
RIESZ MEANS ASSOCIATED WITH CONVEX DOMAINS IN THE PLANEAndreas Seeger Sarah Ziesler1.IntrodutionLet 
 be a bounded open onvex set R2 whih ontains the origin. Let � be the assoiatedMinkowski funtional de�ned by �(�) = inf �t > 0 : t�1� 2 
g:We shall investigate the Riesz means of the inverse Fourier integral assoiated with 
(1.1) R�;tf(x) = 1(2�)2 Z�(�)�t �1� �(�)t �� bf(�)eih�;xid�;here our de�nition of the Fourier transform is bf(�) = R f(y)e�ihy;�idy. For t = 1 we also setR� = R�;1 and refer to R� as the Bohner-Riesz operator assoiated with 
. Note that for � = 0the Riesz means R0;t are just the partial sum operators assoiated with the sets t
, t > 0, while for� = 1 one reovers the F�ejer means, namely the averages R1;t = t�1 R t0 R0;sds. The objetive is toprove that R�;tf onverges to f in Lp(R2 ), for suitable 1 � p <1; for p =1 one has to replae L1by the spae C0(R2 ) of ontinuous funtions with limjxj!1 jf(x)j = 0. The main step is to establishthe Lp boundedness of R� (and, equivalently, of R�;t).If 
 is the unit dis in R2 expliit alulations show that the onvolution kernel of R� belongs toLp(R2 ) if and only if � > 2=p� 3=2. In partiular R� is bounded on Lp for 1 � p �1 if � > 1=2 (aresult whih goes bak to Bohner), moreoverR� is unbounded if p =2 (p�; p0�) where p� = 4=(3 + 2�)and p0� = p�=(p��1) is the onjugate exponent. Fe�erman [6℄ showed that the partial sum operatorR0 is bounded on Lp if and only if p = 2. The best possible result for all � 2 (0; 1=2) was provedby Carleson and Sj�olin [3℄ who obtained Lp boundedness for p� < p < p0� (see also Fe�erman [6℄,C�ordoba [4℄ for di�erent proofs).Various generalizations of these results have been onsidered in the literature; in partiular Sj�olin[19℄ proved the analogous Lp inequalities for Bohner-Riesz multipliers assoiated to an arbitraryompat C1 urve in the plane.In this paper we onsider the ase of Riesz means assoiated with onvex domains, with no extrasmoothness assumption on the boundary 
. Only the F�ejer means have been onsidered in thisgenerality; see [12℄ where Lp boundedness for 1 � p � 1 is proved. We shall in fat show that allthe above mentioned suÆient results for the unit dis remain true in our more general setting; theseresults are neessary and suÆient for onvex sets with smooth boundary. Moreover we shall showhow these results an be improved for some lasses of onvex domains with nonsmooth boundary.In order to formulate this improvement we need to introdue a version of upper Minkowskidimension of the boundary �
 with respet to a suitable families of aps or \balls". The use ofThe �rst author was supported in part by a grant from the National Siene Foundation.The seond author was supported in part by a grant from the Faulty of Arts, University College Dublin.Typeset by AMS-TEX1



these families is motivated by the estimates of Fourier transforms of measures arried by onvexsurfaes, see Bruna, Nagel and Wainger [2℄.Let P 2 �
 and let ` be a line through P . Let H0(`) be the losed half-plane with boundary `whih ontains the origin. We say that ` is a supporting line for 
 at P if 
 � H0(`) and denote byT (
; P ) the set of supporting lines for 
 at P . Note that T (
; P ) onsists preisely of the tangentline through P if 
 has a C1 boundary.Let P 2 �
. For any supporting line ` through P and Æ > 0 we de�ne(1.2) B(P; `; Æ) = fY 2 �
 : dist(Y; `) < Æg:Let BÆ = fB(P; `; Æ) : P 2 �
; ` 2 T (
; P )g and let N(
; Æ) be the minimal number of balls B 2 BÆneeded to over �
. Let(1.3) �
 = lim supÆ!0 logN(
; Æ)log Æ�1 ;this is our version of upper Minkowski dimension. It is not hard to see (f. Lemma 2.3 below) that0 � �
 � 1=2.In what follows 
 will always be an open onvex set in R2 ontaining the origin. Our main resultis:Theorem 1.1. Suppose that 1 � p � 1, � > 0 and � > �
(4j1=p�1=2j�1). Then R�;t is boundedon Lp(R2 ).Suppose f 2 Lp(R2 ) if p <1 and f 2 C0(R2 ) if p =1. Thenlimt!1 kR�;tf � fkp = 0:The L1 result of Theorem 1.1 has the following ounterpart for pointwise onvergene whihfollows from the weak type (1,1) bound for the appropriate maximal operator.Theorem 1.2. Suppose that f 2 L1(R2 ), � > �
. Then limt!1R�;tf(x) = f(x) almost every-where.It is well known that Theorem 1.1 is sharp if the boundary of 
 is smooth; then R�;t is boundedon Lp if and only if � > maxf0; 2j1=p� 1=2j � 1=2g; in fat the neessity of this ondition followsfrom Theorem 3 in [11℄ if 
 has merely C2 boundary. This is the minimal smoothness assumptionto ensure �
 = 1=2 sine for every � 2 (0; 1) there exist onvex domains 
 with C1;� boundary and�
 = �=(� + 1) < 1=2. In x4 we onstrut domains with this property for whih Theorem 1.1 issharp:Theorem 1.3. Let 0 < � < 1=2. Then there exists a onvex domain 
� with C1; �1�� boundarysatisfying �
 = � so that for 1 � p < 4=3 the operators R�;t assoiated to 
 are bounded on Lp(R2 )if and only if � > �(4=p� 3).Remarks. 1. If 
 has a C1 boundary then Theorem 1.1 is a speial ase of Sj�olin's theorem [19℄(the previously proved Carleson-Sj�olin theorem [3℄ overed the ase of domains with nonvanishingurvature; see also [9℄ for the ase of �nite type urves). If 
 has C2 boundary then there is apoint on �
 where the urvature does not vanish and working near this point one easily heks that�
 = 1=2 in this ase. We remark that Sj�olin's proof relies on the assumption  2 C1 sine it usesapproximation to redue the general ase of smooth funtions to the ase of polynomials. It wouldbe interesting to investigate whether the smoothness assumption is needed in the nononvex ase.2



