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Abstract. We prove Lq estimates related to Sogge’s conjecture for a class of Fourier
integral operators associated with wave equations.

1. Introduction

In this note we prove a variable coefficient version of a recent result in [6] on the local
Lq space-time regularity results for solutions of wave equations. The solution operators are
Fourier integral operators satisfying the ‘cinematic curvature’ hypothesis introduced in [17]
(see also [14]).

For the general setup let Y and Z be paracompact C∞ manifolds, dim (Y) = d, dim (Z) =
d+1; in the current paper we shall need to assume d ≥ 4. We are interested in sharp local
regularity estimates for Fourier integral operators F ∈ Iµ−1/4(Z,Y;C) (associated with the
Fourier integral distributions defined in [8]). Here the canonical relation

C ⊂ T ∗Z \ 0L × T ∗Y \ 0R

is a conic manifold of dimension 2d+1, which is Lagrangian with respect to the symplectic
form dζ ∧ dz − dη ∧ dy. We denote by 0L and 0R the zero-sections in T ∗Z and T ∗Y,
respectively.

We formulate a curvature hypothesis which appeared in [3], [10] for classes of oscillatory
integral operators (see [13], [2] for current results on these classes). We follow the exposition
in [14] and impose conditions on the following projection maps.

C

ւ ↓ ց

T ∗Y \ 0 Z T ∗
z Z \ 0

We require that the projection πL : C → T ∗Y is a submersion (i.e. the differential has
maximal rank 2d). We also require that the space projection ΠZ : C → Z is a submersion
(i.e. its differential has maximal rank d + 1). As discussed in §2 of [14] this implies that
for fixed z ∈ ΠZC the image of the projection to the fiber,

Γz = {ζ :∈ T ∗
z Z : ∃(y, η) such that (z, ζ, y, η) ∈ C} ,
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is an immersed conic (d − 1)-dimensional hypersurface in T ∗
z Z \ 0L. We then make an

assumption on the curvature of the cones Γz:

Curvature hypothesis H(ℓ): C ⊂ T ∗Z \ 0L × T ∗Y \ 0R, the projections πR and ΠZ are

submersions and for each z the cone Γz has at least ℓ nonvanishing principal curvatures at

any ζ ∈ Γz.

Theorem 1.1. Let ℓ ≥ 3, let C satisfy hypothesis H(ℓ) and let F ∈ Iµ−1/4(Z,Y;C). Suppose
2ℓ
ℓ−2 < q < ∞ and µ ≤ d

q −
d−1
2 . Then F maps Lq

comp(Y) to Lq
loc(Z).

We may apply the theorem with ℓ = d − 1 to solutions of the wave equation on a
compact Riemannian manifold M , with initial data in Lq-Sobolev spaces Lq

α(M). Let ∆
be the Laplace-Beltrami operator on M . If one combines Theorem 1.1 with the usual
parametrix construction (cf. [4]) one obtains (arguing as in [14])

Corollary 1.2. Let d ≥ 4, 2(d−1)
d−3 < q < ∞, and let I be a compact time interval. There is

C > 0 such that
( ∫

I

∥∥eit
√
−∆f

∥∥q
Lq(M)

dt
)1/q

≤ C‖f‖Lq
α(M), α =

d− 1

2
−

d

q
,

for all f ∈ Lq
α(M).

Note that the constant may strongly depend on the choice of I. There are further
regularity improvements in the scale of Triebel-Lizorkin spaces (cf. §3 below); in particular
Lq
α(M) can be replaced by the Besov space Bq

α,q(M).
In §2 we prove a frequency localized version of Theorem 1.1 and combine the estimates

corresponding to different frequencies in §3. In §4 we discuss some generalizations in the
constant coefficient case.

Remarks. In the constant coefficient case one can recover from Theorem 1.1 the space
time estimates of [6] which correspond to an endpoint version of Sogge’s conjecture in the
range given for ℓ = d− 1, see also §4 for other generalizations. For previous partial results
on Sogge’s conjecture, also in lower dimensions, see the groundbreaking paper of Wolff [20]
and the subsequent papers [12], [5].

The case ℓ = d − 1 essentially corresponds to the assumption of cinematic curvature
in [17]. We use Hörmander’s convention for the definition of order, i.e., in view of the

different dimensions of Z and Y operators of class Iµ−1/4(Z,Y;C) correspond to locally
finite sums of operators with integral kernels in the standard representation (1) below,
involving d frequency variables and standard symbols of order µ. One can use a partition
of unity and finite decompositions in the fiber variable to reduce matters to the estimation
of an integral operator with compactly supported kernel K which is given as an oscillatory
integral distribution in the sense of [8]. Namely if Z is an open set in R

d+1 and Y is an
open set in R

d we may assume that

(1) K(z, y) =

∫
a(z, y, ξ)ei(φ(z,ξ)−〈y,ξ〉)dξ

where a is a standard symbol of order µ, a is supported for z, y in compact subsets of Z
and Y , resp., and φ is smooth away from the origin and homogeneous of order one with
respect to the variable ξ, and supported in an open set which is conic in ξ. We then have
∇zφ(z, ξ) 6= 0 for ξ 6= 0 and the mixed second derivative (d + 1) × d matrix φ′′

zξ(z, ξ) has

rank d. For fixed (z, ξ), if the vector u is in the cokernel of φ′′
zξ(z, ξ) then the Hessian matrix

