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Abstract. We consider singular integral and maximal operators asso-
ciated to hypersurfaces given by the graph of a function whose level sets
are defined by a convex function of finite type. We investigate the Lp

theory for these operators which depend on geometric properties of the
hypersurface.

1. Introduction

In this paper we continue the study of singular integral and maximal opera-
tors associated to hypersurfaces in RN+1. Given a real-valued Ψ ∈ C∞(RN )
with Ψ(0) = 0, we consider the following operators associated to the hyper-
surface defined by the graph yN+1 = Ψ(y), y ∈ RN :

HΨf(x, xN+1) = p.v.

∫
|y|≤1

f(x− y, xN+1 −Ψ(y))K(y) dy,

and

MΨf(x, xN+1) = sup
0<h<1

1
$NhN

∫
|y|≤h

|f(x− y, xN+1 −Ψ(y))| dy.

The singular integral operator HΨ is defined with respect to a Calderón-
Zygmund kernel K; that is, K ∈ C∞(RN \ {0}) is homogeneous of degree
−N with mean value zero over the unit sphere. The maximal function MΨ

is defined with respect to averages over Euclidean balls in RN where $N

denotes the volume of the unit ball.

It is well known that if a principal curvature of the hypersurface defined
by Ψ does not vanish to infinite order at the origin, then HΨ and MΨ are
bounded operators on the Lebesgue spaces Lp(RN+1), 1 < p < ∞; see for
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example, [11]. A basic question is to understand these operators when this
curvature condition fails.

In this direction, there have been extensive investigations when N = 1; that
is, when y2 = Ψ(y), y ∈ R, defines a curve in the plane. For instance,
there are smooth Ψ such that the operators HΨ and MΨ are unbounded on
Lp(R2), 1 ≤ p <∞, see [12]; even in the case when Ψ is convex, [8] and [13]
(see also Remarks 1.4 below). On the other hand, there are a number of
results giving sufficient conditions on a convex Ψ so that the corresponding
operators are bounded on Lp(R2), 1 < p < ∞; see for example, [2], [4] and
[8].

In this paper we are interested in studying the operators HΨ and MΨ in
higher dimensions, when N ≥ 2. We are mainly interested in the case when
Ψ is a convex function on RN . By the method of rotations, one can extend
the positive one dimensional results, say in the convex case referred to above,
by imposing the established sufficient conditions on each function t→ Ψ(tω),
uniformly in ω ∈ SN−1; see for example, [1]. However there are better results
for certain classes of hypersurfaces; for instance when Ψ(y) = φ(|y|) defines
a radial hypersurface (in this case, Ψ is convex precisely when the function φ
defined on R+ is convex). Here one can exploit the nonvanishing curvature of
the level sets of Ψ (which are Euclidean spheres – when N = 1 these spheres
become two point sets and the underlying curvature is lost) to show that
the corresponding operators HΨ and MΨ are bounded on Lp, 1 < p < ∞;
see [7]. We stress that this is valid for any convex radial hypersurface as
long as N ≥ 2.

When the convexity assumption on φ is dropped, HΨ and MΨ can be un-
bounded on Lp for nontrivial ranges of p (for all finite p in the case of the
maximal operator MΨ); see [7] and [10]. However there is a further interest-
ing phenomenon related to the singular integral operator HΨ in the radial
hypersurface case; namely, that HΨ is bounded on L2 for any measurable φ
as long as N ≥ 2; see [7]. This does not extend to Lp, p 6= 2, see [10].

It remains an interesting problem to explore to what extent the above two
phenomena for radial hypersurfaces (Lp boundedness in the convex case
and L2 boundedness of the singular integral operator in the general case)
persists for more general hypersurfaces. As a step in this direction, a study
was initiated in [14] to understand the L2 phenomenon for the singular
integral operator HΨ where the level sets of Ψ are parameterized by a fixed
convex functionG of finite type. More precisely, instead of Euclidean spheres
parameterized by G(y) = |y|2, one considers a general convex function G of
finite type at the origin (that is, the graph defined by G has no lines tangent
to infinite order at 0) such that G(0) = ∇G(0) = 0. The corresponding
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hypersurface is then given by the graph of

Ψ(x) = φ(G(x))

where φ is a real-valued function defined on R+. In [14] it was shown that
for general φ ∈ C1, the L2 boundedness of HΨ depends on the codimension
of E`0 where `0 is the smallest positive integer such that

E` ≡ E`[G] = {v ∈ RN : G(sv) = O(s`+1) for small s > 0}

is not all of RN . In fact if the codimension of E`0 is at least 2, then HΨ is
bounded on L2(RN+1) for any φ ∈ C1. Furthermore if the codimension of
E`0 is 1, then HΨ is bounded on L2(RN+1) for any φ ∈ C1 if and only if the
Calderón-Zygmund kernel K satisfies the additional cancellation condition

(1)
∫

v·θ≥0
K(θ) dσ(θ) = 0,

where v is any nonzero vector in E⊥`0 .

Applying this result in the radial hypersurface setting where Ψ(x) = φ(|x|2),
G(x) = |x|2 and so `0 = 2 and the codimension of E2 = {0} is N , we
recover the result in [7] regarding HΨ when N ≥ 2. In the radial case
as we mentioned earlier, these L2 bounds do not in general extend to Lp

bounds, although when γ(s) := φ(s2) is convex (i.e., xN+1 = Ψ(x) is a
convex hypersurface), HΨ and MΨ are bounded on all Lp, 1 < p <∞.

The main purpose of this paper is to examine the convex case in the above
setting where the level sets are given by a (fixed) general smooth convex
function of finite type. First of all we have positive results when the codi-
mension of E`0 is at least 2.

Theorem 1.1. Let G be a smooth convex function on RN of finite type at
the origin such that G(0) = ∇G(0) = 0 and let γ(s) := φ(s`0) where φ is a
C1 function in a neighborhood of the origin and `0 is the smallest positive
integer such that E` is not all of RN as described above. If the codimension
of E`0 is at least 2 and γ(s) is convex, then HΨ and MΨ are bounded on
Lp(RN+1), 1 < p <∞.

Remarks 1.2.

• We will see later that G(x) = P (x) + R(x) where P is a positive
polynomial and R is smaller than P in a certain sense (see [9]). The
significance of the power `0 is that 1/`0 is the smallest number such
that P (x)1/`0 is convex and thus φ(P (x)) is convex when γ(s) =
φ(s`0) is convex.

• The case when E`0 = {0} has already been treated; see Theorem 4
in [14]. In fact, the strategy of the proof of Theorem 1.1 is to reduce
ourselves to this case.
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When the codimension of E`0 is 1, there are no positive results in general
and we construct counterexamples:

Theorem 1.3. There exists a C∞, convex function γ defined on [0, 1] such
that if G is any convex function of finite type at the origin with the codi-
mension of E`0 equal to 1, then for Ψ(x) = γ(G(x)1/`0), the following holds.

(i) The associated maximal operator MΨ is unbounded on all Lp(RN+1), 1 ≤
p <∞ whenever N ≥ 1.

(ii) The associated singular integral operator HΨ is bounded only on L2(RN+1),
N ≥ 2, for some Calderón-Zygmund kernel K satisfying the additional can-
cellation condition (1).

Remarks 1.4.

• Our construction of γ follows a construction due to J.O. Strömberg
[13] of a convex function where the maximal function along the corre-
sponding curve in the plane is unbounded on all Lp(R2). We extend
this construction to produce a C∞ convex function; this is the case
N = 1 with G(t) = t`0 in Theorem 1.3.

