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Abstract. Let Hn be the Heisenberg group and let µt be the normalized surface
measure for the sphere of radius t in R

2n. Consider the maximal function defined
by Mf = supt>0

|f ∗µt|. We prove for n ≥ 2 that M defines an operator bounded
on Lp(Hn) provided that p > 2n/(2n − 1). This improves an earlier result by
Nevo and Thangavelu, and the range for Lp boundedness is optimal. We also
extend the result to a more general setting of surfaces and to groups satisfying a
nondegeneracy condition; these include the groups of Heisenberg type.

1. Introduction

Let G be a finite-dimensional two step nilpotent group which we may identify
with its Lie algebra g by the exponential map. We assume that g splits as a
direct sum g = w ⊕ z so that

[w,w] ⊂ z, [w, z] = {0},

and that dim(w) = d, dim(z) = m.
Throughout we shall make the following

Nondegeneracy Hypothesis. For every nonzero linear functional ω ∈ z∗ the
bilinear form

Jω :
w × w → R

(X, Y ) 7→ ω([X, Y ])

is nondegenerate.

Note that the skew symmetry of Jω and the nondegeneracy hypothesis imply
that d is even.
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There is a natural dilation structure relative to w and z, namely for X ∈ w

and U ∈ z we consider the dilations

δt : (X, U) 7→ (tX, t2U).

With the identification of the Lie algebra with the group δt becomes an auto-
morphism of the group.

In exponential coordinates (x, u), x ∈ R
d, u ∈ R

m, the group multiplication is
given by

(1.1) (x, u) · (y, v) = (x + y, u + v + xtJy)

where xtJy = (xtJ1y, . . . , xtJmy) ∈ R
m and the Ji are skew-symmetric matrices

acting on R
d (i.e. J t

i = −Ji). For u ∈ R
m we also form the skew-symmetric

matrices Ju =
∑m

i=1 uiJi and the nondegeneracy hypothesis is equivalent with
the invertibility of Ju for all u 6= 0.

The most prominent examples are the Heisenberg groups Hn which arise when
d = 2n, m = 1 and J = J1 is the standard symplectic matrix on R

2n. These
belong to the class of Heisenberg-type groups (termed H-type groups in [9]), for
which J2

u = −4|u|2I, so that the nondegeneracy hypothesis is clearly satisfied in
this case. Note that in general m has to be small compared to d (see [9] where the
connection with Radon-Hurwitz numbers is pointed out). The class considered
here has been introduced by Métivier [10] in his study of analytic hypoellipticity;
the nondegeneracy assumption is termed “Condition (H)” in [10]. There are many
groups which satisfy the nondegeneracy condition but which are not isomorphic
to a Heisenberg-type group; we give an example in §7.

Let Σ be a smooth convex hypersurface in w and let µ be a compactly sup-
ported smooth density on Σ. We make the following

Curvature Hypothesis. The Gaussian curvature of Σ does not vanish on the
support of µ.

Define the dilate µt by

〈µt, f〉 =

∫
f(tx, 0)dµ(x).(1.2)

We recall the definition of convolution

f ∗ g(x, u) =

∫
f(y, v)g((y, v)−1 · (x, u))dydv

=

∫
f(y, v)g(x − y, u − v + xtJy)dydv(1.3)

and define for Schwartz-functions the maximal operator M by

Mf(x, u) = sup
t>0

|f ∗ µt(x, u)|.

We prove the following sharp result.
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Theorem. Suppose d > 2. Then M extends to a bounded operator on Lp(G) if
and only if p > d/(d − 1).

Remarks. (i) Other more “regular” spherical maximal functions on the Heisen-
berg group have been considered in [2], [15]. In these papers the maximal func-
tions are generated by measures on hypersurfaces and the averaging operators are
Fourier integral operators associated to local canonical graphs. In our work the
maximal functions are generated by measures on surfaces of codimension m + 1,
and the associated canonical relations project with fold singularities.

(ii) A previous result is due to Nevo and Thangavelu [12] who considered the
case of spherical means on the noncentral part of the Heisenberg groups (m = 1)
and obtained Lp boundedness in the smaller range p > (d − 1)/(d − 2), d > 2.

(iii) Our theorem is an analogue of Stein’s theorem [16] in the Euclidean case.
The necessity of the condition p > d/(d − 1) follows from the example in [16];
one tests M on the function given by f(y, v) = |y|1−d(log |y|)−1χ(y, v) with a
suitable cutoff function χ. The L2 methods in this paper are not sufficient to
establish Lp boundedness for p > 2 for the case d = 2 (that is, for an extension
of Bourgain’s result [1] in the Euclidean case); we shall return to this case in a
subsequent paper.

(iv) The result should remain true for any nilpotent Lie group of step ≤ 2; i.e.
the nondegeneracy hypothesis should not be necessary. This is currently an open
problem.

(v) As a corollary of the Lp estimate for the maximal operator one obtains
the pointwise convergence result limt→0 µt ∗ f(x) = cf(x) almost everywhere, if
f ∈ Lp and c =

∫
dµ. Moreover the Lp bounds of the maximal operator are

relevant for certain results in ergodic theory, where one needs to have pointwise
control for large t.

(vi) We use in an essential way the invariance of the subspace w under the
dilation group {δt}. Namely this implies a favorable bound for the principal
symbol of (d/dt)µt on the fold surface of the associated canonical relation. A
similar phenomenon was observed in [11] for averages along light rays.

(vii) One can replace the measure on w by a measure supported on a perturbed
subspace W which is transversal to the center but no longer invariant under {δt};
then the phenomenon in the last remark does not occur. In the above coordinates
W is given as

(1.4) W = {(x,Λx), x ∈ R
d},

where Λ = (Λij) is a m × d matrix. Define a measure µΛ
t by

〈µΛ
t , f〉 =

∫
f(tx, t2Λx)dµ(x),

we also set µΛ := µΛ
1 . Consider the maximal operator MΛ defined by

(1.5) MΛf = sup
t>0

|f ∗ µΛ
t |.
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For general Λ we then prove the partial result that MΛ is bounded for p >
(3d−1)/(3d−4). We conjecture that boundedness holds for p > d/(d−1) which
by our theorem holds true for Λ = 0.

Structure of the paper: In §2 we shall give the basic decompositions of the
operator. Almost orthogonality arguments are used in §2 to reduce matters to
a “local” maximal operator (where the dilation parameter is ≈ 1). In order to
estimate the local maximal operator it is necessary to understand the precise
regularity properties of the averages. It turns out that these are Fourier inte-
gral operators with folding canonical relations and our main decomposition is
in terms of the (scaled) distance to the surface of degeneracy. In §4 we state
the main (known) estimates for oscillatory integral operators associated to fold
singularities. In §5 we first reduce the estimate for the averages to estimates for
oscillatory integral operators; this argument is rather standard and similar to cal-
culations in [5]. The main part of §5 is concerned with showing that the uniform
assumptions (4.3)-(4.5) on the phase in the case of folding canonical relations are
indeed satisfied. We then conclude that section discussing the L2 estimates for
∂t[f ∗ µt]; here we take advantage of the fact that the principal symbol of this
operator vanish on the surface of degeneracy. In §6 we complete the proof of the
main theorem by deriving appropriate weak type (1, 1) bounds. In the appendix
§7 we give an example of a two step nilpotent group which is not isomorphic to
a Heisenberg-type group but satisfies the nondegeneracy hypothesis.

