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Abstra
t. We show that some singular maximal fun
tions and singular Radon transforms satisfy a weak type

L log logL inequality. Examples in
lude the maximal fun
tion and Hilbert transform asso
iated to averages

along a parabola. The weak type inequality yields pointwise 
onvergen
e results for fun
tions whi
h are lo
ally

in L log logL.

1.Introdu
tion

Let � be a 
ompa
t smooth hypersurfa
e of R

d

, and let � be a 
ompa
tly supported smooth density

on �, i.e.

� = �d�

where � 2 C

1

0

(R

d

) and d� is the surfa
e 
arried measure on �.

Unless stated otherwise we shall always make the following

Curvature Assumption. The Gaussian 
urvature does not vanish to in�nite order on �.

We 
onsider a group of dilations on R

d

, given by t

P

= exp(P log t), t > 0, and we assume that P is a

d� d matrix whose eigenvalues have positive real part. For k 2 Z we set Æ

k

= 2

kP

and de�ne the measure

�

k

by

(1.1) h�

k

; fi = h�; f(Æ

k

�)i:

We shall 
onsider the 
onvolutions �

k

� f and study the behavior of the maximal fun
tion

(1.2) Mf(x) = sup

k2Z

j�

k

� f(x)j

and some related singular integrals. By a res
aling we may assume that the measure � is supported in the

unit ball fx : jxj � 1g.

The �rst 
omplete L

p

bounds (1 < p <1) for a 
lass of su
h operators (Hilbert transforms on 
urves)

seems to be due to Nagel, Rivi�ere and Wainger [9℄. A 
lassi
al referen
e is the arti
le by Stein and Wainger

[17℄ 
ontaining many related results; see also the paper by Duoandikoetxea and Rubio de Fran
ia [6℄ whi
h


ontains general results for maximal fun
tions and singular integrals generated by singular measures, with

de
ay assumptions on the Fourier transform. Con
erning the behavior on L

1

it is presently not known

even for the spe
ial 
lasses 
onsidered here whether the maximal operator M is of weak type (1; 1), i.e.
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whether it maps L

1

to the Lorentz spa
e L

1;1

. This question had been raised in [17℄. For some '
at' 
ases


ounterexamples are in [3℄, but these do not seem to apply in the 
ase of our 
urvature assumption.

We shall examine the behavior of the maximal fun
tion on spa
es \near" L

1

. Two results in this

dire
tion are known: Christ and Stein [4℄ showed by an extrapolation argument that if f is supported in

a 
ube Q and f 2 L logL(Q) then the maximal fun
tion Mf belongs to L

1;1

(again under substantially

weaker �nite type assumptions). Moreover Christ [2℄ showed that the la
unary spheri
al maximal fun
tion

maps the standard Hardy spa
e H

1

(R

d

) to L

1;1

, and that maximal fun
tions and Hilbert transforms

asso
iated to a parabola in R

2

map the appropriate Hardy spa
e with respe
t to nonisotropi
 dilations to

L

1;1

. Weak L

1

(see also Grafakos [8℄ and our re
ent paper [12℄ for related results). For the two operators

asso
iated to the parabola (t; t

2

) it is also known ([11℄) that they map the smaller produ
t-type Hardy

spa
e H

1

prd

(R � R) to the smaller Lorentz spa
e L

1;2

.

We re
all that for f to belong to a Hardy spa
e H

1

a rather substantial 
an
ellation 
ondition has to

be satis�ed. If lo
ally the 
an
ellation is missing one has a restri
tion on the size of f ; more pre
isely if

a fun
tion f 2 H

1

is single signed in an open ball then f belongs to L logL(K) for all 
ompa
t subsets

K of this ball. This 
an be dedu
ed from the maximal fun
tion 
hara
terization of H

1

and the fa
t that

f

0

2 L logL(q

0

) if f

0

is supported on the 
ube q

0

and the appropriate variant of the Hardy-Littlewood

maximal fun
tion of f

0

belongs to L

1

(q

0

), see [15, xI.5.2 (
)℄. Here we are interested in the behavior in

Orli
z spa
es near L

1

without assuming additional 
an
ellation 
onditions.

Our main result is that the maximal operator a
ts well on L log logL and the global version satis�es

weak type L log logL inequalities. We �rst give a

De�nition. Let � : R

+

! R

+

be a 
onvex fun
tion and let T be an operator mapping simple fun
tions on

R

d

to measurable fun
tions. T is of weak type �(L) if there is a 
onstant C so that the inequality

(1.3)

�

�

fx 2 R

d

: jTf(x)j > �g

�

�

�

Z

�

�

Cjf(x)j

�

�

dx

holds for all � > 0.

Abusing the notation slightly we shall say that T is of weak type L log logL if there is a 
onstant C so

that the inequality (1.3) holds with �(t) = t log log(e

2

+ t):

Theorem 1.1. The maximal operator M is of weak type L log logL.

We also prove a related theorem on singular 
onvolution operators with kernels supported on hyper-

surfa
es (assuming our �nite type 
urvature assumption).

Let �

k

be as in (1.1) and assume that in addition

(1.4)

Z

d� = 0:

For S
hwartz fun
tions f de�ne the singular integral operator (or singular Radon transform) T by

(1.5) Tf(x) =

X

k2Z

�

k

� f:

Theorem 1.2. T extends to an operator whi
h is of weak type L log logL.
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1.3 Remarks and examples.

1.3.1. Theorem 1.1 implies an estimate on the Orli
z spa
e �(L)(Q

0

) where Q

0

is a unit 
ube and

the norm on �(L) is given by kfk

�(L)

= inff� > 0 :

R

Q

0

�(jf(x)j=�)dx � 1g. Consider the lo
al maximal

operator

M

lo


f(x) = sup

k<C

j�

k

� [f�

Q

0

℄(x)j;

then M

lo


maps L log logL(Q

0

) to L

1;1

. To see this we may assume that kfk

L log logL(Q

0

)

= 1. Then the

estimate

jfx 2 Q

0

:M

lo


f > �gj . �

�1

is trivial for � < 1 while for � > 1 it follows from the better estimate (1.3).

We note that 
onversely the better estimate jfx 2 R

n

:M

lo


f > �gj .

R

�(Cjf(x)j=�) 
an be dedu
ed

from the L log logL(Q

0

) ! L

1;1

boundedness by the Orli
z spa
e variant of Stein's theorem [14℄. Then

the global variant of Theorem 1.1 follows by s
aling and limiting arguments.

1.3.2. Similarly if we assume the 
an
ellation 
ondition (1.4) then the lo
al singular Radon transform

P

k<C

�

k

� [f�

Q

0

℄(x) maps L log logL(Q

0

) to L

1;1

.

1.3.3. Suppose that

R

d� = 1 and suppose that the measurable fun
tion f belongs lo
ally to L log logL;

i.e.

R

K

jf(x)j log log(e

2

+ jf(x)j)dx <1 for every 
ompa
t set K. Then lim

k!�1

�

k

� f(x) = f(x) almost

everywhere.

This follows by a standard argument. Observe that we have

R

�

�1

jf(x)j log log(e

2

+�

�1

jf(x)j)dx <1,

for every � > 0. Fix � > 0 and let




�

(f) =

�

x : lim sup

k!�1

�

k

� f(x)� lim inf

k!�1

�

k

� f(x) > �

	

:

Given " > 0 we show that j


�

(f)j < ". One 
an �nd a bounded fun
tion h with 
ompa
t support so

that

R

�(2Cjf � hj=�)dx � " and sin
e �

k

� h ! h almost everywhere we see that 


�=2

(h) has measure

zero. Moreover j


�

(f)j � j


�=2

(f � h)j+ j


�=2

(h)j and by Theorem 1.1 we see that 


�=2

(f � h) and thus




�

(f) has measure < 2". Sin
e " was arbitrary we see that 


�

(f) has measure zero; thus [

m




2

�m
(f) has

measure zero and the result on pointwise 
onvergen
e follows.

1.3.4. Examples of Theorem 1.1 in
lude the la
unary spheri
al maximal operator where �

k

� f is the

average of f over the sphere of radius 2

k


entered at x (for the early L

p

results see [1℄, [5℄). The sphere

may be repla
ed by any smooth 
ompa
t hypersurfa
e for whi
h the 
urvature vanishes of �nite order only,

and the isotropi
 dilations may be repla
ed by nonisotropi
 ones. We remark that the proof of Theorem

1.1 for isotropi
 dilations is mu
h less te
hni
al, see the expository note [13℄.

1.3.5. Other examples of Theorem 1.1 
on
ern the averages along a parabola

P

r

f(x) =

1

r

Z

r

0

f(x

1

� t; x

2

� t

b

)dt

or higher dimensional versions for paraboloids (t

0

; jt

0

j

b

), b 6= 1. Again if f belongs lo
ally to L log logL

then lim

r!0

P

r

f(x) = f(x) almost everywhere.

1.3.6. Similarly Theorem 1.2 
an be used to dedu
e the weak type L log logL inequality for the Hilbert

transform

Hf(x) = p:v:

Z

1

�1

f(x

1

� t; x

2

� t

b

)

dt

t

:

We give a brief outline of the paper. The main novelty in this paper is a stopping time argument

based on the quantities of thi
kness �

n

and length �

n

asso
iated to a density v(x)dx (depending on an

additional parameter n). Basi
ally, the point is that the length �

n

[v℄ is used to 
ontrol the size of an

ex
eptional set while the thi
kness �

n

[v℄ is used to 
ontrol the L

2

norm of an essential part of the maximal

3



fun
tion outside of the ex
eptional set, for suitable 
hoi
es of v. The quantities of length and thi
kness

are 
omplementary in some sense; this and other basi
 properties are dis
ussed in x2. In x3 we in
lude

preliminary and standard arguments from Calder�on Zygmund theory. These arguments 
an be skipped

by the experts; they may be used to reprove the known L logL estimates. In x4 we des
ribe the stopping

time argument based on length and thi
kness. The proof of the weak-type L log logL inequality for the

maximal operator is given in x5. The bounds for the singular Radon transforms are dis
ussed in x6.