• When N = 1 and G(t) = t`0 , the singular integral operator HΨ is
the Hilbert transform along an even convex curve in the plane and a
necessary and sufficient condition forHΨ to be bounded on L2 in this
case is known, see [8] (this was later extended to all Lp, 1 < p < ∞
in [4]). The curve we construct will not satisfy this condition and so
the associated HΨ will not be bounded on any Lp(R2) in the case
N = 1.

• The counterexample for the singular integral operators is related to a
counterexample for singular integrals along nonconvex curves in the
plane in [10]. After several reductions we essentially reduce matters
to the fact that ξiξ2

1 is not a Fourier multiplier of Lp(R2) for any
p 6= 2; more precisely we reduce to the main estimate which is used
in the proof of this fact (see [10]).

• This example works for a large class of homogeneous Calderón-
Zygmund kernels K with the addition cancellation (1). Specifically
we assume that the integral of K over a half ray in E⊥`0 defines a
function which is not identically zero; see (43) below.

Notation: Let A,B be complex-valued quantities. We use the notation
A . B or A = O(B) to denote the estimate |A| ≤ C|B| where C denotes an
absolute constant which may depend on the Calderón-Zygmund kernel K,
the hypersurface given by Ψ, or the dimension N . We use A ∼ B to denote
the estimates A . B . A.
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In the next section we give the proof of Theorem 1.1. In the following section
we will construct the smooth convex function γ needed for the counterex-
amples in Theorem 1.3. The final two sections will be devoted to the proof
of Theorem 1.3.

2. Proof of Theorem 1.1

In the proof that follows we make the assumption that φ 6≡ 0 in a neigh-
borhood of the origin (that is, φ(t) > 0 when t > 0) in order to apply the
Calderón-Zygmund theory adapted to a general family of dilations as devel-
oped in [2]. If φ vanishes in a neighborhood of the origin, then we replace
φ(t) with φ(t)+εt2 and note that the estimates in the proof given below are
uniform in ε > 0.

We begin with the treatment of the maximal operator. We denote points in
RN+1 by (x, xN+1) where x ∈ RN and observe that to bound the maximal
operator MΨ it suffices to bound supj≥0 |Mjf | where

Mjf(x, xN+1) = 2jN

∫
2−j≤|t|≤2−j+1

f(x− t, xN+1 − φ(G(t)) dt.

According to Schulz [9], after a rotation of coordinates, we may write

G(t) = P (t) +R(t)

where

(2) P (t) =
r∑

j=1

ajt
`0
j +

N∑
j=r+1

ajt
mj

j + P1(t).

Here P (t) > 0 is a convex polynomial for t 6= 0, aj > 0 for 1 ≤ j ≤ N ,
and `0,mj are positive even integers satisfying `0 < mj for r + 1 ≤ j ≤ N .
Furthermore, P1(t) has no pure powers of t, and if Atα1

1 . . . tαN
N is a monomial

of P1(t),

(3)
1
`0

r∑
j=1

αj +
N∑

j=r+1

αj

mj
= 1.

We see that r is the codimension of E`0 and therefore r ≥ 2 by hypothesis.
The function R(t) is smooth and if Atα1

1 . . . tαN
N is a term in the Taylor

expansion of R(t)

(4)
1
`0

r∑
j=1

αj +
N∑

j=r+1

αj

mj
> 1,

and in particular the degree α1 + . . .+ αN ≥ `0 + 1.
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Let HP (t) be the part of P (t) which is homogeneous of degree `0. Then
HP (t) is a function of only t1, . . . , tr. In fact if

A tα1
1 · · · tαr

r · · · tαN
N

were a monomial of HP , then
∑N

j=1 αj = `0 whereas

1 =
1
`0

r∑
j=1

αj +
N∑

j=r+1

αj

mj
<

1
`0

N∑
j=1

αj = 1

if
∑N

j=r+1 αj > 0 which is impossible. Similarly every monomial of P (t)
which depends only on t1, . . . , tr belongs to HP . So

(5) P (t1, . . . , tr, 0, . . . , 0) = HP (t1, . . . , tr, 0, . . . , 0) := H(t1, . . . , tr)

is convex and positive if some tj is nonzero.

We write u = (t1, . . . , tr) ∈ Rr and v = (tr+1, . . . , tN ) ∈ RN−r. We shall
suppose N − r ≥ 1, otherwise the proof is similar but simpler. We then
write

(6) P (u, v) = H(u) + P2(u, v).

From (3) and (5) we see that the monomials in P2, like those in R, have
degree ≥ `0+1. With this notation, the multiplier for the averaging operator
Mj is

(7) mj(ξ, η, γ) = 2jN

∫
2−2j≤|u|2+|v|2≤2−2j+2

ei[ξ·u+η·v+γφ(G(u,v))]du dv,

where ξ ∈ Rr, η ∈ RN−r and γ ∈ R. We compare mj to the multiplier

(8) nj(ξ, η, γ) = 2jN

∫
2−2j≤|u|2+|v|2≤2−2j+2

ei[ξ·u+η·v+γφ(H(u))]dudv

whose corresponding operator Nj is given by

Njf(x, xN+1)

= 2jN

∫
2−2j≤|u|2+|v|2≤2−2j+2

f(x′ − u, x′′ − v, xN+1 − φ(H(u))) dudv.

Here we have written x = (x′, x′′) ∈ Rr × RN−r. We will prove

(9) ‖mj − nj‖L∞(RN+1) . 2−εj

for some ε > 0. Since the Lq operator norms of Mj and Nj are uniformly
bounded in j for any 1 ≤ q ≤ ∞, then (9) implies that the Lp operator norm
of Mj−Nj is O(2−εpj) for some εp > 0 whenever 1 < p <∞ and this in turn
shows that the Lp bounds for supj≥0 |Mjf | follow from the corresponding
Lp bounds for the maximal operator Nf = supj≥0 |Njf |.
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However, we have the pointwise estimate

(10) Nf(x, xN+1) . MHL

[
M̃(f(·))(x

′, xN+1)
]
(x′′)

where

(11) M̃g(x′, xN+1) = sup
0<h≤1

1
hr

∫
|u|≤h

|g(x′ − u, xN+1 − φ(H(u)))| du,

andMHL denotes the classical Hardy-Littlewood maximal operator on RN−r.
Here fx′′(x′, xN+1) = f(x′, x′′, xN+1) = f(x, xN+1). The space E`0 , `0 = r,
corresponding to the convex polynomial H in Rr consists of only the zero
vector 0 and hence Theorem 4 in [14] shows that M̃ is bounded on all
Lp, 1 < p ≤ ∞. This will complete the proof of Theorem 1.1 for MΨ once
(9) has been established.

To prove (9), we introduce polar coordinates in the u variables. That is,
we write u = sω where s > 0 and ω runs over the surface H(ω) = 1. The
integral defining mj in (7) becomes

(12) 2jN

∫
2−2j≤s2|ω|2+|v|2≤2−2j+2

H(ω)=1

ei[ξ·sω+η·v+γφ(G(sω,v))]sr−1h(ω)dsdωdv

where h is a smooth function. From (5) and (6), we see that G(sω, v) =
s`0 +P2(sω, v)+R(sω, v). Similarly, the integral in (8) defining nj becomes

(13) 2jN

∫
2−2j≤s2|ω|2+|v|2≤2−2j+2

H(ω)=1

ei[ξ·sω+η·v+γφ(s`0 )]sr−1h(ω)dsdωdv.

We note that in both (12) and (13) the region of integration may be further
restricted in the integrals to the region where s ≥ 2−(1+ε)j and |v| ≥ 2−(1+ε)j ,
making an error O(2−εj) which is allowable. We will denote the restricted
integrals still by mj and nj .