Notation: Given two quantities A and B we write A . B if there is a positive
constant C, such that A ≤ CB.

Note. After a preprint version of our article had been circulated, S. Thangavelu
informed us that he and E.K. Narayanan had obtained another proof of the sharp
Lp inequality for the case of the spherical maximal function on the Heisenberg
group Hn, n ≥ 2, shortly before they became aware of our preprint. Their argu-
ment extends ideas from [12] and is based on estimates for Laguerre functions. It
is contained in a preprint entitled “An optimal theorem for the spherical maximal
operator on the Heisenberg group”.

We thank the referee for suggestions concerning the exposition.

2. Preliminary decompositions

We shall present the argument for the maximal operator MΛ in (1.5). We shall
denote by Λj the jth column of Λ and by ‖Λ‖ the matrix norm of Λ with respect
to the Euclidean norms on R

d and R
m. In what follows we shall always assume

that ‖Λ‖ ≤ C1 for some fixed C1 (and various bounds may depend on C1). If
‖Λ‖ occurs explicitly in an estimate then we are interested in the behavior for
Λ → 0, as the case of our Theorem corresponds to Λ = 0.

We note that by localizations and rotations in R
d one can assume that µ has

small support and that the projection of Σ to w is given as a graph xd = Γ(x′),
x′ = (x1, . . . , xd−1), so that ∇x′Γ(0) = 0 and so that µ is supported in a small
neighborhood of (0,Γ(0)) (we may assume that |∇x′Γ(x′)| ≤ C−1

0 c0/100) where
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c0, C0 are defined in (5.10) below). Note that a rotation has the effect of replacing
the matrices Ji in the group law by QtJiQ with Q ∈ SO(d). We thus will need
to prove an estimate which is uniform in these rotations.

Using the Fourier inversion formula for Dirac measures we may write

µΛ(x, u) = χ(x, u)

∫∫
ei

(
σ(xd−Γ(x′))+τ ·(u−Λx)

)
dσdτ

where χ is a smooth compactly supported function and the integral converges in
the sense of oscillatory integrals (thus in the sense of distributions).

We split the integrals by introducing dyadic decompositions in (σ, τ) and then
also in σ, when |σ| < |τ |.

Let ζ0 ∈ C∞
0 (R) be an even function so that ζ0(s) = 1 if |s| ≤ 1/2 and

supp(ζ0) ⊂ (−1, 1). Also define ζ1(s) = ζ0(s/2)−ζ0(s) and for k ≥ 1, 1 ≤ l < k/3,

β0(σ, τ) = ζ0(
√

σ2 + |τ |2)(2.1.1)

βk,0(σ, τ) = ζ1(2
−k

√
σ2 + |τ |2)(1 − ζ0(2

−kσ))(2.1.2)

βk,l(σ, τ) = ζ1(2
−k

√
σ2 + |τ |2)ζ1(2

l−kσ)

β̃k(σ, τ) = ζ1(2
−k

√
σ2 + |τ |2)ζ0(2

[k/3]−k−1σ).(2.1.3)

Then observe that

β0 +
∑

k≥1

(
βk,0 +

∑

1≤l<k/3

βk,l + β̃k

)
= 1,

and for k > 0 the function βk,0 is supported where σ ≈ 2k and |τ | . 2k, βk,l is

supported where |τ | ≈ 2k and |σ| ≈ 2k−l and β̃k is supported where |τ | ≈ 2k and
|σ| . 22k/3.

Define

K0(x, u) = χ(x, u)

∫∫
ei

(
σ(xd−Γ(x′))+τ ·(u−Λx)

)
β0(σ, τ)dσdτ,

(2.2.1)

Kk,l(x, u) = χ(x, u)

∫∫
ei

(
σ(xd−Γ(x′))+τ ·(u−Λx)

)
βk,l(σ, τ)dσdτ, 0 ≤ l < k/3,

(2.2.2)

K̃k(x, u) = χ(x, u)

∫∫
ei

(
σ(xd−Γ(x′))+τ ·(u−Λx)

)
β̃k(σ, τ)dσdτ ;

(2.2.3)

moreover for t > 0 define the dilates

[K0
t , Kk,l

t , K̃k
t ](x, u) = t−(d+2m)[K0, Kk,l, K̃k](t−1x, t−2u).
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Note that µΛ
t = K0

t +
∑

k≥1

(
Kk,0

t +
∑

1≤l<k/3 Kk,l
t + K̃k

t

)
.

Since K0 is a bounded compactly supported function the associated maxi-
mal function is controlled by the appropriate variant of the Hardy-Littlewood
maximal function and therefore ([17]) we have the inequality

∥∥ sup
t

|f ∗ K0
t |

∥∥
p
≤ Cp‖f‖p

for 1 < p ≤ ∞.
Using known estimates for oscillatory integral operators with fold singularities

and additional almost orthogonality estimates we shall derive in §3 and §5 the
following L2 estimates.

Proposition 2.1. Suppose k > 0. Then for 0 ≤ l < k/3

(2.3)
∥∥ sup

t
|f ∗ Kk,l

t |
∥∥

2
.

√
k2−k(d−2)/2(1 + ‖Λ‖2l)1/2‖f‖2;

moreover

(2.4)
∥∥ sup

t
|f ∗ K̃k

t |
∥∥

2
.

√
k2−k(d−2)/2(1 + ‖Λ‖2k/3)1/2‖f‖2

To obtain Lp results we shall interpolate with weak type inequalities proved in
§6.

Lemma 2.2. Let k > 0. For all α > 0 we have

(2.5) meas
(
{(x, u) : sup

t>0
|f ∗ Kk,l

t (x, u)| > α}
)

. k2k−l(1 + ‖Λ‖2l)α−1‖f‖1

for 0 ≤ l < k/3 and

(2.6) meas
(
{(x, u) : sup

t>0
|f ∗ K̃k

t (x, u)| > α}
)

. k22k/3(1 + ‖Λ‖2k/3)α−1‖f‖1.

We interpolate by the real method and obtain

Corollary 2.3. Suppose 1 < p ≤ 2 and k > 0. Then for 0 ≤ l < k/3

(2.7)
∥∥ sup

t
|f ∗ Kk,l

t |
∥∥

p
≤ Cpk

1/p2−k(d−1−d/p)2−l(2/p−1)(1 + ‖Λ‖2l)1/p‖f‖p;

moreover

(2.8)
∥∥ sup

t
|f ∗ K̃k

t |
∥∥

p
≤ Cpk

1/p2−k(d−4/3−d/p+2/3p)(1 + ‖Λ‖2k/3)1/p‖f‖2.