2. Length and thi
kness

In this se
tion let v be an integrable nonnegative fun
tion whi
h vanishes in the 
omplement of a

dyadi
 
ube q. Dyadi
 
ubes are supposed to be `half-open', i.e. of the form

Q

d

i=1

[n

i

2

m

; (n

i

+1)2

m

) where

n

i

;m 2 Z.

We de�ne a dyadi
 version of a one-dimensional Hausdor� 
ontent or simply length �(E) to be

(2.1) �(E) := inf

Q

X

Q2Q

l(Q)

where Q ranges over all �nite 
olle
tions Q of dyadi
 
ubes with E �

S

Q2Q

Q, and l(Q) denotes the

sidelength of Q. Note that this de�nition di�ers from the usual de�nition of a one-dimensional Hausdor�

measure as �(E) � l(Q) if E is 
ontained in the dyadi
 
ube Q.

Given n 2 Zwe denote by E

n

[v℄ the 
onditional expe
tation of v, for the �-algebra generated by dyadi



ubes of sidelength 2

�n

; thus

E

n

[v℄(x) =

X

Q

�

Q

(x)jQj

�1

Z

Q

v(y)dy

where of 
ourse the sum runs over all dyadi
 
ubes of sidelength 2

�n

: We also de�ne

(2.2) S

n

(v) = fx : E

n

[v℄(x) 6= 0g:

Noti
e that v(x) = 0 for almost every x 2 R

d

nS

n

[v℄ sin
e v is nonnegative. Now de�ne

(2.3) �

n

[v℄ = �(S

n

(v)):

Note that S

n

(v) is a union of dyadi
 
ubes of length 2

�n

and therefore the in�mum in the de�nition

of � be
omes a minimum; i.e. there is a 
olle
tion Q of dyadi
 
ubes 
overing the set S

n

(v) so that

�

n

[v℄ =

P

Q2Q

l(Q). Here the 
ubes in Q have to be 
hosen to be of sidelength at least 2

�n

.

Next we de�ne the thi
kness of v to be the quantity

(2.4) �

n

[v℄ := sup

Q

1

l(Q)

Z

Q

v(x)dx

where Q ranges over all dyadi
 
ubes of sidelength l(Q) � 2

�n

. Clearly, if v vanishes o� a dyadi
 
ube q

it is suÆ
ient to only 
onsider dyadi
 sub
ubes of q in (2.4).

We note that the restri
tion to dyadi
 
ubes in the de�nition of length and thi
kness is 
onvenient

but not essential. Sin
e every 
ube of sidelength 2

L

(L 2 Z) is 
ontained in a union of 2

d

dyadi
 
ubes of

sidelength 2

L

we observe that

(2.5)

�

n

[v(�+ a)℄ � 2

d

�

n

[v℄

�

n

[v(�+ a)℄ � 2

d

�

n

[v℄:

4



The quantities of length and thi
kness are 
omplementary. Namely, it is immediate from the de�nitions

of �

n

and �

n

that

(2.6)

Z

v(x)dx � �

n

[v℄�

n

[v℄:

The bound (2.6) 
an be attained, for instan
e if v is the 
hara
teristi
 fun
tion of a dyadi
 box. It would

be desirable to have a 
onverse to (2.6), with bounded 
onstants, but this generally does not hold as the

following example shows. Let E

n

be the union of n + 1 re
tangles R

�

, parallel to the 
oordinate axes,

with dimensions (2

��

; 1) so that the left lower endpoint of R

�

has 
oordinates (�; 0), � = 0; : : : ; n. Let

v

n

= �

E

n

. Then �

n

[v

n

℄ = n + 1,

R

v

n

(x)dx < 2 and �

n

[v

n

℄ = 1; thus the 
onverse of (2.3) fails with a

uniform 
onstant.

However we shall show that v 
an be eÆ
iently de
omposed into a sum of fun
tions for whi
h a 
onverse

of (2.6) does hold. The main result needed to a
hieve this is

Proposition 2.1. Let q be a dyadi
 
ube with l(q) � 2

�n

. Suppose that v is a bounded nonnegative

measurable fun
tion supported in q. Then there exists a de
omposition

v = g + h

with nonnegative fun
tions g and h and g, h vanish in the 
omplement of the set S

n

(v) � q; moreover the

inequalities

(2.7) �

n

[h℄ �

1

2

�

n

[v℄

and

(2.8) �

n

[v℄�

n

[g℄ � 8

Z

g(x)dx

hold.

In parti
ular we see from (2.7/8) that the fun
tion g satis�es

�

n

[g℄�

n

[g℄ � 8

Z

g(x)dx;

thus a 
onverse to (2.6).

We shall �rst prove a te
hni
al result whi
h states that for ea
h dyadi
 
ube one may 
onstru
t a

fun
tion v

I

from v so that v

I

has `
ontrolled' thi
kness and `large' integral.

Lemma 2.2. Let 
 > 0. For any dyadi
 
ube I of sidelength � 2

�n

, there exists a (possibly empty)


olle
tion Q[I ℄ of disjoint dyadi
 
ubes of sidelength � 2

�n


ontained in I, and a measurable fun
tion v

I

su
h that

(2.9) 0 � v

I

(x) � v�

I

(x)

for all x 2 R

d

,

(2.10) �

n

[v

I

℄ � 2


and

(2.11) 2

Z

v

I

(x)dx � 2


X

Q2Q[I℄

l(Q) +

Z

In

S

Q2Q[I℄

Q

v(x)dx:

5



Proof. We prove this by indu
tion on the sidelength of I . We �rst assume that l(I) = 2

�n

. Noti
e that

in this 
ase we have

�

n

[v�

I

℄ =

1

l(I)

Z

I

v(x)dx:

We distinguish two 
ases. First if �

n

[v�

I

℄ � 2
 we 
hoose v

I

= v�

I

and take for Q[I ℄ the empty


olle
tion. Clearly (2.9), (2.10), (2.11) are satis�ed.

Next if �

n

[v�

I

℄ > 2
 we may 
hoose a measurable fun
tion v

I

whi
h vanishes outside I su
h that

0 � v

I

(x) � v�

I

(x) for all x 2 R

d

and

(2.12) 
 �

1

l(I)

Z

I

v

I

(x)dx � 2
:

Clearly �

n

[v

I

℄ � 2
. For Q[I ℄ we take the singleton 
olle
tion fIg and (2.11) is satis�ed be
ause of the

�rst inequality in (2.12).

Now �x a dyadi
 
ube I with l(I) > 2

�n

and suppose that the lemma has been proven for all proper

dyadi
 sub
ubes I

0

of sidelength at least 2

�n

. Partition I into 2

d

sub
ubes I

1

; : : : ; I

2

d of sidelength

1

2

l(I). By the indu
tion hypothesis, we may 
onstru
t 
olle
tions Q[I

j

℄ and measurable fun
tions v

I

j

for

j = 1; : : : ; 2

d

satisfying the properties of the lemma relative to I

j

.

To prove the assertion for I we again distinguish two 
ases. First suppose that

(2.13)

2

d

X

j=1

Z

v

I

j

(x)dx � 2
l(I):

In this 
ase we simply de�ne v

I

(x) :=

P

2

d

j=1

v

I

j

(x) and Q[I ℄ :=

S

2

d

j=1

Q[I

j

℄. Then by the indu
tion

hypothesis

2

Z

v

I

(x)dx =

2

d

X

j=1

2

Z

v

I

j

(x)dx �

2

d

X

j=1

h

2


X

Q2Q[I

j

℄

l(Q) +

Z

I

j

n[

Q2Q[I

j

℄

Q

v(x)dx

i

whi
h is equal to the right hand side of (2.11). From (2.13) it follows that

1

l(I)

Z

v

I

(x)dx � 2


and if Q is a proper dyadi
 sub
ube of I then Q � I

j

for some j and

1

l(Q)

Z

Q

v

I

(x)dx =

1

l(Q)

Z

Q

v

I

j

(x)dx � 2


by the indu
tion hypothesis. Altogether (2.10) follows in 
ase (2.13).

Now suppose that

(2.14)

2

d

X

j=1

Z

v

I

j

(x)dx > 2
l(I):

In this 
ase we 
an �nd a fun
tion v

I

so that v

I

(x) �

P

2

d

j=1

v

I

j

(x) and

(2.15) 
l(I) �

Z

v

I

dx � 2
l(I):

6



We then take for Q[I ℄ the singleton set fIg. Then (2.11) is immediate by (2.15). Clearly also by (2.15)

1

l(I)

R

v

I

(x)dx � 2
. As above we 
an use the indu
tion hypothesis to see that if Q is a proper dyadi


sub
ube, thus 
ontained in an I

j

, we have

1

l(Q)

R

Q

v

I

(x)dx �

1

l(Q)

R

Q

v

I

j

(x)dx � 2
, thus altogether (2.10)

also holds in this 
ase. �

Proof of Proposition 2.1. We de�ne the 
riti
al thi
kness #

n

(v) to be the largest non-negative number


 su
h that the inequality

(2.16) 
�

n

[v℄ � 2


X

Q2Q

l(Q) +

Z

qn

S

Q2Q

Q

v(x)dx

holds for all �nite 
olle
tions Q of dyadi
 
ubes of sidelength 2

�n

(here the empty 
olle
tion is admitted).

Equivalently, one 
an de�ne #

n

(v) by

(2.17) #

n

(v) := inf

Q

R

qn

S

Q2Q

Q

v(x)dx

(�

n

[v℄� 2

P

Q2Q

l(Q))

+

:

Observe that sin
e v vanishes in the 
omplement of q and sin
e all 
ubes have sidelength at least 2

�n

we

are in e�e
t taking the in�mum over a �nite set of 
olle
tions, ea
h 
onsisting of a �nite number of 
ubes,

so that this in�mum be
omes a minimum, and (2.16) holds with 
 = #

n

(v).

