`

(x

1

)

Z

j2

r

a(x

1

)(x

1

� y

1

)j

k

j 

j

(x

1

� y

1

)jjg(y

1

; x

2

)jdy

1

� C

X

`

�

`

(x

1

)

X

2j+`>r

(2b

�1

Æ2

r�`�2j

)

k

M

1

g(x) � C

0

B

k

M

1

g(x):

By the Fe�erman-Stein inequality for sequen
es of maximal fun
tions ([12℄) and a ve
tor valued

inequality for the Hilbert transform










�

X

r

�

�

S

k;r

f

r

�

�

2

�

1=2










p

� CB

k

h










�

X

r

�

�

f

r

�

�

2

�

1=2










p

+










�

X

r

�

�

H

1

f

r

�

�

2

�

1=2










p

i

� C

0

B

k










�

X

r

�

�

f

r

�

�

2

�

1=2










p

: �

Our main estimates 
on
ern the operator T and we shall introdu
e a further de
omposition. For

nonnegative integers s and n let

(1.15) A

s

= f(j; `) : 2

�j�s

> jI

`

j � 2

�j�s�1

g

and

(1.16) T

sn

=

X

(j;`)2A

s

T

2j+`+n

j`

;

then T =

P

1

s;n=0

T

sn

.

1

Here and in the sequel C will denote some absolute \
onstant" whi
h may depend on p and whose value may


hange from line to line.
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Proposition 1.4. Let 1 < p � 2, 
 < 1� 1=p. Then for all f 2 L

p

kT

sn

fk

p

� C


;�;p

2

�n


minf1; 2

(n�s)�

gkfk

p

if � < 1=2

and

kT

�

sn

fk

p

� C


;�;p

2

�n


minf1; 2

(n�s)�

gkfk

p

if � < 1� 1=p:

Clearly the Theorem follows from Lemmas 1.2, 1.3 and Proposition 1.4. The appropriate L

2

estimates for Proposition 1.4 will be derived in x2. The diÆ
ulty in obtaining L

p

estimates is

the absen
e of a Calder�on-Zygmund theory on a suitable spa
e of homogeneous type. Fortunately

in our present analysis we 
an interpolate the L

2

estimates with somewhat weaker estimates on

multiparameter Hardy spa
es. These are derived in x3. In x4 we shall dis
uss the modi�
ations

needed to estimate the maximal operator M. x5 
ontains the estimates needed to 
omplete the

proof of Lemma 1.2 above. The �nal se
tion is an appendix where we study the Hilbert transform

along the radial ve
tor �eld, in
luding a general interpolation lemma related to restri
ted weak type

estimates.

2. L

2

-estimates for os
illatory integral operators

The following result is a straightforward 
onsequen
e of the almost-orthogonality lemma by

Cotlar and Stein (see [24, p.280℄); in our appli
ation below we will be able to 
hoose � = 1=2.

Lemma 2.1. Suppose that 0 < � � 1, 0 < C

1

�

p

C

2

. Let fT

j

g be a 
olle
tion of bounded operators

on a Hilbert spa
e H su
h that

kT

j

k � C

1

and

max

�

kT

j

(T

k

)

�

k; k(T

j

)

�

T

k

k

	

� C

2

2

��jj�kj

for all j; k 2 Z. Then the partial sums

P

N

j=�N

T

j


onverge in the strong operator topology to a

bounded operator T as N !1 and T satis�es the bound

kTk � 10�

�1

C

1

log

2

(1 +

p

C

2

=C

1

):

Proof. By the Cotlar-Stein lemma

kTk �

1

X

n=0

sup

jj�kj=n

max

�

kT

j

(T

k

)

�

k

1=2

; k(T

j

)

�

T

k

k

1=2

	

:

Let N = 2�

�1

log

2

(1 +

p

C

2

=C

1

). We dominate the n

th

term in the series by C

1

if n < N and by

p

C

2

2

��n=2

if n � N . Hen
e

kTk � C

1

log

2

(1 +

p

C

2

=C

1

)(2�

�1

+ (1� 2

��=2

)

�1

):

This implies the asserted inequality. �

In what follows we 
onsider os
illatory integral operators a
ting on fun
tions g 2 L

2

(R). Suppose

that 	

j

2 C

2

(R � R) and that

(2.1) 	

j

(x; y) = 0 if jx� yj � Æ2

�j+2

or jx� yj � Æ2

�j�2

;

where Æ is as in (1.10). Suppose also that

(2.2) j�

�

y

	

j

(x; y)j � A2

j

2

j�

; � = 0; 1; 2:

7



Lemma 2.2. For given n 2 Z and � 2 R let j 7! `(j) denote a fun
tion de�ned on a subset z of Z

satisfying j�j=2 � 2

`(j)+2j+n

� 2j�j and (j; `(j)) 2 A

s

for all j 2 z (here A

s

is as in (1.15)). De�ne

an operator P

j

a
ting on S
hwartz fun
tions of one variable by

(2.3) P

j

g(x) = �

`(j)

(x)

Z

e

i�a(x)(x�y)

	

j

(x; y)g(y) dy;

here 	

j

is as in (2.1), (2.2). Then P

j

is bounded on L

2

and for all g 2 L

2

(R)

(2.4) kP

j

gk

2

� CAminf2

�s=2

; 2

�n=2

gkgk

2

where C does not depend on j and the parti
ular fun
tion `. Moreover (P

j

)

�

P

k

= 0 for jj � kj � 10

and the L

2

operator norm of P

j

P

�

k

satis�es

(2.5) kP

j

P

�

k

k

L

2

!L

2

� CA

2

2

�jj�kj=2

:

Finally if P =

P

j2z

P

j

then P is bounded on L

2

(R) with norm � CA(1+ s+ n)minf2

�s=2

; 2

�n=2

g.

Proof. The asserted L

2

bound for P follows from (2.4), (2.5) and Lemma 2.1. The modulus of the

kernel K

jk

of P

j

P

�

k

is given by

(2.6) jK

jk

(x; z)j =

�

�

�

�

`(j)

(x)�

`(k)

(z)

Z

	

j

(x; y)	

k

(z; y)e

�i�y[a(x)�a(z)℄

dy

�

�

�

:

A 
rude estimate yields jK

jk

(x; z)j � CA

2

minf2

j

; 2

k

g and in turn

(2.7)

Z

jK

jk

(x; z)jdx +

Z

jK

jk

(x; z)jdz � CA

2

2

�s

:

If j = k then ja(x) � a(z)j � 2

�`(j)

jx � zj and if jx � zj > 2

j+`(j)

�

�1

we may improve the previous

estimate by integrating by parts twi
e. This yields

jK

jj

(x; z)j � CA

2

minf2

j

; 2

3j+2`(j)

�

�2

jx� zj

�2

g

and therefore

Z

jK

jj

(x; z)jdx +

Z

jK

jj

(x; z)jdz � CA

2

2

2j+`(j)

�

�1

� CA

2

2

�n

:

This together with (2.7) implies (2.4).

