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In memory of Eduard Belinsky (1947 – 2004)

Abstract. We note a sharp embedding of the Besov space B∞0,q(T) into ex-

ponential classes and prove entropy estimates for the compact embedding of
subclasses with logarithmic smoothness, considered by Kashin and Temlyakov.

1. Introduction

We consider spaces of functions with low regularity and their embedding prop-
erties with respect to the exponential classes exp(Lν). For simplicity we work with
functions on the torus T = R/Z (identified with 1-periodic functions on R). We
use the following characterization of the Luxemburg norm in expLν(T), found for
example in [15]. For ν > 0 set

(1) ‖f‖exp Lν(T) = sup
1≤p<∞

p−1/ν‖f‖Lp(T);

this norm will be used in what follows.

We consider the Besov spaces B∞0,q, defined via dyadic decompositions as follows.
Let Φ ≡ φ0 be an even C∞ function on R with the property that Φ(s) = 1 for |s| ≤ 1
and Φ is supported in (−2, 2). For k ≥ 1 set φk(s) = Φ(2−ks)−Φ(2−k+1s) and, for
k = 0, 1, 2, . . .

Lkf(x) ≡ φk(D)f(x) =
∑

n

φk(n)f̂ne
2πinx.

Then B∞0,q is defined as the space of distributions for which

‖f‖B∞0,q
=
( ∞∑

k=0

∥∥Lkf
∥∥q

∞

)1/q

is finite. It is well known that the class of functions defined in this way does not
depend on the specific choice of Φ.

The space B∞0,q consists of locally integrable functions if and only if q ≤ 2 (see [6],
p. 112) and it follows easily from the definition that it embeds into L∞ if q ≤ 1. We
shall show for the interesting range 1 < q ≤ 2 a sharp embedding result involving
the exponential classes.
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Theorem 1.1. Let 1 < q ≤ 2. Then the space B∞0,q is continuously embedded in
expLq′ , q′ = q/(q − 1).

This can be read as a statement about the growth envelope of the space B∞0,q,
defined by

(2) Eq(t) = sup{f∗(t) : ‖f‖B∞0,q
≤ 1};

here f∗ is the nonincreasing rearrangement of f . It is shown in Corollary 2.3 of
[3] that ‖f‖exp Lq′ ≈ supt>0 f

∗(t) log−1/q′(e/t) so that Theorem 1.1 immediately
implies an upper bound C| log t|1/q′ for Eq(t) when t is small. The corresponding
lower bound is proved in [6], Prop. 8.24 (there also the nonoptimal upper bound
C| log t| is derived). Thus we get

Corollary 1.2. For 1 ≤ q ≤ 2,

Eq(t) ≈ | log t|1/q′ , 0 < t ≤ 1/2.

We shall now consider subclasses LGγ(T) of B∞0,2 which are compactly embed-
ded in Lebesgue and exponential classes; these were introduced by Kashin and
Temlyakov [10]. For γ > 1/2 the class LGγ(T) is defined as the class of L1(T)
functions for which ‖Lkf‖∞ = O((1 + k)−γ) and we set

‖f‖LGγ(T) = sup
k≥0

(1 + k)γ‖Lkf‖∞.

Clearly, for γ > 1 the class LGγ(T) is embedded in L∞ and if 1/2 < γ ≤ 1
then LGγ(T) is embedded in expLν(T) for ν < (1 − γ)−1, by Theorem 1.1. We
are interested in the compactness properties of this embedding and some related
quantitative statements.

We recall that given a Banach space X and a subspace Y ⊂ X one defines the
nth entropy number en(Y ;X) as the infimum over all numbers ε > 0 for which
there are 2n−1 balls of radius ε in X which cover the unit ball {y ∈ Y : ‖y‖Y ≤ 1}
embedded in X. It is easy to see that the embedding of Y in X is a compact
operator if and only if limn→∞ en(Y ;X) = 0.