2. Podkorytov [12℄ showed L1 onvergene of the F�ejer means (for � = 1) assoiated to arbitraryonvex domains; this an be improved to the ondition � > 1=2 (sine �
 � 1=2 in Theorem 1.1). Adi�erent extreme ase ours when �
 = 0, in partiular if 
 is a onvex polygon. This partiularase was onsidered before; Podkorytov [13℄ proved L1 onvergene for Riesz means R�;t assoiatedto arbitrary (not neessarily onvex) polyhedra in Rn , for every � > 0. The orresponding result forpointwise onvergene was worked out by one of the authors in [17℄ using the method in [13℄ and aresult by E. Stein and N. Weiss [22℄ on adding weak type funtions; f. also the more reent paper[1℄. 3. Intermediate rates for Lebesgue onstants of trigonometri series, for ertain polygonal do-mains in the plane with in�nitely many verties, were found by Podkorytov [14℄, and by A. and V.Yudin [24℄; their examples are related to the example disussed in x4.4. Let 1 < p0 < 4=3. It would be interesting to �nd onvex domains for whih R� is boundedin Lp for all � > 0 if and only if p0 < p < p00.5. Our method also applies to multipliers of the form �(�)(�2� (�1))�+ if  is a onvex funtionor �(�)dist(�;�)� if � is a onvex urve; here � 2 C10 . Moreover the subordination formula (4.19)below allows the extension to more general multipliers of the form m Æ �.Notation: The Fourier transform of f is denoted by bf , the inverse Fourier transform of f isdenoted by F�1[f ℄. By C0 we denote the spae of ontinuous funtions with limjxj!1 jf(x)j = 0.By C10 we denote the spae of smooth funtions with ompat support. By C1;� we denote a spaeof di�erentiable funtions whose derivatives are H�older ontinuous with exponent �. Given twoquantities A and B we write A . B if there is a positive onstant C, suh that A � CB. Suhonstants may depend on the number M in (2.1) below. We write A � B if A . B and A & B.Aknowledgement: The seond author would like to thank both Carlos Kenig and Tony Carberyfor valuable onversations relating to this work.2. Convex sets and plane geometryLet 
 be an open onvex domain in R2 ontaining the origin. Sine the statements of Theorems1.1 and 1.2 are invariant under dilations and sine � is homogeneous of degree 1 it is no loss ofgenerality to assume that the losed ball of radius 4 entered at the origin is ontained in 
. Thenthere is an integer M � 3 so that(2.1) f� : j�j � 4g � 
 � 
 � f� : j�j < 2Mg;this is heneforth assumed.Let u?, u be orthonormal unit vetors, so that det(u?; u) = 1 and de�ne the half strip(2.2) Su = f� : jh�; u?ij � 2; h�; ui � 0g:We now give some properties of the boundary �
 relying on elementary fats on onvex funtions(see e.g. [10, x1.1℄).Lemma 2.1. �
 \Su an be parametrized by(2.3) t 7! tu? + (t)u; �2 � t � 2where (i)(2.4) �2M < (t) < �2; �2 � t � 2:3



(ii)  is a onvex funtion on [�2; 2℄, so that the left and right derivatives 0L and 0R existeverywhere in (�2; 2) and(2.5) �2M�1 � 0L(t) � 0R(t) � 2M�1for t 2 [�2; 2℄. The funtions 0L and 0R are inreasing funtions; 0L is left ontinuous and 0R isright ontinuous in [�2; 2℄.(iii) Let ` be a supporting line through � 2 �
 and let n be an outward normal vetor (e.g.normal to `). Then(2.6) h�; ni � 2�M j�j:Proof. By assumption (2.1) the line segment fsu? : jsj � 4g is ontained in 
. Now �x s withjsj � 2 and onsider the ray fsu? � Ru : R > 0g. For any point P 2 
 whih is on this ray theline segment onneting P to su? also belongs to 
. Hene there is exatly one point on this ray,whih is also a boundary point. Therefore there is a funtion t 7! (t) on [�2; 2℄ so that �
 \ Suan be parametrized by (2.3) and (2.4) is satis�ed. Then  is a onvex funtion; for the existeneand ontinuity properties of left and right derivatives see [10, x1.1℄.In order to obtain the bounds on the derivatives �x t0 2 [�2; 2℄. One notes that the intersetionof 
 and the ray through t0u?+(t0)u starting at 4u? is preisely the line segment onneting thosetwo points; an analogous statement holds with 4u? replaed by �4u?. This implies for t; t0 2 [�2; 2℄that (t0)4 + t0 (t� t0) � (t)� (t0) � �(t0)4� t0 (t� t0); t0 � t;(t0)4� t0 (t0 � t) � (t)� (t0) � �(t0)4 + t0 (t0 � t); t � t0;and (2.5) follows from (2.4).In order to see (2.6) we hoose u = �=j�j and parametrize �
 near � by (2.3) (the funtion depends of ourse on u). The vetor n is given byn = 1p1 + �2 (�u? � u) where 0L(0) � � � 0R(0):Sine h�; ni = j�j(1 + �2)�1=2 the assertion (2.6) is an immediate onsequene. �It will be useful to approximate onvex domains by smooth ones.Lemma 2.2. Suppose that 
 satis�es (2.1). There is a sequene of onvex domains 
n ontainingthe origin, with Minkowski-funtionals �n(�) = infft : �=t 2 
ng, so that the following holds:(i) 
n � 
n+1 � 
 and [n
n = 
.(ii) �n(�) � �n+1(�) � �(�) and �n(�) � �(�)�(�) � 2�n�1;in partiular limn!1 �n(�) = �(�), with uniform onvergene on ompat sets.(iii) 
n has C1 boundary. 4