∇2
ξξ〈u,∇zφ〉(z, ξ) has rank at least ℓ, by our curvature assumption.
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2. The frequency localized case

By making further localizations, changing variables in z and y, and ignoring error terms
which are smoothing of high order we may assume that our kernel is given by

K(z, y) =

∞∑

k=1

2kµKk(z, y),

where

(2) Kk(z, y) =

∫
χk(z, y, 2

−kξ)ei(ϕ(z,ξ)−〈y,ξ〉)dξ,

and the functions χk are smooth and supported in a compact subset of Z × Y ×Ξ. Here Z
is a small neighborhood of the origin in R

d+1, Y is a small neighborhood of the origin in
R
d and Ξ is a small neighborhood of the vector e1 := (1, 0, . . . , 0) in R

d. Moreover

ϕ′′
zξ(0, e1) =

(
Id
0

)
(3)

rank ∇2
ξξϕ

′
zd+1

(0, e1) ≥ ℓ;(4)

and in view of the small choice of Z, Y , Ξ we may assume that for all (z, ξ) ∈ Z × Ξ the
gradient ϕ′

z(z, ξ) is close to e1, and, with z = (z′, zd+1), we may assume that ϕ′′
z′ξ(z, ξ) is

close to the identity matrix Id and ϕ′′
zd+1ξ

(z, ξ) is small. We may further perform a rotation

and assume that in coordinates ξ = (ξ1, ξ
′, ξ′′) with ξ′ = (ξ2, . . . , ξℓ+1) we have

(5) rank ∇2
ξ′ξ′ϕ

′
zd+1

(0, e1) = ℓ.

Finally, |∂α
z,y,ξχk(z, y, ξ)| ≤ Cα for any multiindex α, uniformly in k, (z, y, ξ) ∈ Z × Y × Ξ.

Let Tkf(z) =
∫
Kk(z, y)f(y)dy. Here we prove that the Lq(Rd) → Lq(Rd+1) operator

norm of Tk is O(2k(
d−1
2

− d
q
)) for q > 2ℓ

ℓ−2 , and in the next section we discuss how to put the
estimates for Tk together. The L∞ estimate

‖Tkf‖L∞ . 2k
d−1
2 ‖f‖∞

can be found in [16]. By interpolation it is enough to prove

Theorem 2.1. Let ℓ ≥ 3 and qℓ =
2ℓ
ℓ−2 . The operator Tk is of restricted weak type (qℓ, qℓ),

with operator norm

‖Tk‖Lqℓ,1(Rd+1)→Lqℓ,∞(Rd) . 2k(d/ℓ−1/2) .

By duality we need to prove the restricted weak type inequality for the adjoint operator
T ∗
k , given by

T ∗
kF (y) =

∫ ∫
χk(z, y, 2

−kξ)ei(〈y,ξ〉−ϕ(z,ξ))dξ F (z)dz;

i.e. for each measurable set E contained in [−1/2, 1/2]d+1 ,

(6) ‖T ∗
kχE‖

pℓ
Lpℓ,∞ . 2k

2d−ℓ
ℓ+2 |E|, pℓ =

2ℓ

ℓ+ 2
.

The estimate (6) will be derived from the following Proposition 2.2, which is a discretized
version of (6) and will be proved in §2.3.
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Proposition 2.2. Let pℓ = 2ℓ
ℓ+2 , ℓ ≥ 3. For k > 2 let Zk = 2−k

Z
d+1 ∩ [−ε2, ε2]d+1, for

sufficiently small ε > 0. Suppose that for each z ∈ Zk we are given a symbol ak,z supported

in {ξ : 2k−1 < |ξ| < 2k+1, | ξ
|ξ| − e1| ≤ ε2} so that

(7) |∂α
ξ ak,z(ξ)| ≤ 2−k|α|, |α| ≤ 10d.

Define Sz ≡ Sk
z by

(8) Sz(y) =

∫
ak,z(ξ)e

i(〈y,ξ〉−ϕ(z,ξ))dξ.

Then for each E ⊂ Zk we have

(9) meas
({

y ∈ R
d :

∣∣∣
∑

z∈E
Sz

∣∣∣ > α
})

≤ C2k(
d+1
2

pℓ−1)α−pℓ#E .

In the following subsections we prove some preparatory L1 and L2 estimates, then prove
Proposition 2.2, and that Proposition 2.2 implies (6). In §3 we combine the dyadic estimates
in Theorem 2.1.