Now if p < 2 we may sum in k and l and see that MΛ is Lp bounded if
d− 4/3− d/p + 1/(3p) > 0 which is equivalent to p > (3d− 1)/(3d− 4) (showing
the estimate mentioned in remark (vii) in the introduction). If Λ = 0 we get a
better bound, namely that Lp boundedness holds if d−1−d/p > 0 or p > d/(d−1).
This proves our main Theorem.
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3. Square functions and almost orthogonality

It is advantageous to introduce cancellation in the above kernels, modulo small
acceptable errors. Indeed

∣∣∣
∫∫

Kk,l(x, u)dxdu
∣∣∣ +

∣∣∣
∫∫

K̃k(x, u)dxdu
∣∣∣ ≤ CN2−kN ,

for all N = 0, 1, . . . , and this estimate follows by an integration by parts in the
(x, u) variables. Thus there is a C∞

0 function b which is equal to 1 on supp(χ),
and constants γk,l, γk so that

(3.1)

∫∫
Kk,l(x, u)dxdu = γk,l

∫∫
b(x, u)dxdu

∫∫
K̃k(x, u)dxdu = γk

∫∫
b(x, u)dxdu

where

(3.2) |γk| + |γk,l| ≤ CN2−kN .

We define

Kk,l(x, u) = Kk,l(x, u) − γk,lb(x, u)(3.3.1)

K̃k(x, u) = K̃k(x, u) − γkb(x, u)(3.3.2)

and denote by Kk,l
t , K̃k

t their dilates, as before. Then the functions Kk,l
t , Kk

t have
integral zero.

Since the maximal operator generated by the kernel b (with nonisotropic di-
lations) is bounded by the nonisotropic Hardy-Littlewood maximal operator we
see that for 1 < p ≤ ∞

∥∥ sup
t

|f ∗ (Kk,l
t − Kk,l

t )|
∥∥

p
≤ CN,p2

−kN‖f‖p.

Now in order to deal with the main term we shall use the following standard
lemma in the subject which is an immediate consequence of a similar one stated
in [17, p.499].

Lemma 3.1. Suppose that

sup
s∈[1,2]

( ∑

n∈Z

∥∥Fn(·, s)
∥∥2

2

)1/2

≤ A1

sup
s∈[1,2]

( ∑

n∈Z

∥∥∂Fn

∂s
(·, s)

∥∥2

2

)1/2

≤ A2.



8 DETLEF MÜLLER ANDREAS SEEGER

Then ∥∥∥ sup
n

sup
s∈[1,2]

|Fn(·, s)|
∥∥∥

2
≤ C(A1 +

√
A1A2).

We omit the proof. Using Lemma 3.1 one sees that the estimates

∥∥ sup
t

|f ∗ Kk,l
t |

∥∥
2

.
√

k2−k(d−2)/2(1 + ‖Λ‖2l)1/2‖f‖2

∥∥ sup
t

|f ∗ K̃k
t |

∥∥
2

.
√

k2−k(d−2)/2(1 + ‖Λ‖2k/3)1/2‖f‖2

follow from the following estimates which are uniform in s ∈ [1, 2].

( ∑

n

∥∥f ∗ Kk,l
2ns

∥∥2

2

)1/2

.
√

k2−k(d−1)/22l/2‖f‖2

(3.4)

( ∑

n

∥∥∥f ∗
[
t
∂

∂t
Kk,l

t

]

t=2ns

∥∥∥
2

2

)1/2

.
√

k2−k(d−3)/22−l/2(1 + ‖Λ‖2l)‖f‖2,

(3.5)

for l < k/3, and

( ∑

n

∥∥f ∗ K̃k
2ns

∥∥2

2

)1/2

.
√

k2−k(d−1)/2+k/6‖f‖2

(3.6)

( ∑

n

∥∥∥f ∗
[
t
∂

∂t
K̃k

t

]

t=2ns

∥∥∥
2

2

)1/2

.
√

k2−k(d−3)/2−k/6(1 + ‖Λ‖2k/3)‖f‖2.

(3.7)

Note by scaling that it suffices to prove these estimates for s = 1. We shall

first use the cancellation of the kernels Kk,l
2ns and K̃k

2ns to show certain almost
orthogonality properties (for the sums in n) and then we use stronger estimates
for oscillatory integrals to establish decay estimates for fixed n.

An almost orthogonality lemma. We first state a simple and presumably
well known consequence of the Cotlar-Stein Lemma.

Lemma 3.2. Suppose 0 < ε < 1, A ≤ B/2 and let {Tn}∞n=1 be a sequence of
bounded operators on a Hilbert space H so that the operator norms satisfy

(3.8) ‖Tn‖ ≤ A

and

(3.9) ‖TnT ∗
n′‖ ≤ B22−ε|n−n′|.
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Then for all f ∈ H

(3.10)
( ∞∑

n=1

‖Tnf‖2
)1/2

≤ CA
√

ε−1 log(B/A)‖f‖.

Proof. For N ≥ 1 consider the operator

TN : H → ℓ2(H)

which maps f to the sequence (T1f, . . . , TNf, 0, 0, . . . ). Now ‖TN‖ = ‖T ∗
NTN‖1/2

where T ∗
NTN : H → H is given by

T ∗
NTNf =

N∑

n=1

T ∗
nTnf.

We let Sn = T ∗
nTn and observe that

‖S∗
kSl‖ = ‖SkS∗

l ‖ = ‖T ∗
k TkT ∗

l Tl‖
≤ ‖T ∗

k ‖‖TkT ∗
l ‖‖Tl‖ ≤ A2 min{A2, B22−|k−l|ε}.

The standard Cotlar-Stein Lemma [17] gives

‖T ∗
NTN‖ ≤

∞∑

m=∞

max
{

sup
k−l=m

‖S∗
kSl‖1/2, sup

k−l=m
‖SkS∗

l ‖1/2
}

and thus

‖TN‖2 ≤ A
∞∑

m=−∞

min{A, B2−|m|ε}

≤ C2ε−1A2 log(B/A).

Thus ‖TNf‖ℓ2(H) is dominated by the right hand side of (3.10), and the assertion
follows by taking the limit as N → ∞. �

Remark. We proved Lemma 3.2 by using the statement of the Cotlar-Stein Lem-
ma. Using the proof of the Cotlar-Stein Lemma one can also show the following
more general fact: If ‖TnT ∗

n′‖ ≤ α2(n − n′) then

( N∑

n=1

‖Tnf‖2
)1/2

.
( ∑

j∈Z

|α(j)|2
)1/2

‖f‖.

Of course, Lemma 3.2 is an immediate consequence of this inequality.
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Almost orthogonality estimates. Here we wish to apply Lemma 3.2 to con-
volutions on groups. If Tf = f ∗ g we first note that its adjoint is given by
T ∗f = f ∗ g∗ where g∗ = g(·−1). Moreover using Minkowski’s inequality and
the unimodularity of nilpotent Lie groups one obtains the standard convolution
inequality

‖f ∗ g‖2 ≤ ‖g∗‖1‖f‖2 = ‖g‖1‖f‖2.