(iv) If Æ � 2�n+2 then(2.7) N(
n; 2Æ) . N(
; Æ)where N(
; Æ) denotes the overing number for the boundary as de�ned in the introdution.Proof. We �rst approximate the boundary of (1 � 4�n)
 = f� : �(�) � 1 � 4�ng by a onvexpolygon. Let �� = 2��4�n�M and let u� = (os �� ; sin ��), u�? = (� sin �� ; os ��). Let P� = �R�u�where R� is suh that �(P�) = 1�4�n. Let e
n be the polygon with verties P� , � = 0; : : : ; 4n+M�1.We wish to smooth out the boundary near the verties and therefore modify this boundary only ona small part in the narrow half stripsS� = f� : jh�; u�?ij � 16�n�M ; h�; u�i � 0g:De�ne ~�(t) = �R� + +� t if t � 0 and ~�(t) = �R� � �� t if t � 0 where the slopes �� are hosen sothat the portion of the boundary whih is in S� is parametrized by t 7! tu�?+~�(t)u� , jtj � 16�n�M .Now let � 2 C10 (R) be an even nonnegative funtion supported in (�1=2; 1=2) so that R �(t)dt =1. We de�ne �(t) = Z 64n+M�(64n+Ms)~�(t� s)ds:Sine � is even it is straightforward to hek that �(t) = ~�(t) when 32�n�M � jtj � 16�n�M .Replaing �
\S� parametrized by ~� by the urve parametrized by � yields a onvex domain 
nwith the required properties. If 2�n+2 � Æ and fBjg denotes a over of 
 with "balls" of the form(1.2) then the balls with double height over the boundary of 
n. This yields (2.7). �A deomposition of the boundary. Let Su be as in (2.2). We introdue a deomposition of�
 \Su in order to use the geometri properties of �
 in terms of the overing numbers N(
; Æ);we assume that Æ � 2�100�M . Consider the parametrization of �
\Su by (2.3). We de�ne a �nitesequene of inreasing numbers Au(Æ) = fa0; : : : ; aQgindutively as follows. Let a0 = �1. Suppose a0; : : : ; aj�1 are already de�ned. If(t� aj�1)(0L(t)� 0R(aj�1)) � Æ for all t 2 (aj�1; 1℄)then let aj = 1 if aj�1 � 1� 2�MÆ and aj = aj�1 + 2�MÆ if aj�1 > 1� 2�MÆ. Otherwise de�neaj = infft 2 (aj�1; 1℄ : (t� aj�1)(0L(t)� 0R(aj�1)) > Æg:Sine j0Lj, j0Rj are bounded by 2M�1 we see that jt�sjj0L(t)�0R(s)j < Æ if jt�sj < Æ2�M ; thereforethe �rst ase ours after a �nite number of steps. We obtain a sequene a0 < a1 < � � � < aQ withso that for j = 0; : : : ; Q� 1(2.8.1) (aj+1 � aj)(0L(aj+1)� 0R(aj)) � Æ;and for 0 � j < Q� 1(2.8.2) (t� aj)(0L(t)� 0R(aj)) � Æ; if t > aj+1:Condition (2.8.1) is satis�ed sine 0L is left ontinuous.It will also be onvenient to de�ne(2.9) Au(Æ; r) = faj 2 Au(Æ) : 2�r � aj+1 � aj < 2�r+1g:where r 2 N so that 2�MÆ � 2�r � 1. Note that Au(Æ) = [rAu(Æ; r).The number Q in (2.8.1/2) is also denoted by Q(Æ) or Qu(Æ) if it beomes neessary to indiatethe dependene of Æ or u.The following Lemma relates the numbers Qu(Æ) to the overing numbers N(
; Æ).5



Lemma 2.3.There exist a positive onstant CM , so that the following statements hold.(i) Qu(Æ) � CMÆ�1=2.(ii) 0 � �
 � 1=2.(iii) Qu(Æ) � CMN(
; Æ) log(2 + Æ�1).(iv) For � = 1; : : : ; 22M let u� = (os(2��2�2M ); sin(2��2�2M )). ThenC�1M N(
; Æ) �X� Qu� (Æ) � CMN(
; Æ) log(2 + Æ�1):Proof. For (i) apply the Cauhy-Shwarz inequality and (2.8) to obtainQ� 1 � Æ�1=2 Q�1Xj=1 (aj � aj�1)1=2(0L(aj)� 0R(aj�1))1=2� Æ�1=2�Q�1Xj=1 aj � aj�1�1=2�Q�1Xj=1 0L(aj)� 0R(aj�1)�1=2� 4 � 2M=2Æ�1=2:(ii) is an immediate onsequene of (i).The left inequality in (iv) follows easily from the de�nitions one one observes that for a slope� � 0R(aj) we have(aj+1)� (aj)� �(aj+1 � aj) = Z aj+1aj (0(s)� �)ds� (0L(aj+1)� 0R(aj))(aj+1 � aj):(2.10)The other inequality in (iv) follows from (iii). For the proof of (iii) pik r0 (with 2r0 � 2MÆ�1)so that among the sets Au(Æ; r) the set Au(Æ; r0) has maximal ardinality Q0. Note thatQ0 � Qu(Æ)2(M + log(2 + Æ�1)) :We may assume that Q0 � 2M+100 (otherwise (iii) follows easily). We may split Au(Æ; r0) into notmore than 240+M families Amu (Æ; r0) with the property that for every hoie of di�erent aj ; ak 2Amu (Æ; r0) there are at least 220+M numbers ai 2 Au(Æ; r0) between aj and ak.In order to verify (iii) we have to show that(2.11) Q0 � MN(
; Æ):We now �x aj ; ak 2 Amu (Æ; r0), aj < ak. Let t0 2 [aj ; aj+1℄ and let ` be a supporting line for 
at P0 = t0u? + (t0)u. Pik any t1 2 [ak; ak+1℄ and let P1 = t1u? + (t1)u. Observe that (2.11)follows if one an show that the distane of P1 to ` is greater than Æ. This we now verify. If � is theslope of ` then � � 0R(t0) and �u?�u is the normal to ` whih is outward with respet to 
. Thendist(P1; `) = 1p1 + �2 �(t1)� (t0)� �(t1 � t0)�� 1p1 + �2 �(t1)� (t0)� 0R(t0)(t1 � t0)�(2.12) 6