2.1. L1 estimates. L1-estimates for the expressions Sz can be found in [16]. In what

follows we let Θk be a maximal 2−k/2-separated set of unit vectors. Using a homogeneous
extension of a partition of unity on the sphere one can split

ak,z(ξ) =
∑

θ∈Θk

ak,z,θ(ξ)

where ak,z,θ is supported on the intersection of the cone {ξ :
∣∣ ξ
|ξ| − θ

∣∣ ≤ 2−k/2} with the

support of ak,z; moreover if ui are unit vectors perpendicular to θ we have the estimates

∣∣〈θ,∇ξ〉
M1

M2∏

i=1

〈ui,∇ξ〉ak,z,θ(ξ)
∣∣ ≤ C(M1,M2)2

−kM12−kM2/2

whenever M1 +M2 ≤ 10d. Let

(10) Sz,θ(y) =

∫
ak,z,θ(ξ)e

i(〈y,ξ〉−ϕ(z,ξ))dξ.

By homogeneity we have

(11) φ′′
ξξ(z, θ)θ = 0.

Using this observation we get, as in [16], by an integration by parts

|Sz,θ(y)| ≤ Cd2
k d+1

2
(
1 + 2k|〈ϕ′

ξ(z, θ)− y, θ〉|+ 2k/2|Πθ⊥(ϕ
′
ξ(z, θ)− y)|

)−10d
;

here Πθ⊥ denotes the projection to the orthogonal complement of θ. This estimate implies
‖Sz,θ‖1 = O(1) and therefore

(12) ‖Sz‖1 . 2k
d−1
2 .

Moreover we get for 1 ≤ R ≤ 2k,
∫
|Π

θ⊥
(ϕ′

ξ(z,θ)−y)|
≥(2−kR)1/2

|Sz,θ(y)| dy .

∫
w′∈Rd−1

|w′|≥(2−kR)1/2

2k(d−1)/2

(1 + 2k/2|w′|)10d−2
dw′ . R

1−9d
2 ,
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and similarly
∫
|〈ϕ′

ξ(z,θ)−y,θ〉|
≥2−kR

|Sz,θ(y)| dy .

∫

|wd|≥2−kR

2k

(1 + 2k|wd|)9d−1
dwd . R2−9d.

Now clearly ∣∣ϕ′
ξ(z, θ)− ϕ′

ξ(z̃, θ̃)
∣∣ . |z − z̃|+ |θ − θ̃| ,

and by (11) also ∣∣〈ϕ′
ξ(z, θ)− ϕ′

ξ(z̃, θ̃), θ
〉∣∣ . |z − z̃|+ |θ − θ̃|2 .

Thus if

(13) V k
θ (z,R) =

{
y : |〈ϕ′

ξ(z, θ)− y, θ〉| ≤ R2−k, |Πθ⊥(ϕ
′
ξ(z, θ)− y)| ≤ (R2−k)1/2

}

then the above calculations give

(14) ‖S
z̃,θ̃
‖L1(Rd\V k

θ(z,R)
) ≤ C(C1)R

−4d if |̃z− z| ≤ C1R2−k, |θ̃ − θ| ≤ C1(R2−k)1/2

for C1 ≥ 1.

2.2. Estimates for scalar products. Based on standard calculations for oscillatory in-
tegrals ([10], [18], [1], [11], [14]) we prove some estimates for scalar products 〈Sz, Sz′〉; these
results are closely related to the scalar product estimates in [6]. For the Fourier transforms
we have

Ŝz(ξ) = ak,z(ξ)e
−iϕ(z,ξ)

and

(2π)d〈Sz, Sz̃〉 = 〈Ŝz, Ŝz̃〉 =

∫
ak,z(η)ak,̃z(η)e

i(ϕ(̃z,η)−ϕ(z,η))dη(15)

= 2kd
∫

bk,z,̃z(ξ)e
i2k(ϕ(̃z,ξ)−ϕ(z,ξ))dξ(16)

where bk,z,̃z is supported on a subset of diameter O(ε2) of the annulus {|ξ| ≈ 1}, near e1,
with ε sufficiently small. We may assume in what follows that z, z̃ are in a neighborhood
of the origin in R

d+1, of diameter . ε2. We split coordinates z = (z′, zd+1), take advantage
of (3) and get

|ϕ′
ξ(z, ξ)− ϕ′

ξ (̃z, ξ)| ≥ c|z′ − z̃′| − Cε|zd+1 − z̃d+1|

and after an integration by parts we get

(17)
∣∣〈Sz, Sz̃〉| .

2kd

(1 + 2k|z− z̃|)9d
if |z′ − z̃′| ≥ C1ε|zd+1 − z̃d+1| .

For s ∈ [0, 1] set zs = z+ s(̃z− z). If

|z′ − z̃′| ≤ C2ε|zd+1 − z̃d+1|

(with suitable C1 ≪ C2 ≪ ε−1) we consider

ϕ(̃z, ξ)− ϕ(z, ξ)

z̃d+1 − zd+1
=

∫ 1

0

[
ϕ′
zd+1

(zs, ξ) +
〈 z̃′ − z′

z̃d+1 − zd+1
, ϕ′

z′(zs, ξ)
〉]

ds .