We now fix k, l and s ∈ [1, 2] and derive almost orthogonality properties for

the operators of convolution with Kk,l
2ns.

Notice that for n ≤ 0 the function Kk,l
2ns is supported in a (small) ball of radius

C2n (in fact in a smaller nonisotropic ball). Moreover we have |∇y,vKk,l
s (y, v)| ≤

2k(m+2) and using the cancellation of Kk,l
2ns we obtain

|Kk,l
s ∗ (Kk,l

2ns)
∗(x, u)| . 2k(m+2)2n if n ≤ 0.

By scaling and applying Schur’s Lemma we obtain

(3.11)
∥∥f ∗ Kk,l

2n′s
∗ (Kk,l

2ns)
∗
∥∥

2
. 2k(m+2)2−|n−n′|‖f‖2

first for n ≤ n′ and then by taking adjoints also for n < n′. This and the following
estimates are uniform in s ∈ [1, 2].

Similarly we get

(3.12)
∥∥∥f ∗ s

∂Kk,l

2n′s

∂s
∗ s

∂(Kk,l

2n′s
)∗

∂s

∥∥∥
2

. 2k(m+4)2−|n−n′|‖f‖2

and also ∥∥f ∗ K̃k
2n′s

∗ (K̃k
2ns)

∗
∥∥

2
. 2k(m+2)2−|n−n′|‖f‖2.(3.13)

∥∥∥f ∗ s
∂K̃k

2ns

∂s
∗ s

∂(K̃k
2n′s

)∗

∂s

∥∥∥
2

. 2k(m+4)2−|n−n′|‖f‖2.(3.14)

In §5 we shall prove the inequalities

‖f ∗ Kk,l‖2 . 2−k(d−1)/22l/2‖f‖2(3.15)
∥∥∥f ∗

[∂Kk,l
s

∂s

]

s=1

∥∥∥
2

. 2−k(d−3)/22−l/2(1 + ‖Λ‖2l)‖f‖2(3.16)

for l < k/3, and

‖f ∗ K̃k‖2 . 2−k(d−1)/22k/6‖f‖2(3.17)

∥∥∥f ∗ ∂K̃k
s

∂s

∣∣
s=1

∥∥∥
2

. 2−k(d−3)/22−k/6(1 + ‖Λ‖2k/3)‖f‖2.(3.18)

By scaling and by (3.2) the same inequalities hold with Kk,l and K̃k replaced by

Kk,l
t and K̃k

t and with ∂sK
k,l, ∂sK̃

k replaced by ∂sKk,l
2ns, ∂sK̃k

2ns, for 1 ≤ s ≤ 2.
Now the inequality (3.4) follows from (3.15) and (3.11) if we apply Lemma 3.2

with A = 2−k(d−1)/22l/2 and B = 2k(m+4). Similarly (3.5) follows from (3.16)
and (3.12), (3.6) from (3.17) and (3.13), and (3.7) from (3.18) and (3.14).

The next two sections are concerned with the derivation of inequalities (3.15-
18).
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4. Preliminaries on oscillatory integral
operators with folding canonical relations

We shall reduce matters to estimates for oscillatory integral operators whose
canonical relations have two-sided fold singularities. We consider localizations
near the fold surface and the estimate goes back to Phong and Stein [13] for
certain conormal operators in the plane; the general case is implicit in Cuccagna’s
paper [3]. For the version needed here we refer to [6].

Let Ω ∈ Rn × Rn be an open set and let Γ be an open set in some finite
dimensional space. We consider phases ϕ(x, y, γ) and amplitudes aλ(x, y, γ),
(x, y, γ) ∈ Ω × Ω × Γ, and assume that

|∂α
x ∂β

y ϕ(x, y, γ)| ≤ C(4.1)

|∂α
x ∂β

y aλ(x, y, γ)| ≤ Cλ(|α|+|β|)/3(4.2)

say, for all multiindices α, β with |α|, |β| ≤ 10n, with uniform bounds in Ω × Γ;
we also assume that all derivatives depend continuously on the parameter γ.

We shall assume that
Cϕ = {(x, ϕx, y,−ϕy)}

is a folding canonical relation, i.e. for each point P0 = (x0, y0, γ0) we have

(4.3) rank ϕ′′
xy(P0) ≥ n − 1,

and for unit vectors U , V

ϕ′′
xy(P0)V = 0 =⇒

∣∣〈V,∇y〉detϕ′′
xy

∣∣ ≥ c,(4.4)

U tϕ′′
xy(P0) = 0 =⇒

∣∣〈U,∇x〉detϕ′′
xy

∣∣ ≥ c,(4.5)

for some c > 0.
We consider the oscillatory integral operator Tλ[b] defined by

Tλ[b]f(x) =

∫
eiλϕ(x,y,γ)b(x, y, γ)f(y)dy

which is bounded on all Lp if b is bounded and compactly supported. We shall
take for b certain localizations of the symbol in terms of the size of detϕ′′

xy. Let
ϑ be smooth and compactly supported in (−1, 1) so that ϑ(s) = 1 for |s| ≤ 1/2
and set

ϑl(x, y, γ) = ϑ(2l detϕ′′
xy(x, y, γ)) − ϑ(2l+1 detϕ′′

xy(x, y, γ)),

so that ϑl localizes to the set where |detϕ′′
xy| ≈ 2−l. We also define

ζλ(x, y) = 1 −
∑

2l<λ1/3

ϑl(x, y)
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so that |detϕ′′
xy| . λ−1/3 on supp(ζλ).

Then there is a neighborhood U of (x0, y0, γ0) so that for all aλ satisfying (4.2),
supported in U the following estimates hold for the operator norms:

(4.6)
∥∥Tλ[aλϑl]

∥∥
L2→L2 ≤ C12

l/2λ−n/2, 2l ≤ λ1/3

and

(4.7)
∥∥Tλ[aλζλ]

∥∥
L2→L2 ≤ C1λ

1/6−n/2.

These estimates are a consequence of Theorem 2.1 in [6].

5. Reduction to oscillatory integral operators

We now consider the operator of convolution with Kk,l and give the proof of
the bound (3.15). The operator ∂sK

k,l is more singular, but its estimation is
rather analogous, so we shall point out the modifications needed for (3.16) at the

end of this section. The estimations for K̃k and ∂sK̃
k
s will be similar.

Since Kk,l is compactly supported in a fixed neighborhood we may use the
translation invariance to reduce to the case that f is also compactly supported
in a fixed neighborhood of the origin. Thus it suffices to show the desired bound
for the operator with Schwartz kernel

(5.1) χ1(x, u)Kk,l(x − y, u − v + xtJy)χ2(y, v),

for suitable compactly supported smooth functions χ1 and χ2. In what follows
we set λ = 2k and then by a change of variables the kernel (5.1) can be written
as

(5.2) Hλ,l(x, u, y, v) = λm+1

∫∫
eiλφ(x,u,y,v,σ,τ)χ0(x, u, y, v)ηl(σ, τ)dσdτ

where

φ(x, u, y, v, σ, τ) = σ(xd − yd − Γ(x′ − y′)) + τ · (u − v + xtJy − Λ(x − y))

and where |τ | ≈ 1 and |σ| ≈ 2−l on the support of ηl; specifically

ηl(σ, τ) = ζ1(
√

σ2 + |τ |2)ζ1(2
lσ),

and χ0(x, u, y, v) = χ1(x, u)χ(x − y, u − v + xtJy)χ2(y, v).

