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Abstract. In a previous paper by the authors the existence of Haar
projections with growing norms in Sobolev-Triebel-Lizorkin spaces has
been shown via a probabilistic argument. This existence was sufficient
to determine the precise range of Triebel-Lizorkin spaces for which the
Haar system is an unconditional basis. The aim of the present paper
is to give simple deterministic examples of Haar projections that show
this growth behavior in the respective range of parameters.

1. Introduction

In the recent paper [4] the authors considered the question in which range
of parameters the Haar system is an unconditional basis in the Triebel-
Lizorkin space F sp,q(R), 1 < p, q < ∞. It turned out that this is the case if
and only if

(1) max{−1/p′,−1/q′} < s < min{1/p, 1/q} .
The Haar functions (3) belong to the spaces F sp,q and Bs

p,q if −1/p′ < s <
1/p. Moreover, by results in [6], [7], [9] they form an unconditional basis in
Bs
p,q in that range. More recently, it was shown by Triebel in [9] that in the

more restrictive range (1) the Haar system is an unconditional basis also on
F sp,q, and, as a special case when q = 2, in the Lp Sobolev space Lsp. Triebel
[10] asked what happens for the remaining cases corresponding to the upper
and lower triangles in Figure 1.

In [4] the necessity of the condition (1) was established by showing the
existence of subsets E of the Haar system H, see (2) below, for which the
corresponding projections

PEf =
∑

hj,k∈E
2j〈f, hj,k〉hj,k

are not uniformly bounded in the spaces F sp,q if 1 < p < q, 1/q ≤ s ≤ 1/p and
1 < q < p <∞, −1/p′ ≤ s ≤ −1/q′. This shows the failure of unconditional
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Figure 1. Domain for an unconditional basis in spaces Lsp

convergence of Haar expansions in the respective spaces. The proof of the
existence of such projections and sharp growth rates of their norms was
based on a probabilistic argument.

The purpose of the present paper is to present a constructive, non-pro-
babilistic argument. It turns out that the families of projections providing
sharp growth rates in terms of the Haar frequency set HF(E) can be easily
written down; however the proof of the lower bounds, with concrete testing
functions is rather technical.

We consider the Haar system on the real line given by

(2) H = {hj,µ : µ ∈ Z, j = −1, 0, 1, 2, ...} ,

where for j ∈ N ∪ {0}, µ ∈ Z, the function hj,µ is defined by

(3) hj,µ(x) = 1I+j,µ
(x)− 1I−j,µ(x) ,

and h−1,µ is the characteristic function of the interval [µ, µ+1). The intervals
I+
j,µ = [2−jµ, 2−j(µ + 1/2)) and I−j,µ = [2−j(µ + 1/2), 2−j(µ + 1)) represent

the dyadic children of the usual dyadic interval Ij,µ = [2−jµ, 2−j(µ+1)). To
formulate the main result in [4] we say that the Haar frequency of hj,µ is 2j .
For a set E of Haar functions we define the Haar frequency set HF(E) as
the set of all 2j for which j ∈ N ∪ {0} and 2j is the Haar frequency of some
h ∈ E.

Theorem. [4]. (i) Let 1 < p < q < ∞ and 1/q < s < 1/p. Given any set
A ⊂ {2k : k ≥ 0} of cardinality ≥ 2N there is a subset E of H consisting of
Haar functions supported in [0, 1] such that HF(E) ⊂ A and such that

‖PE‖F sp,q→F sp,q ≥ c(p, q, s)2
N(s−1/q) .

(ii) Let 1 < q < p < ∞ and −1 + 1/p < s < −1 + 1/q. Given any set
A ⊂ {2k : k ≥ 0} of cardinality ≥ 2N there is a subset E of H consisting of
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Haar functions supported in [0, 1] such that HF(E) ⊂ A and

‖PE‖F sp,q→F sp,q ≥ c(p, q, s)2
N( 1

q
−s−1)

.