Next in the integral for mj , we make the change of variables

(14) σ ≡ σ(s, ω, v) = (s`0 + P2(sω, v) +R(sω, v))1/`0

in the s integral. Since 2−(1+ε)j ≤ s, |v| ≤ 2−j+1 and the terms in the Taylor
expansion of P2 and R have degrees ≥ `0 + 1, we see that σ = s+O(s3/2) if
ε > 0 is small enough. Similarly, dσ/ds = 1 +O(s1/2) and so (14) is a valid
change of variables for small s > 0. Let s(σ) ≡ s(σ, ω, v) denote the inverse
function. Then mj =

2jN

∫
2−2j≤s2|ω|2+|v|2≤2−2j+2

|v|,s(σ)≥2−(1+ε)j , H(ω)=1

ei[ξ·s(σ)ω+η·v+γφ(σ)]σr−1h(ω)dσdωdv +O(2−εj).

With a change of notation we see that the expression for nj is precisely the
above integral except that in the oscillation, ξ · s(σ)ω is replaced by ξ · σω.
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Since |s(σ)− σ| . 2−3j/2, we see that in the region where |ξ| ≤ 25j/4,

|mj(ξ, η, γ)− nj(ξ, η, γ)| . 2−εj .

Therefore it suffices to show that both mj and nj are O(2−εj) in the region
where |ξ| ≥ 25j/4. We will use the hypothesis that the codimension of E`0 is
at least 2 (r ≥ 2) so that the surface H(ω) = 1 is at least one dimensional
(the dimension being r − 1) and so we could possibly hope for a decay
estimate in the ω integral. In fact we will use the finite type hypothesis of
the level sets for the hypersurface to show there is enough oscillation in the
ω integral to guarantee such a decay estimate.

To do this we use the fact that H(ω) = 1 is of finite type so that for each
ω0 on H(ω) = 1 we may parameterize H(ω) = 1 in a small neighborhood of
ω0 as

ω0 + (τ1, . . . , τr−1, g(τ1, . . . , τr−1))

where g(0) = 0, ∇g(0) = 0, and for some j0 ≥ 2, ∂jg/∂τ j
1 (0) = 0 for

1 ≤ j ≤ j0 − 1 and ∂j0g/∂τ j0
1 (0) 6= 0. It follows that we may assume

∂j0g/∂τ j0
1 6= 0 for all τ in this small neighborhood of 0. Therefore since

s(σ, ω, v) ∼ σ, one can use van der Corput’s lemma (see e.g., [11]) to estimate∫
|ω−ω0|≤δ
H(ω)=1

eis(σ,ω,v)ξ·ωh(ω) dω .
1

(σ|ξ|)δ

for some positive δ. Integrating this estimate in the other variables shows
that the contribution to the integral defining either mj or nj is O(2−εj) when
|ξ| ≥ 25j/4, if ε > 0 is chosen small enough. This establishes the estimate
(9) and hence completes the proof of Theorem 1.1 for MΨ.

To treat the singular integral operator we decompose HΨ =
∑

j≥0Hj where

Hjf(x′, x′′, xN+1)

=
∫

2−2j≤|u|2+|v|2≤2−2j+2

f(x′ − u, x′′ − v, xN+1 − φ(G(u, v)))K(u, v) dudv

and compare Hj to Sj where

Sjf(x′, x′′, xN+1)

=
∫

2−2j≤|u|2+|v|2≤2−2j+2

f(x′ − u, x′′ − v, xN+1 − φ(H(u)))K(u, v) dudv.

The same argument which establishes (9) shows that

‖Hjf − Sjf‖p . 2−εj‖f‖p

holds for p = 2 and hence for any 1 < p <∞ since ‖Hj‖q→q, ‖Sj‖q→q = 0(1)
whenever 1 ≤ q ≤ ∞. Therefore it suffices to bound the operator S :=
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j≥0 Sj . Unfortunately we cannot use the simple pointwise factorization

estimate (10), as we did for the maximal operator N , to separate the u
and v integration defining each Sj and reduce matters to an application of
Theorem 4 in [14]. Instead we use Littlewood-Paley arguments as in [5]
which rely on corresponding maximal function estimates where the above
pointwise factorization (10) can be employed. In fact we will repeatedly
use a generalization of Theorem D′ in [5] which we explicitly state for the
convenience of the reader. On a fixed subspace of W ⊂ Rd (in our situation
d = N + 1) let {δ(t)}t>0 be a family of linear operators acting on W and
satisfying the Rivière condition, namely for s ≤ t,

(15) ‖δ−1(t)δ(s)‖ ≤ C(s/t)ε

for some C, ε > 0. For notational convenience we set δk = δ(2−k). The
Calderón-Zygmund theory with respect to the dilations δ(t) has been devel-
oped in [2].

Proposition 2.1. Let {σk}k≥1 be Borel measures satisfying supk ‖σk‖ <∞.
Let ζ = ζW + ζW⊥ ∈W ⊕W⊥ and suppose

(16) |σ̂k(ζ)| ≤ Cmin(|δ∗k+1ζW |, |δ∗kζW |−1)ε

for some ε > 0 (here A∗ denotes the transpose of the linear operator A).
Furthermore suppose that the maximal operator defined by σ(f) = supk |f ∗
|σk|| is bounded on Lq(Rd), 1 < q ≤ ∞. Then the mapping f →

∑
k f ∗ σk

is bounded on Lp(Rd), 1 < p <∞.

The proof of Proposition 2.1 follows exactly along the lines in [5] together
with the Calderón-Zygmund theory with respect to a general family of dila-
tions {δ(t)}t>0 satisfying (15). In fact one fixes a nonnegative Φ ∈ C∞c (W )
such that Φ̂(ζW ) = 1 for |ζW | ≤ 1 and Φ̂(ζW ) = 0 for |ζW | ≥ 2. Then

f =
∑

j

Sjf =
∑

j

SjS̃jf

where Ŝjf(ζ) =
[
Φ̂(δ∗j−LζW )− Φ̂(δ∗j+LζW )

]
f̂(ζ) and L > log2(C)/2ε with C

and ε > 0 as in the Rivière condition (15). Furthermore S̃j is defined in the
same manner except L is replace by L′ > L+ log2(C)/ε; see [2] for a proof
of this reproducing formula. Hence∑

k

f ∗ σk =
∑

j

Tjf

where Tjf =
∑

k Sj+kS̃j+k(σk ∗ f) and thus for any p0 > 1,

‖Tjf‖p0 . ‖
(∑

k

|σk ∗ (Sj+kf)|2
)1/2‖p0 . ‖

(∑
k

|Sj+kf |2
)1/2‖p0 . ‖f‖p0 .
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The first and third inequalities use the corresponding Littlewood-Paley the-
ory (see [2] and [3]) and the second inequality uses the hypothesis that the
maximal operator σ is bounded on all Lp, p > 1, exactly as in [5].

Finally one can use (16), together with the Rivière condition (15), to show

‖Tjf‖2 ≤ C 2−ε|j|‖f‖2

for some ε > 0 (see [2] or [3]). By interpolation with the above Lp0 estimate
on Tj shows that f →

∑
k f ∗ σk is bounded on all Lp, p > 1.

In what follows we will employ Proposition 2.1 several times with possibly
different subspaces W and dilations {δ(t)} in each instance.

To continue with the proof of the Lp boundedness of S, fix a smooth ρ on
Rr so that ρ(u) = 1 for |u| ≤ 1 and ρ(u) = 0 for |u| ≥ 2. Then when u 6= 0
we have

ρ(u) =
∞∑

j=0

[ρ(2ju)− ρ(2j+1u)] :=
∞∑

j=0

ψj(u)

and we rewrite (up to an operator which is convolution with an L1 kernel)
Sf =

∑∞
j=0 f ∗ σj where

σj(g) =
∫ ∫

g(u, v, φ(H(u)))K(u, v)ψj(u)%(v) dudv.