Notation. We let P : R
d → R

d−1 be the linear map with Pei = ei, i = 1, . . . , d−1
and Ped = 0. We also use the notation P for the (d − 1) × d matrix

P = ( I 0 )

and P t for its transpose.
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Stationary phase calculations. We wish to apply stationary phase arguments
to reduce matters to the estimation of an oscillatory integral operators without
frequency variables (see e.g. the general discussion in [5]).

We shall apply a scaled Fourier transform on Rm+1, in the (xd, u) variables.
Define

Fλg(x′, xd, u) =

∫∫
e−iλ(xdzd+u·w)g(x′, zd, w)dzddw;

then (λ/2π)(m+1)/2Fλ is a unitary operator and thus, if Hλ,l denotes the oper-
ator with Schwartz kernel Hλ,l we have to prove that FλHλ,l maps L2 to itself
with operator norm O(λ−(d+m)/22l/2). Let χ3(xd, u) denote a smooth compactly
supported function which is equal to one whenever |xd| + |u| ≤ 10, and define
Fλ,1 by

Fλ,1g(x′, xd, u) = χ3(xd, u)

∫∫
e−iλ(xdzd+u·w)g(x′, zd, w)dzddw;

moreover let Fλ,2 = Fλ −Fλ,1. Then the Schwartz kernel of Fλ,1H
λ,l is given by

(5.3) λm+1

∫
eiλΨ(x,u,y,v,θ)bl(x, u, y, v, θ)dθ

where with
θ = (zd, w, σ, τ)

the phase function Ψ is given by

Ψ(x, u, y, v, θ) = − xdzd − u · w + σ
(
zd − yd − Γ(x′ − y′)

)

+ τ t
(
w − v + ΛP t(x′ − y′) + Λd(zd − yd) + (x′t, zd)Jy

)
,

and the amplitude is given by

bl(x, u, y, v, θ) = χ3(xd, u)χ0(x
′, zd, y, w)ηl(σ, τ).

For the error term Fλ,2H
λ,l we have a similar formula, only with χ3 replaced by

1−χ3. Then in view of the support properties of (1−χ3) we see that |∇zd,wΨ| ≥
|xd|+ |u| on supp(1−χ3) and by integration by parts with respect to the (zd, w)
variables we see that the kernel of Fλ,2H

λ,l is bounded by CNλm+1−N (|xd| +
|u|)−N . Moreover this kernel is supported on a set where |xd| + |u| ≥ 1 and
where |x′| + |y| + |v| ≤ C. Thus, with an obvious application of Schur’s Lemma
we conclude that the operator Fλ,2H

λ,l is bounded on L2 with operator norm
O(λ−N ) for any N .

We return to the main term Fλ,1H
λ,l and it remains to be shown that

(5.4) ‖Fλ,1Hλ,l‖ . 2l/2λ−(d+m)/2.
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Note that for fixed (x, u, y, v) the phase function Ψ is a polynomial of degree
≤ 2 in the θ variables and that the Hessian Ψ′′

θθ is nondegenerate.
Indeed,

(5.5)

Ψ′
zd

= −xd + et
dJτy + σ + τ tΛd

Ψ′
w = τ − u

Ψ′
τ = w − v + (x′t, zd)Jy + ΛP t(x′ − y′) + Λd(zd − yd)

Ψ′
σ = zd − yd − Γ(x′ − y′)

and with Ξ denoting the column vector in R
m with coordinates Ξi = et

dJiy +Λid

we have

Ψ′′
θθ =




0 0 Ξt 1
0 0 I 0
Ξ I 0 0
1 0 0 0


 .

Clearly the linear equations Ψθ = 0 have a unique solution

θcrit = [zd, w, τ, σ]crit(x, u, y, v),

with

(zd)crit = yd + Γ(x′ − y′)

(wi)crit = vi − (x′t, yd + Γ(x′ − y′))Jiy − et
iΛP t(x′ − y′) − ΛidΓ(x′ − y′)

(τi)crit = ui

σcrit = xd −
m∑

i=1

ui(e
t
dJiy + Λid)

and we can apply the method of stationary phase (with respect to the 2(m + 1)
frequency variables θ). Setting

(5.6) Φ(x, u, y, v) := Ψ(x, u, y, v, θcrit(x, u, y, v)) = −xd(yd + Γ(x′ − y′))−
m∑

i=1

ui

(
vi − (x′t, yd + Γ(x′ − y′))Jiy − ΛidΓ(x′ − y′) − et

iΛP t(x′ − y′)
)

we obtain that

(5.7) λm+1

∫
eiλΨ(x,u,y,v,θ)bl(x, u, y, v, θ)dθ

= eiλΦ(x,u,y,v)
N−1∑

j=0

E l
j(x, u, y, v)λ−j + Rλ,l

N (x, u, y, v)
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where

(5.8) E l
j(x, u, y, v) = (2i)−j

(
det(Ψθθ(x, y, u, v, θcrit(x, u, y, v))/2πi

)−1/2

× 1

j!
〈Ψ−1

θθ Dθ, Dθ〉jbl(x, u, y, v, θ)
∣∣∣
θ=θcrit(x,u,y,v)

and

(5.9) |Rλ,l
N (x, u, y, v)| ≤ CN‖bl‖L2

m+2+2N
λ−N ≤ C ′

N2l(m+2+2N)λ−N .

Here we have applied Lemma 7.7.3 in [7].

Since 2l ≤ λ1/3 the error term Rλ,l
N (which is compactly supported) defines a

bounded operator on Lp with norm O(λ−(2m+1+N)/3) which for large N is much
better than the desired bound in (5.4).

Claim 5.1. The operators with kernels λ−jE l
j(x, u, y, v)eiλΦ(x,u,y,v) have L2 op-

erator norm O(λ−(d+m)/2−j/32l/2)

This clearly implies (5.4).

Geometry of the canonical relation.
We consider the canonical relation CΦ = (x, u,Φx,Φu; y, v,−Φy,−Φv) and the

singularities of the maps pL : (y, v) 7→ (Φx,Φu), pR : (x, u) 7→ (Φy,Φv). It is
our objective to check the analogues of (4.3-4.5) and we will have to verify a few
elementary linear algebra facts.

Let A denote the (d − 1) × (d − 1) matrix Γ′′(x′ − y′) and let B denote the
column vector Γ′(x′ − y′) ∈ R

d−1; recall that we may assume that ‖B‖ is small.
Indeed if

c0 = min
u∈Sm−1

‖J−1
u ‖−1(5.10.1)

C0 = max
u∈Sm−1

‖Ju‖(5.10.2)

we may assume that
‖B‖ ≤ C−1

0 c0/100.