There are also lower bounds in terms of powers of N for the endpoint

cases F
−1/q′
p,q , p > q and F

1/q
p,q , p < q. We note that the result of the theorem

is sharp since there are the corresponding upper bounds ([4])

‖PE‖F sp,q→F sp,q ≤ C(p, q, s)
(
#(HF(E))

)s− 1
q ,

for 1 < p < q <∞, 1/q < s < 1/p, and

‖PE‖F sp,q→F sp,q ≤ C(p, q, s)
(
#(HF(E))

) 1
q
−s−1

,

for 1 < q < p < ∞, −1/p′ < s < −1/q′. A duality argument, see [4], §2.3,
shows that assertions (i), (ii) in the theorem are equivalent. It is sufficient
to prove the result for N large.

As stated above the theorem was proved in [4] by a probabilistic argu-
ment which does not identify the specific projection for which the lower
bound holds. We now give an explicit and deterministic definition of such
projections.

Let R be a large positive integer to be chosen later. Let N � R. Given
a set of Haar frequencies A ⊂ {2j : j ≥ 1} we choose a AN ⊂ A such that

(4a) 2N−1R−1 ≤ #AN ≤ 2N ,

and such that log2AN is R-separated; i.e., we have the property that

(4b) 2n ∈ AN , 2ñ ∈ AN =⇒ |n− ñ| ≥ R if n 6= ñ.

Let E = E(N,R) be the collection of Haar functions hj,µ with 2j ∈ AN and
0 ≤ µ ≤ 2j − 1, and let PE be the orthogonal projection to the span of E,
defined initially on L2

(4c) PEf =
∑

2j∈AN

2j−1∑
µ=0

2j〈f, hj,µ〉hj,µ.

We have the following main result.

Theorem 1.1. There is R = R(p, q, s) > 1 and N0 = N0(p, q, s) so that for
all N ≥ N0 � R the following lower bounds hold for the projection operators
PE with E = E(N,R) as defined in (4).

(i) For 1 < p < q <∞, 1/q < s < 1/p

‖PE‖F sp,q→F sp,q ≥ c(p, q, s)2
N(s−1/q) .

(ii) Let 1 < q < p <∞ and −1 + 1/p < s < −1 + 1/q then

‖PE‖F sp,q→F sp,q ≥ c(p, q, s)2
N( 1

q
−s−1)

.



4 ANDREAS SEEGER TINO ULLRICH

For the proof of (ii) we shall construct deterministically test functions
fN ∈ F sp,q for which

(5) ‖PEfN‖F sp,q & ‖PE‖F sp,q→F sp,q‖fN‖F sp,q .

Here q < p and −1/p′ < s < −1/q′.

The paper is organized as follows. In §2 we will recall characterizations of
the spaces F sp,q in terms of local means which are convenient to work with.
In §3 and §4 we give the construction of a family of test functions satisfying
(5). §5 and §6 contain the core of the proof. Finally, in §7 we state some
open problems.

2. Preliminaries

Let ψ0, ψ ∈ S(R) such that |ψ̂0(ξ)| > 0 on (−ε, ε) and |ψ̂(ξ)| > 0 on
{ξ ∈ R : ε/4 < |ξ| < ε} for some fixed ε > 0. We further assume vanishing
moments of ψ up to order M1 of ψ; i.e.,∫

ψ(x)xn dx = 0 for n = 0, 1, ...,M1 .

As usual we define ψk := 2kψ(2k·).

Definition 2.1. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R. Let further
ψ0, ψ ∈ S(R) as above with M1 + 1 > s. The Triebel-Lizorkin space F sp,q(R)
is the collection of all tempered distributions f ∈ S ′(R) such that

‖f‖F sp,q :=
∥∥∥( ∞∑

k=0

2ksq|ψk ∗ f(·)|q
)1/q∥∥∥

p

is finite.

The definition of the spaces F sp,q(R), cf. [8], is usually given in terms of a
compactly supported (on the Fourier side) smooth dyadic decomposition of
unity. Based on vector-valued singular integral theory [1] it can be shown
that the characterization given in Definition 2.1 is equivalent, see also [8,
§2.4.6] and [3]. The above characterization allows for choosing ψ0, ψ com-
pactly supported, which is the reason for the term “local means” which in
view of the localization properties of the Haar functions are useful for the
purpose of this paper.