Note that ϕ(̃z,ξ)−ϕ(z,ξ)
z̃d+1−zd+1

is a small perturbation of ϕ′
zd+1

(0, ξ) if ε is sufficiently small. We

apply the method of stationary phase (with parameters, [8]) in the ξ′-variables, using (5).
This yields

∣∣〈Sz, Sz̃〉| .
2kd

(1 + 2k |̃zd+1 − zd+1|)ℓ/2
, if |z′ − z̃′| ≤ C2ε|zd+1 − z̃d+1|,
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and combining this with (17) we get

(18)
∣∣〈Sz, Sz̃〉| .

2kd

(1 + 2k |̃z− z|)ℓ/2

whenever |z− z̃| = O(ε2).

2.3. Proof of Proposition 2.2. If α ≤ 2k
d+1
2 then the desired inequality follows from

(12). Indeed by Tshebyshev’s inequality the left hand side of (9) is . α−12k(d−1)/2#E

which is dominated by the right hand side of (9) if α ≤ 2k
d+1
2 .

In what follows we shall therefore assume that α > 2k
d+1
2 and set

(19) uk(α) :=
(
α2−k d+1

2
)pℓ > 1 .

The argument is a variant of one in [6]; it is based on a Calderón-Zygmund type decompo-
sition at height uk(α) where volume is replaced by diameter.

By the usual Vitali procedure there is a finite (possibly empty) family Bk of disjoint
balls so that

(20) uk(α)2
kdiam(B) ≤ #(E ∩B) for B ∈ Bk;

moreover if we remove the balls in Bk and set

E∗ = E \
⋃

B∈Bk

B,

then

(21) #(E∗ ∩B) ≤ Cduk(α)2
kdiam(B) for every ball B.

Since E ⊂ Zk which is 2−k-separated, we may assume that diam(B) ≥ 2−k if B ∈ Bk.
We need to establish the following two inequalities:

meas
({

y ∈ R
d :

∣∣∣
∑

B∈Bk

∑

z∈E∩B
Sz

∣∣∣ > α/2
})

≤ C2k(
d+1
2

pℓ−1)α−pℓ#E ,(22)

meas
({

y ∈ R
d :

∣∣∣
∑

z∈E∗
Sz

∣∣∣ > α/2
})

≤ C2k(
d+1
2

pℓ−1)α−pℓ#E .(23)

Proof of (22). We first form an exceptional set as follows. Let zB denote the center of a

ball B ∈ Bk and let RB = 10d2kdiam(B) & 1. Let Θ(k,B) be a maximal C1(2
−kRB)

1/2

separated subset of Sd−1. Here C1 is the constant in (14). Define (using the notation in
(13))

(24) Vk =
⋃

B∈Bk

⋃

ϑ∈Θ(k,B)

V k
ϑ (zB , RB).

Observe that meas(V k
ϑ (zB , RB)) is O((RB2

−k)(d+1)/2) and #Θ(k,B) = O((2kR−1
B )(d−1)/2).

Thus

meas(Vk) .
∑

B∈Bk

∑

ϑ∈Θ(k,B)

meas(V k
ϑ (zB , RB)) .

∑

B∈Bk

RB2
−k

.
∑

B∈Bk

diam(B) .
∑

B∈Bk

2−k#(E ∩B)

uk(α)
. 2k(−1+ d+1

2
pℓ)α−pℓ#E ,

by the disjointness of the balls in Bk, (20), and the definition of uk(α).
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To conclude the proof of (22) we have to estimate the contribution in the complement
of Vk. For this we bound

meas
({

y ∈ R
d \ Vk :

∣∣∣
∑

B∈Bk

∑

z∈E∩B
Sz

∣∣∣ > α

2

})
. α−1

∥∥∥
∑

B∈Bk

∑

z∈E∩B
Sz

∥∥∥
L1(Rd\Vk)

.

Now fix B. For every θ ∈ Θk we may choose a ϑ = ϑB(θ) ∈ Θ(k,B) so that |ϑB(θ)−θ| ≤

C1(RB2
−k)−1/2. Recalling Sz =

∑
θ∈Θk

Sz,θ, we see

∥∥∥
∑

B∈Bk

∑

z∈E∩B
Sz

∥∥∥
L1(Rd\Vk)

≤
∑

B∈Bk

∑

z∈E∩B

∑

θ∈Θk

‖Sz,θ‖L1(Rd\V k
ϑB (θ)

(zB ,RB))

.
∑

B∈Bk

∑

z∈E∩B

∑

θ∈Θk

R−4d
B .

∑

B∈Bk

∑

z∈E∩B
2k(d−1)/2R−4d

B .

For the second inequality we use (14) and the last one follows from #Θk = O(2k(d−1)/2).

Now we note that 2k
d−1
2 α−1 = 2k(−1+ d+1

2
pℓ)α−pℓuk(α)

1− 1
pℓ . Thus

meas
({

y ∈ R
d \ Vk :

∣∣∣
∑

B∈Bk

∑

z∈E∩B
Sz

∣∣∣ > α

2

})
. α−1

∑

B∈Bk

∑

z∈E∩B
2k(d−1)/2R−4d

B

. 2k(−1+ d+1
2

pℓ)α−pℓuk(α)
1− 1

pℓ

∑

B∈Bk

∑

z∈E∩B
R−4d

B .