For γ > 1 the embedding of LGγ(T) into L∞ is compact and Kashin and
Temlyakov [10] determined sharp bounds for the entropy numbers for the embed-
ding into L∞ and Lp, p <∞; they showed that for n ≥ 2 and γ > 1

(3) en(LGγ , Lp) ≈

{
(log n)1/2−γ , 1 ≤ p <∞,

(log n)1−γ , p = ∞.

We note that the restriction γ > 1 in [10] is only used to ensure the imbedding
into L∞; indeed it is implicitly in [10] that for p <∞ the Lp result (3) holds for all
γ > 1/2. The hard part in the Kashin-Temlyakov result are the lower bounds. The
Lp lower bound is derived using Littlewood-Paley theory from lower bounds for
classes of trigonometric polynomials in [9]. The L∞ bounds require fine estimates
for certain Riesz products (cf. Theorem 2.3 in [10]).
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It is desirable to explain the jump in the exponent that occurs in (3) when
p → ∞. To achieve this Belinsky and Trebels ([1], Theorem 5.3) studied the
entropy numbers en(LGγ , expLν) for the natural embedding into the exponential
classes; they obtained the equivalence en ≈ (log n)1/2−γ for ν ≤ 1. For ν ≥ 2 they
obtained an almost sharp result, namely that en is essentially (log n)1−γ−1/ν , albeit
with a loss of (log log n)1/ν for the upper bound. A more substantial gap between
lower and upper bounds remained for 1 ≤ ν < 2. In [1] it was also noticed that
this gap could be closed if Pichorides conjecture [13] on the constant in the reverse
Littlewood-Paley inequality were proved; this however is still an open problem.
Nevertheless we shall use this insight to close the gap in [1].

Theorem 1.3. The embedding LGγ(T) → expLν(T) is compact if either γ > 1/2,
ν < 2, or ν ≥ 2, γ > 1− ν−1, and there are the following upper and lower bounds
for the entropy numbers.

(i) For γ > 1/2, and ν < 2,

(4) en(LGγ , expLν) ≈ (log n)1/2−γ .

(ii) For ν ≥ 2 and γ > 1− ν−1,

(5) en(LGγ , expLν) ≈ (log n)1−γ−1/ν .

The lower bounds are known; for ν ≤ 2 they follow immediately from (3). It was
pointed out in [1] that for ν > 2 the lower bounds follow from the L∞ lower bound
in (3) and L∞ → exp(Lν) Nikolskii inequalities for trigonometric polynomials.

We thus are left to establish the upper bounds for the entropy numbers. The idea
here is to embed the classes LGγ into slightly larger classes LGγ

dyad which contain
discontinuous functions but satisfy the same entropy estimates with respect to the
exponential classes. Instead of the Pichorides conjecture we shall then use the well
known bounds for a martingale analogue, due to Chang, Wilson and Wolff [2].
This philosophy also applies to the proof of Theorem 1.1; it has been used in other
papers, among them [7], [8], [5] (see also references contained in these papers).

Notation. If X, Y are normed linear spaces we use the notation Y ↪→ X to
indicate that Y ⊂ X and the embedding is continuous.

This paper. The proof of Theorem 1.1 is given in §2, and the proof of Theorem
1.3 in §3.

2. Embedding into the exponential classes

We shall work with dyadic versions of the Besov spaces where the Littlewood-
Paley operators Lk are replaced by martingale difference operators. Let k be a
nonnegative integer. For a function on [0, 1] we define the conditional expectation
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operator

Ekf(x) = 2k

∫ m2−k

(m−1)2−k

f(t)dt, (m− 1)2−k ≤ x < m2−k, m = 1, . . . , 2k,

and define

Dkf(x) = Ekf(x)− Ek−1f(x), k ≥ 1,

D0f(x) = E0f(x);

clearly both Ekf and Dkf define 1-periodic functions and can be viewed as func-
tions on T. Note that the functions Dkf are piecewise constant and (typically)
discontinuous at m2−k, m = 0, . . . , 2k − 1. We also observe that f =

∑
k≥0 Dkf

almost everywhere for f ∈ L1.