Clearly #

n

(v) � �

n

[v℄

�1

R

v(x)dx. Observe also that #

n

(v) > 0 sin
e

R

qn

S

Q2Q

Q

v(x)dx is positive

whenever

P

Q2Q

l(Q) � �

n

[v℄=2.

We 
an now �nd a �nite 
olle
tion Q

1

of dyadi
 
ubes in q, of sidelength at least 2

�n

, so that

(2.18) #

n

(v)�

n

[v℄ = 2#

n

(v)

X

Q2Q

1

l(Q) +

Z

E

�

v(x)dx

where

(2.19) E

�

:= qn

[

Q2Q

1

Q:

We 
laim that

(2.20) �

n

[v�

E

�

℄ � 2#

n

(v):

Indeed, suppose for 
ontradi
tion that there existed a dyadi
 
ube Q

0

su
h that

(2.21)

Z

E

�

\Q

0

v(x)dx > 2#

n

(v)l(Q

0

):

By (2.21) and #

n

(v) > 0 we have jE

�

\ Q

0

j > 0 whi
h implies that Q

0

=2 Q

1

. If we apply (2.16) to the


olle
tion Q

1

[ fQ

0

g we obtain

#

n

(v)�

n

[v℄ � 2#

n

(v)

�

l(Q

0

) +

X

Q2Q

1

l(Q)

�

+

Z

E

�

nQ

0

v(x)dx;

but by (2.18) this implies

Z

E

�

v(x)dx � 2#

n

(v)l(Q

0

) +

Z

E

�

nQ

0

v(x)dx

7




ontradi
ting (2.21). This proves (2.20).

We shall now invoke Lemma 2.2 with 
 = #

n

(v) and I = q, thus �nding a fun
tion v

q

and a 
olle
tion

Q[q℄ obeying the properties in the lemma. We de�ne

g(x) = v(x)�

E

�

(x) + v

q

(x)�

qnE

�

(x)

and

h(x) =

�

v(x) � v

q

(x)

�

�

qnE

�

(x):

Observe that g and h are nonnegative fun
tions. To show (2.7) we use that �

n

[h℄ � �(q n E

�

) sin
e the

latter set is a union of dyadi
 
ubes of sidelength 2

�n

. Thus we observe

�

n

[h℄ �

X

Q2Q

1

l(Q) �

1

2

�

n

[v℄;

by (2.18). This gives (2.7).

To show (2.8) we use that v

q

� v and observe that by (2.11)

Z

g(x)dx �

Z

v

q

(x)dx �

1

2

�

2#

n

(v)

X

Q2Q[q℄

l(Q) +

Z

qn[

Q2Q[q℄

Q

v(x)dx

�

;

sin
e now 
 = #

n

(v). By (2.16) we thus see that

Z

g(x)dx �

1

2

�

n

[v℄#

n

(v):

By (2.20) and (2.10)

�

n

[g℄ � �

n

[v�

E

�

℄ + �

n

[v

q

℄ � 2#

n

(v) + 2#

n

(v) = 4#

n

(v);

we see that �

n

[g℄ � 8�

n

[v℄

�1

R

g(x)dx whi
h is (2.8). �

Remark. There are analogues of Proposition 2.1 where for 0 < � < d the length �(E) is repla
ed by the

�-dimensional Hausdor� 
ontent

�

�

(E) = inf

Q

X

Q2Q

l(Q)

�

where again Q ranges over all �nite 
olle
tions Q of dyadi
 
ubes with E � [

Q2Q

Q. Then if we de�ne

�

�;n

(v) = �

�

(S

n

(v)) and the �-thi
kness by

�

�;n

[v℄ := sup

Q

1

l(Q)

�

Z

Q

v(x)dx

then an assertion analogous to Proposition 2.1 holds true. The proof requires only notational 
hanges.

In what follows it will be 
onvenient to extend the de�nition of length and thi
kness to not ne
essarily

nonnegative fun
tions, and we simply put

�

n

[f ℄ := �

n

[jf j℄; �

n

[f ℄ := �[jf j℄:

Proposition 2.1 
an be applied iteratively. This leads to

8



Proposition 2.3. Suppose that f is integrable and vanishes in the 
omplement of dyadi
 
ube of length 1.

Set h

0

(x) = f(x). For m � 1 we may de
ompose

f = h

m

+

m

X

�=1

g

�

almost everywhere, so that the following properties hold.

(i) h

m

(x) and the g

�

(x) are nonnegative if and only if f is nonnegative, and h

m

(x) and the g

�

(x) are

nonpositive if and only if f is nonpositive.

(ii) �

n

[g

�

℄�

n

[h

��1

℄ � 8

R

jg

�

(x)jdx.

(iii) �

n

[h

m

℄ � 2

�m

�

n

[f ℄.

(iv) If m � n then g

m+1

= h

m

, h

m+1

= 0.

Proof. We �rst extend the statement of Proposition 2.1 to not ne
essarily nonnegative fun
tions, in the

obvious way. We simply de
ompose jf j = ~g+

~

h as in Proposition 2.1, and then de�ne g(x) = ~g(x)sign (f(x)),

and h(x) =

~

h(x)sign (f(x)). We 
an then iterate this pro
edure (de
omposing in the se
ond step the

fun
tion jhj = ~g

2

+

~

h

2

et
.) and obtain the above de
omposition so that statements (i), (ii), (iii) hold.

Also observe that if �

n

[jhj℄ � 2

�n

then S

n

[h℄ is 
ontained in a dyadi
 
ube of sidelength 2

�n

and we

thus know that �

n

[jhj℄�

n

[jhj℄ =

R

jh(x)jdx. This implies statement (iv). �

We now des
ribe how the quantities of length and thi
kness are used in 
ertain 
onvolution estimates

involving the measure � and appropriate lo
alizations �

n

. To de�ne the lo
alization we 
hoose a C

1

fun
tion � with 
ompa
t support in fx : jxj � 1=2g su
h that

R

�(x)dx = 1 and su
h that

Z

�(x)(P (x) � P (0))dx = 0

for all polynomials of degree � d. Set �

n

(x) = 2

nd

�(2

n

x) and let

(2.22) �

n

= �

n

� �:

Lemma 2.4. Let f be supported on a set of diameter at most 10. Then

meas(supp (�

n

� f)) . �

n

[f ℄:

Proof. Note that if Q is a 
ube with 
enter x

Q

and sidelength l(Q) with 2

�n

� l(Q) � 100 and f

Q

is

supported in Q then �

n

� f

Q

is supported on the x

Q

-translate of a tubular neighborhood of � of width

O(l(Q)), thus on a set of measure O(l(Q)). The assertion follows by working with an eÆ
ient 
over of the

support of f arising from the de�nition of �

n

. �

The quantity �

n

[f ℄ 
an be used to estimate the L

2

norm of the support �

n

� f provided that one has a

lower bound for the 
urvature. To make this pre
ise we �rst prove a slight variant of an observation in [7℄.

Lemma 2.5. Let  be a real valued C

1

fun
tion on [�1; 1℄

d

, so that sup

j�j�3

j�

�

 (x)j � A

3

; here A

3

� 1.

Suppose j det 

00

(y

0

)j � � and Q � [�1; 1℄

d�1

is a d� 1 dimensional 
ube of sidelength "

1

�, 
ontaining y

0

,

here "

1

� [10(d� 1)

4

A

3

℄

�1

.

Let � be a C

1

fun
tion supported on Q so that the inequalities k�

�

�k

1

� 


�

("

1

�)

�j�j

hold. De�ne

the measure � by

h�; fi =

Z

�(y

0

)f(y

0

;  (y

0

))dy

0

9



and de�ne the re
e
tion he�; fi = h�; f(��)i.

Then there are 
onstants C

�

so that

j�

�

x

[� � e�℄(x)j � C

�

�

d�3�2j�j

jxj

�1�j�j

:

Proof. We assume that d � 3 but after notational modi�
ation the proof applies also to the 
ase d = 2.

Sin
e � � ~� does not 
hange if we translate the measure we may assume that y

0

= 0.

We 
ompute

h� � e�; fi =

ZZ

f(x� y)d�(x)d�(y)

=

X

k

Z

�(u

0

+ y

0

)�(u

0

)�

k

(u

0

)f(u

0

;  (y

0

+ u

0

)�  (y

0

))dy

0

du

0

:=

X

k

I

k

(f)

where the �

k

form a partition of unity on the unit sphere in R

d�1

whi
h is extended to a homogeneous

fun
tion of degree 0. We assume that the restri
tion of �

k

to the unit sphere is supported on a set of

diameter � "

1

� and the summation is over O(("

1

�)

1�d

) terms. The �

k

satisfy the natural estimates

j�

�

�

k

(u

0

)j � C

�

("

1

�)

�j�j

ju

0

j

�j�j

:

Note that in the integral de�ning I

k

the variables u

0

and y

0

are restri
ted to a ball of radius . "

1

� and u

0

is further restri
ted to a se
tor with solid angle "

1

�.

Now note that by j�

2

x

i

x

j

 j � A

3

, j det 

00

(0)j � � and Cramer's rule we have

(2.23) ju

0

j � �

�1

(d� 1)

2

A

d�1

3

j 

00

(0)u

0

j:

We now pi
k a unit ve
tor �

k

2 supp �

k

.