By (20) we have for B ∈ Bk

uk(α) .
#(E ∩B)

RB
. Rd

B

and therefore

meas
({

y ∈ R
d \ Vk :

∣∣∣
∑

B∈Bk

∑

z∈E∩B
Sz

∣∣∣ > α

2

})

. 2k(−1+ d+1
2

pℓ)α−pℓuk(α)
1− 1

pℓ
−4 ∑

B∈Bk

#(E ∩B) . 2k(−1+ d+1
2

pℓ)α−pℓ#E

since uk(α) ≥ 1 and RB & 1. �

Proof of (23). We check from (19) that

2kduk(α)
2/ℓα−2 = 2k(−1+ d+1

2
pℓ)α−pℓ .

Thus by Tshebyshev’s inequality it suffices to prove

(25)
∥∥∥
∑

z∈E∗
Sz

∥∥∥
2

2
. 2kduk(α)

2/ℓ#E∗ .
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We set

L := uk(α)
2/ℓ,

I(n,L) := [n2−kL, (n+ 1)2−kL),

E(n,L) := {z ∈ E∗ : zd+1 ∈ I(n,L)},

Sn :=
∑

z∈E(n,L)
Sz .

Now ∥∥∥
∑

z∈E∗
Sz

∥∥∥
2

2
.

∑

n

∑

ñ:|n−ñ|≤4

〈Sn,Sñ〉+
∑

n

∑

ñ:|n−ñ|>4

〈Sn,Sñ〉 =: I + II .

For I we use the Schwarz inequality and then (17) to get

|I| .
∑

n

‖Sn‖
2
2 =

∑

n

∥∥∥
∑

zd+1∈I(n,L)

∑

z′

S(z′,zd+1)

∥∥∥
2

2

. L
∑

n

∑

zd+1∈I(n,L)

∥∥∥
∑

z′:
(z′,zd+1)∈E∗

S(z′,zd+1)

∥∥∥
2

2

. L
∑

n

∑

zd+1∈I(n,L)

∑

z′:
(z′,zd+1)∈E

∑

z̃′

2kd(1 + 2k|z′ − z̃′|)−8d . L2kd#E .

For II we use (18) and estimate

|II| .
∑

z∈E∗

∑

z̃∈E∗
|zd+1−z̃d+1|≥2−kL

|〈Sz, Sz̃〉| .
∑

z∈E∗

∑

z̃∈E∗:
|zd+1−z̃d+1|≥2−kL

2kd

(1 + 2k|z− z̃|)ℓ/2
.

By (21) we have for R ≥ 1 and fixed z

∑

z̃∈E∗
2−kR≤|z−z̃|≤21−kR

(1 + 2k|z− z̃|)−ℓ/2 . uk(α)R
1− ℓ

2

and since ℓ/2 > 1 we get (after setting R = 2m and summing over m with 2m ≥ L)

|II| . 2kduk(α)L
1− ℓ

2#E .

Hence

I + II . 2kd#E
(
L+ uk(α)L

1− ℓ
2
)

and with the optimal choice of L = [uk(α)]
2/ℓ we obtain (25). �

2.4. Proof that Proposition 2.2 implies (6). We shall first assume that in (2)

(26) χk(z, y, 2
−kξ) = ηk(z, 2

−kξ)χ◦(y)

where χ◦ ∈ C∞
c (Rd) is supported on a small neighborhood of the origin but so that χ◦(y) =

1 for y ∈ E; moreover ηk is compactly supported in a set of diameter O(ε2) near (z, ξ) =
(0, e1), and the derivatives of ηk up to order 10d are uniformly bounded.
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Let Qz =
∏d+1

i=1 [zi, zi + 2−k]. For m ≥ 0 let

(27)

Em = {z ∈ Zk : 2−k(d+1)−m−1 < |Qz ∩ E| ≤ 2−k(d+1)−m} ,

Em =
⋃

z∈Em
Qz ∩ E .

And we also set

ak,z,m(ξ) = 2m+(k+1)d

∫

Qz∩Em

ηk(z, 2
−kξ)ei(ϕ(z,ξ)−ϕ(z,ξ))dz ,

Sz,m(y) =

∫
ak,z,m(ξ)e

i(〈y,ξ〉−ϕ(z,ξ))dξ .

Then it follows that

T ∗
kχE(y) =

∞∑

m=0

2−m−(k+1)dSz,m(y).

Since ∂α
ξ (ϕ(z, ξ)−ϕ(z, ξ)) = O(2−k) for any multiindex α it is easy to see that a ·, ·,m satisfies

(7) uniformly in m. Hence, the result of Proposition 2.2 can be applied to
∑

z∈Em Sz,m(y)
and we get uniform bounds. Thus

∥∥∥
∑

z∈Em
Sz,m

∥∥∥
Lpℓ,∞

. 2
k(d+1

2
− 1

pℓ
)
(#Em)1/pℓ . 2

k(d+1
2

− 1
pℓ

)
2m/pℓ

(
2k(d+1)meas(Em)

)1/pℓ

with implicit constants independent of m. For the second inequality we use

#Em . 2m2k(d+1)meas(Em)

which follows from (27). Consequently we get

∥∥T ∗
kχE

∥∥
Lpℓ,∞

.