Here % is defined in the same way as ρ but on the space RN−r. We apply
Proposition 2.1 with respect to the subspace

W = {(ξ, η, λ) ∈ RN+1 : ξ = λ = 0}

and dilations

δk = 2−kI

(I denoting the identity on W ) but not directly to S. We first compare S
to another operator T which we define as follows: fix a nonnegative Φ ∈
C∞c (W ) with

∫
Φ = 1 and set Tf =

∑∞
j=0 f ∗ [Φj ⊗ σW⊥

j ] where we define

the measure σW⊥
j on W⊥ by

σW⊥
j (g) =

∫
g(u, φ(H(u)))K̃(u)ψj(u)du.

Here K̃(u) =
∫
K(u, v)%(v) dv and Φj(v) = 2j(N−r)Φ(2jv). We now apply

Proposition 2.1 to see that S − T is bounded on all Lp(RN+1), 1 < p < ∞.
If νj = σj − Φj ⊗ σW⊥

j so that [S − T ]f =
∑

j f ∗ νj , one needs to verify

(17) |ν̂j(ξ, η, λ)| . min(2−j |η|, [2−j |η|]−1)ε
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for some ε > 0 and that the corresponding maximal operator ν is bounded
on all Lq(RN+1), 1 < q ≤ ∞. On the one hand,

σ̂j(ξ, η, λ) =
∫
ei[ξ·u+λφ(H(u))]ψj(u)

[∫
K(u, v)eiη·v%(v) dv

]
du

whereas

(18) σ̂W⊥
j (ξ, λ) =

∫
ei[ξ·u+λφ(H(u))]K̃(u)ψj(u) du,

and the estimates (17) follow easily from the basic properties of the Calderón-
Zygmund kernel K and a straightforward integration by parts argument.
On the other hand, ν(f) satisfies the pointwise factorization estimate (10)
and so Theorem 4 in [14] can be invoked to show that ν is bounded on all
Lq(RN+1), 1 < q ≤ ∞.

This leaves us with bounding Tf =
∑

j f ∗ [Φj ⊗ σW⊥
j ]. By using polar

coordinates with respect to the surface H(ω) = 1 in the integral appearing
in (18) and observing that one has decay in λ in the ω integral because
r ≥ 2, one can argue exactly as in [14] or [7] to obtain the following decay
estimate:

(19) |σ̂W⊥
j (ξ, λ)| ≤ C|δj(ξ, λ)|−ε

for some ε > 0 where
δ(t)(ξ, λ) = (tξ, γ(t)λ).

Recall that γ(t) = φ(t`0) and without loss of generality we may assume that
γ(0) = 0 and since φ is smooth, we also have γ′(0) = 0. Thus one easily sees
that the Rivière condition (15) holds for the dilations {δ(t)}. If we had the
strong cancellation condition

(20)
∫
K̃(u)ψj(u)du =

∫ ∫
K(u, v)ψj(u)%(v) dudv = 0

for all j ≥ 0, then the corresponding estimates to (19) for small frequencies
(ξ, λ) would hold and we would be in a position to employ Proposition 2.1
once again; now we take W to be the subspace

W = {(ξ, η, λ) ∈ RN+1 : η = 0}
and above dilations defined in terms of γ. However in general, only the
following weaker cancellation condition

(21)
∣∣ ∑
A≤j≤B

∫
K̃(u)ψj(u)du

∣∣ =
∣∣∫ ∫

K(u, v)
∑

A≤j≤B

ψj(u)ρ(v) dudv
∣∣ ≤ C

holds uniformly in A and B since K(u, v) is integrable over the region
{(u, v) ∈ RN : |u|2 + |v|2 ≥ r2; |u| ≤ r}, uniformly in r.

We will follow a procedure outlined in [11] (chapter XIII, section 5.3) that
will allow us to pass from the weaker cancellation condition (21) to the
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stronger cancellation condition (20). Let cj =
∫
K̃(u)ψj(u)du, set ψ̃j(u) =

(
∫
ψ)−12jrψ(2ju) where ψ(u) = ψ0(u) = ρ(u) − ρ(2u) and write K̃ ′

j(u) =
K̃(u)ψj(u) − cjψ̃j(u) so that

∫
K̃ ′

j(u)du = 0 for all j. Now by summation
by parts,

∞∑
j=0

K̃(u)ψj(u)Φj(v) =
∞∑

j=0

K̃ ′
j(u)Φj(v)+

∞∑
j=0

sj [ψ̃j(u)Φj(v)−ψ̃j+1(u)Φj+1(v)]

where sj =
∑j

`=0 c`. Furthermore we split the last sum into two sums:

∞∑
j=0

sj [ψ̃j(u)− ψ̃j+1(u)]Φj(v) +
∞∑

j=0

sjψ̃j+1(u)[Φj(v)− Φj+1(v)].

This in turn divides the operator Tf =
∑

j f ∗ [Φj ⊗ σW⊥
j ] =

∑
j f ∗ [ω1,j +

ω2,j + ω3,j ] into three operators;

ωL,j(f) =
∫ ∫

f(u, v, φ(H(u)))KL,j(u)ΦL,j(v) dudv

where K1,j(u) = K̃ ′
j(u), K2,j(u) = sj [ψ̃j(u)− ψ̃j+1(u)], K3,j(u) = sjψ̃j+1(u)

and ΦL,j(v) = Φj(v) for L = 1, 2 but Φ3,j(v) = Φj(v)− Φj+1(v).

By (21) we see that supj |sj | <∞ which allows us to deduce as before that
(19) also holds for the Fourier transforms of ωL,j for each L = 1, 2 or 3.
Furthermore when L = 1 or 2, the strong cancellation condition (20) holds
for KL,j , i.e.,

∫
KL,j(u)du = 0. Thus we also obtain the corresponding

estimates to (19) for ω1,j and ω2,j ; namely for L ∈ {1, 2},

(22) |ω̂L,j(ξ, η, λ)| ≤ Cmin(|δj(ξ, λ)|, |δj(ξ, λ)|−1)ε

for some ε > 0. Now the maximal function ω∗L(f) satisfies the factorization
estimate (10) and hence Theorem 4 in [14] shows that this maximal operator
is bounded on all Lp, 1 < p ≤ ∞ which, together with (22), implies that when
L = 1 or 2 the operators TLf =

∑
j f ∗ ωL,j are bounded on Lp, 1 < p <∞

by Proposition 2.1.

The third operator T3f =
∑

j f ∗ ω3,j is a much simpler operator to handle
and can be shown to be bounded on Lp, 1 < p < ∞, by a final application
of Proposition 2.1. The subspace W in this instance is {(0, η, 0)} and the
dilations are {2−jI} (here I is the identity operator on W ). The verification
of the hypotheses of Proposition 2.1 is straightforward. This completes the
proof of Theorem 1.1.
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3. Construction of a convex function

In this section we construct a C∞ convex function γ on [0, 1] with γ(j)(0) = 0,
j = 0, 1, . . . which will be the desired function giving us the counterexamples
we seek in Theorem 1.3. We use a basic idea of Strömberg [13] to construct a
piecewise linear curve resembling the graph of t− log t on very long intervals
for large t and then rescale to the interval [0, 1]. We shall just construct γ(t)
on an interval [0, t0] for some t0 > 0. The extension to [0, 1] from [0, t0] is
routine.

We start with two sequences of strictly increasing integers Nk and Mk such
that

(23) 2Mk ≤ Nk

and

(24) Mk ≥ 10Nk−1,

with all Nk and Mk ≥ 100.

For 2−Nk ≤ t ≤ 2−Mk set

γk(t) = Bk(2Nkt− log 2Nkt+ t)−Dk

with
Dk = Bk(1 + 2−Nk − 2

−Mk+1
2 ),

where the small positive numbers Bk will be determined later.