Let

v

k

=

 

00

(0)�

k

j 

00

(0)�

k

j

and let v

k;2

; : : : ; v

k;d�1

be an orthonormal basis of the orthogonal 
omplement of Rv

k

, and with t

00

=

(t

2

; : : : ; t

d�1

) de�ne w

k

(t

00

) =

P

d�1

i=2

t

i

v

k;i

. Now write y

0

= w

k

(t

00

) + t

1

v

k

and we get

I

k

(f) =

Z

t

00

Z

u

0

Z

t

1

�(u

0

)�

k

(u

0

)�(u

0

+w

k

(t

00

) + t

1

v

k

)f(u

0

;	

k

(t

1

; t

00

; u

0

))dt

1

du

0

dt

00

where

	

k

(t

1

; t

00

; u

0

)) =  (w

k

(t

00

) + t

1

v

k

+ u

0

)�  (w

k

(t

00

) + t

1

v

k

)

=




u

0

;

Z

1

0

r (w

k

(t

00

) + t

1

v

k

+ su

0

)ds

�

:

We wish to 
hange variables in the inner t

1

-integral. Observe that

d

dt

	

k

(t

1

; t

00

; u

0

) =ju

0

jh�

k

;  

00

(0)v

k

i

+ ju

0

j

Z

1

0




�

k

;

�

 

00

(w

k

(t

00

) + t

1

v

k

+ su

0

)�  

00

(0)

�

v

k

�

ds

+ ju

0

j

Z

1

0




u

0

ju

0

j

� �

k

;  

00

(w

k

(t

00

) + t

1

v

k

+ su

0

)v

k

�

ds

=ju

0

jj 

00

(0)�

k

j+ e

1

(t

1

; t

00

; u

0

) + e

2

(t

1

; t

00

; u

0

)(2.24)
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where by our assumption on the third derivatives the error term e

1

is bounded by 2(d� 1)

2

A

3

"

1

�ju

0

j, and

sin
e u

0

2 supp �

k

the error term e

2

is bounded by (d � 1)

2

A

3

"

1

�ju

0

j. The main term is ju

0

jj 

00

(0)�

k

j �

ju

0

j�(d � 1)

�2

A

1�d

3

and thus the derivative �

t

	

k

is single signed and of size � �ju

0

j. Therefore we may

perform the 
hange of variables t

1

7! u

d

= 	

k

(t

1

; t

00

; u

0

) with inverse t

k

1

(u

d

;u

0

; t

00

) and obtain

h� � e�; fi =

X

k

ZZZ

f(u

0

; u

d

)H

k

(u

0

; u

d

; t

00

)du

d

du

0

dt

00

(2.25)

where

H

k

(u

0

; u

d

; t

00

) =

�

k

(u

0

)�(u

0

)�(u

0

+w

k

(t

00

) + t

1

v

k

)

j�

t

	

k

(t

k

1

(u

d

;u

0

; t

00

); t

00

; u

0

)j

:

We have the estimate

jH

k

(u

0

; s; t

00

)j . �

�1

ju

0

j

�1

and H

k

(u

0

; u

d

; t

00

) vanishes if ju

0

j � Cju

d

j or ju

0

=ju

0

j � �

k

j � "

1

� or jt

00

j � �. Integrating in t

00

yields a

fa
tor of O(�

d�2

) and sin
e

P

k

�

k

(u

0

) = O(1) we obtain the 
laimed estimate for � = 0. The estimates for

the derivatives follow by a straightforward examination of the derivatives of t

k

1

(u

d

;u

0

; t

00

) and appli
ations

of the 
hain rule. We omit the details. �

Now let �

n

be as in (2.22).

Lemma 2.6. There is a small 
onstant "

1

depending only on � so that the following holds for � � 1.

Let � 2 C

1

0

is supported on a set of diameter "

1

� and suppose that the support of � 
ontains a point

P on � where the Gaussian 
urvature satis�es jK(P )j � �. Let �

n

= �

n

� �. Suppose that f is supported

on a set of diameter 1. Then

ke�

n

� �

n

� fk

1

. �

d�3

(1 + n)�

n

[f ℄:

Proof. After lo
alization and a 
hange of variable we may redu
e to the situation of Lemma 2.5.

Noti
e that j�

n

(x)j . 2

n

sin
e � is a density on a hypersurfa
e. By Lemma 2.5 we have

je�

n

� �

n

� f(x)j . �

d�3

Z

minf2

n

;

1

jx� yj

gjf(y)jdy

and we observe that

Z

jx�yj�2

�n

2

n

jf(y)jdy � 2

d

�

n

[f ℄

and

Z

2

�`

�jx�yj�2

�`+1

1

jx� yj

jf(y)jdy � 2

d+1

�

n

[f ℄; 0 � ` � n:

The asserted estimate follows by summing over ` = 0; : : : ; n. �

Finally we also need the behavior of the quantities of length and thi
kness under nonisotropi
 dilations.

Here we will have to 
ompare isotropi
 dilations to nonisotropi
 ones. Let � = tra
e(P ) and denote by �

j

the eigenvalues of P . Then we may 
hoose positive 
onstants a, A so that

(2.26) a < Re(�

j

) < A < �:

Then there are positive 
onstants 


1

� C

1

so that for all x

(2.27) 


1

t

a

jxj � jt

P

xj � C

1

t

A

jxj; t � 1:
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Lemma 2.7. Suppose that f is integrable and vanishes in the 
omplement of a 
ompa
t set.

Then there is a 
onstant C depending only on the dilation group and the dimension, so that

(2.28) �

n

[f(Æ

j

�)℄ � C2

�j(��A)

�

n

[f ℄; if j � 0

and

(2.29) �

n

[f(Æ

�m

�)℄ � C2

Am

�

n

[f ℄; if m � 0:

Proof. Let j � 0 and let Q be a dyadi
 
ube of sidelength l(Q) � 2

�n

. Then Æ

j

Q is 
ontained in the

union of at most 2

d

dyadi
 
ubes fq

i

g, of sidelength � 2

jA

l(Q). Thus

l(Q)

�1

Z

Q

jf(Æ

j

x)jdx = 2

�j�

l(Q)

�1

Z

Æ

j

Q

jf(u)jdu

� 2

�j�

X

i

C

0

(2

�Aj

l(q

i

))

�1

Z

q

i

jf(u)jdu � C

0

2

d

2

�j(��A)

�

n

[f ℄:

If we take the supremum over all dyadi
 
ubes we obtain (2.28).

Next let m � 0. Let Q

1

; : : : ; Q

N

be a 
over of S

n

(jf j). Let Q

�

i

be the double 
ube (dilated with respe
t

to the 
enter of Q

i

).

Now S

n

(jf j) = [

M

1

�=1

R

�

where the R

�

are dyadi
 2

�n


ubes with 
enter x

�

on whi
h the expe
tation

E

n

[jf j℄ does not vanish. Let R

�

�;m

be the union of dyadi
 
ubes of sidelength 2

�n

whi
h interse
t Æ

m

R

�

.

Then S

n

(jf(Æ

�m

�)j) is 
ontained in [

M

1

�=1

R

�

�;m

.

Sin
e m � 0 ea
h R

�

�;m

is 
ontained in a 2-dilate of Æ

m

R

�

relative to the 
enter Æ

m

x

�

. Thus the union

of the R

�

�;m

is 
ontained in the union of the dilates Æ

m

Q

�

i

. Ea
h Æ

m

Q

�

i

is 
ontained in no more than 4

d

dyadi
 
ubes of sidelength 2

[mA+3℄

l(Q

i

). Consequently

�

n

[f(Æ

�m

�)℄ � C2

Am

N

X

i=1

l(Q

i

):

If we work with an eÆ
ient 
over of S

n

(jf j) we obtain (2.29). �

3. Preliminary Calder�on-Zygmund redu
tions

We shall begin with some redu
tions from standard Calder�on-Zygmund theory. The estimates in this

se
tion together with a trivial L

1

estimate will only imply the known weak-type L logL inequality (see

Corollary 3.1 below) but they apply to more general operators than those dis
ussed in the introdu
tion.

In this se
tion we shall assume that the measure � satis�es

(3.1) jb�(�)j . (1 + j�j)

�


for some positive 
 (without loss of generality 
 � (d� 1)=2).

When estimating the singular integral operator (1.5) we shall assume the additional 
an
ellation 
on-

dition (1.4). We note that the original hypothesis of the 
urvature not vanishing to in�nite order implies

an estimate (3.1) for some 
 > 0, by an appli
ation of van der Corput's lemma.

We shall apply a nonisotropi
 version of Calder�on-Zygmund theory (see [10℄, [16℄). Let � be a homo-

geneous distan
e fun
tion whi
h satis�es �(t

P

x) = t�(x) for all x and �(x) = 1 if jxj = 1. If x

0

2 R

d

and

12



�

0

> 0 then we set B(x

0

; �

0

) = fx : �(x � x

0

) � �

0

g and we refer to B(x

0

; �

0

) as the ball with 
enter x

0

and �

0

(see [17℄ for a dis
ussion of su
h distan
e fun
tions). Noti
e that

B(x

0

; �

0

) = fx : j�

�P

0

(x� x

0

)j � 1g:

We note that jxj

1=a

. �(x) . jxj

1=A

if jxj � 1 and jxj

1=A

. �(x) . jxj

1=a

if jxj � 1, see (2.26/27) above.

Let M

HL

be the analogue of the Hardy-Littlewood maximal fun
tion asso
iated to the family of these

nonisotropi
 balls, i.e. M

HL

f(x) = sup

x2B

jBj

�1

R

B

jf(y)jdy where the supremum is taken over all balls

B = B(x

0

; �

0

) whi
h 
ontain x.

We now �x � > 0 and de�ne 
 = fx :M

HL

f > �g and thus

j
j . �

�1

kfk

1

:

By an analogue of the Lebesgue di�erentiation theorem we also know that jf(x)j � � for all x 2 R

d

n
.

The Calder�on-Zygmund de
omposition is based on a Whitney type de
omposition. A

ording to [16,

p.15℄ there are 
onstants K

1

> 1, K

2

> 2, K

3

> 1 (depending only on the distan
e fun
tion �), and a

sequen
e of balls B

1

; : : : ; B

j

; : : : , with B

j

= B(x

j

; �

j

), and a sequen
e W of measurable sets (`generalized

Whitney 
ubes') w

1

; : : : ; w

j

; : : : , so that the following properties are satis�ed:

(a) The B

j

are pairwise disjoint.