∞∑

m=0

2−m−(k+1)d‖Sz,m‖Lpℓ,∞

.

∞∑

m=0

2
−m(1− 1

pℓ
)
2
k( d

pℓ
− d+1

2
)
(meas(Em))1/pℓ . 2

k( d
pℓ

− d+1
2

)
(meas(E))1/pℓ

which is the desired estimate.
Finally we have to remove the assumption (26). Here one uses Fourier series in y and

expands χk(z, y, 2
−kξ) =

∑
ν∈Zd ck,νηk,ν(z, 2

−kξ)ei〈y,ν〉 where the functions ηk,ν(z, 2−kξ) are
as before but now with a bound that decays fast in ν. We note that multiplication with
ei〈y,ν〉 does not affect the Lpℓ,1 norm, apply the previous bounds to the summands and sum
in ν using the rapid decay in ν. �

3. Combining the frequency localized pieces

We now combine the previous estimates on the operators Tk and prove the following result
in Triebel-Lizorkin spaces F q

a,s. Recall ([19]) that if {Lk}
∞
k=0 is a standard inhomogeneous

dyadic frequency decomposition then the norm ‖f‖F q
a,s

can be defined as the Lq(ℓs) norm

of the sequence {2kaLkf}. In view of the embeddings Lq = F q
0,2 ⊂ F q

0,q for q ≥ 2, Lq ⊃ F q
0,r

for r ≤ 2 the following result sharpens Theorem 1.1. For the case r ≥ 1 one could argue by
duality and follow [6] but we shall rely on a result in [15] which gives an estimate for all
r > 0.
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Theorem 3.1. Let ℓ ≥ 3, let Z, Y be coordinate patches in R
d+1, R

d, resp., let F ∈
Iµ−1/4(Z,Y;C), with Schwartz kernel compactly supported in Z × Y, and let C satisfy hy-

pothesis H(ℓ). Suppose 2ℓ
ℓ−2 < q < ∞, a = µ + b+ d(1/2 − 1/q) − 1/2 and r > 0. Then F

maps F q
a,q(Rd) boundedly to F q

b,r(R
d+1).

We state (a slight variant of) the result from [15]. In this setting one is given operators
Tk defined on the Schwartz space S(Rd1),

Tkf(z) =

∫
Kk(z, y)f(y) dy, z ∈ R

d2

and each Kk is continuous and bounded. Let ζ ∈ S(Rd2) and ζk(z) = 2kd2ζ(2kz), and define
Pkg = ζk ∗ g.

Theorem 3.2 ([15]). Let d1 ≤ d2, 0 < γ < d2, ε > 0, 1 < q0 < q < ∞, and assume

sup
k>0

2kγ/q0‖Tk‖Lq0 (Rd1 )→Lq0 (Rd2 ) < ∞ ,(28)

sup
k>0

‖Tk‖L∞(Rd1 )→L∞(Rd2 ) < ∞ .(29)

Furthermore assume that for each cube Q there is a measurable set WQ ⊂ R
d2 so that

(30) meas(WQ) ≤ Cmax{|Q|1−γ/d2 , |Q|}

and there is δ > 0 such that for every k ∈ N and every cube Q with 2kdiam(Q) ≥ 1

(31) sup
x∈Q

∫

Rd2\WQ

|Kk(x, y)|dy ≤ Cmax{(2kdiam(Q))−δ , 2−kδ} .

Then for q0 < q < ∞, r > 0
∥∥∥
(∑

k

2kγr/q|PkTkfk|
r
)1/r∥∥∥

q
.

∥∥∥
(∑

k

‖fk‖
q
q

)1/q∥∥∥
q
.

This (or a slightly sharper version) was formulated in [15] only for the case d1 = d2, but
the result there implies the version cited above. Indeed if d1 < d2 we can define an operator

T̃k on functions F on R
d1 × R

d2−d1 by

T̃kF (z) =

∫∫
Kk(z, y)χ(w)F (y,w)dy dw

where χ is a nontrivial C∞
c (Rd2−d1) function. The assumptions on Tk imply the corres-

ponding assumptions on T̃k, by Minkowski’s and Hölder’s inequalities. Thus the equidi-
mensional case in [15] may be applied and if in the conclusion we specialize to tensor
products, F (y,w) = f(y)χ1(w) we get the above generalization.