3. Families of test functions

Let A ⊂ {2j : j ≥ 1} be given and choose AN such that

(6) 2N−1R−1 ≤ #AN ≤ 2N .
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We set AN = log2AN , i.e., AN = {j : 2j ∈ AN}. Also let, for large N ,

LN = {l : l −N ∈ AN},

SN = {(l, ν) : l ∈ LN , 0 ≤ ν ≤ 2l − 1, ν ∈ 2NZ + 2N−1},
SN
l = {ν : (l, ν) ∈ SN}.

Let η be an odd C∞ function supported in (−2−4, 2−4). Furthermore it is
assumed that η has vanishing moments up to order M0, i.e.,

∫
η(x)xn dx = 0

for n = 0, 1, . . . ,M0 (with M0 some large constant), and that

(7) 2

∫ 1/2

0
η(x)dx =

∫ 1/2

0
η(x)dx−

∫ 0

−1/2
η(x)dx ≥ 1 .

We further define

(8) ηl,ν(x) = η(2l(x− xl,ν)) , where xl,ν = 2−lν .

Then, clearly, ηl,ν is supported in [xl,ν − 2−l−4, xl,ν + 2−l−4]. Crucial for the

subsequent analysis is the fact that for ν, ν ′ ∈ SN
l with ν 6= ν ′ the distance

of the supports of ηl,ν and ηl,ν′ is at least 2N−l − 2−l−3.

Let us define the family of test functions fN by

(9) fN (x) :=
∑
l∈LN

2−ls
∑
ν∈SNl

ηl,ν(x).

The following F sp,q-norm bound for the fN follows from [4, Prop. 4.1], which
is based on a result in [2].

Proposition 3.1. Let 1 ≤ q ≤ p <∞, s ∈ R and s > −M0. Then

‖fN‖F sp,q .p,q,s (1 + 2−N#(LN ))1/q . 1 .

4. Lower bounds for Haar projections

Let PE be the (family of) projections defined in (4c). By Proposition 3.1 it
suffices to show

(10) ‖PEfN‖F sp,q ≥ c(p, q, s, R)2
N( 1

q
−s−1)

in the case 1 < q < p, −1/p′ < s < −1/q′. What remains follows by duality,
cf. [4, §2.3].

Let ψ be a non-vanishing C∞-function supported on (−2−4, 2−4) in the
sense of Definition 2.1 with M1 large enough. Setting ψk = 2kψ(2k·) we
have the inequality (according to Definition 2.1),∥∥∥( ∞∑

k=1

2ksq|ψk ∗ g|q
)1/q∥∥∥

q
. ‖g‖F sp,q .

Hence, it now suffices to show (for large N)

(11)
∥∥∥( ∑

k∈AN
2ksq|ψk ∗ PEfN |q

)1/q∥∥∥
p
& 2

N( 1
q
−s−1)

.
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Now ψk ∗ PEfS is supported in [−1, 2] and, by Hölder’s inequality and
p ≥ q, it is enough to verify (11) for p = q, i.e., we have to show

(12)
∥∥∥( ∑

k∈AN
2ksq

∣∣∣ ∑
(l,ν)∈SN

2−ls
∑
j∈AN

2j−1∑
µ=0

〈ηl,ν , hj,µ〉hj,µ ∗ ψk
∣∣∣q)1/q∥∥∥

q

& 2
N( 1

q
−s−1)

.

Let us define

(13) Gj,Nk,l (x) =
2j−1∑
µ=0

∑
ν∈SNl

2j〈ηl,ν , hj,µ〉hj,µ ∗ ψk.

Recall that for k ∈ AN we have k+N ∈ LN . We shall show two inequalities.
In what follows we always have 1 < q < p <∞, −1/p′ ≤ s < −1/q′.

Proposition 4.1. There is c1 > 0 such that

(14)
( ∑
k∈AN

2ksq
∥∥2−(k+N)sGk,Nk,k+N

∥∥q
q

)1/q
≥ c1R

−1/q2
N( 1

q
−1−s)

.