On the intervals [2−Nk , 2−Mk ] our function γ will be defined as γ(t) = γk(t).
On the intermediate intervals [2−Mk , 2−Nk−1 ] we shall set γ(t) = ηk(t) where
ηk will be defined for 2−Mk ≤ t ≤ 2−Nk−1 as a smooth convex function such
that

(25)
η

(j)
k (2−Mk) = γ

(j)
k (2−Mk),

η
(j)
k (2−Nk−1) = γ

(j)
k−1(2

−Nk−1),

for j = 0, 1, 2, . . .

To show smoothness at the origin we shall also need

(26) γ(j)(t) → 0 as t→ 0

for every fixed j.

Our definition of ηk will use a fixed non-negative C∞ function χ supported
in [−3/4, 3/4] so that χ(t) = 1, for |t| ≤ 1/4 and

(27)
∫
χ(t)dt = 1;
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In order to satisfy (25) we assume

(28) Bk ≤
1
10

2−6Nk+1Bk−1

and in order to ensure (26) we impose the condition

(29) Bk ≤ (200)−k 1
(k + 1)!

2−kNk+1
1∑k+1

ν=0 ‖χ(ν)‖∞
.

Note that

γk(2−Nk) = Bk2−
Mk+1

2

γk(2−Mk) = Bk

(
2Nk−Mk − (Nk −Mk) log 2 + 2−Mk − 1− 2−Nk + 2−Mk+1/2

)
.

The assumptions (28) imply then

(30)
9
10
Bk−12−

Mk
2 ≤ γk−1(2−Nk−1)− γk(2−Mk) ≤ Bk−12−

Mk
2 .

We see further that γ′k(2
−Nk) = Bk and γ′k(2

−Mk) = Bk(2Nk −2Mk +1), and
thus

(31)
9
10
Bk−1 ≤ γ′k−1(2

−Nk−1)− γ′k(2
−Mk) ≤ Bk−1.

We shall now construct the intermediate functions ηk. This is done by first
constructing the second derivative of ηk to first get the inequalities (25) for
j = 2, 3, . . . .

Note that for j ≥ 2

γ
(j)
k (2−Mk) = Bk(−1)j(j − 1)!2Mkj

and
γ

(j)
k−1(2

−Nk−1) = Bk−1(−1)j(j − 1)!2Nk−1j .

We shall construct the second derivative as a sum of three functions ζL
k ,

ζR
k and ζM

k,α, where ζL
k is concentrated near the left endpoint of the interval

[2−Mk , 2−Nk−1 ], the function ζR
k is concentrated near the right endpoint and

ζM
k,α lives in the middle (away from the endpoints).

With χ as described above, we form

ζL
k (t) = Bk22Mk

1
(1 + (2Mk(s− 2−Mk))2)

· χ(100 · 2Mk(s− 2−Mk))

and

ζR
k (t) = Bk−122Nk−1

1
(1 + (2Nk−1(s− 2−Nk−1))2)

· χ(100 · 2Mk(s− 2−Nk−1)).
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Also for ak > 0 and α with 2−Mk+1 ≤ α ≤ 2−Nk−1 − 2−Mk+1, set

ζM
k,α(t) = ak2Mkχ(2Mk(t− α)).

Note that for ν ≥ 2

γ
(ν)
k (2−Mk) = ζL

k
(ν−2)

(2−Mk)

and
γ

(ν)
k−1(2

−Nk−1) = ζR
k

(ν−2)
(2−Nk−1).

Moreover ζM
α (t) vanishes near 2−Mk and 2−Nk−1 , ζL

k (t) vanishes near 2−Nk−1 ,
and ζR

k (t) vanishes near 2−Mk . Thus if we define ηk, so that for 2−Mk ≤ t ≤
2−Nk−1

η′′k(t) = ζL
k (t) + ζR

k (t) + ζM
k,α(t),

the conditions (25) will be satisfied for j ≥ 2. It is natural to define ηk by
setting

ηk(t) = γk(2−Mk) + γ′k(2
−Mk)(t− 2−Mk)(32)

+
∫ t

s=2−Mk

∫ s

u=2−Mk

(
ζL
k (u) + ζR

k (u) + ζM
k,α(u)

)
du ds.

Then clearly ηk(2−Mk) = γk(2−Mk) and η′k(2
−Mk) = γ′k(2

−Mk) and it re-
mains to show that we can pick ak and α in the definition of ζM

k,α so that

(33) η′k(2
−Nk−1) = γ′k−1(2

−Nk−1)

and

(34) ηk(2−Nk−1) = γk−1(2−Nk−1).

Note that ∫ 2−Nk−1

2−Nk

ζM
α (u)du = ak

by (27) and thus (33) will be satisfied if we choose

ak = γ′k−1(2
−Nk−1)− γ′k(2

−Mk)−
∫ 2−Nk−1

2−Mk

(ζL
k (u) + ζR

k (u))du.

To see that ak is positive, we first note that since Mk ≥ 2Nk−1

(35)
∫ 2−Nk−1

2−Mk

ζR
k (t)dt ≤ 22Nk−1−Mk

Bk−1

10
≤ Bk−1

10
and also

(36)
∫ 2−Nk−1

2−Mk

ζL
k (t)dt ≤ Bk2Mk .

So
∫ 2−Nk−1

2−Mk ζL
k (t)dt ≤ Bk−1/10 while γ′(2−Nk−1) − γ′k(2

−Mk) ≥ 9
10Bk−1.

Hence ak defined as above will be positive, indeed

(37)
7
10
Bk−1 ≤ ak ≤ Bk−1.
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It remains to choose α so that (34) is satisfied. Interchanging the order of
integration in (32) we see

ηk(2−Nk−1) = γ(2−Mk) + γ′(2−Mk)(2−Nk−1 − 2−Mk)

+
∫ 2−Nk−1

2−Mk

(2−Nk−1 − s)
(
ζL
k (s) + ζR

k (s) + ζM
k,α(s)

)
ds,

so we want to find α so that

(38)

∫ 2−Nk−1

2−Mk

(2−Nk−1 − s)ζM
α (s)ds

= γk−1(2−Nk−1)− γk(2−Mk)− γ′k(2
−Mk)(2−Nk−1 − 2−Mk)

−
∫ 2−Nk−1

2−Mk

(2−Nk−1 − s)(ζL
k (s) + ζR

k (s))ds.

If we use (28) and (30) we see that the expressions

γk−1(2−Nk−1)− γk(2−Mk)− γ′k(2
−Mk)(2−Nk−1 − 2−Mk)

lie between Bk−12−
Mk
2
−1 and Bk−12−

Mk
2 . Furthermore (35), (36), (24) , and

(28) show that∫ 2−Nk−1

2−Mk

(2−Nk−1 − s)
(
ζR
k (s) + ζL

k (s)
)
ds ≤ Bk−12−

3
4
Mk .

Thus the right hand side of (38) is between Bk−12−
Mk
2 /10 and Bk−12−

Mk
2

and the left hand side depends continuously on α. We can choose α to
achieve (38) by the intermediate value theorem provided that we can show
(39)∫ 2−Nk−1

2−Mk

(2−Nk−1 − s)ζM
α (s)ds

{
≥ Bk−12−

Mk
2 if α = 2−Mk+1

≤ 1
10Bk−12−

Mk
2 if α = 2−Nk−1 − 2−Mk+1.

This follows easily using Bk−1/2 ≤ ak ≤ Bk−1 and 2−Nk−1 > 10 · 2−Mk/2.

To summarize we define

γ(t) =

{
γk(t), 2−Nk ≤ t ≤ 2−Mk

ηk(t), 2−Mk ≤ t ≤ 2−Nk−1 .