Definition 2.1. Let 1 ≤ q ≤ 2. The dyadic Besov-type spaces `q(B∞dyad) consists
of all f ∈ L1(T) for which the sequence {‖Dkf‖∞}∞k=0 belongs to `q; the norm is
given by

‖f‖`q(B∞dyad) =
( ∞∑

k=0

‖Dkf‖q
∞

)1/q

.

Proposition 2.2. Let 1 ≤ q ≤ 2. Then

B∞0,q ↪→ `q(B∞dyad) .

This is easily reduced to the following estimate on compositions of the difference
operators with the convolutions φ(D/λ) for large λ.

Lemma 2.3. Let λ ≥ 1 and k ≥ 0. Let ψ ∈ C∞ be even, with support in
(−2,−1/2) ∪ (1/2, 2) and let Lλ = ψ(λ−1D). Then∥∥EkLλ

∥∥
L∞→L∞

≤ Cmin{λ−12k, 1}, k ≥ 0,(6) ∥∥DkLλ

∥∥
L∞→L∞

≤ Cmin{λ−12k, λ2−k}, k ≥ 1.(7)

Proof. Use the notation ψ−1(s) = (2πis)−1ψ(s), ψ1(s) = sψ(s) and observe that
ψ,ψ−1, ψ1 are C∞–functions with compact support away from the origin so that
by standard L̂1-theory the sequences ` 7→ ψ(λ−1`), ψ−1(λ−1`), ψ1(λ−1`) define the
Fourier coefficients of L1(T) functions, with L1 norms uniformly in λ . Therefore,

(8) ‖ψ(λ−1D)f‖∞ + ‖ψ−1(λ−1D)f‖∞ + ‖ψ1(λ−1D)f‖∞ ≤ C‖f‖∞ .

In particular it is clear that ‖EkLλ‖L∞→L∞ = O(1).

Now fix k so that 2k < λ and let xm,k = m2−k. Then for x ∈ [xm,k, xm+1,k),

EkLλf(x) = 2k

∫ xm+1,k

xm,k

(∑
`∈Z

ψ(λ−1`)
∫ 1

0

e−2πi`yf(y) dy e2πi`x

)
dx

= 2k
∑
`∈Z

ψ(λ−1`)
∫ 1

0

e2πi`(xm+1,k−y) − e2πi`(xm,k−y)

2πi `
f(y) dy

= 2kλ−1
(
ψ−1(D/λ)f(xm+1,k)− ψ−1(D/λ)f(xm,k)

)
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and (6) follows by (8).

Inequality (7) for 2k < λ is an immediate consequence and it remains to consider
the case 2k ≥ λ. Fix x, then EkLλf(x) is the average of Lλf over an interval of
length 2−k containing x. Thus, by the mean value theorem applied to EkLλf(x)
and Ek−1Lλf(x), we can write for k ≥ 1

DkLλf(x) = Lλf(x′)− Lλf(x′′) = (Lλf)′(x̃)(x′ − x′′)

where x′, x′′, x̃ have distance at most 2−k+1 from x. Now (Lλf)′ = λψ1(D/λ)f and
thus

‖DkLλf‖∞ ≤ 21−k‖(Lλf)′‖∞ ≤ Cλ2−k‖f‖∞.
�

Proof of Proposition 2.2. Let Ψ0 be a C∞ function supported in (−4, 4) which
satisfies Ψ0(s) = 1 in (−2, 2) and let Ψn = Ψ(2−n·) where Ψ is supported in
(−8,−1/8) ∪ (1/8, 8) so that Ψ(s) = 1 for |s| ∈ (1/2, 4). Then Ψnφn = φn for all
n, so that Ψn(D)Ln = Ln, and we can write∥∥Dkf

∥∥
∞ =

∥∥∥Dk

∞∑
n=0

Ψn(D)Lnf
∥∥∥
∞
≤

∞∑
n=0

∥∥DkΨn(D)
∥∥

L∞→L∞

∥∥Lnf
∥∥
∞

≤ C
∞∑

n=0

2−|k−n|‖Lnf‖∞

and therefore

‖f‖`q(B∞dyad) ≤ C
∞∑

m=0

2−m
∥∥∥{‖Lk+mf‖∞

}∞
k=−m

∥∥∥
`q
≤ C ′‖f‖B∞0,q

.