In order to prepare for our application of Theorem 3.2 we let Tkf(z) =
∫
Kk(z, y)f(y)dy

with Kk as in (2). Let β0 be a C∞-function supported in {η ∈ R
d+1 : |η| ≤ 3/2} so that

β0(η) = 1 for |η| ≤ 1; and, for k ≥ 1 let βk(η) = β0(2
−k(η)) − β0(2

1−k(η)). Define Lk on

functions on R
d+1 by L̂kg = βk(η)ĝ(η). We use calculations in [8] and first observe that

there is a constant A0 > 1 so that

(32) ‖L
k̃
Tk‖Lq→Lq ≤ CN min{2−kN , 2−k̃N} if |k − k̃| ≥ A0.
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This follows from the assumption that C does not meet the zero sections, which, by homo-
geneity implies that c1|ξ| ≤ |ϕ′

z(z, ξ)| ≤ C1|ξ|. The kernel K
kk̃

of L
k̃
Tk is given by

K
kk̃
(z, y) =

∫∫∫
β
k̃
η)χk(z, y, 2

−kξ)ei(〈z−w,η〉+ϕ(w,ξ)−〈y,ξ〉)dw dη dξ

and if k − k̃ are sufficiently large then |η + ϕ′
w(w, ξ)| ≈ max{|ξ|, |η|} on the support of the

amplitude. Thus in this case we may use an integration by parts in w (followed by an
integration by parts in ξ when z is large) to show that the kernels K

kk̃
of L

k̃
Tk satisfy the

estimate
|K

kk̃
(z, y)| ≤ CN2−kN (1 + |z|)−N

and vanish for y in the complement of a fixed compact set. Thus (32) follows. Similarly
if {Lk}

∞
k=0 is the corresponding frequency decomposition in R

d we also see that TkLk̃
has

Lq(Rd) → Lq(Rd+1) operator norm ≤ CN min{2−kN , 2−k̃N} if |k − k̃| > 4.
From these preliminary remarks it follows quickly that for the proof of Theorem 3.1 it

suffices to prove the inequalities
∥∥∥
(∑

k

2kbr
∣∣2kµLk+i1TkLk+i2g

∣∣r
)1/r∥∥∥

q
.

∥∥∥
(∑

k

2kaq‖Lk+i2g‖
q
q

)1/q∥∥∥
q
, |i1| ≤ A0, |i2| ≤ 4

with a = µ + b + d(1/2 − 1/q) − 1/2. Setting Tk = 2−k d−1
2 Tk and fk = 2kaLk+i2g, the

preceding inequality follows from

(33)
∥∥∥
(∑

k

2
k d

q
r∣∣Lk+i1Tkfk

∣∣r
)1/r∥∥∥

q
.

∥∥∥
(∑

k

‖fk‖
q
q

)1/q∥∥∥
q
, |i1| ≤ A0 ,

for q0 < q < ∞, where q0 > 2ℓ
ℓ−2 . This in turn follows from an application of Theorem 3.2

with d1 = d, d2 = d + 1, γ = d, and Pk = Lk+i1 . The hypothesis (29) follows from the

calculations in [16] (cf. also §2.1 above). The hypothesis (28) for 2ℓ
ℓ−2 < q < ∞ follows from

Theorem 2.1 and (29) by interpolation.
If diam(Q) > ε then WQ is simply an expanded cube and (31) follows by the support

assumption of Kk. If diam(Q) < ε the exceptional sets are formed as in §2.1. For θ ∈ Sd−1

we set

Wθ(zQ, C) =
{
y : |〈ϕ′

ξ(zQ, θ)− y, θ〉| ≤ Cdiam(Q), |Πθ⊥(ϕ
′
ξ(z, θ)− y)| ≤ C(diam(Q))1/2

}

and if ΘQ is a maximal set of (diam(Q))1/2 separated unit vectors we set

WQ =
⋃

θ∈ΘQ

Wθ(zQ, C).

Then the measure of WQ is O(diam(Q)) = O(|Q|1−
d

d+1 ) so that (30) holds. The hypothesis
(31) (even with large δ) holds by the calculations in §2.1 (cf. (14)).

4. Remarks on the constant coefficient case

We now let ρ be a C∞(Rd \ {0}) function which is homogeneous of degree 1, so that

ρ(ξ) 6= 0 for ξ 6= 0. We are interested in space time estimates for Ut ≡ e−itρ(D) defined by

Ûtf(ξ) = eitρ(ξ)f̂(ξ)

and obtain a result under a decay assumption for the Fourier transform of surface carried
measure on

Σρ = {ξ : ρ(ξ) = 1}.
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Theorem 4.1. Let κ > 1 and let ρ be as above such that the surface measure dσ of Σρ

satisfies

(34) sup
ξ
(1 + |ξ|)κ |d̂σ(ξ)| < ∞ .

Let 2κ
κ−1 < q < ∞ and let I be a compact time interval. There is C > 0 such that

(∫

I

∥∥eitρ(D)f
∥∥q
Lq(Rd)

dt
)1/q

≤ C‖f‖Bq
α,q(Rd), α =

d− 1

2
−

d

q
,

for all f ∈ Bq
α,q(Rd).

Remark. Under the assumption that Σρ has nonvanishing curvature everywhere this
follows from Theorem 3.1 above. We note that in this particular case a weaker result with
α > (d− 1)/2 − d/q is already in [7].