(b) If B

�

j

= B(x

j

;K

1

�

j

) then the numbers K

1

�

j

belong to f2

j

: j 2 Zg and

S

j

B

�

j

= 
. Moreover ea
h

x 2 
 is 
ontained in no more than K

3

of the balls B

�

j

.

(
) B

j

� w

j

� B

�

j

(d) The w

j

are pairwise disjoint, and we have

S

w

j

= 
.

(e) If B

��

j

= B(x

j

;K

2

�

j

) then B

��

j

\ (R

d

n
) 6= ;.

(f) Ea
h B

��

j

is 
ontained in 


�

= fx :M

HL

(�




) > (10K

2

)

��

g and thus

(3.2) meas(


�

) . �

�1

kfk

1

.

Z

�(jf j=�)dx:

We thus get a de
omposition f = g +

P

w2W

f

w

where f

w

(x) = f(x) if x 2 w and jf(x)j > � and

f

w

(x) = 0 otherwise; moreover jg(x)j . � and jwj

�1

R

jf

w

jdx . � for ea
h w. The sets w play the role of

the usual Whitney 
ubes. For ea
h w 2W we assign a point x

w

and an integer r(w) by setting x

w

j

= x

j

and r(w

j

) = log

2

(K

1

�

j

).

In what follows we 
hoose 
 > 0 small, spe
i�
ally the 
hoi
e

(3.3) 
 <

1

2

minf1; 
g

works. We then further de
ompose f

w

by setting

f

n

w

(x) = f

w

(x) if 2


(n�1)

� < jf

w

(x)j � 2


n

�:

Observe that f

w

=

P

1

n=1

f

n

w

and

1

X

n=1

1

jwj

Z

jf

n

w

(x)jdx . �:

We also let

g

n

w

(x) = �

w

(x)

1

jwj

Z

w

f

n

w

(y)dy;

b

n

w

(x) = f

n

w

(x)� g

n

w

(x);

13



and

g

n

(x) =

X

w

g

n

w

(x); b

n

(x) =

X

w

b

n

w

(x):

Now

(3.4)

1

X

n=1

jg

n

w

(x)j �

1

jwj

Z

w

1

X

n=1

jf

n

w

(y)jdy �

w

(x) �

1

jwj

Z

w

jf

w

(y)jdy �

w

(x) . �;

moreover

(3.5)

1

X

n=1

jg

n

(x)j . �

and

(3.6)

1

X

n=1

�

kg

n

w

k

1

+ kb

n

w

k

1

�

.

Z

w

jf(x)jdx . �jwj:

It will also be ne
essary to de
ompose the measure � further. Let �

n

be the regularization de�ned in

(2.22) and let

�

n

k

(x) = 2

�k�

�

n

(2

�kP

x):

For our basi
 de
omposition of the singular Radon transform we set f

n

=

P

w

f

n

w

and using f =

g +

P

n

f

n

= g +

P

n

g

n

+

P

n

b

n

we split

X

k2Z

�

k

� f = H

I;1

+H

I;2

+H

I;3

+H

b

where

(3.7)

H

I;1

=

X

k2Z

�

k

� g

H

I;2

=

X

k2Z

X

n�1

(�

k

� �

n

k

) � f

n

H

I;3

=

X

k2Z

X

n�1

�

n

k

� g

n

H

b

=

X

k2Z

X

n�1

�

n

k

� b

n

:

A further de
omposition is ne
essary for H

b

. For given n � 1, l 2 Z we de�ne

(3.8)

I

n

l

= [ln; (l+ 1)n)

(I

n

l

)

�

= [(l � 1)n; (l + 1 +

2

a

)n℄

and set

B

n

l

=

X

w:r(w)2I

n

l

b

n

w

:
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We split H

b

= H

II

+H

III

where

(3.9)

H

II

=

X

n�1

X

l2Z

X

k2Zn(I

n

l

)

�

�

n

k

�B

n

l

H

III

=

X

n�1

X

l2Z

X

k2(I

n

l

)

�

�

n

k

�B

n

l

:

Note that H

II

is the portion of H

b

where the s
aling of the measures �

n

k

is very di�erent from the s
aling of

the balls w, whi
h enables us to use standard L

1

arguments in the 
omplement of the set 


�

. The diÆ
ult

term to estimate is H

III

.

We shall show that

3

X

i=1

kH

I;i

k

2

. �

1=2

kfk

1=2

1

(3.10.1)

kH

II

k

L

1

(R

d

n


�

)

. kfk

1

(3.10.2)

From (3.10.1/2) we get by Chebyshev's inequality

meas

�n

x :

3

X

i=1

jH

I;i

(x)j > �=10g

�

. �

�2










3

X

i=1

jH

I;i

j










2

2

. �

�2

h

3

X

i=1

kH

I;i

k

2

i

2

. �

�1

kfk

1

(3.11)

and

(3.12) meas

��

x 2 R

d

n


�

: jH

II

(x)j > �=10g

�

. �

�1

kfk

1

:

We now prove the L

2

bounds (3.10.1) using standard arguments. The 
an
ellation of � = �

0

implies

that




�

0

(�) = O(j�j) and sin
e �

0

is smooth we get

(3.13) j




�

0

(�)j . minfj�j; j�j

�N

g

for large N .

Even without su
h a 
an
ellation assumption the di�eren
e �

n

��

n�1

does have 
an
ellation and using

the de
ay assumption (3.1) on the Fourier transform of � it is straightforward to 
he
k that for m � 1

(3.14) j




�

m

(�)�

\

�

m+1

(�)j . 2

�m


minf2

�m

j�j; (2

�m

j�j)

�N

g:

Indeed the left hand side of (3.14) is . (1 + j�j)

�


j

b

�(2

�m

�) �

b

�(2

�m�1

�)j and sin
e

b

�(�) = 1 + O(j�j

d

)

we obtain the bound 2

�m


(2

�m

j�j)

d�


whi
h yields the 
laim for j�j � 2

m+1

sin
e also d � 
 > 1. For

j�j � 2

m+1

we use that jb�

m

(�)j � C

N

j�j

�


(1 + 2

�m

j�j)

�N

.

Sin
e




�

n

k

(�) =




�

n

(Æ

�

k

�) we obtain using (3.13), (3.14) that

(3.15)

X

k2Z

j




�

0

k

(�)j . 1

X

k2Z

j




�

m

k

(�)�

\

�

m�1

k

(�)j . 2

�m


:
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We re
over the well-known result that T is L

2

bounded, and as a 
onsequen
e of the last displayed

inequality we also get










X

k2Z

(�

k

� �

n

k

) � f










2

.

1

X

m=n










X

k2Z

(�

m+1

k

� �

m

k

) � f










2

. 2

�n


kfk

2

:

Now 
learly







H

I;1







2

2

=










X

k2Z

�

k

� g










2

2

. kgk

2

2

. �kfk

1

and using (3.13) and (3.14) we also obtain







H

I;2







2

2

�

�

X

n�1










X

k2Z

(�

k

� �

n

k

) � f

n










2

�

2

.

�

X

n�1

2

�n


kf

n

k

2

�

2

.

X

n�1

2

�n


kf

n

k

2

2

.

X

n�1

2

�n


kf

n

k

1

2


(n+1)

� . �kfk

1

by our 
hoi
e of 
 in (3.3). Moreover







H

I;3







2

2

=










X

k2Z

X

n�1

�

�

0

k

+

n�1

X

m=0

(�

m+1

k

� �

m

k

) � g

n

�










2

2

�

�










X

k2Z

�

0

k

�

X

n�1

g

n










2

+

1

X

m=0










X

k2Z

(�

m+1

k

� �

m

k

) �

X

n>m

g

n










2

�

2

.

�

1

X

m=0

2

�m











X

n>m

g

n










2

�

2

. �kfk

1

:

Finally we prove the L

1

bound (3.10.2). Suppose that r(w) 2 I

n

l

. For k � max(I

l

n

)

�

(thus k � r(w) �

2n=a) we use the 
an
ellation of b

n

w

and obtain with y

w

2 w

�

n

k

� b

n

w

(x) =

Z

2

�k�

�

�

n

(Æ

�k

(x � y))� �

n

(Æ

�k

(x � y

w

))

�

b

n

w

(y)dy

= 2

�k�

Z

hÆ

�k

(y � y

w

);r�

n

(Æ

�k

(x� y

w

+ s(y � y

w

)))ib

n

w

(y)dy

and sin
e jÆ

�k

(y � y

w

)j . 2

(r(w)�k)a

for y 2 w and kr�

n

k

1

= O(2

n

) we get

Z

j�

n

k

� b

n

w

(x)jdx . 2

n

2

(r(w)�k)a

kb

n

w

k

1

:

Moreover noti
e that by our assumption that � is supported in the unit ball we have that �

n

k

� b

n

w

is

supported in 


�

if k < min(I

n

l

)

�

.

Thus

kH

II

k

L

1

(R

d

n


�

)

�

X

n�1

X

l2Z

X

k�max(I

n

l

)

�

k�

n

k

�B

n

l

k

1

.

X

n�1

X

l2Z

X

k�max(I

n

l

)

�

X

r(w)2I

n

l

2

n

2

(r(w)�k)a

kb

n

w

k

1

.

X

n�1

X

l2Z

2

�n

X

r(w)2I

n

l

kb

n

w

k

1

. kfk

1

;
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by the de�nition of (I

n

l

)

�

. Thus (3.10.2) is proved.

A de
omposition similar to (3.7), (3.9) applies to the maximal operator where no 
an
ellation on � is

assumed. We have

sup

k

j�

k

� f j �M

I;1

+M

I;2

+M

I;3

+M

II

+M

III

where

(3.16)

M

I;1

= sup

k2Z

j�

k

� gj

M

I;2

=

X

n�1

sup

k2Z

j(�

k

� �

n

k

) � f

n

j

M

I;3

=

X

n�1

sup

k2Z

j�

n

k

� g

n

j

M

II

=

X

n�1

X

l2Z

sup

k2Zn(I

n

l

)

�

j�

n

k

�B

n

l

j

M

III

=

X

n�1

X

l2Z

sup

k2(I

n

l

)

�

j�

n

k

�B

n

l

j

Con
erning the L

2

boundedness we observe that sup

k

j�

0

k

� f j is pointwise 
ontrolled by the Hardy-

Littlewood maximal fun
tion M

HL

f , asso
iated to the given dilation group. Therefore

(3.17)







sup

k

j�

0

k

� f j







2

. kfk

2

:

Again by Fourier transform arguments as above







sup

k

j(�

m

k

� �

m�1

k

) � f j







2

.