�

We now introduce the square-function and the maximal function

S(f) :=
(∑

k≥0

|Dkf(x)|2
)1/2

, M0(f) := sup
k≥0

|Ekf(x)− E0f(x)| ,

resp., and recall the following deep “good λ inequality” due to Chang, Wilson and
Wolff (Corollary 3.1 in [2]): There are absolute constants c and C so that for all
λ > 0, 0 < ε < 1,

(9) meas
({
x : M0(f)(x) > 2λ, S(f) < ελ

})
≤ C exp(− c

ε2
)meas

({
x : sup

k≥0
|Ekf(x)| > λ

})
.

It is standard that this implies the inequality

(10) ‖f‖p ≤ C
√
p ‖S(f)‖p

for all p ≥ 2, and some absolute constant C ≥ 1. Indeed, if we integrate out the Lp

norms using the distribution function, where we observe that

{x : M0(f)(x) > 2λ} ⊂ {x : M0(f) > 2λ, S(f) < ελ} ∪ {x : S(f) ≥ ελ} ,
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we obtain∥∥ sup
k
|Ekf |

∥∥
p
≤ ‖E0f‖p + 2C1/pe−cε−2p−1

‖ sup
k
|Ekf |

∥∥
p

+ 2ε−1
∥∥S(f)

∥∥
p
.

Now we choose ε = ap−1/2 with a so small that 2Ce−ca−2
= 1/2. Since D0 = E0

is incorporated in the definition of the square-function, |f(x)| ≤ supk |Ekg|(x) a.e.,
the asserted bound (10) follows.

The following interpolation result is a quick consequence of (10).

Lemma 2.4. There is a constant C so that for 1 ≤ s ≤ 2, s′ = s/(s− 1), 2 ≤ p <
∞, and all sequences {fk} of Lp(T) functions,∥∥∥ ∞∑

k=0

Dkfk

∥∥∥
Lp(T)

≤ Cp1/s′
( ∞∑

k=0

‖fk‖s
Lp(T)

)1/s

.

Proof. The statement is trivial for s = 1, because of the uniform Lp bounds for
the operators Dk. We thus only need to prove the statement for s = 2 since then
the general case follows by complex interpolation. By a straightforward limiting
argument we may assume that fk = 0 for all but finitely many k.

We use that DkDl = 0 if k 6= l, and define g =
∑

Dkfk. Then by (10)

‖g‖p =
∥∥∥∑

l

Dlg
∥∥∥

p
≤ C

√
p
∥∥∥(∑

l

|Dlg|2
)1/2∥∥∥

p
,

and since p ≥ 2 we can use Minkowski’s inequality to bound this by

C
√
p
(∑

l

‖Dlg‖2p
)1/2

= C
√
p
(∑

l

‖Dlfl‖2p
)1/2

≤ C ′
√
p
(∑

l

‖fl‖2p
)1/2

.

�

Theorem 1.1 is an immediate consequence of Proposition 2.2 and the following
imbedding result which is based on (10) (or rather the case s = 2 of Lemma 2.4).

Proposition 2.5. Let 1 ≤ q ≤ 2. Then

`q(B∞dyad) ↪→ expLq′ .

Proof. We modify an argument from [1] (which was based there on the Pichorides
conjecture). Fix f ∈ `q(B∞dyad) and let n → k(n, f) be a bijection of N ∪ {0} so
that the sequence n→ ‖Dk(n,f)f‖∞ is nonincreasing (in other words, we form the
nonincreasing rearrangement of the sequence {‖Dkf‖}).