By de�nition of Amu (Æ; r0) we may pik L � 2M+5 intervals [i; di℄ with aj+1 < 1, dL < ak,2�r � di � i � 2�r+2, (0L(di)� 0R(i))(di � i) > Æ. We set d0 = aj+1, L+1 = ak. Then(t1)� (t0)� 0R(t0)(t1 � t0)= (t1)� (L+1)� 0R(t0)(t1 � L+1) + LXi=0 h(i+1)� (di)� 0R(t0)(i+1 � di)i+ LXi=1 h(di)� (i)� 0R(t0)(di � i)i+ (d0)� (t0)� 0R(t0)(d0 � t0)� LXi=2 h(di)� (i)� 0R(t0)(di � i)i � LXi=2 h(0L(di)� 0R(i))(di � i)i � (L� 1)Æand thus, sine L = 2M+5, dist(P1; `) � L� 1p1 + 22M Æ > Æ: �The following Lemma is onerned with a disjointness property for algebrai sums of balls of theform (1.2). This will be used in the proof of the L4 estimate in x3, using an orthogonality argumentdue to Fe�erman [7℄.Lemma 2.4. Let B � 1 and Au(Æ; r) as in (2.9). Let a be a subset of Au(Æ; r) with the propertythat(2.13) aj 2 a; ak 2 a; aj < ak =) k � j > 210B:Let Ij = [aj � Æ2�M ; aj+1 + Æ2�M ℄ and(2.14) Gj = f� : h�; u?i 2 Ij ; jh�; ui � (h�; u?i)j � BÆgThen for any � 2 R2 there are at most two pairs (j; k) with aj ; ak 2 a so that � belongs to Gj +Gk.Proof. We may assume u? = (1; 0), u = (0; 1). Suppose without loss of generality that(2.15) � 2 (Gj +Gk) \ (Gm +Gn); j � k; m � n;we shall then show that j = m, k = n. Now � = (�1; �2) with(2.16) �1 = �j + �k = �m + �n; �i 2 Ii, i = j; k;m; n,and �2 = (�j) + (�k) + (tj + tk)Æ;(2.17) �2 = (�m) + (�n) + (tm + tn)Æ;(2.18)with jtij � B for i = j; k;m; n:Reall that 2�r > Æ2�M and thereforej�i � aij � Æ2�M+1 + 2�r+1 � 2�r+2 for �i 2 Ii:7



We shall distinguish three ases.Case I: aj = ak, am = an.In this ase by (2.16) jaj � amj � 2�r+4 and the ondition (2.13) implies aj = am and thereforeaj = ak = am = an.Case II: Suppose aj = ak, am < an. We show that this ase does not our if (2.13) and (2.15)hold. Without loss of generality we may assume that �j � �k.The interval [am+1; an℄ ontains at least 210 intervals of length 2�r, in partiular2aj � �j + �k � 2�r+3 = �m + �n � 2�r+3 � am + an � 2�r+4� 2am � 2�r+4 +B210�r � 2am+1 � 2�r+5 +B210�rhene aj > am+1+2�r. A similar argument shows that aj+1 < an � 2�r. Thus Ij � [am+1; an℄ andin partiular (�j + �k)=2 2 [am+1; an℄. By (2.17) and (2.18)j(�n) + (�m)� (�j)� (�k)j � 4BÆ:Choose �j ; �k 2 [aj ; aj+1℄ so that j�j � �j j � Æ2�M and j�k � �kj � Æ2�M . Fromj(�j)� 2(�j + �k2 ) + (�k)j � (0L(�k)� 0R(�j)(�k � �j)� (0L(aj+1)� 0R(aj))(aj+1 � aj) � Æwe see that also j(�j)� 2(�j + �k2 ) + (�k)j � Æ + 4 � 2�MÆk0k1 � 3Æand therefore(2.19) j(�n)� 2(�j + �k2 ) + (�m)j � (4B + 3)Æ:Now (�n)� 2(�j + �k2 ) + (�m) = Z �n�j+�k2 (�n � t)d0R(t) + Z �j+�k2�m (t� �m)d0R(t)plus a remainder term (�j + �k � �n � �m)0R(�j+�k2 ) whih vanishes in view of (2.16).By the assumption on a at least one of the intervals [�m; �j+�k2 ℄, [�j+�k2 ; �n℄ ontains an interval[ai � �; ai+1 + �℄ with 2�r � ai+1 � ai � 2�r+1 and 0 < � � 2�r�1 so that(2.20) am + 28�rB � ai < ai+1 < an � 28�rBSuppose �rst that [ai � �; ai+1 + �℄ � [�m; �j+�k2 ℄. Then by (2.19)(4B + 3)Æ � Z �j+�k2�m (t� �m)d0R(t)� Z ai+1+�ai�� (ai � am+1 � 2�MÆ)d0R(t)= (ai � am+1 � 2�MÆ)(0R(ai+1 + �)� 0R(ai � �))� (ai � am+1)(0L(ai+1 + �)� 0R(ai � �))� Æ � ai � am+1ai+1 � ai + 2�Æ � Æ8



Therefore ai�am � ai�am+1+2�r+1 � (4B+4)(2�r+1+2�) � B2�r+5, in ontradition to (2.20).Similarly if [ai � �; ai+1 + �℄ � [�j+�k2 ; �n℄ we dedue that an � ai+1 � B2�r+5, again inontradition to (2.20).Case III. We now suppose that aj < ak, am < an and show again that this ase does not our.Without loss of generality m � j whih then implies by (2.13) that �m < �j < �k < �n.Sine �n = �j + �k � �m we obtain0 � Z �j�m �0R(�j + �k � u)� 0R(u)�du = (�m) + (�n)� (�j)� (�k) � 4BÆwhere the last inequality follows from (2.17-18).If u 2 [�m; �j ℄ then [�j ; �k℄ � [u; �1 � u℄ and, by our assumption on a, [�j ; �k℄ ontains aninterval [ai � �; ai+1 + �℄ with 2�r � ai+1 � ai � 2�r+1 and 0 < � � 2�r�1. We onlude that4BÆ � Z �j�m �0R(�j + �k � u)� 0R(u)�du� Z �j�m (0L(ai+1 + �)� 0R(ai � �))du � �j � �mai+1 � ai + 2�Æand therefore aj � am � �j � �m + 2�r+2 � 4B(2�r+1 + 2�) + 2�r+2 � 25�rB in ontradition to(2.13).Thus only Case I an our and the Lemma is proved. �3. EstimatesOur �rst Lemma in this setion is used to prove estimates for hÆ� where h is suÆiently regular.The bounds (3.2) are not best possible; they will be used later to onsider error terms in the proofof Proposition 3.2 below.Lemma 3.1. Let h be an absolutely ontinuous funtion on [0;1) and suppose that limt!1 h(t) = 0.Suppose that s 7! sh0(s) de�nes an L1 funtion on [0;1) and letF (�) = Z 10 h0(s)eis�ds:Suppose that � > 0 and that(3.1) jF (�)j + jF 0(�)j � B(1 + j� j)��:Let B(0; R) be the ball with radius R and enter 0, and de�ne Ak = B(0; 2k) nB(0; 2k�1), for k > 0,and A0 = B(0; 1).Then(3.2) ZAk sup1=2�t�2 jF�1[h Æ �t ℄(x)jdx . B�2�k(��1) + k2�k�:Proof. Denote by d� surfae measure on �� = �
 and for x 2 �
 by n the outward unit normalvetor. We shall �rst assume that �� is a C2 surfae, but the bounds will depend only on the Lip(1)norm of parametrizations. 9