Now assume that jj � kj � 10; then also j`(j)� `(k)j � 10. By taking adjoints we may without

loss of generality assume that k < j. There is an interval I

l

between I

`(j)

and I

`(k)

whi
h does not

interse
t either I

`(k)

or I

`(j)

but satis�es jl � `(j)j � 5. Then by assumption (1.6) we obtain

ja(x)� a(z)j � 2

�l�1

jI

l

j � 
2

�`(j)

jI

`(j)

j

if x 2 supp �

`(j)

and z 2 supp �

`(k)

. Integrating by parts on
e in (2.6) yields the pointwise bound

jK

jk

(x; z)j � CA

2

2

j+k

j�j

�1

jI

`(j)

j2

�`(j)

� A

2

2

�n

2

k�j

jI

`(j)

j

�1

:

For �xed z we integrate over x 2 supp �

`(j)

and obtain

Z

jK

jk

(x; z)jdx � CA

2

2

�n

2

k�j

:

If we also use (2.7) we obtain by the 
ontinuous version of S
hur's lemma the asserted estimate (2.5),

where A is a
tually repla
ed by the smaller value A2

�(s+n)=4

. �

The usefulness of the following Lemma has been demonstrated for example in [19℄. It follows by

a two-fold appli
ation of Plan
herel's theorem.
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Lemma 2.3. Let m 2 L

1

(R), let fP

�

g be a family of bounded linear operators on L

2

(R). Suppose

that for every f in the S
hwarz spa
e S(R

2

) the fun
tion (x

1

; y

2

; �) 7! P

�

�

f(�; y

2

)℄(x

1

) is 
ontinuous

and suppose that the L

2

operator norms of P

�

are uniformly bounded by B. For S
hwartz fun
tions

f 2 S(R

2

) de�ne T by

Tf(x) =

ZZ

m(�)e

i�(x

2

�y

2

)

P

�

[f(�; y

2

)℄(x

1

)d�dy

2

:

Then T extends to a bounded operator on L

2

(R

2

) with operator norm bounded by 
B.

Corollary 2.4. The operator T

sn

de�ned in (1.16) is bounded on L

2

(R

2

) with operator norm �

C(1 + s+ n)minf2

�n=2

; 2

�s=2

g.

Proof. We write T

sn

=

P

4

i=0

T

sn;i

where T

sn;i

is as in (1.16), with the additional spe
i�
ation that

only values of ` with ` = i mod 5 o

ur in the sum. As an immediate 
onsequen
e of Lemma 2.2

and Lemma 2.3 we obtain the L

2

boundedness of T

sn;i

, with the required bounds.

The following variant of Lemma 2.3 will be used when f has some 
an
ellation property with

respe
t to the y

2

variable.

Lemma 2.5. Let fP

�

g be a family of bounded linear operators on L

2

(R) satisfying the assumptions

of Lemma 2.3. For S
hwartz fun
tions f 2 S(R

2

) and �xed u

2

de�ne S

r

by

S

r

f(x) =

ZZ

�(2

�r

�)e

i�x

2

(e

�i�y

2

� e

�i�u

2

)P

�

[f(�; y

2

)℄(x

1

)d�dy

2

:

Then

kS

r

fk

2

� CB2

r

�

Z

jy

2

� u

2

j

2

jf(y)j

2

dy

�

1=2

where C does not depend on u

2

.

Proof. We write the di�eren
e of exponentials as an integral over a derivative and see that S

r

=

R

1

0

S

r;�

d� where

S

r;�

f(x) = �i

ZZ

��(2

�r

�)e

i�(x

2

�(1��)u

2

��y

2

)

(y

2

� u

2

)P

�

[f(�; y

2

)℄(x

1

)dy

2

d�:

Set G

�

(y

1

) =

R

e

�i�y

2

(y

2

� u

2

)f(y

1

; y

2

) dy

2

= F

2

�

(� � u

2

)f(y

1

; �)

�

(�) where F

2

denotes the Fourier

transform in the y

2

variable. Then

S

r;�

f(x) = i

Z

��(2

�r

�)e

i�(x

2

�(1��)u

2

)

P

�

[G

��

℄(x

1

) d�:

From appli
ations of Plan
herel's theorem and Fubini's theorem it follows that

kS

r;�

fk

2

=

p

2�

�

ZZ

�

�

��(2

�r

�)

�

�

2

�

�

P

�

[G

��

℄(x

1

)

�

�

2

dx

1

d�

�

1=2

� B

p

2�

�

ZZ

�

�

��(2

�r

�)

�

�

2

�

�

G

��

(y

1

)

�

�

2

d� dy

1

�

1=2

� C�

�1=2

B2

r

�

Z

jy

2

� u

2

j

2

jf(y)j

2

dy

�

1=2

and the desired estimate is obtained by integrating in �. �
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3. Estimates for re
tangle atoms

The L

p

estimates for T

sn

and their adjoints are derived by interpolation of the L

2

estimates

in the previous se
tion with appropriate estimates on the Hardy spa
e H

1

prod

(R � R) with the

multiparameter dilation stru
ture. The interpolation theorem 
an be found in [9℄. In order to prove

the H

1

estimates we use the version of Calder�on-Zygmund theory as developed by Journ�e [17℄. A

parti
ularly elegant variant of it whi
h is valid in two parameters was proved by R. Fe�erman [12℄.

In this setting it suÆ
es to 
he
k the behavior of the singular integral operator on re
tangle atoms.

Let R = J

1

� J

2

be a re
tangle with edges parallel to the 
oordinate axes and 
enter (u

1

; u

2

).

Then f is 
alled a re
tangle atom asso
iated to R if f is supported in R, if

kfk

2

� jRj

�1=2

and if

Z

f(x

1

; x

2

)dx

1

= 0 for almost every x

2

2 J

2

;

Z

f(x

1

; x

2

)dx

2

= 0 for almost every x

1

2 J

1

:

Let w

R;�

(x) =

Q

2

i=1

(1 + jx

i

� u

i

j=jJ

i

j)

�

. Suppose that the operator T is bounded on L

2

and

suppose that there is � > 0 su
h that for all R and all re
tangle atoms f

R

asso
iated to R

(3.1)

Z

jTf

R

(x)jw

R;�

(x)dx � B

where B does not depend on R. Then a

ording to Fe�erman's theorem the operator T maps

H

1

prod

(R � R) to L

1

(R

2

) and there is the estimate

kTk

H

1

!L

1

� 
kTk

L

2

!L

2

+ C

�

B:

In what follows we �x a re
tangle atom f asso
iated to a re
tangleR and estimate T

sn

f in re
tangular

regions in the 
omplement of R. Given m = (m

1

;m

2

) with nonnegative integers m

1

, m

2

and given

a re
tangle R = J

1

� J

2

as above we de�ne J

1

(m

1

), J

2

(m

2

) and R(m) by

(3.2) J

i

(m

i

) =

�

fx

i

: jx

i

� u

i

j � 8jJ

i

jg if m

i

= 0

fx

i

: 2

m

i

+3

jJ

i

j < jx

i

� u

i

j � 2

m

i

+4

jJ

i

jg if m

i

> 0

and

(3.3) R(m) = J

1

(m

1

)�J

2

(m

2

):

It is our obje
tive to prove the following proposition whi
h together with Corollary 2.4 implies

Proposition 1.4.