�

X

k

j(�

m

k

� �

m�1

k

) � f j

2

�

1=2










2

. 2

�m


�

Z

X

k

j




�

m

k

(�)�

\

�

m�1

k

(�)j

2

j

b

f(�)j

2

d�

�

1=2

. 2

�m


k

b

fk

2

. 2

�m


kfk

2

:

This shows that we 
an repeat the arguments for H

I

above and get

(3.18)

3

X

i=1

kM

I;i

k

2

. �

1=2

kfk

1=2

1

:

In the de�nition of M

II

we may repla
e the sup over k =2 (I

n

l

)

�

by the sum and the estimation is exa
tly

the same as for H

II

above. This yields

(3.19) kM

II

k

L

1

(R

d

n


�

)

. kfk

1

:

We 
ombine these estimates with (3.2) and we see that in order to prove Theorems 1.1 and 1.2 we are left

to prove the inequalities

measfx : jM

III

j >

4

5

�g .

Z

jf(x)j

�

log log(e

2

+

jf(x)j

�

)dx(3.20)

measfx : jH

III

j >

4

5

�g .

Z

jf(x)j

�

log log(e

2

+

jf(x)j

�

)dx(3.21)

This will be done in x5 and x6 below.

Weak type L logL estimates. We note that weak type L logL inequalities for T and M 
an be already

obtained from trivial L

1

estimates for H

III

and M

III

. Here we are essentially reproving the result in [4℄.
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Corollary 3.1. Let � be a 
ompa
tly supported Borel measure satisfying

jb�(�)j � C(1 + j�j)

�


:

Then M is of weak type L logL. If in addition the 
an
ellation 
ondition

R

d�(x) = 0 holds, then T is of

weak type L logL.

Proof. Given our previous estimates we just have to estimate the measure of the sets where M

III

> �

or jH

III

j > �. We simply use Chebyshev's inequality and are left with estimating �

�1

kM

III

k

1

and

�

�1

kH

III

k

1

, respe
tively. Using that the L

1

norm of �

n

k

is uniformly bounded in k; n we get

kH

III

k

1

�

X

n�1

X

l2Z

X

k2(I

n

l

)

�

k�

n

k

�B

n

l

k

1

.

X

n�1

X

l2Z

X

k2(I

n

l

)

�

X

r(w)2I

n

l

kb

n

w

k

1

.

X

n�1

X

l2Z

X

r(w)2I

n

l

nkb

n

w

k

1

.

X

n�1

nkf

n

k

1

.

Z

jf(x)j log(e+

jf(x)j

�

)dx

and the same argument applies to M

III

. �

4. A stopping time argument

In order to re�ne the previous estimates for M

III

and H

III

we need a further de
omposition of b

n

w

.

Here we use a stopping time argument based on length �

n

(and thi
kness �

n

). The reader will note some

similarities with Christ's stopping time argument in [2℄.

In what follows Q

0

will denote the set of dyadi
 unit 
ubes of the form (n

1

; : : : ; n

d

) + [0; 1)

d

, n

i

2 Z.

Proposition 4.1. For every n and every w with r(w) 2 I

n

l

there is a de
omposition

(4.1) b

n

w

=

X

�2(I

n

l

)

�

f

n;�

w

so that the following properties are satis�ed.

(i)

(4.2)

X

�2(I

n

l

)

�

jf

n;�

w

j = jb

n

w

j:

(ii) For every q 2 Q

0

, � 2 (I

n

l

)

�

(4.3) �

n

�

X

r(w)<�

f

n;�

w

(Æ

�

�)�

q

�

� �

�1

X

r(w)<�

Z

q

jf

n;�

w

(Æ

�

y)jdy:

(iii) For every q 2 Q

0

, and for every � 2 (I

n

l

)

�

and s � 1 with �+ s 2 (I

n

l

)

�

,

(4.4) �

n

�

X

r(w)��

f

n;�

w

(Æ

�+s

�)�

q

�

� 16(n+ 1)�:

Proof. This is proved by an indu
tive 
onstru
tion.

We shall give a de
omposition of

G

0

=

X

w:r(w)2I

n

l

b

n

w

;

sin
e the w are disjoint this will yield a de
omposition of ea
h b

n

w

. Set �

max

n;l

= max(I

n

l

)

�

and �

j

= �

max

n;l

�j.

We shall establish the following
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Claim. For N = 0; 1; : : : we 
an de
ompose

G

0

=

N

X

j=0

[H

j

+ S

j

℄ +G

N

so that

(i) G

j�1

= H

j

+ S

j

+G

j

if j � 1

(ii) G

j

=

P

q2Q

0

P

L(j;Q)

�=1

G

j;q

�

, where G

j;q

�

vanishes in the 
omplement of Æ

�

j

q and

�

n

[G

j;q

�

(Æ

�

j

�)℄ � 8�:

Moreover

L(j;Q) � n+ 1:

(iii)

H

j

(x) = 0 if x =2

[

r(w)<�

j

w

S

j

(x) = 0 if x =2

[

r(w)=�

j

w

G

N

(x) = 0 if x =2

[

r(w)<�

N

w:

(iv) For ea
h q 2 Q

0

,

�

n

�

H

j

(Æ

�

j

�)�

q

�

� �

�1

Z

q

jH

j

(Æ

�

j

y)jdy:

(v) For � > �

j

, � 2 (I

n

l

)

�

and ea
h q 2 Q

0

,

�

n

�

H

j

(Æ

�

�)�

q

�

+�

n

�

S

j

(Æ

�

�)�

q

�

� 16(n+ 1)�:

(vi) The fun
tions G

j

, G

j;q

�

, H

j

, S

j

are nonnegative at x (nonpositive) if and only if f(x) is nonnegative

(nonpositive).

If we a

ept the 
laim then in order to 
omplete the proof of the proposition we observe that in the

above statement � = �

j

= �

max

n;l

� j and thus we merely have to de�ne

f

n;�

w

(x) =

8

>

<

>

:

H

�

max

n;l

��

(x) if x 2 w; r(w) < � � �

max

n;l

;

S

�

max

n;l

��

(x) if x 2 w; r(w) = �

0 if x =2 w or if � < r(w):

Then (4.1) follows from (iii) and (4.2) from (4.1) and (vi). (4.3) is a 
onsequen
e of (iv) and (4.4) follows

from (v).

Proof of the Claim. We argue by indu
tion and assume that either N = 0 or that N > 0 and statements

(i)-(vi) hold for all j � N � 1.

If N = 0 we set S

0

= H

0

= 0 and G

0

= G

0

. If N � 1 we begin by de�ning fun
tions S

N

, G

N

where

S

N

(x) = G

N�1

(x) if x 2

S

r(w)=�

N

w and S

N

(x) = 0 otherwise, and G

N

(x) = G

N�1

(x) � S

N

(x). Thus

G

N

is supported on

S

r(w)<�

N

w and 
oin
ides with G

N�1

there. Note that G

N

vanishes if �

j

< min I

n

l

and the 
onstru
tion stops then.
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We now use Proposition 2.3 to de
ompose for q 2 Q

0

G

N

(Æ

�

N

x)�

q

(x) =

L

X

�=1

g

N;q

�

+ h

N;q

L

so that �

n

[g

N;q

�

℄�

n

[h

N;q

��1

℄ � 8

R

jg

N;q

�

jdx and h

N;q

L

vanishes for L � n + 1. Also the signs of the fun
tions

g

N;q

�

, h

N;q

L


oin
ides with the sign of G

N

(Æ

�

N

(x))�

q

(x) and we have h

N;q

��1

= g

N;q

�

+ h

N;q

�

for � � 1 with

�

n

[h

N;q

�

℄ � �

n

[h

N;q

��1

℄=2.

Let L(N; q) be the minimal integer L so that

(4.5) �

n

[h

N;q

L

℄ � �

�1

Z

jh

N;q

L

(y)jdy:

Then L(N; q) � n+ 1 (sin
e h

N;q

L

vanishes for L � n+ 1).

Now, �

n

[h

N;q

��1

℄ � �

�1

R

jh

N;q

��1

(y)jdy for � � L(N; q), by the minimality of L(N; q), and sin
e jg

N;q

�

j �

jh

N;q

��1

j we get

(4.6) �

n

[g

N;q

�

℄ � 8

R

jg

N;q

�

(y)jdy

�

n

[h

N;q

��1

℄

� 8�:

Now de�ne G

N;q

�

(x) = g

N;q

�

(Æ

��

N

x), for � � L(N; q), and G

N

(x) =

P

q2Q

0

P

L(N;q)

�=1

G

N;q

�

(x). Moreover

H

N;q

(x) = h

N;q

L(N;q)

(Æ

��

N

x) and H

N

(x) =

P

q2Q

0

H

N;q

(x). Then the statement (vi) about the sign of G

N;q

�

,

G

N

and H

N

holds. (iv) follows from (4.5). Statements (i) and (iii) hold by 
onstru
tion, and the inequality

for the thi
kness in (ii) holds by (4.6) by (4.6).