We begin following Hlawka [8℄ and Randol [15℄. Using integration by parts and the divergenetheorem applied to the vetor �eld � 7! (is)�1jxj�2xeishx;�i we obtain(2�)2F�1[h(�(�)t )℄(x) = Z
 h(�(�)=t)eihx;�id�= � Z
 eihx;�i Z 1�(�) t�1h0(s=t)ds d�= �t�1 Z 10 h0(s=t) Zs
 eihx;�id� ds= �t�1 Z 10 h0(s=t)s2 Z
 eihx;s�id� ds= it�1jxj�2 Z 10 sh0(s=t) Z�
 eishx;�ihx; n(�)id�(�) ds:(3.3)Let e� 2 C1(R2 n f0g) be supported in a setorS = f� : jh �j�j ; ui+ 1j � "gwhere u is a unit vetor and � is small; the hoie(3.4) " � 2�10�2Mwill ertainly suÆe. Let u? be the unit vetor perpendiular to u, so that det(u?; u) = 1. Then��\S an be parametrized by � 7! u?�+u(�) so that (2.3)-(2.6) holds. Set �(�) = e�(u?�+u(�));then �(�) = 0 for j�j � 2�10�M . In S we introdue homogeneous oordinates (i.e. polar oordinatesassoiated to �
) given by(3.5) (s; �) 7! �(s; �) = s(u?�+ u(�))with �0 = u(0) with 4 � �(0) � 2M ; then�(u?�+ u(�)) = 1:Note that for the Jaobian of the map (3.5) we havedet � ���(s; �)� = s(�0(�) � (�))whih is bounded below by 2s on the support of � (sine �(�) � 4 � 2M" � 3 and j�0(�)j �22M" � 2�10 where " is as in (3.4)). LetKt(x) = it�1jxj�2 Z 10 sh0(s=t) Z�
 eishx;�ihx; n(�)i~�(�)d�(�) dsand let Ru be the rotation with Rue1 = u?, Rue2 = u. Using a partition of unity we see that itsuÆes to estimate(3.6) Kt(Rux) = it�1jxj�2 Z 10 sh0(s=t) Z eis(x1�+x2(�))(x2 � x10(�))�(�)(�0(�)� (�)) d� ds:10



Let � 2 C1(R) be an even funtion supported in [�"; "℄ so that �(�) = 1 for j�j � "=2. We splitKt(Rux) = Kt;1(x) +Kt;2(x)where(3.7) Kt;1(x) =it�1jxj�2 Z 10 sh0(s=t) Z�
 eis(x1�+x2(�))(x2 � x10(�))�(x1+x20(�)jxj )�(�)(�0(�) � (�)) d� dsand Kt;2 is de�ned in the same way, with �(� � � ) replaed by 1� �(� � � ).In (3.7) we interhange the order of integration and see that(3.8) jKt;1(x)j . Btjxj�2 Z ���(x1+x20(�)jxj )F 0(tx1�+ tx2(�))(x2 � x10(�))�(�)�� d�:If �(x1+x20(�)jxj ) 6= 0 then jx2j � jx1j2�M�1 and, sine j�j � 2",(3.9) jx1�+ x2(�)j � jx2jj(�)� �0(�)j � 2M+2"jxj � 2�M�1jxjand it follows from (3.1) and (3.8), (3.9) thatsup1=2�t�2 jKt;1(x)j . Bjxj�1��and hene(3.10) ZAk sup1=2�t�2 jKt;1(x)jdx . B2k(1��):In order to estimate Kt;2(x) we integrate by parts with respet to �. This yieldsKt;2(x) = jxj�2 Z 10 t�1h0(s=t) Z eis(x1�+x2(�))��g(x; �)d� ds= tjxj�2 Z F (tx1�+ tx2(�))��g(x; �)d�with g(x; �) = (x2 � x10(�))(1 � �(x1+x20(�)jxj ))�(�)(�0(�) � (�))x1 + x20(�)Notie that jx1 + x20(�)j � jxj in the support of 1� �(� � � ). This yieldsj��g(x; �)j � CM (1 + j00(�)j)and onsequently, using also (3.1), we obtain for k � 1ZAk sup1=2�t�2 jKt;2(x)jdx . Z (1 + j00(�)j) ZAk jxj�2(1 + jx1�+ x2(�)j)��dx d�:11