The conditions (25) guarantee that γ(t) is smooth on (0, t0]. The condition
(26) implies that γ(j)(t) → 0 as t → 0, for each j. So if we set γ(0) = 0,
γ(t) will be smooth on [0, t0]. Finally the construction of γk and ηk gives
the nonnegativity of γ′′k and η′′k , so γ is convex. It is now easy to extend γ to
a smooth function on [0, 1] so that γ is convex and we also have γ(j)(0) = 0
for all j = 0, 1, . . . .
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4. Unboundedness of the maximal operator

In this section we consider an arbitrary convex function G(t) of finite type at
the origin on RN with G(0) = ∇G(0) = 0, and so that E`0 has codimension
1. We write t = (u, v) ∈ RN where u ∈ R and v ∈ RN−1 and consider the
maximal operator

Mf(x, xN+1) =

sup
0<h≤1

1
$NhN

∫
u2+|v|2≤h2

|f(x′ − u, x′′ − v, xN+1 − γ(G(u, v)1/`0)|dudv

where γ is the C∞ convex function constructed in section 3. To show that
M is unbounded on all Lp, it suffices to show that the operator norm of
Mkf(x, xN+1) =

sup
j∈Jk

2jN

∫
5
4
2−j≤u≤ 3

2
2−j

|v|≤2−j

|f(x′ − u, x′′ − v, xN+1 − γ(G(u, v)1/`0)|dudv

on Lp is unbounded when k → ∞. Here Jk = [(1 − σ)Nk, Nk − 100] and
σ > 0 will be chosen to be sufficiently small. Recall that Nk ≥ 2Mk and so
Jk ⊂ [Mk, Nk].

We will need to understand G(u, v) = P (u, v) + R(u, v) as a function of u
and to do this we set

(40) s = [G(u, v)]1/`0 .

Using (2), (3) and (4) when r = 1, it is easy to see that in the region
|v|1+ε ≤ |u| with ε > 0 small enough,

i) s = |u|+O(|u|1+δ), ii) ds/du = sgn(u)+O(|u|δ), iii) d2s/du2 = O(|u|δ−1)

for some δ > 0 (the σ appearing the definition of Jk will depend on δ).

First of all we test Mk on χS where S is the set

{(u, v, w) ∈ R× RN−1 × R :

− 1 ≤ u ≤ 0, |v| ≤ 1, Bk(2Nk + 1)u ≤ w ≤ Bk(2Nk + 1)u+ 2Bk}.

For j ∈ Jk, we see that MkχS(2−j , 0, γ(2−j)) & 1. In fact this follows from
the inequalities

(41) Bk(2Nk + 1)(2−j − u) ≤ γ(2−j)− γ(s) ≤ Bk(2Nk + 1)(2−j − u) + 2Bk

where 5 · 2−j−2 ≤ u ≤ 3 · 2−j−1 and |v| ≤ 2−j (See Fig. 1).
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To see this, recall that γ(s) = Bk((2Nk +1)s− log(2Nks))−Dk when 2−Nk ≤
s ≤ 2−Mk . By property i) for s, we have

(42) γ(2−j)− γ(s) =

Bk((2Nk + 1)(2−j − u) + log(2ju)) +O(2−(1+δ)j2NkBk + 2−δjBk)

and the O term is less than a small multiple of Bk for large j if σ is chosen
small enough in the definition of Jk. Therefore (41) is established since
log(2ju) is bounded between log(5/4) and log(3/2) when 5 · 2−j−2 ≤ u ≤
3 · 2−j−1.

By using (42) and translation, we have the bound Mkχ2S(x′, x′′, xN+1) & 1
on the set (2−j , 0, γ(2−j)) + T where by 2S we mean the set

{(u, v, w) ∈ RN+1 :

− 2 ≤ u ≤ 0, |v| ≤ 2, Bk(2Nk + 1)u ≤ w ≤ Bk(2Nk + 1)u+ 2Bk}

and

T = {(u, v, w) :

− 1 ≤ u ≤ 0, |v| ≤ 1, Bk(2Nk + 1)u ≤ w ≤ Bk(2Nk + 1)u+ log(2)Bk}.

This boils down to the fact that log(3) < 2. We claim that the sets
{(2−j , 0, γ(2−j)) + T} are disjoint as j varies over Jk. Since the measure
of T is a fixed multiple of 2S, we see then that the Lp operator norm of Mk

is larger than the p’th root of the cardinality of Jk which is σNk, proving
that the original maximal operator M is unbounded on Lp.

To see that the sets {(2−j , 0, γ(2−j)) + T} are disjoint, it suffices to check
that the line w = γ(2−j+1) + log(2)Bk + Bk(2Nk + 1)(u − 2−j+1) in the
u−w plane associated with the set {(2−j+1, 0, γ(2−j+1)) + T lies below the
corresponding line w = γ(2−j) + Bk(2Nk + 1)(u − 2−j) associated with the
set {(2−j , 0, γ(2−j)) + T}. That is, we need to verify that

γ(2−j+1) + log(2)Bk +Bk(2Nk + 1)(2−j − 2−j+1) ≤ γ(2−j).
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In fact we have equality since γ(2−j+1)−γ(2−j) = Bk(2Nk +1)2−j−log(2)Bk.
This completes the part of Theorem 1.3 showing that the maximal operator
M is unbounded on all Lp.

5. Unboundedness of the singular integral operator

We use the same C∞ convex γ constructed in section 3 to show that only
L2 bounds hold for the singular integral operator defined by

Hf(x, xN+1) =

p.v.

∫
|u|2+|v|2≤1

f(x′ − u, x′′ − v, xN+1 − γ(G(u, v)1/`0))K(u, v) dudv,

where G is an arbitrary convex function of finite type at the origin on RN

with the codimension of E`0 equal to 1 and K is an appropriate Calderón-
Zygmund kernel satisfying the extra cancellation condition (1). Here we
are using the same notation as in section 4 and we may assume that G has
the form given in (2), and therefore the one dimensional subspace E⊥`0 may
be taken to be {(x1, 0, . . . , 0) ∈ RN}. We consider any Calderón-Zygmund
kernel K satisfying the nondegeneracy condition

(43) κ(v) :=
∫ ∞

0
K(u, v)du 6≡ 0,

together with the additional cancellation condition (1) which in this setting
takes the form

(44)
∫

SN−1
+

K(θ) dσ(θ) = 0

where SN−1
+ = {x = (x1, . . . , xN )| |x| = 1, x1 ≥ 0}. Condition (43) implies

that κ̂ 6≡ 0 and since κ is homogeneous of degree −(N − 1), we can find a
Σ ∈ SN−2 such that

(45) 0 6= κ̂(Σ) =
∫ ∞

0

∫
RN−1

K(u, v)eiv·Σdvdu =
∫ ∞

0
K̂+(uΣ)

du

u

where we set

(46) K+(v) = K(1, v) and K−(v) = K(−1, v).

On the other hand, the integral over the hemisphere in condition (44) can
be written as an integral over RN−1 (see [14]) and together with the fact
that K has mean value zero over the unit sphere, we have

(47) 0 =
∫

SN−1
±

K(θ)dσ(θ) =
∫

RN−1

K(±1, v)dv = K̂±(0).
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We will assume that H is bounded on Lp(RN+1) for some p < 2 and arrive
at a contradiction. The idea is to first pass to a truncation of H where
we will be able to compare H to a simpler operator in which γ(G(u, v)1/`0)
is replaced by γ(|u|). Next, by using de Leeuw’s theorem (see e.g., [6])
twice, we will reduce matters to examining the multiplier χ(ρ, λ)eiλ log(ρ) on
R2 where χ localizes (ρ, λ) to the region λ � 1 and ρ � 1. In [10] such
multipliers were shown to be Lp(R2) multipliers only for p = 2.