Proposition 4.2. There is ε = ε(s, q) > 0 such that

(15)
( ∑
k∈AN

2ksq
∥∥∥ ∑

(j,l)∈AN×LN
(j,l)6=(k,k+N)

2−lsGj,Nk,l

∥∥∥q
q

)1/q
≤ C2(1 + 2−Rε2

N( 1
q
−1−s)

) .

If we choose R large enough (depending on p, q, s) then the two propositions
imply Theorem 1.1.

5. Proof of Proposition 4.1

Let Ψ(x) =
∫ x
−∞ ψ(t)dt, supported also in (−2−4, 2−4). Note that

ψ ∗ h0,0(x) = Ψ(x) + Ψ(x− 1)− 2Ψ(x− 1
2)

and hence ψ ∗ h0,0(x) = −2Ψ(x − 1
2) if x ∈ [1/4, 3/4]. Thus there is c > 0

and an interval J ⊂ [1/4, 3/4] so that

|ψ ∗ h0,0(x)| ≥ c for x ∈ J .

For k = 0, 1, 2, . . . and µ ∈ Z let Jk,µ = 2−kµ + 2−kJ , a subinterval of the

middle half of Ik,µ of length & 2−k. We then get the estimate

(16) |ψk ∗ hk,µ(x)| ≥ c0 for x ∈ Jk,µ.
The left-hand side of (14) is

2−Ns
( ∑
k∈AN

∥∥∥ 2k−1∑
µ=0

∑
ν∈SNk+N

2k〈hk,µ, ηk+N,ν〉hk,µ ∗ ψk
∥∥∥q
q

)1/q
.
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Now hk,µ is supported in Ik,µ = [2−kµ, 2−k(µ + 1)]. If ν ∈ SN
k+N then

ν = 2Nm+ 2N−1 for some integer m and in this case ηk+N,ν is supported in

[2−km+2−k−1−2−k−N−4, 2−km+2−k−1+2−k−N−4]. For fixed µ this interval
intersects Ik,µ only if m = µ, and thus for the scalar products 〈hk,µ, ηk+N,ν〉
(with ν ∈ SN

k+N ) we only get a contribution for ν = νN (µ) := 2Nµ+ 2N−1.
We calculate

〈hk,µηk+N,νN (µ)〉 =

∫
h0,0(2kx− µ)η(2k+N (x− 2−kµ− 2−k−1))dx

= 2−k
∫
η(2N (y − 1/2))h0,0(y) dy

= 2−k
∫ 0

−1/2
η(2Ny)− 2−k

∫ 1/2

0
η(2Ny) dy

= −2−N−k+1

∫ 1/2

0
η(u) du ,

where we have used that supp(η(2N ·)) is contained in (−2−N−4, 2−N−4). By
(7) we get ∣∣〈hk,µ, ηk+N,νN (µ)〉

∣∣ ≥ 2−k−N .

Recall that Jk,µ′ is contained in the middle half of Ik,µ′ . Now

supp(ψk ∗ hk,µ) ⊂ [2−kµ− 2−k−4, 2−k(µ+ 1) + 2−k−4]

and thus, given µ, µ′, the support of ψk ∗ hk,µ can intersect Jk,µ′ only if

µ = µ′. Hence, if we set Ωk = ∪2k−1

µ=1 Jk,µ we have, using also (16),∥∥Gk,Nk,k+N

∥∥q
q
≥
∫

Ωk

|Gk,Nk,k+N (x)|qdx

≥
2k−1∑
µ=1

∣∣2k〈hk,µ, ηk+N,νN (µ)〉
∣∣q ∫

Jk,µ

|ψk ∗ hk,µ(x)|qdx

≥ c2−Nq ,

where c > 0 does neither depend on R nor N . Since card(AN ) & 2N−1/R
we obtain the lower bound (14) after summing in k.

6. Proof of Proposition 4.2

We first collect several standard and elementary facts about the Haar
coefficients.

Lemma 6.1. (i) If supp(ηl,ν) is contained either in I+
j,µ, or in I−j,µ, or in

I{j,µ then 〈ηl,ν , hj,µ〉 = 0 .

(ii)

|〈ηl,ν , hj,µ〉| .