The inner integral is O(2�k�) if � < 1, O(2�kk) if � = 1 and O(2�k) if � > 1. By onvexityR j00(�)jd� . 2M and hene(3.11) ZAk sup1=2�t�2 jKt;2(x)jdx . Bmaxf2�k�; k2�kg:The estimate follows from (3.10) and (3.11).Finally in order to remove the assumption of a C2 boundary we an approximate the domain
 by an inreasing sequene of onvex sets 
n with smooth boundaries, so that the C1 boundsfor parametrizations of the boundary are uniform in n. The estimate (3.2) holds then for �n withbounds uniformly in n. The Minkowski funtionals �n assoiated with 
n onverge to �, uniformlyon ompat sets and therefore the estimate (3.2) holds for � as well. �We shall now investigate the multiplier (1� �)�+ near the boundary of 
; it suÆes to onsider(1��)�+b where b is supported in a narrow setor. Sine the number �
 is invariant under rotations,there is no loss of generality to assume that this setor ontains u = (0; 1).Proposition 3.2. Let 
 be a onvex domain as in (2.1) and let b 2 C10 be supported in the setorS = f� : j�1j � 2�10M j�2j; �2 < 0g. Let � 7! (�; (�)) be the parametrization of �
 \ S as a graph,as in Lemma 2.1. For any subinterval I of [�1=2; 1=2℄ denote by I� the interval with same enterand with length 4=3jI j. For ` > 1 let I` be the set of subintervals I of [�1; 1℄ with the property thatjI j � 2�`�5M and(3.12) (t� s)(0L(t)� 0R(s)) � 2�`+5 for s < t; s; t 2 I�:Let B be the set of C2 funtions � supported on (�1=2; 1=2) so that(3.13) j�(k)(t)j � 1; k = 0; : : : ; 4:(i) Suppose I = (I � jI j=2; I + jI j=2) 2 I`. Let(3.14) m(�) = b(�)�1(2`�1(1� �(�))�2(jI j�1(�1 � I))where �1; �2 2 B. Then(3.15) Zjxj�210` sup1=2�t�2 jt2F�1[m℄(tx)jdx . 2�5`:Moreover(3.16) Z sup1=2�t�2 t2�jF�1[m℄(tx)j+ jrF�1[m℄(tx)j�dx . 1 + `:and(3.17) Zjxj>2jyj sup0<t<1 t2��F�1[m℄(tx� ty)�F�1[m℄(tx)��dx . (1 + `)2:(ii) Denote by m�1;�2;I the right hand side of (3.14) and let(3.18) M`f(x) = sup�1;�22B supI2I` jF�1[m�1;�2;I bf ℄(x)j:12



Then kM`fk2 . (1 + `)4kfk2for all f 2 L2(R2 ).Proof. Again we �rst assume that  2 C2 but our bounds will only depend on the L1 norms of and 0. This restrition an then be removed by using Lemma 2.2.We shall now �x �1 and �2 and set h`(s) = �1(2`(1� s)). Let�`(�) = Z 10 h`(s)eis�ds and e�`(�) = Z 10 h0̀ (s)eis�ds:Then j�`(�)j + j�0̀ (�)j . 2�`(1 + 2�`j� j)�4(3.19.1) je�`(�)j + je�0̀ (�)j . (1 + 2�`j� j)�3(3.19.2)by an integration by parts.We apply Lemma 3.1 to h = h` and � = 2 (so F = e�` in (3.1)). Sine the right hand side of(3.19.2) is bounded by 22`(1 + j� j)�2 we obtain(3.20) ZAk sup1=2�t�2 jF�1[hl Æ �t ℄(x)jdx . 22`k2�k;this is ertainly a favorable estimate if k � 10`. The Fourier transform of b(�)�2(jI j�1(�1 � I)) ispointwise bounded by a onstant timesHI(x) = jI j(1 + jI jjx1j)2 11 + x22and sine jI j � 2�` it is straightforward to verify (3.15).We now give a di�erent estimate for the integral over the dyadi annulus Ak whih is used toderive an improved bound for jxj � 210`. Let e� be a C10 funtion so that e�(t) = 1 for jtj � 9=16and e�(t) = 0 for jtj � 5=8. Let �I(t) = e�(jI j�1(t� I)) so thatsupp(�I ) � I�:Note that j�1j � 2�8M on supp(b) (sine j�j � 2M and j�1j � 2�10M j�2j). If also j�1� I j � jI j=2and j1� �(�)j � 2�`+1 then����1 � I�(�)�(�) ��� � ��� �1�(�) ���j1� �(�)j+ j�1 � I j � 2�8M�`+2 + jI j=2 � jI j( 12 + 127 );here we used that jI j � 2�`�5M and M � 3. Consequently�I(�1=�(�)) = 1 if �2(jI j�1(�1 � I)) 6= 0 and j1� �(�)j � 2�`+1:Therefore we may write m(�) = b(�)�2(jI j�1(�1 � I))em(�)with em(�) = �1(2`�1(1� �(�))�I (�1=�(�)) and estimate the Fourier inverse of em.13



Let � be as in the proof of Lemma 3.1, namely smooth and supported in (�"; ") where " is small(as in (3.4)). Let �0 be smooth and supported in [�1; 1℄, so that �0(s) = 1 for jsj � 1=2. De�ne�0(x; �) = �0(jI j(x1 + x20(�)))�(x1 + x20(�)jxj )�n(x; �) = ��0(2�n�1jI j(x1 + x20(�))) � �0(2�njI j(x1 + x20(�)))��(x1 + x20(�)jxj ):We write the Fourier integral representing F�1[em(t�1�)℄(x) using oordinates � = s(�; (�)).Then we split the kernel(3.21) F�1[em(t�1�)℄(x) = 1(2�)2 � eKt(x) +Xn�0Kn;t(x)�where(3.22.1) Kn;t(x) = Z sh`(s=t) Z �n(x; �)�I (�)((�) � �0(�))eis(x1�+x2(�))d� dsand(3.22.2) eKt(x) = Z sh`(s=t) Z (1� �(x1 + x20(�)jxj ))�I (�)((�) � �0(�))eis(x1�+x2(�))d� dsNote that the sum in (3.21) has only O(log(1+ jI jjxj)) terms sine Kn;t(x) = 0 if "jxj � 4jI j�12n.In partiular if x 2 Ak \ supp(Kn;t) then 2n � 2kjI j. The kernel K0;t is given byK0;t(x) = i�1t2 Z �0̀ (t(x1�+ x2(�)))�0(x; �)�I (�)((�) � �0(�))d�:Sine det� � 1(�) 0(�)� � 1 we may estimateZ sup1=2�t�2 jK0;t(x)jdx . 2�` ZI ZZjx1+x20(�)j�jIj�1 (1 + 2�`jx1�+ x2(�)j)�4dx1dx2 d� . 1:(3.23)
For n > 0 we integrate by parts in � to getKn;t(x) = i Z h`(s=t) Z ��gn(x; �)eis(x1�+x2(�))d�ds= i Z t�`(t(x1�+ x2(�)))��gn(x; �)d�where gn(x; �) = �n(x; �)�I (�)((�) � �0(�))x1 + x20(�) :Note that if �n(x; �) 6= 0 thenj��gn(x; �)j . (1 + jx2j2�njI j)j00(�)j + jI j�1jx1 + x20(�)j :14