Proposition 3.1. Let f be a re
tangle atom asso
iated to the re
tangle R = J

1

� J

2

with 
enter

(u

1

; u

2

) and let R(m) be as in (3.3). Then for 0 < � < 1=2

Z

R(m)

jT

sn

f(x)j dx � C

�

2

2(s+n)�

2

��(m

1

+m

2

)

minf1; 2

(n�s)=2

g(3.4)

Z

R(m)

jT

�

sn

f(x)j dx � C

�

2

2(s+n)�

2

��(m

1

+m

2

)

:(3.5)
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Consequently T

sn

and T

�

sn

map H

1

prod

(R � R) boundedly into L

1

and, for every � > 0, the operator

norms are bounded by C

�

2

�n

and C

�

2

�(s+n)

, respe
tively.

We now de
ompose T

sn

=

P

r

T

r

sn

where

T

r

sn

=

X

(j;`)2A

s

`+2j=r�n

T

r

j`

:

Lemma 3.2. Let f be a re
tangle atom asso
iated to the re
tangle R = J

1

� J

2

with 
enter (u

1

; u

2

)

and let R(m) be as in (3.3). Then

(3.6) kT

sn

fk

L

1

(R(m))

+ (2

r

jJ

2

j)

�1

kT

r

sn

fk

L

1

(R(m))

� C(1 + s+ n))2

(m

1

+m

2

)=2

minf2

�s=2

; 2

�n=2

g:

and the same estimates hold if T

sn

and T

r

sn

are repla
ed by their adjoints.

Proof. We have already proved the L

2

bounds for T

sn

in x2 (see Corollary 2.4), and the asserted

estimate for T

sn

follows by the Cau
hy-S
hwarz inequality and the size estimate for the atom.

Similarly, in view of the y

2


an
ellation of f we 
an use Lemma 2.5 instead of Lemma 2.3 to obtain

also the estimate for T

r

sn

. �

Lemma 3.3. Let f be a re
tangle atom asso
iated to the re
tangle R = J

1

� J

2

with 
enter (u

1

; u

2

)

and let J

2

(m

2

) be as in (3.2). Then for M = 0; 1; 2; : : :

(3.7)

Z

J

2

(m

2

)

�

Z

J

1

(0)

jT

r

sn

f(x)j

2

dx

1

�

1=2

dx

2

� C

M

2

n=2

(1 + s+ n)

�

2

n�m

2

2

r

jJ

2

j

�

M

minf1; 2

(n�s)=2

gminf1; 2

r

jJ

2

j+ 2

�m

2

gkfk

L

1

(L

2

)

where kfk

L

1

(L

2

)

=

R
�
R

jf(x

1

; x

2

)j

2

dx

1

�

1=2

dx

2

. The same estimates remain true when T

r

sn

is re-

pla
ed by its adjoint.

Proof. Denote by K

r

j`

the kernel of the operator T

r

j`

. By an integration by parts with respe
t to

the frequen
y variable � and the Leibniz rule we express K

r

j`

=

P

M+1

�=0

K

r

j`�

, where

(3.8) K

r

j`�

(x; y) = �

`

(x

1

)e�

`

(x

1

)

Z

�

�;M+1

(x

2

� y

2

)	

j;�;�

(x

1

; y

1

)e

i�a(x

1

)(x

1

�y

1

)

d�;

where �

�;M+1

(u) = e

i�u

u

�M�1

and

	

j;�;�

(x

1

; y

1

) = 


�

e�

`

(x

1

)

�

a(x

1

)(x

1

� y

1

)

�

�

2

�r(M+1��)

�

(M+1��)

(�2

�r

) 

j

(x

1

� y

1

);

here e�

`

(x

1

) is supported in [

2

i=�2

I

`+i

and equal to 1 on the support of �

`

. If ` = r � n � 2j the

fun
tions 	

j;�;�

satisfy (2.2) with A = A

�

where

A

�

� C(jI

`

j2

�`�j

)

�

2

�r(M+1��)

� C

0

2

�s�

2

�(2j+`)�

2

�r(M+1��)

� C

00

2

�s�

2

(n�r)(M+1)

and C may depend onM . We �x � and � 2 supp �(2

�r

�) and de�ne an os
illatory integral operator

by

P

�;�

g(u) =

X

(j;`)2A

s

`=r�n�2j

�

`

(u)

Z

	

j;�;�

(u;w)e

�i�a(u)(u�w)

g(w)dw:

11



The left hand side of (3.7) is bounded by a linear 
ombination of terms of type

Z

J

2

(m

2

)

jx

2

� y

2

j

�M�1

Z







P

�;�

[f(�; y

2

)℄







L

2

(R)

d�dy

2

dx

2

;

note also that P

�;�

[f(�; y

2

)℄ = 0 if 2

�r

� =2 supp �. The operator norm of P

�;�

is bounded by

minf2

�s=2

; 2

�n=2

g(s+ n+ 1)A

�

; this follows from Lemma 2.2. Therefore we obtain

Z

J

2

(m

2

)

�

Z

jT

r

sn

f(x)j

2

dx

1

�

1=2

dx

2

� C

M

2

n=2

(n+ s+ 1)

�

2

n�m

2

2

r

jJ

2

j

�

M

minf1; 2

(n�s)=2

g

Z

�

Z

jf(x

1

; x

2

)j

2

dx

1

�

1=2

dx

2

:

This proves one of the estimates 
laimed in (3.7). If we also use the 
an
ellation of the atom in the

y

2

variable we may repla
e the term �

�;M+1

(x

2

� y

2

) in (3.8) by

�

�;M+1

(x

2

� y

2

)� �

�;M+1

(x

2

� u

2

) = O

�

jJ

2

jjx

2

� y

2

j

�M�1

[jx

2

� y

2

j

�1

+ j�j℄

�

and the previous argument yields the se
ond estimate in (3.7), with the fa
tor 2

r

jJ

2

j+ 2

�m

2

. The

same argument applies to the adjoint operator. �

Lemma 3.4. Let f be a re
tangle atom asso
iated to the re
tangle R = J

1

�J

2

with 
enter (u

1

; u

2

).

Let M

1

> 0 and let R(m) be as in (3.3). Assume jI

`

j � 2

�j

. Then T

r

j`

f(x) = (T

r

j`

)

�

f(x) = 0 if

x 2 R(m) and 2

j

jJ

1

j > 2

�m

1

.