Sketch of proof. We will assume that I = [−1, 1], as one can use rescaling to reduce to this
case. Fix k and define Sx,t ≡ Sk

x,t by

Sx,t(y) =

∫
ei〈x−y,ξ〉+itρ(ξ)χ(2−kξ) dξ

and as before we may assume that the support of χ has diameter ≤ ε2, for sufficently small
ε > 0, and is contained in {1/2 < |ξ| ≤ 2}. Fix ξ◦ ∈ Σρ and ρ◦ > 0 so that ρ◦ξ◦ ∈ supp (χ).

Let u 7→ Ξ(u) be a parametrization of Σρ near ξ◦ with parameter u ∈ R
d−1 near u◦, and

Ξ(u◦) = ξ◦. Let n◦ be the outer normal unit vector to Σρ at ξ◦. Let Γ be the cone formed

by the (ρΞ(u), ρ) with ρ > 0 and u near u◦. Let ~N◦ = n◦ − 〈ξ◦, n◦〉~ed+1, which is a normal
vector to Γ at (ρΞ(u◦), ρ). By finite decompositions of χ we may further assume that

Sx,t(y) =

∫
β(2−kξ)ei(〈x−y,ξ〉+itρ(ξ))dξ

where β ∈ C∞
c supported in an ε2-neighborhood of ρ◦Ξ(u◦).

The proof of Theorem 4.1 is a straightforward variant of the proof of Theorem 3.1 once
we have established the two appropriate replacements for the scalar product bounds (18)
and (17), namely

(35) |〈Sx,t, Sx̃,t̃〉| . 2kd(1 + 2k|x− x̃|+ 2k|t− t̃|)−κ ,

and a better estimate when (x− x̃, t− t̃) is orthogonal (or near orthogonal) to ~N◦:

(36) |〈Sx,t, Sx̃,t̃〉| ≤ CM2kd(1 + 2k|x− x̃|+ 2k|t− t̃|)−M

if |〈x− x̃, n◦〉 − (t− t̃)〈ξ◦, n◦〉| ≤ ǫ◦|(x− x̃, t− t̃)|

for a small ǫ◦ > 0.
As before (2π)d〈Sx,t, Sx̃,t̃〉 = 〈Ŝx,t, Ŝx̃,t̃〉. We scale and then use generalized polar coordi-

nates ξ = ρΞ(u) to write

(37) 〈Ŝx,t, Ŝx̃,t̃〉 = 2kd
∫∫

b(ρ, u)ei2
kρ(〈x−x̃,Ξ(u)〉+t−t̃)du dρ

where b is smooth and supported near (ρ◦, u◦). Now for any χ ∈ C∞
c we have |χ̂dσ(ξ)| .

(1 + |ξ|)−κ, by assumption (34). We apply this to the inner integral of (37) and obtain

(38) |〈Sx,t, Sx̃,t̃〉| . 2kd(1 + 2k|x− x̃|)−κ.
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Let B = 2max{|ξ| : ξ ∈ Σρ}. By an integration by parts in ρ (after interchanging the order
of integration in (37)) we obtain

(39) |〈Sx,t, Sx̃,t̃〉| ≤ CN2kd(1 + 2k|t− t̃|)−N if |t− t̃| ≥ B|x− x̃| ,

and (35) follows from (38) and (39).
We now prove (36) and in view of (39) we may assume |t− t̃| < B|x− x̃|. We distinguish

two cases. In the first case we assume
∣∣〈 x−x̃

|x−x̃| , n◦〉| ≤ 1− ε. We note that |Ξ(u)− Ξ(u◦)| =

O(ε2) and |(∇u〈x − x̃,Ξ(u)〉)u=u◦
| ∼ |Πn⊥◦

(x − x̃)|. Hence we have |∇u〈x − x̃,Ξ(u)〉| ≥

cε|x − x̃| on the support of b provided that ε is sufficiently small, and higher derivatives
of 〈x − x̃,Ξ(u)〉 are O(|x − x̃|). Thus, integrating by parts in the inner u-integral in (37),
we get (36). We now consider the second case

∣∣〈 x−x̃
|x−x̃| , n◦〉| ≥ 1 − ε. This means that

x−x̃
|x−x̃| = sn◦ +O(ε) where s = 1 or s = −1. From the condition on (x− x̃, t− t̃) in (36) we

see that the ρ-derivative of the phase is

〈x− x̃,Ξ(u)〉 + t− t̃ = 〈x− x̃, ξ◦〉+
〈x− x̃, n◦〉
〈ξ◦, n◦〉

+O((ε2 + ǫ◦)|x− x̃|)

= s|x− x̃|
(
〈ξ◦, n◦〉+

1

〈ξ◦, n◦〉

)
+O((ε+ ǫ◦)‖x− x̃|) .

Now |〈ξ◦, n◦〉| ≥ c > 0 which is a consequence of the homogeneity relation ρ(ξ) = 〈ξ,∇ρ(ξ)〉.
Hence, |〈x− x̃,Ξ(u)〉+ t− t̃| & |x− x̃| if ε and ǫ◦ are small enough, and another integration
by parts in ρ gives (36). �
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