{
2−l if l ≥ j,
2l−2j if l ≤ j.
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Lemma 6.2. (i) Suppose that k ≥ j. If the distance of x to the three points
2−jµ, 2−j(µ+ 1

2), 2−j(µ+ 1) is at least 2−k then hj,µ ∗ ψk(x) = 0.

(ii) For k ≥ j we have ‖hj,µ ∗ ψk‖q . 2−k/q.

Lemma 6.3. Let k ≤ j. Let yj,µ := 2−j(µ+ 1
2), the midpoint of the interval

Ik,µ. Then the support of hj,µ ∗ ψk is contained in [yj,µ − 2−k, yj,µ + 2−k].
Also,

‖hj,µ ∗ ψk‖∞ . 22k−2j .

The proofs of Lemmata 6.1, 6.2 and 6.3 are straightforward and can be
looked up e.g. in [4].

We have the following estimates when j ≤ k.

Lemma 6.4. Let l ≥ N . For 1 ≤ q ≤ ∞,

‖Gj,Nk,l ‖q . 2j−l2(j−k)/q, k ≥ j, l ≥ j +N,(17a)

‖Gj,Nk,l ‖q . 2j−l2(l−N−k)/q, k ≥ j, j ≤ l ≤ j +N,(17b)

‖Gj,Nk,l ‖q . 2l−j2(l−k−N)/q, k ≥ j, l ≤ j.(17c)

Proof. Let l ≥ j+N . By Lemma 6.2, (i), the function Gj,Nk,l is supported on

the union of O(2j) intervals of length 2−k, i.e. on a set of measure O(2j−k).
By Lemma 6.1 we have, for fixed µ, that 〈ηl,ν , hj,µ〉 6= 0 only for a finite

number of indices ν, and we always have 2j |〈ηl,ν , hj,µ〉| . 2j−l. Thus (17a)
follows.

Now let j ≤ l ≤ j +N . Since the sets supp(ηl,ν) with ν ∈ SN
l are 2N−2−l

separated, and 2N−l ≥ 2−j , we see from Lemma 6.2 that Gj,Nk,l is supported

on the union of O(2l−N ) intervals of length 2−k, i.e. on a set of measure
O(2l−k−N ). As in the previous case 2j |〈ηl,ν , hj,µ〉| . 2j−l, and (17b) follows.

Let l ≤ j. As in the previous case Gj,Nk,l is supported on a set of measure

O(2l−k−N ). By Lemma 6.1, (ii), we have now 2j |〈ηl,ν , hj,µ〉| . 2l−j , and
(17c) follows. �

For k ≤ j we have

Lemma 6.5. Let l ≥ N . For 1 ≤ q ≤ ∞,

‖Gj,Nk,l ‖q . 2k−l, k ≤ j ≤ l −N,(18a)

‖Gj,Nk,l ‖q . 2k−j−N , k ≤ l −N ≤ j ≤ l,(18b)

‖Gj,Nk,l ‖q . 22k−j−l2(l−k−N)/q, l −N ≤ k ≤ j ≤ l,(18c)

‖Gj,Nk,l ‖q . 22k−2j2(l−k−N)/q, l −N ≤ k ≤ l ≤ j,(18d)

‖Gj,Nk,l ‖q . 2l+k−2j−N , k ≤ l −N ≤ l ≤ j,(18e)

‖Gj,Nk,l ‖q . 23k+l−4j2−N/q, l ≤ k ≤ j.(18f)
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Proof. Let, for ρ ∈ Z, I∗k,ρ = ∪i=−1,0,1Ik,ρ+i the triple interval. Then for
j ≥ k the function hj,µ ∗ψk is supported in at most five of the intervals I∗k,ρ.

For the case (18a) we have 2−l+N ≤ 2−j ≤ 2−k. By Lemma 6.1 we have,
for each µ,

∑
ν 2j |〈ηl,ν , hj,µ〉| . 2j−l. By Lemma 6.3 |hj,µ ∗ ψk(x)| . 22k−2j

and for fixed x there are at most O(2j−k) terms with hj,µ∗ψk(x) 6= 0. Hence

|Gj,Nk,l (x)| . 2k−l and (18a) follows.