If r = `+ 2j + n and (j; `) 2 A

s

then for 0 � �

1

; �

2

� 1

Z

R(m)

jT

r

j`

f(x)jdx � C2

�s

(1 + 2

n�s

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

(3.9)

Z

R(m)

j(T

r

j`

)

�

f(x)jdx � C(1 + 2

n

+ 2

s

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

;(3.10)

moreover if also 2

r

jJ

2

j � 10b

�1

2

n�s

2

�m

2

then

Z

R(m)

jT

r

j`

f(x)jdx � C2

�s

(1 + 2

n�s

)

�

1

(2

j

jJ

1

j)

�

1

(2

m

2

2

r

jJ

2

j)

�1

(3.11)

Z

R(m)

j(T

r

j`

)

�

f(x)jdx � C(1 + 2

n

+ 2

s

)

�

1

(2

j

jJ

1

j)

�

1

(2

m

2

2

r

jJ

2

j)

�1

:(3.12)

Proof. The �rst statements are obvious and we give the proof for (3.9-12). It suÆ
es to prove these

inequalities for �

1

; �

2

2 f0; 1g; the general 
ase then follows by taking geometri
 means. Denote by

K

r

j`

and

e

K

r

j`

the kernels of T

r

j`

and (T

r

j`

)

�

, respe
tively. Then

e

K

r

j`

(x; y) = K

r

j`

(y; x) and

K

r

j`

(x; y) = �

`

(x

1

) 

j

(x

1

� y

1

)2

r

F

�1

�(2

r

(x

2

� y

2

� a(x

1

)(x

1

� y

1

)))

where F

�1

� is the inverse Fourier transform of �. Let !

r;M

(x; y) = 2

r

(1 + 2

r

jx

2

� y

2

� a(x

1

)(x

1

�

y

1

)j)

�M

. Then it is straightforward to 
he
k from (1.11-1.13) that for �

1

; �

2

2 f0; 1g

j�

�

1

y

1

�

�

2

y

2

K

r

j`

(x; y)j � C2

j

(2

j

+ 2

r�`

jI

`

j)

�

1

2

r�

2

!

r;M

(x; y)

j�

�

1

y

1

�

�

2

y

2

e

K

r

j`

(x; y)j � C2

j

(2

j

+ 2

r�`�j

+ jI

`

j

�1

)

�

1

2

r�

2

!

r;M

(y; x):

12



Sin
e K

r

j`

(x; y) = 0 if jx

1

� y

1

j � C2

�j

or x

1

=2 supp �

`

we use the 
an
ellation properties of the

atom to obtain

Z

jT

r

j`

f jdx � C2

�s

2

j

jI

`

j(1 + 2

r�`�2j

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

Z

j(T

r

j`

)

�

f jdx � C(1 + 2

r�`�2j

+ 2

�j

jI

`

j

�1

)

�

1

(2

j

jJ

1

j)

�

1

(2

r

jJ

2

j)

�

2

whi
h implies (3.9) and (3.10).

Note that if also 2

r

jJ

2

j � 10b

�1

2

n�s

2

�m

2

then 2

m

2

jJ

2

j � b

�1

2

�`�j

jI

`

j and therefore

!

r;M

(x; y) + !

r;M

(y; x) � C

M

2

r

(1 + 2

r

jx

2

� y

2

j)

�M

for x 2 R(m), y 2 R. Now the previous argument yields also (3.11) and (3.12). �

We now de
ompose T

sn

=

P

j

T

j;s;n

where

T

j;s;n

=

X

`:(j;`)2A

s

T

`+2j+n

j`

:

The proof of the following Lemma is similar to the proof of Lemma 3.4.

Lemma 3.5. Let f be a re
tangle atom asso
iated to the re
tangle R = J

1

� J

2

with 
enter (u

1

; u

2

)

and let J

1

(m

1

) be as in (3.2). Assume jI

`

j � 2

�j

. Then T

j;s;n

f(x) = 0 if x 2 R(m) and 2

j

jJ

1

j >

2

�m

1

; moreover for 0 � � � 1

Z

J

1

(m

1

)

�

Z

jT

j;s;n

f(x

1

; x

2

)j

2

dx

2

�

1=2

dx

1

� C2

�s

(1 + 2

n�s

)

�

(2

j

jJ

1

j)

�

Z

�

Z

jf(y)j

2

dy

2

�

1=2

dy

1

(3.13)

Z

J

1

(m

1

)

�

Z

jT

�

j;s;n

f(x

1

; x

2

)j

2

dx

2

�

1=2

dx

1

� C(1 + 2

n

+ 2

s

)

�

(2

j

jJ

1

j)

�

Z

�

Z

jf(y)j

2

dy

2

�

1=2

dy

1

(3.14)

Proof. The �rst statement is obvious. Let E(x

1

; y

1

; �) = �

`

(x

1

) 

j

(x

1

� y

1

)e

i�a(x

1

)(x

1

�y

1

)

, then

jE(x

1

; y

1

; �)� E(x

1

; u

1

; �)j � C2

j

�

2

j

+ 2

�`

jI

`

jj�j

�

jJ

1

j

jE(x

1

; y

1

; �)� E(u

1

; y

1

; �)j � C2

j

�

jI

`

j

�1

+ 2

j

+ 2

�`�j

j�j

�

jJ

1

j

Note that in the present 
ase, if j�j � 2

r

then 2

�`

jI

`

jj�j � C2

j+n�s

, 2

�`�j

j�j � 2

j+n

and jI

`

j

�1

�

2

j+s

.

Let F

2

f denote the Fourier transform of f in the se
ond variable. If 2

j

jJ

1

j � 1 we use the the


an
ellation of f in the y

1

variable and we obtain the estimate

�

Z

jT

j;n;s

f(x

1

; x

2

)j

2

dx

2

�

1=2

�

C minf1; (1 + 2

n�s

)2

j

jJ

1

jg

Z

�

Z

�

�

�

X

r

�(2

�r

�)F

2

f(y

1

; �)

�

�

�

2

d�

�

1=2

dy

1
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where the sum is extended over all r that 
an be written as r = ` + 2j + n with (j; `) 2 A

s

. Also

note that the expression on the left hand side is supported on I

`

. We apply Plan
herel's theorem

and perform the x

1

integration to arrive at (3.13), with � = 1. The general 
ase follows by taking

geometri
 means. A similar argument yields also (3.14). �

Proof of Proposition 3.1. Sin
e (3.4) implies (3.1) we only have to prove the estimate for re
tangle

atoms by Fe�erman's theorem. This in turn follows from the above Lemmas by appli
ations of the

Cau
hy-S
hwarz inequality and by summing geometri
 series. Spe
i�
ally we use Lemma 3.2 for T

sn

if m

1

+m

2

� 10 + (n+ 1)(1 + �). For m

1

� 10 and m

2

� (n+ 1)(1 + �) we estimate the operators

T

r

sn

and their adjoints and then sum in r. Here we use Lemma 3.2 if 2

r

jJ

2

j � 2

�m

2

, Lemma 3.3

with M = 0 if 2

�m

2

� 2

r

jJ

2

j � 2

�2m

2

�

and Lemma 3.3 with M = 10=� if 2

r

jJ

2

j � 2

�2m

2

�

.