We begin by truncating H in both the u and v variables separately. That
is, if φ1 ∈ C∞0 (R) and φ2 ∈ C∞0 (RN−1), then the truncated operators Hε,η,
defined on f by∫

φ1(u/ε)φ2(v/η)f(x′ − u, x′′ − v, xN+1 − γ(G(u, v)1/`0))K(u, v) dudv,

are uniformly bounded on Lp if the same is true for H (simply use the
Fourier inversion formula for φ1 and φ2). As in the proof of Theorem 1.1
we may truncate further, restricting the integration to the region |v|1+ε ≤
|u| ≤ |v|1−ε. Thus, if we set

Rk =
{
(u, v) : 10102−Nk ≤ |u|, |v| ≤ 2−(1−σ)Nk , |v|1+ε ≤ |u| ≤ |v|1−ε

}
for small σ, ε > 0 and define an operator Hk by

Hkf(x, xN+1) =
∫
Rk

f(x′ − u, x′′ − v, xN+1 − γ(G(u, v)1/`0))K(u, v) dudv

then the Hk are uniformly bounded on Lp. In other words, the multipliers
for the Hk,

hk(ξ, η, λ) =
∫

(u,v)∈Rk

ei[ξu+η·v+λγ(s(u,v))]K(u, v) dudv,

are Fourier multipliers of Lp(RN+1), with multiplier norm ‖hk‖Mp(RN+1)

uniformly bounded in k (here s = G1/`0 as in section 4, see (40)). We use
de Leeuw’s theorem to restrict to the line ξ = −Bk(2Nk + 1)λ (recall that
γ(s) = Bk(2Nk + 1)s − Bk log(2Nks) −Dk when 2−Nk ≤ s ≤ 2−Mk). Thus
we reduce matters to considering the multipliers rk ∈Mp(RN ) where

rk(η, λ) =
∫

(u,v)∈Rk

ei[−Bk(2Nk+1)λu+η·v+λγ(s(u,v))]K(u, v) dudv

and we need to show that the multiplier norms ‖rk‖Mp become arbitrarily
large with k. Next, we compare the rk to

mk(η, λ) =
∫

(u,v)∈Rk

ei[−Bk(2Nk+1)λu+η·v+λγ(|u|)]K(u, v) dudv,

and show that the differences rk −mk are multipliers in Mp(RN ) with uni-
form bounds. To accomplish this we split the (u, v) integral dyadically and
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set

rk,j(η, λ) =
∫

2−2j≤|u|2+|v|2≤2−2j+2

|v|1+ε≤|u|≤|v|1−ε

ei[−Bk(2Nk+1)λu+η·v+λγ(s(u,v))]K(u, v) dudv;

moreover we define mk,j analogously (replacing γ(s(u, v)) by γ(|u|)). The
bound on rk −mk follows then from

(48) ‖rk,j −mk,j‖L∞ . 2−εj ,

when j ∈ Jk = [(1− σ)Nk, Nk − 100] since ‖rk,j‖Mp + ‖mk,j‖Mp = O(1).

Using property i) of s(u, v) in the previous section (see (40)), s(u, v) =
|u|+O(|u|1+δ), we see that γ(s)− γ(|u|) =

Bk(2Nk + 1)(s− |u|)−Bk log(s/|u|) = O(2NkBk2−j(1+δ)) +O(Bk2−jδ)

and this in turn is O(Bk2−jδ/2) for j ∈ Jk if σ in the definition of Jk is
chosen small enough. Therefore the differences rk,j −mk,j have the bound

(49) |rk,j(η, λ)−mk,j(η, λ)| . |λ|Bk2−jδ/2.

On the other hand we can use the oscillation in the u integrals for rk,j and
mk,j individually to obtain a complementary bound. In fact the second
derivative in u of the phase −λ(Bk(2Nk + 1)u− γ(s(u)) is

λ[γ′(s)s′′ + γ′′(s)(s′)2] =

λBk

[
(2Nk+1−1/s)s′′+(1/s2)(s′)2

]
= λBk/u

2
[
1+O(2−jδ)+O(2Nk2−j(1+δ))

]
.

However if j ∈ Jk and σ > 0 is small, depending on δ > 0, the two O terms
combine to O(2−jδ/2) and thus we have the bound |λ|Bk22j from below
for the second derivative of the phase. Using van der Corput’s lemma and
integration by parts, we see that

|rk,j(η, λ)| . (|λ|Bk)−1/2.

A simpler argument gives the same bound for mk,j and so

(50) |rk,j(η, λ)−mk,j(η, λ)| . (|λ|Bk)−1/2.

Using (49) when |λ|Bk ≤ 2jδ/4 and (50) when |λ|Bk ≥ 2jδ/4 establishes (48).

It therefore suffices to reach a contradiction under the assumption that the
{mk} are Fourier multipliers of Lp(RN ), with uniform bounds in k. We
may drop the restriction |v|1+ε ≤ |u| ≤ |v|1−ε in the integration defining
the mk since K is integrable outside this region (the errors being uniform
Mp multipliers; they are Fourier transforms of finite Borel measures) and
denoting the resulting multipliers by m̃k, we use de Leeuw’s theorem to see
that for every Σ ∈ SN−2, the functions mk,Σ(ρ, λ) = χ(0,∞)(ρ) m̃k(ρΣ, λ) are
multipliers in Mp(R2) with bounds uniformly in k. We choose Σ ∈ SN−2 so
that (45) is satisfied.
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For ρ > 0, we have mk,Σ(ρ, λ) =∫
10102−Nk≤|u|,|v|≤2−(1−σ)Nk

ei[−λBk(2Nk+1)u+λγ(|u|)+ρΣ·v]K(u, v) dudv

and in this region, γ(|u|) = Bk(2Nk + 1)|u| −Bk log(2Nk |u|)−Dk and so

eiλ[Bk log 2Nk+Dk]mk,Σ(ρ, λ) =∫
|u|∈Ik

eiλ[Bk(2Nk+1)(|u|−u)−Bk log |u|]
∫
|v|∈Ik

K(u, v)eiρΣ·vdvdu

where Ik := [10102−Nk , 2−(1−σ)Nk ]. The factor eiλ[Bk log 2Nk+Dk] gives rise to
a fixed translation and so does not affect the assumption that the mk,Σ(ρ, λ)
have uniform bounds in Mp(R2) and therefore may be removed.

Next, up to an error which is in Mp(R2), we may replace the region of
integration |v| ∈ Ik in mk,Σ(ρ, λ) with v ∈ RN−1 since K is integrable in
the complementary region (again the errors are Fourier transforms of finite
Borel measures). Splitting the u integration where u > 0 and u < 0 and
making the changes of variables u → −u in the second part, matters are
reduced to examining the function (ρ, λ) 7→ m1

k,Σ(ρ, λ) +m2
k,Σ(ρ, λ) where

m1
k,Σ(ρ, λ) =

∫
u∈Ik

e−iλBk log u

∫
v∈RN−1

K(u, v)eiρΣ·vdvdu

and

m2
k,Σ(ρ, λ) =

∫
u∈Ik

eiλBk[2(2Nk+1)u−log u]

∫
v∈RN−1

K(−u, v)eiρΣ·vdvdu.

Here we see an important implication of the construction of γ; the linear
part of the phase has cancelled in m1

k,Σ and this will allow us pass from m1
k,Σ

to eiBkλ log(ρ) whereas the linear part of the phase in m2
k,Σ produces large

enough oscillation to keep it well-behaved as a multiplier.