Now consider the case (18b), 2−l ≤ 2−j ≤ 2−l+N ≤ 2−k. Let Mk(x)
be the number of indices µ for which there exists a ν with 〈ηl,ν , hj,µ〉 6= 0

and for which hj,µ ∗ ψk(x) 6= 0. Since the supports of the ηl,ν are 2N−2−l

separated, and 2N−l ≥ 2−j we have Mk(x) . 2l−N−k. The upper bounds
for
∑

ν 2j |〈ηl,ν , hj,µ〉| and for |hj,µ ∗ψk(x)| are as in the previous case. Hence

|Gj,Nk,l (x)| . 2j−l22k−2j2l−N−k = 2k−j−N and (18b) follows.

Next consider the case (18c), 2−l ≤ 2−j ≤ 2−k ≤ 2−l+N . As in the
previous case, |hj,µ ∗ ψk(x)| . 22k−2j , and 2j |〈ηl,ν , hj,µ〉| . 2j−l. Also since

the supports of the ηl,ν are 2−l+N−2-separated and 2−l+N ≥ 2−k ≥ 2−j ≥
2−l there are, for every x only O(1) indices ν, and O(1) indices µ so that
〈ηl,ν , hj,µ〉 6= 0 and hj,µ ∗ ψk(x) 6= 0. Hence ‖Gf‖∞ . 22k−2j2j−l = 22k−j−l.

Finally, again, because 2−l+N ≥ 2−k the support of Gj,Nk,l is contained in a

union of O(2l−N ) intervals of length O(2−k) and thus in a set of measure
O(2l−N−k). Now (18c) follows.

Consider the case (18d), 2−j ≤ 2−l ≤ 2−k ≤ 2−l+N . Since 2−l+N ≥
2−k there are, for any x, only O(1) indices ν such there exists a µ with
〈ηl,ν , hj,µ〉 6= 0 and hj,µ ∗ψk(x) 6= 0; moreover the set of x for which this can

happen is a union of O(2l−N ) intervals of length O(2−k) and thus of measure
O(2l−N−k). By Lemma 6.3, ‖hj,µ ∗ Ψk‖∞ . 22k−2j , and by Lemma 6.1 we

have, for fixed ν,
∑

µ 2j |〈ηl,ν , hj,µ〉| . 2j−l2j2l−2j . 1 and thus ‖Gj,Nk,l ‖∞ .
22k−2j . Together with the support property of Gj,Nk,l this shows (18d).

Next consider the case (18e), 2−j ≤ 2−l ≤ 2N−l ≤ 2−k. For each x we
have ψk ∗ hj,µ(x) 6= 0 only for those µ with |2−jµ − x| ≤ 2 · 2−k. We can

have 〈ηl,ν , hj,µ〉 6= 0 for some of such µ only when |2−lν − x| ≤ 2 · 2−k
and because of the 2−l+N−2-separateness of the sets supp(ηl,ν) there are

at most 2l−N−k indices ν with this property. For each such ν there are
at most O(2j−l) indices µ such that 〈ηl,ν , hj,µ〉 6= 0. We use the bounds

2j〈ηl,ν , hj,µ〉 = O(2l−j) and ψk ∗ hj,µ(x) = O(22k−2j) to see that |Gj,Nk,l (x)| .
2l−N−k2j−l2l−j22k−2j ; hence ‖Gj,Nk,l ‖∞ . 2l+k−2j−N which gives (18e).

Finally, for (18f), 2−j ≤ 2−k ≤ 2−l, we use l ≥ N . Then by the sepa-

ration of the sets supp(ηl,ν) we see that Gj,Nk,l is supported on the union of

O(2l−N ) intervals Iν of length O(2−l) (containing 2−lν with ν ∈ SN
l ). Thus

Gj,Nk,l is supported on a set of measure 2−N . For x ∈ Iν there are at most

O(2k−j) indices µ with ψk ∗ hj,µ(x) 6= 0. For any such µ we have again



10 ANDREAS SEEGER TINO ULLRICH

2j〈ηl,ν , hj,µ〉 = O(2l−j) and ψk ∗ hj,µ(x) = O(22k−2j). Thus we have the

bound |Gj,Nk,l (x)| . 2k−j2l−j22k−2j ; hence ‖Gj,Nk,l ‖∞ . 23k+l−4j and by the

estimate for the support of Gj,Nk,l we obtain (18f). �

Now let P be the set of pairs (m,n) ∈ Z × Z such that at least one of
the inequalities |m| ≥ R, |n| ≥ R is satisfied. Change variables to write
j = k +m, and l = k +N + n. We estimate the left hand side of (15) as
(19)( ∑

k∈AN

∥∥∥ ∑
(m,n):