For m

2

� 10 and m

1

� (n+ 1)(1 + �) we estimate the operators T

j;s;n

and T

�

j;s;n

and then sum

in j. Only terms with 2

j

jJ

1

j � C2

�m

1

will o

ur and the desired estimate follows from Lemma 3.5,

with � = �.

For m

2

� 10 and m

1

� (n + 1)(1 + �) we estimate T

r

j`

with ` = r � 2j � n, (j; `) 2 A

s

using

Lemma 3.4 with �

1

= � and sum in r,j; again only terms with 2

j

jJ

1

j � C2

�m

1

will o

ur. We


onsider T

sn

and distinguish two 
ases, depending on whether 2

n�m

2

=2

10b

�1

is large or small. In

the �rst 
ase where 2

n�m

2

=2

10b

�1

� 1 we have also 2

m

2

� C2

2n

and we use (3.9) with �

2

= 1 if

2

r

jJ

2

j � 2

�n

, (3.9) with �

2

= 0 if 2

�n

< 2

r

jJ

2

j � 10b

�1

2

n

, and (3.11) if 2

r

jJ

2

j < 10b

�1

2

n

. In the

se
ond 
ase where 2

n�m

2

=2

10b

�1

< 1 we use (3.9) with �

2

= 1 if 2

r

jJ

2

j � 2

�n�m

2

=2

10b

�1

, (3.11)

with �

2

= 1 if 2

r

jJ

2

j > 2

�n�m

2

=2

10b

�1

. Finally this analysis applies also to the operator (T

r

j`

)

�

if in

the previous argument we repla
e (3.9) by (3.10) and (3.11) by (3.12). �

Remarks.

(i) It should be possible to extend our result to 
over similar 
lasses of ve
tor �elds in R

n

.

Instead of Fe�erman's theorem one would have to use the version of Calder�on-Zygmund theory in

[5℄. In our two-dimensional setting we used Fe�erman's theorem for 
onvenien
e, but we veri�ed in

e�e
t the hypotheses of Theorem 1 in [5℄.

(ii) There is the open problem of L

p

boundedness for the Hilbert transform asso
iated to an

arbitrary C

1

ve
tor �eld. As a �rst step one might try to �nd a version of our Theorem for ve
tor

�elds v whi
h do not ne
essarily depend on only one variable.

(iii) It would be interesting whether there is an underlying Calder�on-Zygmund theory for our

operators whi
h is di�erent from the produ
t theory. In a di�erent 
ontext su
h variants have been


onsidered in [6℄.

4. The maximal operator

The arguments in the previous se
tions apply equally well to prove the L

p

boundedness for the

maximal operatorM; in fa
t some of those arguments simplify. Let 	 be a nonnegative C

1

fun
tion

with support in (1=2; 2) and assume that 	(t) = 1 for t 2 (1=

p

2;

p

2). Let 	

j

(t) = 2

j

Æ

�1

	(2

j

Æ

�1

t):

Then it is straightforward to see that

Mf(x) � C sup

j

X

`

�

`

(x

1

)

Z

	

j

(t)jf(x

1

� t; x

2

� ta(x

1

))jdt

and we may 
learly assume that f is nonnegative. Then the estimate

(4.1)

�

Z

�

�

�

X

`

�

`

(x

1

) sup

2

�j

�jI

`

j

Z

	

j

(t)f(x

1

� t; x

2

� ta(x

1

))dt

�

�

�

p

dx

�

1=p

� Ckfk

p
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follows by the res
aling argument in Lemma 1.2 and known estimates for maximal operators in the


ase of nonvanishing rotational 
urvature.

Let S

r

j`

be de�ned as T

r

j`

in (1.14), but with  

j

repla
ed by 	

j

. For k = 0; 1; : : : de�ne

S

r

j`k

f(x) = �

`

(x

1

)

Z

(2

r

a(x

1

)(x

1

� y

1

))

k

	

j

(x

1

� y

1

)f(y)

Z

(2

�r

�)

k

�(2

�r

�)e

i�[x

2

�y

2

℄

d� dy

so that S

r

j`

=

P

1

k=0

(�i)

k

(k!)

�1

S

r

j`k

. In order to 
omplete the proof we have to show that










�

X

j

�

�

�

X

`:2

�j

>jI

`

j

�

`

X

r�2j+`

S

r

j`

f

�

�

�

2

�

1=2










p

� C

p

kfk

p

(4.2)










X

`

�

`

sup

j:2

�j

>jI

`

j

�

�

�

X

r�2j+`

S

r

j`k

f

�

�

�










p

� C

p

B

k

kfk

p

(4.3)

Note that the 
an
ellation of  was not used in the estimates for T and in fa
t straightforward

modi�
ations of the arguments in x2 and x3 also yield (4.2). In order to see (4.3) we argue as in the

proof of Lemma 1.3. Let M

1

, M

2

be the Hardy-Littlewood maximal operators a
ting in the �rst

and the se
ond variable, respe
tively, and let

�

k

f(x) = sup

m

�

�

�

X

r<m

e

L

r;k

L

r

f(x)

�

�

�

where L

r

,

e

L

r;k

are as in the proof of Lemma 1.3. Then Cotlar's inequality ([24, p.35℄) applies:

j�

k

f(x)j � CM

2

f(x) + CM

2

�

1

X

r=�1

e

L

r;k

L

r

f

�

(x);

moreover

X

`

�

`

(x

1

) sup

2

�j

>jI

`

j

�

�

�

X

r�2j+`

S

r

j`k

f(x)

�

�

�

� C10

k

M

1

[�

k

f ℄(x):

Sin
e the operator

P

1

r=�1

e

L

r;k

L

r

is bounded on L

p

with norm O(


p

B

k

) and suitable B the two

previous inequalities imply (4.3). The asserted estimate for the maximal operator M follows from

(4.1), (4.2) and (4.3).