First we change variables (ũ, ṽ) = (u
ρ , uv) and (after replacing (ũ, ṽ) by

(u, v)) we see that

(51) m1
k,Σ(ρ, λ) = eiBkλ log(ρ)

∫
u∈Ik,ρ

e−iλBk log uK̂+(uΣ)
du

u

and

(52) m2
k,Σ(ρ, λ) = eiBkλ log(ρ)

∫
u∈Ik,ρ

eiλBk[2(2Nk+1)u−log u]K̂−(uΣ)
du

u

where Ik,ρ = [10102−Nkρ, 2−(1−σ)Nkρ] (recall (46)).
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Next, we restrict (λ, ρ) to the region |λ| . B−1
k and 2(1−σ/2)Nk ≤ ρ ≤

2(1−σ/4)Nk by introducing

χ(ρ, λ) = ϕ(Bkλ)[φ(2−Nk(1−σ/2)ρ)− ϕ(2−Nk(1−σ/4)ρ)]

where ϕ ∈ C∞0 (R) is ≡ 1 in a neighborhood of 0 and setting

m̃1
k,Σ(ρ, λ) = χ(ρ, λ)m1

k,Σ(ρ,Σ) and m̃2
k,Σ(ρ, λ) = χ(ρ, λ)m2

k,Σ(ρ,Σ).

We will see that m̃2
k,Σ are classical Marcinkiewicz multipliers uniformly in

k and Σ and that the Mp(R2) norms of m̃1
k,Σ become large with k by

reducing to showing that the same is true for the multipliers bk(ρ, λ) =
χ(ρ, λ)eiBkλ log(ρ). But first we need the following lemma.

Lemma 5.1. Suppose K is a smooth homogeneous Calderón-Zygmund ker-
nel on RN satisfying the addition cancellation condition K̂±(0) = 0 as de-
scribed in (47). Then

(1) K̂±(uΣ), ∂uK̂±(uΣ) = O(u−M ) as u→∞ for any M , uniformly for
Σ ∈ SN−2;

(2) K̂±(uΣ) = O(u log(1/u)) as u → 0+ and ∂uK̂±(uΣ) = O(log(1/u))
as u→ 0+, uniformly for Σ ∈ SN−2.

Proof. Part (1) follows since K± is smooth and integrable and that the same
is true for any derivative of K±.

For part (2) we have by (47),

K̂±(uΣ) =
∫

RN−1

K(±1, v)[eiuΣ·v − 1] dv

and so

|K̂±(uΣ)| .
∫

RN−1

1
(1 + |v|)N

min(1, u|v|) dv

which is O(u log(u)) for small u > 0. The derivative estimate follows in a
similar way except one has to be mindful of the fact that the derivative of
the integrand defining K̂± (with respect to u) is not absolutely integrable.
The details involve integrations by parts and are left to the reader.

�

We now extend the integration region u ∈ Ik,ρ in (51) and (52) to 0 < u <
∞, the error in both instances being a classical Marcinkiewicz multiplier,
uniformly in k. To see this we write the sum of errors as

(53) eiλBk log(ρ)

∫
u/∈Ik,ρ

e−iλBk log(u)
[
K̂+(uΣ) + eiλ2Bk(2Nk+1)uK̂−(uΣ)

] du

u
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and observe that Lemma 5.1 immediately shows that the integral is
O

(
(ρ2−Nk)1−ε + (ρ2−Nk(1−σ))−M

)
for any ε,M > 0. Now consider the

partial derivative with respect to λ of (53); the above bound on the integral
shows that the part of the ∂/∂λ derivative which falls on the factor eiλBk log(ρ)

is
O

(
Bk log(ρ)

[
(ρ2−Nk)1−ε + (ρ2−Nk(1−σ))−M

])
which is . 1/|λ| in the above restricted region for ρ and λ. The remaining
estimate for ∂/∂λ as well as the other derivative estimates for ∂/∂ρ and
∂2/∂ρ∂λ are easier to obtain and therefore our underlying assumption that
the mk,Σ are uniform Lp(R2) multipliers implies that m1

k,Σ + m2
k,Σ where

m1
k,Σ(ρ, λ) = χ(ρ, λ)eiλBk log(ρ)

∫ ∞

0
e−iλBk log(u)K̂+(uΣ)

u

u

and

m2
k,Σ(ρ, λ) = χ(ρ, λ)eiλBk log(ρ)

∫ ∞

0
e−iλBk(2(2Nk+1)u+log(u))K̂−(uΣ)

u

u

are uniform Lp(R2) Fourier multipliers.

Lemma 5.2. The function m2
k,Σ(ρ, λ) is a classical Marcinkiewicz multi-

plier, uniformly in k and Σ.

Proof. Once again, the most difficult derivative estimate of m2
k,Σ to obtain is

part of the ∂/∂λ derivative which differentiates the exponential eiλBk log(ρ):

iBk log(ρ)eiλBk log(ρ)

∫ ∞

0
eiλ[2Bk(2Nk+1)u−Bk log(u)]K̂−(uΣ)

du

u
.

We split the integral into three parts around u = 2−Nk ;∫
u<c2−Nk

+
∫

c2−Nk<u<C2−Nk

+
∫

C2−Nk<u
· · · du

u

where c > 0 and C > 0 are small and large absolute constants, respectively.
Recall that λBk . 1 and log(p) . Nk on the support of χ. Using Lemma 5.1
and integrating by parts for the first and third integrals, one easily obtains
the bound O(N2

k [2NkBkλ]−1) for these integrals (the bound for the second
integral follows by a simple size estimate for the integrand) and hence we see
that the above expression is O(log(ρ)N2

k2−Nkλ−1) which in turn is O(λ−1)
on the support of χ. The other derivative estimates for mk,Σ are easier; we
omit the details.

�

We are left to show that the functions

m1
k,Σ = χ(ρ, λ)eiλBk log(ρ)

∫ ∞

0
e−iλBk log(u)K̂+(uΣ)du/u
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:= χ(ρ, λ)eiλBk log(ρ)I(λBk)
do not have uniform Mp(R2) bounds.

Using the decay properties of K̂+ we see that I ′(t) = O(1). Furthermore our
nondegeneracy condition on K (45) implies I(0) 6= 0 and so |I(t)| & 1 for
t in a small neighborhood of 0. Therefore choosing the support of φ in the
definition of χ small enough, λ→ φ(Bkλ)[I(Bkλ)]−1 is a Fourier multiplier
on Lp, with bounds uniform in k. Therefore, our initial assumption that
the singular integral operator H is bounded on Lp(RN+1) for some p < 2
implies that bk(ρ, λ) = χ(ρ, λ)eiBkλ log(ρ) are Fourier multipliers on Lp(R2),
with bounds uniform in k. However the proof of Proposition 1.2 in [10]
shows that

(54) ‖bk‖Mp(R2) & N
(1/p−1/2)/2
k .

This is verified by testing the multiplier operator associated to the bk’s on
functions of the form fk where

f̂k(ρ, λ) =
∑
`∈Lk

β(ρ− e`
2
)â(Bkλ);

here Lk = {` : (1 − σ/2)Nk ≤ `2 ≤ (1 − σ/4)Nk}, a is an appropriate
Schwartz function, and β is a C∞ function supported in {ρ : |ρ| ≤ 1} with
β(ρ) = 1 if |ρ| ≤ 1/2. By Littlewood-Paley theory,

‖fk‖Lq ≈ N
1/2
k , 1 < q <∞,

but on the other hand, N1/2p
k . ‖bk‖Mp‖fk‖Lp which implies (54) (for more

details, see [10]).

As ‖bk‖Mp is not uniformly bounded it follows that H fails to be bounded
on any Lp(RN+1) for p 6= 2, completing the proof of Theorem 1.3. �
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