In view of (i), (vi) we also have jH

N

j + jS

N

j � jG

N�1

j � jG

N�s

j for s � 1 so that by statement (ii)

for j � N � 1 we get

�

n

[H

N

(Æ

�

N

+s

�)�

q

℄ + �

n

[S

N

(Æ

�

N

+s

�)�

q

℄ = �

n

[H

N

(Æ

�

N�s

�)�

q

℄ + �

n

[S

N

(Æ

�

N�s

�)�

q

℄

� 2�

n

[G

N�s

(Æ

�

N�s

�)�

q

℄ � 16

L(N�s;q)

X

�=1

�

n

[G

N�s;q

�

(Æ

�

N�s

�)℄ � 16L(N � s; q)� � 16(n+ 1)�

This implies (v) for j = N and the Claim is proved. �

5. The main estimate for the maximal fun
tion

We shall prove the nontrivial estimate (3.20) for the maximal fun
tion, assuming again that the 
ur-

vature assumption in the introdu
tion is satis�ed, and prove the inequality

(5.1) meas

�n

x : sup

k

�

�

X

n;l

k2(I

n

l

)

�

�

n

k

�B

n

l

�

�

> �

o�

�

Z

�(jf j=�)dx

with �(t) = t log log(e

2

+ t).

We use the de
omposition in Proposition 4.1 and form an additional ex
eptional set O

1

. To de�ne it

we set for q 2 Q

0

, � 2 (I

n

l

)

�

,

(5.2) F

n;l;�

q

(x) =

X

r(w)2I

n

l

r(w)<�

f

n;�

w

(x)�

q

(Æ

��

x):
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and de�ne

(5.3) O

1

=

1

[

n=1

[

l2Z

[

�2(I

n

l

)

�

[

q2Q

0

[

k2(I

n

l

)

�

k��

supp

�

�

n

k

� F

n;l;�

q

�

;

moreover we de�ne

(5.4) O = O

1

[ 


�

where 


�

is as in (3.2).

To estimate the measure of O

1

observe that supp (�

n

k

� F

n;l;�

q

) = Æ

k

supp (�

n

0

� [F

n;l;�

q

(Æ

k

�)℄) and sin
e

for k � � the fun
tion F

n;l;�

q

(Æ

k

�) is supported in a set of bounded diameter we get by (2.29) and (4.3)

meas

�

supp (�

n

k

� F

n;l;�

q

)

�

= 2

k�

meas

�

supp (�

n

0

� [F

n;l;�

q

(Æ

k

�)℄)

�

. 2

k�

�

n

[F

n;l;�

q

(Æ

k

�)℄ . 2

k�

2

(��k)A

�

n

[F

n;l;�

q

(Æ

�

�)℄

. 2

k�

2

(��k)A

�

�1

Z

jF

n;l;�

q

(Æ

�

y)jdy . 2

(k��)(��A)

�

�1

Z

jF

n;l;�

q

(y)jdy:

Thus, we 
an sum a geometri
 series in k � � and obtain

meas(O

1

) .

1

X

n=1

X

l2Z

X

�2(I

n

l

)

�

X

q2Q

0

�

�1

Z

jF

n;l;�

q

(y)jdy .

1

X

n=1

X

w

�

�1

Z

jb

n

w

(y)jdy

. �

�1

1

X

n=1

X

w

Z

jf

n

w

(y)jdy . �

�1

Z

jf(y)jdy(5.5)

and the measure of O = O

1

[ 


�

satis�es the same estimate. Note that the 
ontributions for k � �,

r(w) = � are also supported in O sin
e � is assumed to be supported in the unit ball and thus

1

[

n=1

[

l2Z

[

w:r(w)2I

n

l

[

k�r(w)

supp

�

�

n

k

� f

n;r(w)

w

�

� 


�

:

It now remains to handle the 
ontribution in the 
omplement of O whi
h only involves the s
ales k > �

and 
ontributions for r(w) 2 I

n

l

with r(w) � �; to simplify the notation below we set

I

n;�

l

= fr 2 I

n

l

: r � �g:

We shall �rst 
ut out a 
ontribution from '
at' parts of �. We re
all that the 
urvature does not vanish

to in�nite order on � and therefore there is a number � > 0 su
h that

(5.6)

Z

�

jK(x)j

��

d�(x) <1:

This is well known (for example, one may use an argument in [16, p.343℄ to redu
e to an inequality in one

dimension where one 
an use H�older's inequality and 
ompa
tness).

By Chebyshev's inequality (5.6) implies that

(5.7) jfx 2 � : jK(x)j � n

�3=�

gj . n

�3

:
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Now we use a partition of unity to write

� =

X

i2J

n

�

i;n

where ea
h �

i;n

is supported on a 
ube R

i

of diameter "

1

n

�3=�

(here "

1

will be as in Lemma 2.6) and the

supports of the �

i;n

have bounded overlap, independent of n. Note that then

(5.8) 
ard(J

n

) . n

3(d�1)=�

:

We split the index set into disjoint subsets as J

n

= J

n

1

[ J

n

2

where J

n

2


onsists of all i 2 J with the

property that jK(x

0

)j � n

�3=�

for all x

0

2 supp R

i

.

Then by (5.7) we have that the sum of the total variations of the �

i;n

, for whi
h i 2 J

n

2

, satis�es the

bound

X

i2J

n

2







�

i;n







. n

�3

:

Let

�

i;n

= �

i;n

� �

n

and �

i;n

k

= 2

�k�

�

i;n

(2

�kP

�).

Sin
e the 
ardinality of (I

n

l

)

�

is O(n) and

P

i2J

n

2

k�

i;n

k

k

1

= O(n

�3

) the 
ontribution of the measures

P

i2J

n

2

�

i;n

k

, k 2 (I

n

l

)

�


an be handled by a straightforward L

1

estimate:

meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k

X

i2J

n

2

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

�

�

�

> �=10

o�

. �

�1










X

n;l

X

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k

X

i2J

n

2

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

j










1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

k2(I

n

l

)

�

X

i2J

n

2







�

i;n

k







1

X

r(w)2I

n;�

l

kf

n;�

w

k

1

. �

�1

X

n;l

X

�2(I

n

l

)

�

n

�2

X

r(w)2I

n;�

l

kf

n;�

w

k

1

. �

�1

kfk

1

:(5.9)

Next 
hoose a large 
onstant C

0

; spe
i�
ally the 
hoi
e

(5.10) C

0

�

100

a

(1 +

d

�

)maxf1;

A

� �A

g+ 10 + log

2

�

C

1




1

�

will work where 


1

� C

1

are as in (2.27). Then the 
ontribution for the s
ales � � k � �+C

0

logn is also

handled by an L

1

estimate:
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meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k��+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

(x)

�

�

�

> �=10

o�

. �

�1










X

n;l

X

k2(I

n

l

)

�

X

�2(I

n

l

)

�

��k��+C

0

logn

X

i2J

n

1

j�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

j










1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

w:r(w)2I

n;�

l

X

��k��+C

0

logn

kf

n;�

w

k

1

. �

�1

X

n;l

X

�2(I

n

l

)

�

X

r(w)2I

n;�

l

lognkf

n;�

w

k

1

. �

�1

X

n

lognkf

n

k

1

.

Z

jf(x)j

�

log log

�

e

2

+

jf(x)j

�

�

dx(5.11)

It remains to show

(5.12) meas

�n

x : sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

f

n;�

w

(x)

�

�

�

> �=10

o�

. �

�1

kfk

1

and this will be a

omplished by proving L

2

estimates.

Reintrodu
ing 
an
ellation. The de
omposition in (4.1) was needed to exploit the geometry of the

ex
eptional set; however we paid the pri
e of destroying the 
an
ellation properties of the b

n

w

. As the

information on the support of the f

n;�

w

has been used and is not needed anymore for the s
ales k >

�+C

0

logn we shall now modify the fun
tions f

n;�

w

to reintrodu
e some 
an
ellation. Namely let fP

i

g

M

d

i=1

be an orthonormal basis of the spa
e of polynomials of degree � d on the unit ball fx : jxj � 1g and for

given w de�ne the proje
tion operator �

w

by

�

w

[h℄(x) = �

w

(x)

M

d

X

i=1

P

i

(Æ

�r(w)

(x� x

w

))

Z

w

h(y)P

i

(Æ

�r(w)

(y � x

w

))2

�r(w)�

dy:

Note that

(5.13)

�

�

�

w

[h℄(x)

�

�

� C

1

jwj

Z

w

jh(y)jdy

where C is independent of h and w.

Let

g

n;�

w

(x) = �

w

[f

n;�

w

℄(x);

b

n;�

w

(x) = f

n;�

w

(x)� g

n;�

w

(x);

so that b

n;�

w

vanishes o� w and for polynomials p

(5.14)

Z

w

b

n;�

w

(x)p(x)dx = 0 if deg(p) � d:

We observe that sin
e the w's are generalized Whitney 
ubes for 
 (see x3), we have

(5.15)

X

n;�

�

�

�

w

[f

n;�

w

℄(x)

�

�

. �

w

(x)

1

jwj

Z

w

jf(x)jdx . �;
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moreover by (5.13)

(5.16)

X

n;�

�

kb

n;�

w

k

1

+ kg

n;�

w

k

1

�

.

X

n;�

kf

n;�

w

k

1

.

Z

w

jf(x)jdx:

Now (5.12) will follow from










sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

g

n;�

w

�

�

�










2

2

. �kfk

1

(5.17)










sup

k

�

�

�

X

n;l

k2(I

n

l

)

�

X

�2(I

n

l

)

�

k>�+C

0

logn

X

i2J

n

1

�

i;n

k

�

X

r(w)2I

n;�

l

b

n;�

w

�

�

�










2

2

. �kfk

1

:(5.18)

The estimation (5.17) is straightforward. If d� denotes surfa
e measure on � and d�

k

the dilate

2

�k�

d�(Æ

�k

�) then the maximal fun
tion

Mf(x) = sup

k2Z

jd�

k

� f j

de�nes a bounded operator on L

2

. By the positivity of this maximal operator the left side of (5.17) is

bounded by a 
onstant times










M

HL

M

�

X

n;l

X

�2(I

n

l

)

�

X

w

jg

n;�

w

j

�










2

2

. �

X

n;l

X

�2(I

n

l

)

�

X

w







g

n;�

w







1

. �kfk

1

;

here we used (5.15/16).