(k+m,k+N+n)∈AN×LN
(m,n)6=(0,0)

2−s(n+N)Gk+m,N
k,k+N+n

∥∥∥q
q

)1/q
.

∑
(m,n)∈P

Vm,n

where

Vm,n = 2−s(n+N)
( ∑

k∈AN :
(k+m,k+N+n)∈AN×LN

‖Gk+m,N
k,k+N+n‖

q
q

)1/q
.

We may rewrite the inequalities in Lemma 6.4 and Lemma 6.5 and get
estimates in terms of m,n. Using #AN = O(2N ) this leads to the following
inequalities for m ≤ 0.

Vm,n . 2
N( 1

q
−1−s)

2
−n(1+s)+m(1+ 1

q
)
, m ≤ 0, n ≥ m,(20a)

Vm,n . 2
N( 1

q
−s−1)

2
n( 1
q
−1−s)+m

, m ≤ 0, m−N ≤ n ≤ m,(20b)

Vm,n . 2
(N+n)( 1

q
−s)

2N+n−m, m ≤ 0, n ≤ m−N.(20c)

For m ≥ 0 we get from Lemma 6.5

Vm,n . 2
N( 1

q
−s−1)

2−n(1+s), 0 ≤ m ≤ n,(21a)

Vm,n . 2
N( 1

q
−s−1)

2−m−sn, 0 ≤ n ≤ m ≤ n+N,(21b)

Vm,n . 2
N( 1

q
−s−1)

2
n( 1
q
−1−s)−m

, n ≤ 0 ≤ m ≤ n+N,(21c)

Vm,n . 2
N( 1

q
−s)

2
−2m+n( 1

q
−s)

, n ≤ 0 ≤ n+N ≤ m,(21d)

Vm,n . 2
N( 1

q
−s)

2−2m2n(1−s), 0 ≤ n ≤ m−N,(21e)

Vm,n . 2(N+n)(1−s)−4m, n+N ≤ 0 ≤ m.(21f)

Now use the assumption −1 < s < 1
q − 1, and conclude by summing in m,

n for the various parts. First consider the case m ≤ 0. By (20a),∑
(m,n)∈P
m≤0, n≥m

Vm,n . 2
N( 1

q
−1−s)

( ∑
m≤−R

∑
n≥m

+
∑

−R≤m≤0

∑
n≥R

)
2
m(1+ 1

q
)
2−n(1+s)

.
(
2
−R( 1

q
−s)

+ 2−R(1+s)
)

2
N( 1

q
−1−s)

.(22a)
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By (20b),∑
(m,n)∈P

m≤0,m−N≤n≤m

Vm,n .
( ∑
m≤−R

∑
n≤m

+
∑

−R≤m≤0

∑
n≤−R

)
2
m+(n+N)( 1

q
−s−1)

. 2
−R( 1

q
−s−1)

2
N( 1

q
−1−s)

.(22b)

By (20c),

(22c)
∑

(m,n)∈P
n+N≤m≤0

Vm,n .
∑
m≤0

∑
n≤m−N

2
(n+N)( 1

q
−s+1)−m .q,s 1 .