Now pL is explicitly given by

Φx′ = −xdΓ
′(x′ − y′) + PJuy + Γ′(x′ − y′)et

dJuy + utΛdΓ
′(x′ − y′) + utΛP t

Φxd
= −yd − Γ(x′ − y′)

Φui = −
(
vi − (x′t, yd + Γ(x′ − y′))Jiy − et

iΛP t(x′ − y′) − ΛidΓ(x′ − y′)
)
.

We compute the differential DpL as
(5.11)

Φ′′
(x,u),(y,v) =




(xd − et
dJuy − utΛd)A + PJuP t + Bet

dJuP t PJued 0
Bt −1 0
C c I
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where I is an m × m identity matrix and C is m × (d − 1) matrix with rows

Ci = x′tPJiP
t + yde

t
dJiP

t − (et
dJiy + Λid)B

t + et
iΛP t + Γ(x′ − y′)et

dJiP
t and c

is the column in R
m with ci = (x′t, 0)Jied + et

dJiy. In this calculation the skew
symmetry of the Ji is used.

We now compute the determinant of (5.11) and obtain

(5.12) det Φ′′
(x,u),(y,v) = (−1)d det

(
(xd − et

dJuy − utΛd)A + PJuP t + E(B)
)

where

(5.13) E(B) = Bet
dJuP t + PJuedB

t.

Here we used the factorization
(

σA + PJuP t + Bet
dJuP t PJued

Bt −1

)

=

(
σA + PJuP t + E(B) PJued

0 −1

) (
I 0

−Bt 1

)
.

Note that E(B) is a skew-symmetric (d−1)×(d−1) matrix and so is PJuP t +
E(B). Thus, since d− 1 is odd, the rank of PJuP t + E(B) is at most d− 2, and
the following lemma shows that for small B the rank is equal to d − 2.

Lemma 5.2. Suppose that

‖B‖ ≤ c0

4C0
.

Then the following holds:
(i) If W ∈ Ker (PJuP t + E(B)) then

(5.14) |et
dJuP tW | ≥ c0

2
‖W‖.

(ii) dim Ker (PJuP t + E(B)) = 1.
(iii) If X belongs to the orthogonal complement of Ker (PJuP t + E(B)) then

(5.15) ‖(PJuP t + E(B))X‖ ≥ c0

2
‖X‖.

Proof. Observe that
‖E(B)‖ ≤ 2C0‖B‖.

Thus if W ∈ Ker (PJuP t + E(B)) and ‖W‖ = 1 then

1 = ‖P tW‖ ≤ ‖J−1
u ‖‖JuP tW‖

≤ ‖J−1
u ‖

(
|et

dJuP tW | + ‖PJuP tW‖
)

= ‖J−1
u ‖

(
|et

dJuP tW | + ‖E(B)W‖
)

≤ c−1
0

(
|et

dJuP tW | + 2C0‖B‖
)
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and thus, if ‖B‖ ≤ c0/4C0 we obtain |et
dJuP tW | ≥ c0/2 which is (5.14).

Let Su = Ju + E(B). Since Su is skew symmetric, it can be diagonalized over
C, and the eigenvalues are imaginary. The bounds (5.10.1/2) are still valid if J−1

u

is acting as a linear transformation on C
d. Let η ∈ C

d be a unit eigenvector of
Su so that Suη = iλη and ‖η‖ = 1; then

|λ| = ‖Suη‖ ≥ ‖Juη‖ − ‖E(B)η‖ ≥ c0 − ‖E(B)‖ ≥ c0 − 2C0‖B‖ ≥ c0

2

by assumption on B. Hence |λ| ≥ c0/2 for every eigenvalue iλ of Su. In particular
Su is nondegenerate. But then PSuP t = PJuP t + E(B) has rank d − 2 and
therefore a one-dimensional kernel and all nontrivial eigenvalues of Su are also
eigenvalues of PSuP t. This implies for vectors X orthogonal to the kernel of
PSuP t that

PSuP tX ≥ c0

2
‖X‖

which is (5.15).

Lemma 5.3. Let A be a symmetric positive definite matrix on R
n and let S be

a skew-symmetric matrix on R
n. Then:

(i) For all σ 6= 0, the matrix σA + S is invertible and the inverse satisfies the
bounds

(5.16) ‖(σA + S)−1‖ ≤ |σ|−1‖A−1‖.

(ii) If S is invertible then σA + S is invertible for all σ and we have the bound

(5.17) ‖(σA + S)−1‖ ≤ 2‖S−1‖ if |σ| ≤
(
2‖A‖‖S−1‖

)−1
.

Proof.

For a unit vector e in Rn we get

‖(σA + S)e‖ ≥ |〈(σA + S)e, e〉| = |〈σAe, e〉| ≥ |σ|‖A−1‖−1.

Here we have used that by the skew symmetry of S we have 〈Se, e〉 = 0, and also
that ‖A−1‖ = 1/λmin, where λmin is a minimal eigenvalue of A. This establishes
invertibility and the bound (5.16).

If in addition S is invertible and σ is small we may simply use the Neumann

series to get invertibility of σA+S. Namely, if |σ| ≤
(
2‖A‖‖S−1‖

)−1
we get (σA+

S)−1 = S−1(I +
∑∞

j=1(−1)jσj(AS−1)j) and the bound (5.17) is immediate. �
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Lemma 5.4. Let ℓ ≥ 1 be an odd integer, let Ω1 be the cone of real symmetric
positive definite ℓ × ℓ matrices and let Ω2 be the set of all skew symmetric ℓ × ℓ
matrices with rank ℓ − 1.

For S ∈ Ω2 choose a unit vector eS in the kernel of S and let πS be the
orthogonal projection to the orthogonal complement of eS.

Then for A ∈ Ω1, S ∈ Ω2, σ ∈ R we have

(5.18) det(σA + S) = σ〈AeS , eS〉det(πS(σA + S)π∗
S) + σ2F (A, S, σ)

where F is a smooth function on Ω1 × Ω2 × R.

Proof. Let Q = Q(S) be an orthogonal transformation with et
SQ = (0, . . . , 1).

Then

Qt(σA + S)Q =

(
σA0 + S0 σa

σat ση

)

where S0 is a skew symmetric invertible (ℓ − 1) × (ℓ − 1) matrix, A0 is positive
definite, a ∈ R

ℓ−1 and η = 〈AeS , eS〉. We apply Lemma 5.3 to σA0 + S0 and
factor

(
σA0 + S0 σa

σat ση

)

=

(
I 0

σat(σA0 + S0)
−1 1

) (
σA0 + S0 σa

0 ση − σ2at(σA0 + S0)
−1a

)

and conclude that

det(σA + S) = det(σA0 + S0)
(
ση − σ2at(σA0 + S0)

−1a
)
.