5. The 
ase of nonvanishing rotational 
urvature, revisited

We 
onsider the operator de�ned for smooth fun
tions by

(5.1) Tf(x) = �(x

1

)

X

j�0

Z

	

j

(x

1

; y

1

)f(y

1

; x

2

+ S(x

1

; y

1

))�(y

1

)dy

1

:

Here � and 	

j

are C

2

fun
tions; � is supported in the interval [�1; 1℄, and 	

j

(x

1

; y

1

) = 0 unless

2

�j�3

� jx

1

� y

1

j � 2

�j+3

. We assume that (2.2) holds and that 	

j

has the additional 
an
ellation

property

(5.2)

Z

	

j

(x; y)dy =

Z

	

j

(x; y)dx = 0:

As a model 
ase for S we 
onsider the example S(x

1

; y

1

) = �a(x

1

)(x

1

�y

1

), and with the approptiate


hoi
e of 	

j

we re
over a lo
al version of the Hilbert transform in (1.1). The assumption of rotational


urvature is that the mixed derivative S

x

1

y

1

does not vanish from below.
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Proposition 5.1. Suppose that S is a C

1

fun
tion on [�1; 1℄

2

and assume that the partial derivatives

S

x

1

y

1

, S

x

1

y

1

y

1

, S

x

1

y

1

y

1

y

1

exist and are 
ontinuous in [�1; 1℄. Assume that S

x

1

y

1

does not vanish in

[�1; 1℄. Then T extends to a bounded operator on L

p

, 1 < p <1.

As previously mentioned the proof is quite standard, and we shall be sket
hy. If � is as in

(1.14) then we de�ne �

r

(x; y) = 2

r

F

�1

[�℄(2

r

(x

2

� y

2

+ S(x

1

; y

1

))) and �

k

= 1 �

P

r>k

�

r

. Then

T =

P

1

n=1

T

1;n

+ T

2

where

T

1;n

f(x) =

X

j�0

Z

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j+n

(x; y)f(y)dy

T

2

f(x) =

X

j�0

Z

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j

(x; y)f(y)dy:

It turns out that for 1 < p � 2

kT

1;n

fk

p

� C

p

n

�1+2=p

2

�n(1�1=p)

kfk

p

(5.3)

kT

2

fk

p

� C

p

kfk

p

(5.4)

and that the same estimates hold for the adjoint operators. This of 
ourse proves Proposition 5.1. �

By Lemma 2.3 the 
ase p = 2 
an be redu
ed to estimates for 
ertain os
illatory integral operators

in one dimension. Let � be �xed, j�j � 1=2 and de�ne the operator

P

j

g(u) = �(u)

Z

e

i�S(u;w)

	

j

(u;w)�(w)g(w) dw:

For the �rst result we assume that 	

j

is as above, but we do not a
tually need the 
an
ellation


ondition (5.2).

Lemma 5.2. Suppose that S is a C

1

fun
tion on [�1; 1℄

2

and assume that the partial derivatives

S

uw

, S

uww

, S

uwww

exist and are 
ontinuous in [�1; 1℄

2

. Assume that S

uw

does not vanish in [�1; 1℄

2

.

Then for 2

2j

� j�j the L

2

! L

2

operator norm of P

j

is bounded by CA2

j

j�j

�1=2

.

Proof. This is a version of the argument in Lemma 2.2. One writes out the kernel K

j

(u; z) of the

operator P

j

P

�

j

, and integrates by parts twi
e if ju� zj � 2

j

j�j

�1

. If �(u;w; z) = S(u;w)� S(z; w)

then our assumptions guarantee that j�

w

(u;w; z)j is bounded below by 
ju� zj and that �

ww

and

�

www

are O(ju� zj). Therefore a 
onsequen
e of the integration by parts is the pointwise estimate

jK

j

(u; z)j � 2

j

(1 + j�2

�j

(u� z)j

2

)

�1

and the desired estimate follows by S
hur's Lemma. �

In the next Lemma we use the 
an
ellation of the 	

j

but not the assumption of rotational


urvature.

Lemma 5.3. Suppose that 	

j

is as above and satis�es the additional 
an
ellation property (5.2)

Suppose that S is a C

1

fun
tion on [�1; 1℄

2

and assume that the partial derivative S

uw

exists and is


ontinuous in [�1; 1℄. Then the operator

P

2

2j

��

P

j

is bounded on L

2

.

Proof. We verify that kP

�

j

P

k

k + kP

j

P

�

k

k � 2

�jj�kj

, provided that 2

2j

� j�j, 2

2k

� j�j. We may

assume j � k. The kernel of P

�

j

P

k

is given by

K

jk

(u; z) = �(u)�(z)

Z

q

k

(u; z; w)	

j

(u;w)dy
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where q

k

(u; z; w) = e

i�[S(u;w)�S(z;w)℄

j�(w)j

2

	

k

(z; w). Observe that for u; z 2 supp �, jw�uj � 2

�j

,

jw � zj � 2

�k

we have jS

y

(u;w)� S

y

(z; w)j � C2

�k

and, sin
e �2

�2k

� 1,

jq

k

(u; z; w)� q

k

(u; z; u)j � C2

k

+ j�(S

y

(u;w)� S

y

(z; w))j � C

0

2

k

:

Now using the 
an
ellation of 	

j

in the se
ond variable we see that

R

jK(u; z)jdz � 2

�j+k

and

R

jK(u; z)jdu � 2

�j+k

and the desired estimate for P

�

j

P

j

follows.

Next, the kernel of P

j

P

�

k

is given by

L

jk

(u; z) = �(u)�(z)

Z

r

k

(u; z; w)	

j

(w; u)dw

where r

k

(u; z; w) = j�(w)j

2

e

i�S(w;u)�S(w;z)

	

k

(w; z). The desired estimate follows from the 
an
el-

lation of 	

j

in the �rst variable sin
e j�

w

r

k

j = O(j�j2

�k

+ 1) = O(2

k

). �

The L

2

estimates for T

1;n

and T

2

immediately follow from the two previous Lemmas and Lemma

2.3. In order to show the L

p

estimates one shows that T

2

and its adjoint are of weak type (1; 1),

moreover T

1;n

and its adjoint satisfy a weak-type inequality with 
onstant O(n). From this the L

p

estimates follow by the Mar
inkiewi
z interpolation theorem.

The weak-type estimates rely on Calder�on-Zygmund theory in [�1; 1℄ � R whi
h is made into

a suitable spa
e of homogeneous type (
f. [24, 
h.I℄). The underlying distan
e fun
tion is d(x; y) =

jx

1

�y

1

j+ jx

2

�y

2

+S(x

1

; y

1

)j

1=2

, with the balls B(y; Æ) = fx : d(x; y) < Æg. Our assumption is that

S 2 C

1

and the mixed derivative S

x

1

y

1

exists and is 
ontinuous. Then the standard properties of

this metri
 were derived in [14℄, in a more general 
ontext; see also [19℄. In parti
ular d is essentially

symmetri
, d(x; y) � d(y; x). Let K

j;n

(x; y) = �(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j+n

(x; y) and L

j

(x; y) =

�(x

1

)�(y

1

)	

j

(x

1

; y

1

)�

2j

(x; y). It is a straightforward exer
ise to verify that for suitable large D

and for y

0

2 B(y; Æ)

Z

R

2

nB(y;DÆ)

jK

j;n

(x; y

0

)�K

j;n

(x; y)jdx � Cminf1; 2

n

2

j

Æ; 2

n

2

�j

Æ

�1

g

Z

R

2

nB(y;DÆ)

jL

j

(x; y

0

)�L

j

(x; y)jdx � Cminf2

j

Æ; 2

�j

Æ

�1

g;

we omit the details. This implies the asserted weak-type estimates for T

1;n

, T

2

and by the symmetry

of the situation the estimates for the adjoints follow in the same way.