We now turn to the terms with m ≥ 0. Observe that the conditions
(m,n) ∈ P, 0 ≤ m ≤ n imply n ≥ R, and by (21a) we get∑

(m,n)∈P
0≤m≤n−N

Vm,n . 2
N( 1

q
−1−s) ∑

n≥R
2−n(1+s)n

. R2−R(1+s)2
N( 1

q
−1−s)

.(23a)

By (21b),∑
(m,n)∈P

0≤n≤m≤n+N

Vm,n . 2
N( 1

q
−1−s)

( ∑
m≥R

∑
0≤n≤m

+
∑
n≥R

∑
m≥n

)
2−sn2−m

. 2−R(1+s)2
N( 1

q
−1−s)

.(23b)

By (21c),∑
(m,n)∈P

n≤0≤m≤n+N

Vm,n .
( ∑
−N≤n≤0

∑
m≥R

+
∑

−N≤n≤−R

∑
0≤m≤N+n

)
2

(N+n)( 1
q
−1−s)

2−m

.
(
2−R + 2

−R( 1
q
−1−s))

2
N( 1

q
−1−s)

.(23c)

By (21d), ∑
(m,n)∈P

n≤0≤n+N≤m

Vm,n .
∑

−N≤n≤0

∑
m≥n+N

2
−2m+(n+N)( 1

q
−s)

.
∑

−N≤n≤0

2
(n+N)( 1

q
−s−2) . 1 .(23d)

By (21e), ∑
(m,n)∈P

0≤n≤m−N

Vm,n . 2
N( 1

q
−s)∑

n≥0

2n(1−s)
∑

m≥n+N

2−2m

. 1 .(23e)
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By (21f),

(23f)
∑

(m,n)∈P
n+N≤0≤m

Vm,n .
∑
n≤−N

2(n+N)(1−s)
∑
m≥0

2−4m . 1 .

We combine (19) with the various estimates in (22) and (23) to obtain
(15) with a positive ε < min{s+ 1, 1

q − s− 1}.

7. Concluding remarks

7.1. Endpoint cases. For the endpoint cases p < q, s = 1/q, and q < p,
s = −1/q′ it has been shown in [4] that for any A ⊂ {2j : j ∈ N} with
#A ≈ 2N there is a set E of Haar functions supported in [0, 1] such that
HF(E) ⊂ A and such that

‖PE‖F 1/q
p,q →F

1/q
p,q
& N1/q, 1 < p < q <∞

‖PE‖F−1/q′
p,q →F−1/q′

p,q
& N1−1/q, 1 < q < p <∞

If A is N -separated then these bounds are sharp, as they are matched with
corresponding upper bounds. In all cases the upper bounds are O(N) and
in some cases the lower bounds may be ≈ N . The proofs of these results
in [4] rely on probabilistic arguments. A combination with the ideas in this
paper (using in particular the R-separation in the frequency sets in (4b))
also yields lower bounds for explicit examples of projections. The details
are somewhat lengthy (cf. §6) and we shall not pursue this here.

7.2. Some open problems.

7.2.1. Test functions for the case p < q. Our proofs reduce the case p < q
to the case q < p by duality. It would be interesting to identify suitable test
functions in the case p < q and get a proof which establishes directly the
lower bounds in the range 1/q ≤ s < 1/p.

7.2.2. Multipliers for Haar expansions. Let m ∈ `∞(N × Z). Consider the
operator defined on L2 by

Tmf =
∑
j,µ

m(j, µ)2j〈f, hj,µ〉hj,µ .

When max{−1/p′,−1/q′} < s < min{1/p, 1/q} the operator Tm is bounded
on F sp,q with operator norm . ‖m‖∞ since the Haar system is an uncondi-
tional basis in this case. What is the right condition for boundedness on
F sp,q when either p < q, 1/q ≤ s < 1/p, or q < p, −1/p′ < s ≤ −1/q′?
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7.2.3. Quasi-greedy bases. Compared to unconditionality there is a weaker
property of a basis in a Banach space, called “quasi-greedy”, see [5, §1.4],
which is highly relevant for non-linear approximation. It is known that
“unconditionality” implies “quasi-greedy” but not the other way around, see
[5, §1.1]. Hence it is a natural question (asked by V. Temlyakov) whether
the Haar basis H is quasi-greedy in F sp,q if 1 < p < q, 1/q ≤ s < 1/p and
1 < q < p < ∞, −1/p′ < s ≤ −1/q′. Note that this is already open in the
case q = 2, corresponding to Lp Sobolev spaces Lsp.
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