The assertion follows since det(σA0 + S0) = det(πS(σA + S)π∗
S). �

Verification of (4.3)-(4.5). We now use the above lemmata to verify the ana-
logues of conditions (4.3-5) for the phase function Φ in (5.6). By Lemma 5.3 the
determinant of Φ′′

(x,u),(y,v) can only vanish when σ := σcr ≡ xd − et
dJuy − utΛd

vanishes. In this case the dimension of the kernel Φ′′
(x,u),(y,v) is equal to the di-

mension of the kernel of PJuP t + E(B) with B = Γ′(x′ − y′), thus equal to 1.
Thus rank (Φ′′

(x,u),(y,v)) ≥ d + m − 1 everywhere.

In order to verify (4.4) let VL be a nonvanishing vector field which is in the
kernel of DpL when the mixed Hessian (5.11) becomes singular (i.e. when xd −
et
dJuy − utΛd = 0). Then

(5.19) VL =
d−1∑

j=1

WL,j
∂

∂yj
+ gL

∂

∂yd
+

m∑

i=1

hL,i
∂

∂vi
,

and with A = Γ′′(x′ − y′), we have gL = BtWL and

(5.20) (σA + PJuP t + Bet
dJuP t + PJuedB

t)WL = 0;
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moreover the functions hL,i are in the ideal generated by the WL,j (and the
coefficients can be computed from (5.11)). To get a nontrivial kernel (when
σ = 0) we must choose a nonvanishing vector WL satisfying (5.20). Notice that
then |et

dJuP tWL| is bounded below, by (5.14). By Lemma 5.4 we have

VL(det Φ′′
(x,u),(y,v))

= (−1)dF1(x, y, u)et
dJuP tWL + F2(x, y, u, v)(xd − et

dJuy − utΛd)

where F1 and F2 are smooth and F1 does not vanish. Thus |VL(det Φ′′
(x,u),(y,v))| ≥

c on the zero set of det Φ′′
(x,u),(y,v).

Next we consider the map pR and let VR be a nonvanishing vector field which
is in the kernel of DpR (or the cokernel of (5.11)) when xd − et

dJuy − utΛd = 0.
Then

VR =
d−1∑

j=1

WR,j
∂

∂xj
+ gR

∂

∂xd
+

m∑

i=1

hR,i
∂

∂ui

where by (5.11) the functions hR,i vanish when xd − et
dJuy − utΛd = 0 and

W t
R

[
σA + PJuP t + Bet

dJuP t] + gRBt = 0

W t
RPJued − gR = 0;

thus since A is symmetric and Ju skew symmetric we have essentially the same
equation for WL above, except that Ju is replaced by −Ju:

(5.21) (σA − PJuP t − PJuedB
t − et

dJuP t)WR = 0.

Moreover gR = et
dJuP tWR does not vanish by (5.14). As xd − et

dJuy−utΛd does
not depend on x′ we get

VR(det Φ′′
(x,u),(y,v)) = F̃1(x, y, u)et

dJuP tWR + F̃2(x, y, u, v)(xd − et
dJuy − utΛd)

with smooth functions F̃1, F̃2 and nonvanishing F̃1. Thus |VR(det Φ′′
(x,u),(y,v))|

is bounded below on the zero set of det Φ′′
(x,u),(y,v) and we have verified the

statements analogous to (4.3-5).

Proof of Claim 5.1, conclusion. For small l the bound is immediate from
Hörmander’s standard L2 estimate for nondegenerate oscillatory integrals ([8],
cf. (5.12) and Lemma 5.3 above). For large l we can, by Lemma 5.4, rewrite the
amplitude E l

j as a finite sum

E l
j(x, y, u, v) = 22jl

∑

|i|≤C

ζ1(2
l+i det Φ′′

(x,u,y,v))ql+i(x, u, y, v)

where the ql+i are compactly supported and smooth and satisfy the estimates
∂α

x,y,u,vql+i = O(2lα). Since 2l ≤ λ1/3 this type of blowup is covered by (4.2) and

we can apply the estimate (4.6) and see that the operator with kernel λ−jE l
j has

L2 operator norm . 22jlλ−jλ−(d+m)/22l/2. This implies our claim.
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Modifications for the proof of (3.16). By scaling we need to consider the
operator of convolution with ∂sK

k,l
s |s=1.

Let φ be as in (5.2) and

ρ(x′, xd, u, y, v, σ, τ) =
∂

∂s
φ
(x

s
,

u

s2
,
y

s
,

v

s2
, σ, τ

)∣∣∣
s=1

= σ
(
− xd + yd + (x′ − y′) · ∇x′Γ(x′ − y′)

)

+ 2
m∑

i=1

τi(−ui + vi − xtJiy) +
m∑

i=1

τie
t
iΛ(y − x).(5.22)

As before we set λ = 2k and observe that our operator is a sum of an operator
Gλ,l with Schwartz kernel

Gλ,l(x, u, y, v)

= λm+2

∫∫
eiλφ(x,u,y,v,σ,τ)ρ(x′, xd, u, y, v, σ, τ)χ0(x, u, y, v)ηl(σ, τ)dσdτ

and an operator which has similar properties as Hλ,l above (thus satisfies esti-
mates which are better than claimed in (3.16)).

We now need to carry out the stationary phase calculations as before for the
kernel Fλ,1Gλ,l (since the contribution from Fλ,2Gλ,l is again negligible). It has
the form of (5.3), except that bl is replaced by λcl where cl is given by

cl(x, u, y, v, θ) = bl(x, u, y, v, zd, w, σ, τ)ρ(x′, zd, w, y, v, σ, τ).

Then by stationary phase the Schwartz kernel of Fλ,1Gλ,l can be expanded as

(5.23) λm+2

∫
eiλΨ(x,u,y,v,θ)cl(x, u, y, v, θ)dθ

= eiλΦ(x,u,y,v)
N−1∑

j=0

Ẽ l
j(x, u, y, v)λ1−j + R̃λ,l

N (x, u, y, v)

where again the error term R̃λ,l
N is easy to handle for large N and Ẽλ

j is defined
as in (5.8) but with bj replaced by cj .

In order to finish the proof of (3.16) it is now sufficient to establish that the

operator T λ,l
j with kernel λ1−j Ẽ l

je
iλΦ(x,u,y,v) satisfies the bound

(5.24) ‖T λ,l
j ‖L2→L2 . λ1−(d+m)/22−l/2(1 + ‖Λ‖2l).

The differentiation in s causes a blowup by not more than λ and by our previous
analysis it follows that

(5.25) ‖T λ,l
j ‖L2→L2 . 2l/2λ1−(d+m)/2(22lλ−1)j .
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If j = 1, 2, . . . this estimate is sufficient for (5.24) since then 2l/2(22lλ−1)j . 2−l/2

by our restriction 2l ≤ λ1/3.
This crude estimate does not suffice for the leading term in the asymptotic

expansion when ‖Λ‖ is small (or zero).
However note that when Λ = 0 the coefficient of τi in (5.22) vanishes on the

critical set where θ = θcrit(x, u, y, v) since ∂Ψ/∂τ = 0 on that set. We get

ρ(x′,zd,crit, wcrit, y, v, σcrit, τcrit)

=(xd − et
dJuy − utΛd)

(
(x′ − y′) · ∇x′Γ(x′ − y′) − Γ(x′ − y′)

)

+2
m∑

i=1

ui

(
et
iΛP t(x′ − y′) + et

iΛdΓ(x′ − y′)
)
.