For p ≥ 2 we need to estimate p−1/q′‖f‖p. Thus fix p > 2 and let N ∈ N so that
p ≤ N < p+ 1. We then split

f =
N∑

n=0

Dk(n,f)f +
∞∑

n=N+1

Dk(n,f)f := INf + IINf.
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By Hölder’s inequality

‖INf‖p ≤
N∑

n=0

‖Dk(n,f)f‖p ≤
N∑

n=0

‖Dk(n,f)f‖∞

≤ (N + 1)1/q′
( N∑

n=0

‖Dk(n,f)f‖q
∞

)1/q

≤ Cp1/q′‖f‖`q(B∞dyad).(11)

For the second term we get a bound in terms of the Lorentz-Besov type space
`q,2(B∞dyad) defined similarly as `q(B∞dyad), but with the sequence space `q replaced
by the Lorentz variant `q,2. Since `q ↪→ `q,2 for q ≤ 2; this is a better estimate.
Note that

(12)
∥∥∥{Dkf}∞k=0

∥∥∥
`q,2

≈
( ∞∑

n=0

[
n1/q‖Dk(n,f)f‖∞

]2
n−1

)1/2

.

We now use the case s = 2 of Lemma 2.4 to obtain

‖IINf‖p ≤ Cp1/2
( ∞∑

n=N+1

∥∥Dk(n,f)f
∥∥2

p

)1/2

≤ Cp1/2
( ∞∑

n=N+1

∥∥Dk(n,f)f
∥∥2

∞

)1/2

≤ Cp1/2N−1/2+1/q′
( ∞∑

n=N+1

n1−2/q′
∥∥Dk(n,f)f

∥∥2

∞

)1/2

,

and, since 1− 2/q′ = 2/q − 1 and p ≈ N , we get from (12)

(13) p−1/q′‖IINf‖p ≤ C‖f‖`q,2(B∞dyad) ≤ C ′‖f‖`q(B∞dyad).

Estimates (11) and (13) yield

‖f‖exp Lq′ . ‖f‖`q(B∞dyad)

and thus the assertion. �

3. Entropy numbers for the Kashin-Temlyakov classes

We now give a proof of Theorem 1.3. As discussed in the introduction only the
upper bounds have to be proved. It will be advantageous to define larger “dyadic”
analogues of the LG classes.

Definition 3.1. Let γ > 1/2 and let LGγ
dyad(T) denote the class of L1(T) functions

for which ‖Dkf‖∞ = O(k−γ) as k →∞. We set

‖f‖LGγ
dyad

= sup
k≥0

(k + 1)γ‖Dkf‖∞.

We note that the classes LGγ(T) consist of continuous functions provided that
γ > 1. This is not the case for the dyadic analogue LGγ

dyad(T) as even the
building blocks Dkf are piecewise constant and typically discontinuous at m2−k,
m = 0, . . . , 2k − 1. We prove the following embedding result.
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Lemma 3.2. For γ > 1/2

LGγ(T) ↪→ LGγ
dyad(T) .

Proof. This follows easily from Lemma 2.3. Indeed let f ∈ LGγ(T), so that
‖Lnf‖∞ . ‖f‖LGγ (1 + n)−γ . As in §2 we can write Ln = Ψn(D)Ln where the
operator DkΨn(D) has L∞ → L∞ operator norm O(2−|k−n|). Thus∥∥Dkf

∥∥
∞ =

∥∥∥Dk

∞∑
n=0

Ψn(D)Lnf
∥∥∥
∞
≤ C

∞∑
n=0

2−|k−n|∥∥Lnf
∥∥
∞

≤ C0

∞∑
n=0

2−|k−n|(1 + n)−γ‖f‖LGγ ≤ C ′(1 + k)−γ‖f‖LGγ .

This proves the assertion. �

We now state a crucial approximation result which will be derived as a quick
consequence of Lemma 2.4.

Lemma 3.3. Let 1/2 < γ < 1 and 0 < ν < (1 − γ)−1 or γ ≥ 1 and 0 < ν < ∞.
There is a constant C = C(γ, ν) so that for M = 1, 2, . . .

sup
‖f‖LG

γ
dyad

≤1

‖f − EMf‖exp Lν ≤ C

{
M1/2−γ , ν ≤ 2, γ > 1/2,
M1−1/ν−γ , ν ≥ 2, γ > 1− ν−1.