For the remainder of this se
tion we prove (5.18).

We �rst repla
e the sup in k by an `

2

sum and then, for �xed k, we apply S
hwarz' inequality in the

form [

P

n

ja

n

j℄

2

.

P

jna

n

j

2

. Next we observe that for �xed n the number k is 
ontained in at most 3+2=a

of the intervals (I

n

l

)

�

. Then we apply S
hwarz' inequality for the sim in � yielding a fa
tor of O(n) and

for the sum in i yielding a fa
tor of O(n

3(d�1)=�

). Finally we group the sum over w into groups for whi
h

r(w) = r, r 2 I

n

l

and apply S
hwarz' inequality in r whi
h yields one more fa
tor of O(n). Thus we see

that the left side of (5.18) is dominated by a 
onstant times

(5.20)

X

k;n;l

k2(I

n

l

)

�

X

�:�<

k�C

0

logn

X

i2J

n

1

X

r2I

n;�

l

n

(4+

3(d�1)

�

)










�

i;n

k

�

X

r(w)=r

b

n;�

w










2

2

We note that the some of the appli
ations of S
hwarz' inequality above are not really ne
essary but it

turns out that the polynomial fa
tors in n are irrelevant in the range � < k � C

0

logn.

Now, for �xed �; k, de�ne

(5.21) M(�; k) =

�

k � (k � �)

a

2A

+ log

2

C

1




1

+ 2℄

where [v℄ denotes the largest integer � v. Note that for � < k�C

0

logn we haveM(�; k) < k. Let R(�; k)

be the 
olle
tion of dilates Æ

M(�;k)

q, where q 2 Q

0

. For ea
h w with r(w) = r � � we assign R 2 R(�; k)

so that w \ R 6= ;. We write R = R

�;k

(w) or simply R = R(w) if the dependen
e on k; � is 
lear.

24



Let

e

R(�; k) be a sub
olle
tion of R(�; k) with the property that if R;R

0

2 R(�; k), R 6= R

0

and

R = Æ

M(�;k)

q, R

0

= Æ

M(�;k)

q

0

then dist(q; q

0

) > 10.

We shall show for �xed n, l, k 2 (I

n

l

)

�

, � 2 (I

n

l

)

�

, r 2 I

n;�

l

that

(5.22)










X

R2

e

R(�;k)

�

i;n

k

�

X

r(w)=r

R

�;k

(w)=R

b

n;�

w










2

2

. n

2+3(d+3)=�

2

�(k��)


0

�

X

r(w)=r

kb

n;�

w

k

1

where

(5.23) 


0

=

a

2

min

�

1;

� � A

A

	

Given (5.22), the proof of (5.18) is a qui
k 
onsequen
e. First note that R(�; k) 
an be split into O(10

d

)

families of type

e

R(�; k). Thus Minkowski's inequality and (5.22) imply that (5.22) holds also with

e

R(�; k)

repla
ed by R(�; k). Then we obtain from (5.20) and the modi�ed (5.22) that the left side of (5.18) is


ontrolled by

X

n;l

X

k2(I

n

l

)

�

X
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n

l

)

�

:
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1
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�
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0

�

X
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.

X
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n
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�

X
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0
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2
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0

�

X
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n

l
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X
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kb

n;�

w

k

1

:

Now we sum the geometri
 series

X

k��+C

0

logn

2

�(k��)


0

. n

�


0

C

0

and using (5.23) and our 
hoi
e of C

0

in (5.10) we observe that n

�


0

C

0

� n

�50(1+d=�)

; this yields that the

left side of (5.18) is 
ontrolled by

�

X

n;l;�

X

r2I

n;�

l

X

r(w)=r
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n;�

w

k

1

. �kfk

1

:

Thus the proof will be �nished when inequality (5.22) is veri�ed.

Proof of (5.22).

We split for �xed n; l, k; � 2 (I

n

l

)

�

, i 2 J

n

1

and r 2 I

n;�

l
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X
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X

r(w

0
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R(w

0
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0

b
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w

0
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We shall �rst estimate II . Fix w, w

0

o

uring in the expression (5.25). Then using the 
an
ellation of

the b

n;�

w

we get

�

�

g

�
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0
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X

j=0

1
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j
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0
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w
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w
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=

�

�

�

Z
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0
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Z

2
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w
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d

g

�
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0

� �
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0

(Æ
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w
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w
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i

b
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w
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�

�

�
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3

�
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Z

1

0

Z

w

2
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w
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d
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w
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w
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(5.26)

by Lemma 2.5 applied to the measure �

i;n

0

, with � = n

�3=�

.

Now if x 2 w

0

, y 2 w with w

0

\ R

0

6= ;, w \ R 6= ;, and if R 6= R

0

then by the separation property of

the sets in

e

R(�; k)

(5.27) jÆ
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2
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2
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� 2C

1

2
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:

Thus for x 2 w

0

we may repla
e jÆ

�k

(x� x

w

+ sx

w

� sy)j in the denominator of (5.26) by jÆ

�k

(x

0

w

� x

w

)j.

We also take into a

ount that kb

n;�

w

0

k

1

. �jw

0

j and thus obtain the bound
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:

Now we 
al
ulate using (5.27)
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Z

juj�2
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�

a

2

(k��)(2d�1)

:

Combining this with (5.28) yields the bound

(5.29) II . n

3
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�

2

�
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2

(k��)(2d�1)

X
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e
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X

R(w)=R

r(w)=r
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n;�

w

k

1

whi
h is 
ontrolled by the right hand side of (5.22).

We now estimate the 
ontribution I . Unfortunately, in introdu
ing the 
an
ellation and passing from

f

n;�

w

to b

n;�

w

we have obs
ured the geometri
al information on the thi
kness of f

n;�

w

. As the 
an
ellation is

not needed anymore for I we (partially) undo it and estimate

I � I

1

+ I

2
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where

I

1

=

X
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e
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Z
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�
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� �
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Sin
e jg

n;�

w

(x)j . ��

w

(x) we get
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Finally for the main term I

1

we use Lemma 2.6, then (2.28) and then part (iii) of Proposition 4.1 to bound
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(5.33/34) and (5.29) 
ertainly imply (5.22). This 
on
ludes the proof of Theorem 1.1. �

Remark. The above argument also applies to maximal fun
tions asso
iated to 
ertain surfa
es with low


odimension, for example if we assume that for every normal ve
tor the Gaussian 
urvature is bounded

away from zero. In this 
ase we have to work with the notions �

n;�

, �

n;�

in the remark following the proof

of Proposition 2.1; here � is the 
odimension. The 
ondition about nonvanishing Gaussian 
urvature is

never satis�ed for manifolds with high 
odimension su
h as 
urves in three or more dimensions. In those


ases it is presently open whether the weak type L logL inequality of Corollary 3.1 above 
an be improved.

6. Estimates for the singular integral operators

The proof of the weak type L log logL estimate for the singular Radon transforms relies to a large extent

on the same arguments as for the maximal operator. We shall just indi
ate the ne
essary modi�
ations.

We need to prove inequality (3.21). The de�nition of the ex
eptional set O and estimate (5.5) remains

the same. Thus we are left to show (again with �(s) = s log log(e

2

+ s))
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�
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�
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�

�
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Now, as in x5, we wish to de
ompose the measure into a part with 
urvature and a part with 
atness

(with the splitting depending on n). Some 
are is needed now sin
e we need to preserve the 
an
ellation

of the measure when a
ting on the �-bounded 
ontributions. Before doing this de
omposition we shall

reverse the order of the steps (5.9), (5.11) and �rst get an analogue of (5.11) for the fun
tions �

n

k

. Indeed
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k
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1

= O(1) the argument for (5.11) yields
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As before we split f
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w

and we �rst show that
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:

We use the nonisotropi
 version of an inequality in [6, p. 548℄ for the maximal version of the singular

integral, namely we have

(6.5)
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Here e�

k

is the re
e
tion of �

k

. Indeed for (6.5) one just needs jb�(�)j � minfj�j; j�j

�


g for some 
 > 0 (
f.

(3.15)). In order to use (6.5) we have to split �

n
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= �
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� (�

k

� �

n

k
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From (6.5) and (5.17) we get
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For ea
h w and x 2 w we have
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and in view of the disjointness of the sets w the expression (6.6) is 
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Moreover for �xed n, and m � n we get using (3.15)
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whi
h by the argument above is dominated by a 
onstant times �kfk

1

. Combining these estimates with

Chebyshev's inequality we see that (6.4) holds.

We are left to prove
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We now let �
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= �

i;n

� �

m
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h was previously 
onsidered only for the 
ase m = n) and de�ne

the L

1

dilate �
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We show that
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:(6.11)

(6.10/11) imply that the sets where jI j > �=10, jII j > �=10, and

P

1

m=1

jIII

m

j > �=10 all have measure

. �

�1

kfk

1

. Combining this with the estimate (3.2) for the measure of 


�

yields (6.8).

The inequality

kIk

L

1

(R

d

n


�

)

. kfk

1

follows from the standard estimates for singular integrals (in view of the regularity of � � �

0

). The bound

for kIIk

1

is proved exa
tly as in estimate (5.9). Thus we are left to 
he
k (6.11).

Con
erning the terms III

m

we apply Cau
hy-S
hwarz' inequality and estimate
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and

(6.13) V

m

=
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:

The inner produ
t in the se
ond term is estimated by Plan
herel's theorem. By van der Corput's

Lemma and 
an
ellation there is the Fourier transform estimate
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We may apply Cau
hy-S
hwarz and Parseval's theorem to bound
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 is as in (3.3) and hen
e we obtain
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For the term IV

m

we have by Cau
hy-S
hwarz for the k summation and other appli
ations of Cau
hy-

S
hwarz leading to (5.20)
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Now �

i;n;m

k

satis�es similar quantitative properties as �
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k
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onsidered in x5; in parti
ular we
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able and we obtain the bound
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This shows (6.11) and thus (6.8) and the proof of Theorem 1.2. is 
omplete. �
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