Since |xd − et
dJuy − utΛd| ≈ 2−l on the support of cl and since the coefficients of

ui are O(‖Λ‖) we now gain an additional factor of O(2−l + ‖Λ‖) in the estimate
(5.25) for j = 0 and thus establish (5.24) also for j = 0.

Modifications for the proof of (3.17), (3.18). The only reason for the mod-
ified definition (2.2.3) (replacing (2.2.2) for l > k/3) is the preservation of the
symbol estimates (4.2), needed for the validity of (4.6), (4.7). The estimation for

K̃k is exactly analogous to the estimation of Kk,l when l < k/3, and the same
statement applies to the s-derivatives. Only notational modifications are needed.

6. Weak type (1,1) estimates

We are now proving the weak type inequality (2.5). The proof of (2.6) is
omitted since it is exactly analogous.

We apply standard Calderón-Zygmund arguments (with respect to noniso-
tropic families of balls on nilpotent Lie groups, see [4], [17]). Cf. also [14] and
related papers on singular Radon transforms.

Let
Bδ = {(x, u) : |x| ≤ δ, |u| ≤ δ2}

and denote by Bc
δ its complement.

Since we have already checked the L2 bounds for the maximal function it
suffices to check the following Hörmander type condition for L∞(R+) valued
kernels:

sup
δ>0

sup
(y,v)∈Bδ

∫

Bc
10δ

sup
t>0

∣∣Kk,l
t

(
(y, v)−1(x, u)

)
− Kk,l

t (x, u)
∣∣dxdu . k2k−l(1 + ‖Λ‖2l)

which follows from the two estimates

sup
(y,v)∈Bδ

∫

Bc
10δ

sup
s∈[1,2]

∣∣Kk,l
2ns

(
(y, v)−1(x, u)

)
− Kk,l

2ns(x, u)
∣∣dxdu

.

{
2k−l(1 + ‖Λ‖2l),

2k(m+2) min{2−nδ, 2nδ−1}.
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Indeed we use the first bound for the O(k) terms with 2−2k(m+1) ≤ 2−nδ ≤
22k(m+1) and the second bound for the remaining terms. We then sum the series
in n. Using scaling we see that the latter estimates are equivalent to

(6.1) sup
(y,v)∈Br

∫

Bc
10r

sup
s∈[1,2]

∣∣Kk,l
s

(
x − y, u − v + xtJy) − Kk,l

s (x, u)
∣∣dxdu

.

{
2k−l(1 + ‖Λ‖2l),

2k(m+2) min{r−1, r}.

Because of the support properties of the kernel the integral on the left hand
side is zero if r ≫ 1. Now assume that r . 1. Since |∇Kk,l

s (x, u)| . 2k(m+2) the
bound 2k(m+2)r in (6.1) is immediate. It remains to show that

∥∥ sup
s∈[1,2]

|Kk,l
s |

∥∥
1

. 2k−l(1 + ‖Λ‖2l),

and this follows from

∥∥Kk,l
∥∥

1
. 1,(6.2)

∥∥∂sK
k,l
s

∥∥
1

. 2k−l(1 + ‖Λ‖2l).(6.3)

By an integration by parts in σ, τ we see that

(6.4) |Kk,l(x, u)| ≤ CN
2k−l

(1 + 2k−l|xd − Γ(x′)|)N

2km

(1 + 2k|u − Λx|)N

from which (6.2) immediately follows. Moreover from (5.22) one obtains by the
same argument |∂sK

k,l
s (x, u)| is bounded by C ′

N2k−l(1 + ‖Λ‖2l) times the right
hand side of (6.4). Consequently we obtain (6.3). This finishes the proof of the
weak type inequality (2.5). �

7. Appendix

In this section we give the example of a two-step nilpotent Lie group G, with 10-
dimensional Lie algebra, which satisfies the nondegeneracy condition but which
is not isomorphic to a group of Heisenberg type.

For µ = (µ1, µ2) ∈ R
2 let

Eµ =




µ1 0 0 −µ2

µ2 µ1 0 0
0 µ2 µ1 0
0 0 µ2 µ1




and define the 8 × 8 matrix

Jµ =

(
0 Eµ

−Et
µ 0

)
;
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then

(7.1) detJµ = (µ4
1 + µ4

2)
2.

Let g be the Lie algebra which is R
8 ⊕ R

2 as a vector space, with Lie bracket

[X + U, Y + V ] = 0 + (XtJ(1,0)Y, XtJ(0,1)Y ).

By (7.1) the group identified with g satisfies our nondegeneracy condition. We
now prove by contradiction that g is not isomorphic to a Heisenberg-type Lie
algebra.

Assume that there is a Lie algebra isomorphism α : g̃ → g where g̃ is a
Heisenberg-type algebra. Then g̃ = w ⊕ z where z is the center and α is a linear
isomorphism from z to R2.

Now with respect to orthonormal bases u1, . . . , u8 on w and u9, u10 on z and
e1, . . . , e8 on R8 and e9, e10 on R2 the map α is given by the 10 × 10 matrix

(
A 0
L B

)

where A is an invertible 8 × 8 matrix and B an invertible 2 × 2 matrix.
Now let X =

∑8
i=1 xiui, Y =

∑8
i=1 yiui, and express ω ∈ z∗ in terms of the

dual basis as ω = w1u
∗
9 + w2u

∗
10. Then, since g̃ is of Heisenberg type we have

ω([X, Y ]) = xtJ̃wy with J̃2
w = −(w2

1 + w2
2)I; in particular

(7.2) |det J̃w| = (w2
1 + w2

2)
4.

Now if ω = αtµ (thus Btµ = (w1, w2)
t) then

xtJ̃Btµy = ω([X, Y ]) = (αt)−1ω(α[X, Y ]) = 〈µ, [αX, αY ]〉 = (Ax)tJµ(Ay)

so that AtJµA = J̃Btµ and therefore

det J̃Btµ = (detA)2 detJµ.

Thus by (7.1) and (7.2) we obtain |Btµ|8 = (detA)2(µ4
1 + µ4

2)
2 and therefore, if

(a, b) and (c, d) are the rows of the matrix |det A|−1/4Bt,

µ4
1 + µ4

2 =
(
(aµ1 + bµ2)

2 + (cµ1 + dµ2)
2
)2

,

for all µ ∈ R
2. Thus

µ4
1 + µ4

2 =
(
(a2 + c2)µ2

1 + (b2 + d2)µ2
2 + 2(ab + cd)µ1µ2)

)2

for all µ ∈ R2. This implies a2 + c2 = b2 + d2 = 1 and setting ρ = ab + cd we
obtain after a little algebra that

(4ρ2 + 2)µ1µ2 + 4ρ(µ2
1 + µ2

2) = 0

for all µ ∈ R
2. This implies both 2ρ2 +1 = 0 and ρ = 0, thus a contradiction. �
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