Proof. Consider f ∈ LGγ
dyad, ‖f‖LGγ

dyad
≤ 1, and write

f − EMf =
∞∑

k=M+1

DkDkf .

By Lemma 2.4 we have for 2 ≤ p <∞, and sγ > 1

p−1/ν‖f − EMf‖p ≤ Cp1/s′−1/ν
( ∞∑

k=M+1

∥∥Dkf
∥∥s

p

)1/s

≤ Cp1/s′−1/ν
( ∞∑

k=M+1

∥∥Dkf
∥∥s

∞

)1/s

≤ Cp1/s′−1/ν
( ∞∑

k=M+1

(1 + k)−sγ
)1/s

≤ C(s, γ)p1−1/ν−1/sM1/s−γ .

If ν ≤ 2 then we may apply this bound for s = 2, γ > 1/2 and get the bound
‖f−EMf‖exp Lν = O(M1/2−γ). If ν > 2 we may apply it with s = ν/(ν−1) ∈ (1, 2),
indeed we have sγ > 1 in view of our assumption γ > 1 − ν−1; the result is the
asserted bound ‖f − EMf‖exp Lν = O(M1−1/ν−γ). �

We apply a result of Lorentz [11], cf. Theorem 3.1 in [12], p. 492. Here one
considers a Banach space X of functions, a sequence G = {g1, g2, . . . } of linearly
independent functions whose linear span is dense in X. Set X0 = 0, and let, for
n ≥ 1, Xn be the linear span of g1, . . . , gn. Let

Dn(x) = inf{‖x− y‖ : y ∈ Xn}
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and let d = (δ0, δ1, . . . ) be a nonincreasing sequence of positive numbers with
limn→∞ δn = 0. Let

A(d) = {x ∈ X : Dn(x) ≤ δn, n = 0, 1, 2, . . . }
be the approximation set associated with d, G.

Next let Nε(A(d)) denotes the minimal number of balls of radius ε needed to
cover A(d). The following inequality for the natural logarithm of Nε(A(d)) is a
special case of Lorentz’ result.

(14) logNε(A(d)) ≤ 2n log
(

18δ0
ε

)
, if ε ≥ δn .

We apply (14) to prove the dyadic analogue of the upper bound in Theorem 1.3.

Proposition 3.4. The embedding LGγ
dyad(T) → expLν(T) is compact if γ > 1/2,

ν < 2 or ν ≥ 2, γ > 1− ν−1 and we have

en(LGγ
dyad, expLν) ≤ C(log n)1/2−γ , γ > 1/2, ν ≤ 2,(15)

en(LGγ
dyad, expLν) ≤ C(log n)1−γ−1/ν , γ > 1− 1/ν, ν ≥ 2.(16)

Proof. We set X = expLν , and, for n = 2M + j, j = 0, 1, . . . , 2M − 1, let gn be the
characteristic function of the interval [j2−M , (j+1)2−M ). If Xn, Dn(x) are defined
as above then we note that Lemma 3.3 says that for f in the unit ball of LGγ

dyad

we have
Dn(f) ≤ C0(log(n+ 2))−a

where a = γ − 1/2 if γ > 1/2 and ν ≤ 2, and a = γ + ν−1 − 1 if ν ≥ 2 and
γ > 1− 1/ν. We now note that (14) implies that

eñ(LGγ
dyad, expLν) ≤ (log(n+ 1))−a

if ñ > Cn log log n. As log ñ ≈ log n the asserted inequalities follow. �

Conclusion of the proof. By Lemma 3.2 we have

(17) en(LGγ , expLν) ≤ Cen(LGγ
dyad, expLν)

and the assertion of the Theorem 1.3 follows from Proposition 3.4. �

Remark: We note that in the dyadic case, there are also similar lower bounds
matching (15), (16) for the entropy numbers en(LGγ

dyad, expLν). These follow from
(17) and the known lower bounds for the entropy numbers for LGγ .
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