Similar 
onsiderations 
an be applied to the analogous maximal operator, de�ned by

(5.5) Mf(x) = sup

j

jA

j

f(x)j

where

A

j

f(x) = �(x

1

)

Z

�

j

(x

1

; y

1

)f(y

1

; x

2

+ S(x

1

; y

1

))�(y

1

)dy

1

;

here S satis�es the assumptions of Proposition 5.1, and �

j

is as 	

j

above, but does not ne
essarily

have any 
an
ellation property. Let Æ

0

be an even S
hwartz fun
tion on the real line su
h that

b

Æ

0

(�) = 1 for j�j � 1. Let

B

j

f(x) = �(x

1

)

ZZ

�

j

(x

1

; y

1

)2

2j

Æ

0

(2

2j

y

2

)f(y

1

; x

2

� y

2

+ S(x

1

; y

1

))�(y

1

)dy

1

dy

2

;
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then

(5.6) Mf(x) � sup

j

jB

j

f(x)j+

�

X

j�0

jA

j

f(x)�B

j

f(x)j

2

�

1=2

:

The maximal fun
tion sup jB

j

f j is pointwise 
ontrolled by the Hardy-Littlewood maximal fun
tion

with respe
t to the nonisotropi
 balls B(y; Æ) de�ned above; it is bounded on L

p

for 1 < p � 1.

The square-fun
tion in (5.6) 
an be 
onsidered as the `

2

norm of a ve
tor valued singular integral

and the L

p

boundedness follows as above.

6. Appendix

6.1. The Hilbert transform in the radial dire
tion.

We now study the operators H and M for the radial ve
tor �eld v(x) = x=jxj, in d dimensions,

d � 2, i.e.

(6.1) Hf(x) = p.v.

Z

1

�1

f(x+ tx=jxj)

dt

t

and the maximal operator M de�ned by

(6.2) Mf(x) = sup

h>0

1

2h

Z

h

�h

jf(x+ tx=jxj)j dt :

For this example the 
riti
al exponent for L

p

boundedness turns out to be the dimension d, and

for p = d we prove a restri
ted weak type inequality (for a similar result on the Kakeya maximal

operator a
ting on radial fun
tions see [4℄). In what follows let L

p;q

denote the Lorentz spa
e.

Proposition. Let H and M be as in (6.1), (6.2), respe
tively. Then H is bounded on L

p

(R

d

) if

and only if d < p <1. M is bounded on L

p

(R

d

) if and only if d < p � 1.

Moreover H and M map L

d;q

(R

d

) to L

d;r

(R

d

) if and only if q = 1 and r =1.

Proof. The proof of these results is elementary. One introdu
es polar 
oordinates to redu
e mat-

ters to standard estimates for Hilbert transforms, maximal operators and Hardy operators in one

dimension. We shall only give the proof for the operator H . The proof for the maximal operatorM

is similar.

We split

H = H

1

+H

2

+H

3

where

H

1

f(x) = p.v.

Z

jtj�4jxj

f(x+ tx=jxj)

dt

t

H

2

f(x) = p.v.

Z

4jxj

�jxj=4

f(x+ tx=jxj)

dt

t

H

3

f(x) =

Z

�4jxj�t��jxj=4

f(x+ tx=jxj)

dt

t

:

18



We �rst show that H

1

is bounded on L

p

(R

d

) for 1 < p <1. For l = 0; 1; 2; : : : set

H

1;l

f(x) =

Z

2

l+2

jxj�jtj�2

l+3

jxj

f(x+ tx=jxj)

dt

t

;

then H

1

=

P

l=0

H

1;l

. Let F

p

(s; �) = f(s�)s

(d�1)=p

and let M

1

denote the Hardy-Littlewood

maximal operator in the s-variable. Then

kH

1;l

fk

p

�

�

ZZ

S

d�1

�R

+

h

Z

2

l+2

r�jtj�2

l+3

r

jf((r + t)�)j

dt

t

i

p

r

d�1

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

h

Z

2

l+2

r�jtj�2

l+3

r

jf((r + t)�)(r + t)

(d�1)=p

j

dt

jtj

i

p

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

�

M

1

[F

p

(�; �)℄(r)

i

p

dr d�

�

1=p

� C2

�l(d�1)=p

�

ZZ

S

d�1

�R

+

jF

p

(r; �)j

p

dr d�

�

1=p

� C

0

2

�l(d�1)=p

kfk

p

and the L

p

boundedness of H

1

follows.

Next, we show that H

2

is bounded on L

p

(R

d

) for 1 < p < 1. For a fun
tion of two variables

denote by H

�

the maximal Hilbert transform in the �rst variable. Let �

k

be the 
hara
teristi


fun
tion of the interval [2

k�3

; 2

k+4

℄. Let F

k;p

(s; �) = 2

k(n�1)=p

f(s�)�

k

(s). Then

kH

2

fk

p

�

�

X

k

Z

S

d�1

Z

2

k+1

2

k

�

�

�

p.v.

Z

4jxj

�jxj=4

f(x+ t�)

dt

t

�

�

�

p

r

d�1

dr d�

�

1=p

� C

�

Z

S

d�1

X

k

Z

�

�

H

�

F

k;p

(r; �) +M

1

(F

k;p

)(r; �)

�

�

p

dr d�

�

1=p

� C

�

Z

S

d�1

X

k

Z

�

�

F

k;p

(s; �)

�

�

p

ds d�

�

1=p

� C

0

kfk

p

:

Finally we estimate H

3

where the restri
tion p > d is needed. Observe that

kH

3

fk

p

�

�

ZZ

S

d�1

�R

+

h

4

r

Z

�r=4

�4r

jf((r + t)�)j dt

i

p

r

d�1

dr d�

�

1=p

� 2

�

ZZ

S

d�1

�R

+

h

4

r

Z

4r

0

jf(s�)j ds

i

p

r

d�1

dr d�

�

1=p

:

Let for j = 0; 1; : : :

S

j

g(r) =

1

r

Z

2

�j+1

r�jsj�2

�j+2

r

g(s) ds:

Then

�

Z

1

0

jS

j

g(r)j

p

r

d�1

dr

�

1=p

� C2

�j(1�1=p)

�

Z

1

0

r

d�2

Z

2

�j+2

r

2

�j+1

r

jg(s)j

p

dsdr

�

1=p

� C2

�j(1�d=p)

�

Z

1

0

jg(s)j

p

s

d�1

ds

�

1=p

:
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Now for f 2 L

p

(R

d

) de�ne H

3;j

by H

3;j

f(r�) = S

j

[f(��)℄(r). Then jH

3

f(r�)j �

P

1

j=0

jH

3;j

[jf j℄(r�)j

and H

3;j

is bounded on L

p

(R

d

) with operator norm � C2

j(�1+d=p)

. This implies the asserted L

p

estimate for p > d. It also implies that H

3

is of restri
ted weak type (d; d) , that is T

3

maps L

d;1

into L

d;1

, see x6.2 below.