Therefore supt2[1;2℄ jKn;t(x)j. Z�2I�:jx1+x20(�)j�2njIj�1 (1 + jx2j2�njI j)j00(�)j + jI j�1jx1 + x20(�)j 2�`(1 + 2�`jx1�+ x2(�)j)4 d�(3.24)and ZAk supt2[1;2℄ jKn;t(x)jdx. ZI�((1 + 2k�njI j)j00(�)j + jI j�1) Zju2j�2njIj�1juj�2k ju2j�1 2�`(1 + 2�`ju1j)4 du d�. minf2k�`; 23(`�k)g ZI�(j00(�)j + 2k�njI jj00(�)j + jI j�1)d�:(3.25)In the evaluation of the integral we used that juj � 2�k and ju2j � 2njI j�1 implies that ju1j � 2kdue to our assumption on 2njI j�1 � 2k. By assumption (3.12) we have RI� jI jj00(�)jd� � 2�` andtherefore ZAk supt2[1;2℄ jKn;t(x)jdx . minf2k�`; 23(`�k)g(2k�`�n + 1);again sine Kn;t vanishes on Ak if n � k this yields(3.26) Xn ZAk supt2[1=2;2℄ jKn;t(x)jdx . k2�jk�`j:The estimate for eKt is similar to the estimate for the term Kt;2 in the proof of Lemma 3.1. Sinein the support of 1� �(� � � ) we have jx1 + x20(�)j � jxj we obtain thatZAk sup1=2�t�2 j eKt(x)jdx. ZI�(jI j�1 + j00(�)j) Z jxj�1 2�`(1 + 2�`jx1�+ x2(�)j)4 dx d� � C:(3.27)The estimate (3.16) for F�1[m℄ follows immediately from (3.20), (3.26), (3.27) and the L1boundedness of HI . Sine m is supported in 
 and t 2 [1=2; 2℄ we an write ��jF�1[m(t�1�)℄ = j � F�1[m(t�1�)℄ for a suitable Shwartz funtion  j depending only on 
 and j. The estimate(3.16) for rF�1[m℄ is then immediate.We now turn to the (standard) estimation of the Calder�on-Zygmund integral (3.17). Let Kt =F�1[m(t�1�)℄. The integral in (3.17) an be deomposed as Pk2ZEk whereEk = Zjxj>2jyj sup1�t<2 jK2kt(x� y)�K2kt(x)j dx= Zjxj>2k+1jyj sup1�t<2 jKt(x� 2ky)�Kt(x)j dx:15



If 2kjyj � 1 then this integral is estimated byZjxj>2k+1jyj sup1�t<2 jKt(x)j dx . minf(1 + `); 22`(2kjyj)�1 log(2 + 2kjyj)g;this follows from (3.16) and (3.20). Therefore P2kjyj�1 Ek . (1 + `)2. For 2kjyj � 1 we use theestimate on the gradient in (3.16) and obtainEk � Z sup1�t<2 ��� Z 10 h2ky;riKt(x� s2ky)ds��� dx . 2kjyj(1 + `)so that P2k jyj�1 Ek . 1 + `. Thus (3.17) is proved.Finally, an examination of the above arguments leading to (3.16) also yields the assertion forthe maximal operator in (3.18). First let jxj > 10`; then we use (3.20), an estimate whih does notdepend on I . Then, from the shape of the kernels HI , we obtain that(3.28) sup�1;�22B supI2I` ��(�fj�j�210`gF�1[m�1;�2;I ℄) � f(x)�� .M1(H` � f)(x)where H` is an kernel with L1 norm O(2�5`) and M1 is the Hardy-Littlewood maximal funtion inthe x1 variable.We dominate (Kn;t�Ak) � f by a Besiovih type maximal funtion; here �Ak is of ourse theharateristi funtion of the annulus Ak. A straightforward analysis of (3.24) yields that for k � 10`(and hene 2njI j�1 � 210`)(3.29)��(Kt;n�Ak) � f(x)j . (1 + `)� 1jI�j ZI� �(1 + 2k�njI j)j00(�)j+ jI j�1�minf1; 22(`�k)gM`;�f(x)d��where M`;� is the maximal operator assoiated to all retangles entered at the origin whih haveeentriity less then 210` and one side parallel to (�; (�)). To verify this one notes that if jx1�+x2(�)j � jx1 + x20(�)j in (3.24) then jx1 + x20(�)j � jxj.Let M` denote the maximal funtion assoiated to all retangles entered at the origin, witheentriity � 210`. Then it follows from (3.29) that��(Kt;n�Ak ) � f(x)j . (1 + `)M`f(x):A similar (easier) pointwise estimate holds for eKt. By C�ordoba's result [4℄ the L2 bound for M` isO(1 + `). Summing in n � 10` and k � 10` we an dominate �fj�j�210`gjF�1[m℄j(x) by C(1 + `)3times M1(M`f)(x) and this together with (3.28) implies (3.18). �L1 estimates and deompositions of the multiplier. We shall now prove the statements ofTheorem 1.1 and 1.2 for p = 1. We �rst reall the standard dyadi deomposition of the Rieszmultiplier in terms of 1� �.Let �0 2 C10 (R) so that �0(t) = 1 for jtj � 1=2 and �0(t) = 0 for jtj > 3=4. De�ne �`(t) =�0(2`t)� �0(2`�1t) for ` � 1 andm�;`(�) = �`(1� �(�))(1� �(�))�+for ` � 0. By Lemma 3.1 kF�1[m�;`℄k1 = O(2`) for ` � 0 and also(3.30) Zjxj�2k sup1=2�t�2 jF�1[m�;`℄(tx)j . 2`�k2Z sup1=2�t�2 jrF�1[m�;`℄(tx)jdx . 2`16