We now turn to the ne
essary 
onditions. It is easy to see that H does not map L

1

to L

1

. In

order to 
he
k the sharpness of the L

p

estimates we test H on the 
hara
teristi
 fun
tion � of the

ball of radius 1, 
entered at the origin. Then kfk

p

� C and jHf(x)j � 
jxj for jxj � 2. This implies

that L

p

boundedness only holds for p > d, moreover if H maps L

d;q

to L

d;r

then ne
essarily r =1.

We still have to show that L

d;q

! L

d;1

boundedness 
an only hold for q = 1. Sin
e by interpolation

the above estimates show that H

1

and H

2

are bounded on all L

p;q

spa
es for 1 < p <1, it suÆ
es

to 
onsider H

3

. For large N de�ne f

N

(x) = 1=jxj if 1 � jxj � N and f

N

(x) = 0 otherwise. Then

kf

N

k

L

d;q
� [logN ℄

1=q

and for 10 � jxj � N=2 we have jH

3

f

N

(x)j � 
jxj

�1

logN . This shows that

kH

3

f

N

k

L

d;1=kf

N

k

L

d;q � C[logN ℄

1�1=q

. Now if H is bounded from L

d;q

to L

d;1

then H

3

is bounded

from L

d;q

to L

d;1

and this 
an only happen if q = 1. �

Remark. One may 
onstru
t a C

1

ve
tor �eld whi
h 
oin
ides with v(x) = x=jxj if jxj � 1 and

jx

d

j � jxj=2. There are the same obstru
tions to L

p

boundedness as for the radial ve
tor �eld and

in fa
t L

p

boundedness for the Hilbert transform (1.1) will fail if p � d. The same remark applies

to the maximal fun
tion (1.2). These obstru
tions are not present if one 
onsiders lo
al versions of

the Hilbert transform or the maximal operator.

6.2. An interpolation lemma.

Suppose A = (A

0

; A

1

), B = (B

0

; B

1

) are two 
ouples of normed ve
tor spa
es, 
ompatible in

the sense of interpolation theory. Suppose that we are given a sequen
e of operators T

j

mapping

A

0

+A

1

to B

0

+B

1

su
h that

(6.3) kT

j

ak

B

s

�M

s

2

j�

s

kak

A

s

; s = 0; 1

where �

0

< 0 < �

1

. Then it is easy to see that T =

P

T

j

maps A

0

\ A

1

to B

0

+ B

1

. In fa
t if

a 2 A

0

\ A

1

, we obtain










X

j>m

T

j

a










B

0

+ t










X

j�m

T

j

a










B

1

�

X

j>m

M

0

2

j�

0

kak

A

0

+ t

X

j�m

M

1

2

j�

1

kak

A

1

� C

�

M

0

2

m�

0

kak

A

0

+ tM

1

2

m�

1

kak

A

1

℄:(6.4)

Re
all the de�nition of the Peetre K-fun
tional

K(t; a; A) = inffka

0

k

A

0

+ tka

1

k

A

1

: a = a

0

+ a

1

; a

0

2 A

0

; a

1

2 A

1

g

and the de�nition of the real interpolation spa
e A

�;q

= K

�;q

(A) with norm

kak

A

�;q

=

�

Z

�

t

��

K(t; a; A)℄

q

dt

t

�

1=q

;

with the natural modi�
ation in the 
ase q =1.

If for �xed t we 
hoose m in (6.4) su
h that 2

m(�

1

��

0

)

�M

0

kak

A

0

=(tM

1

kak

A

1

) we see that for

� = �

0

=(�

0

� �

1

) 2 (0; 1) and a 2 A

0

\ A

1

(6.5) kTak

B

�;1

= sup

t>0

t

��

K(t; Ta;B) � CM

1��

0

M

�

1

kak

1��

A

0

kak

�

A

1

:

20



This inequality is an extension of an inequality impli
itly in [2℄, for L

p

spa
es. For the 
on
rete 
ase

A

s

= B

s

= L

p

s

, s = 0; 1 we may apply (6.5) for a being the 
hara
teristi
 fun
tion of a measurable

set and then (6.5) be
omes a restri
ted weak type inequality. This implies ([26, 
h. V℄) that T maps

the Lorentz spa
e L

p;1

into L

p;1

if (1� �)=p

0

+ �=p

1

= 1=p and � = �

0

=(�

0

� �

1

).

The following lemma is an abstra
t extension of this interpolation result. It implies (6.5), sin
e

K

�;1

is an interpolation fun
tor of exponent � (see [1, p.40℄).

Lemma. Let fT

j

g be a sequen
e of operators mapping A

0

+ A

1

to B

0

+ B

1

and satisfying (6.3),

with �

0

< 0 < �

1

. Let � = �

0

=(�

0

� �

1

). Then T =

P

T

j

extends to a bounded operator mapping

A

�;1

to B

�;1

, with operator norm bounded by CM

1��

0

M

�

1

; here C = O((�

1

� �

0

)2

(�

1

��

0

)�

).

Proof. Sin
e A

0

\A

1

is dense in A

�;1

(see [1, p. 47℄) it suÆ
es to prove the required inequality for

a 2 A

0

\ A

1

. Fix t and for every j 2 Z split a = a

j

0

+ a

j

1

su
h that

(6.6) ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

M

�1

0

ka

j

1

k

A

1

� 2K(2

j(�

1

��

0

)

tM

1

M

�1

0

; a; A):

Then

t

��

K(t; Ta;B) � t

��

h










X

j

T

j

a

j

0










B

0

+ t










X

j

T

j

a

j

1










B

1

i

� t

��

h

X

j

M

0

2

j�

0

ka

j

0

k

A

0

+ t

X

j

M

1

2

j�

1

ka

j

1

k

A

1

i

�M

0

X

j

(2

j(�

1

��

0

)

t)

��

h

ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

M

�1

0

ka

j

1

k

A

1

i

:

By (6.6) and the monotoni
ity of the K fun
tional one easily obtains

(2

j(�

1

��

0

)

t)

��

h

ka

j

0

k

A

0

+ 2

j(�

1

��

0

)

tM

1

=M

0

ka

j

1

k

A

1

i

�

2

�

1

� �

0

�

0

2

�

0

� 1

Z

2

(j+1)(�

1

��

0

)

t

2

j(�

1

��

0

)

t

s

��

K(sM

1

=M

0

; a; A)

ds

s

and therefore

kTak

B

�;1

� CM

0

Z

1

0

s

��

K(sM

1

=M

0

; a; A)

ds

s

= CM

1��

0

M

�

1

kak

A

�;1

: �
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