This estimate is used for small `; the statement about the gradient follows sine m`;� has ompatsupport.To improve the estimate for large `, say ` � 10M , we need to introdue a further deomposition,re�ning the one in x2. It suÆes to onsider �m`;� where � is supported in the half strip Su asde�ned in (2.2); without loss of generality u = (0; 1).We �x Æ = 2�` and re�ne the partition Au(2�`) = fa0; a1; : : : ; aQg (for notational simpliity wedo not indiate the dependene of this deomposition on `). De�neaj;� = 8><>: aj+1 � 2���1(aj+1 � aj) if � = 1; : : : ; 2M + `� 112 (aj+1 + aj) if � = 0aj + 2�j�j�1(aj+1 � aj) if � = �2M � `+ 1; : : : ;�1;also set aj;2M+` = aj+1, aj;�2M�` = aj . Let Ij̀;� = [aj;� ; aj;�+1℄, � = �2M � `; : : : ; 2M + ` � 1.Note that two onseutive intervals Ij̀;� have omparable length. Moreover if I is the union ofsuh two onseutive intervals, then I satis�es the hypothesis (3.12) of Proposition 3.2. In orderto see this simply note that (s � t)(0R(s) � 0L(t)) � 2�` for t < s; t; s 2 (aj ; aj+1); moreover if Idenotes the union of two subsequent losed subintervals Ij̀;� , both of them ontained in (aj ; aj+1)then the assoiated interval I� (blown up by a fator of 4=3) is ontained in (aj ; aj+1). In theremaining ase, if one of the two subsequent intervals ontains aj or aj+1; then the length of I� is� 2�2M�`+2jaj+1�aj j and therefore in this ase the quantity (s�t)(0R(s)�0L(t)) an be estimatedby 2k0k12�2M+2�` < 2�`.It is now straightforward to onstrut C1 funtions �j̀;� so that eah �j̀;� is supported in theunion of two onseutive intervals ontaining aj;� so thatXj;� [�j̀;�(t)℄2 = 1; jtj � 1and ���� ddt�n�j̀;�(t)��� � C0jIj̀;� j�n; n = 1; 2; 3; 4:De�ne Sj̀;� by [Sj̀;�f(�) = �j̀;�(�) bf (�) and Kj̀;� bydKj̀;�(�) = �j̀;�(�)b(�)m`;�(�);then F�1[bm`;�℄ � f = Pj;� Kj̀;� � Sj̀;�f . The Lp operator norm of Sj̀;� is uniformly bounded in`; j; �. After renormalization we may apply Proposition 3.2 to get that(3.31) kKj̀;�k1 . (1 + `)2�`�:For �xed ` the sum in � ontains less than 24M+` terms; heneF�1[�m`;�℄1 . (1 + `)2Qu(2�`)2�`�. (1 + `)3N(2�`;
)2�`�(3.32)by Lemma 2.3. Now the asserted L1 bound for � > �
 follows from(3.33) N(2�`;
) � C"2`(�
+")by de�nition of �
. 17



We now de�ne the maximal operator M` byM`f(x) = supt>0 jF�1[m�;`(t�1�)℄ � f(x)j:Standard estimates (see [21, h. VII℄, [5℄ ) show thatM` is bounded on L2 with norm O(2�`�(1+`)).Moreover standard arguments and (3.30) yieldZjxj>2jyj supt>0 ��F�1[m�;`(t�1�)℄(x � y)�F�1[m�;`(t�1�)℄(x)��dx . 2`;furthermore for ` � 10M we dedueZjxj>2jyj supt>0 jF�1[m�;`(t�1�)℄(x� y)�F�1[m�;`(t�1�)℄(x)jdx . (1 + `)4N(2�`;
)2�`�:from (3.17) and Lemma 2.3. This means that M` is of weak type (1,1) and more preisely for � > 0��fx : jM`f(x)j � �g�� . (1 + `)4N(2�`;
)2�`� kfk1� ;f. [25℄, [20℄. Using the familiar result by Stein and N. Weiss [22℄ on summing funtions in weakL1 we obtain the weak type (1; 1) inequality for maximal funtion supt>0 jF�1[(1 � �=t)�+℄ � f j for� > �
. Sine pointwise onvergene holds for Shwartz funtions the assertion of Theorem 1.2 forgeneral L1 funtions follows. �Lp estimates. The Lp estimateskF�1[�m`;� bf ℄kp . 2�`�(1 + `)p [N(
; 2�`)℄ 4p�3kfkpfor 1 < p � 4=3 are obtained by interpolation from the ases p = 1 (see (3.32) above) and p = 4=3.The L4=3 estimate follows by duality from the L4 estimate(3.34) kF�1[�m`;� bf ℄k4 . 2�`�(1 + `)kfk4for suitable . We have made no attempt to optimize the power  here;  = 6 ertainly works but isfar from being optimal.In order to obtain (3.34) it suÆes to onsider(3.35) em(�) := �(�)m`;�(�) Xj:j2a[�j̀;�(j)(�1)℄2where a is a subset of Au(2�`; r), 1 � 2r � 2M+`, u = (0; 1) so that the property (2.13) is satis�edwith B = 2M , and the funtion j 7! �(j) takes integer values in [�2M � `+ 1; 2M + `� 1℄.We then have to show that em is a Fourier multiplier on L4 with norm . 2�`�(1 + `)3. Sine mis a sum of no more than O((1 + `)3) suh multipliers the assertion follows.Let Gj be as in (2.14), with B = 2M . If �� is parametrized by (t; (t)) in Su then 1� �(�) �2�M j�2 � (�1)j and therefore the jth term in the sum (3.35) is supported in Gj . Using Lemma 2.4we may use the familiar argument from [6℄, [4℄ to obtain the estimatekF�1[em bf ℄k4 . � Xaj2a jKj̀;�(j) � Sj̀;�(j)f j2�1=24:18



We ontinue arguing as in C�ordoba [4℄. By (3.31) and the bound O((1+ `)4) for the L2 norm ofthe maximal operatorM` in (3.18) we obtain for nonnegative ! 2 L2Z Xaj2a jKj̀;�(j) � Sj̀;�(j)f(x)j2!(x)dx. 2�2`�(1 + `)2 Z Xaj2a jSj̀;�(j)f(x)j2M`!(x)dx. 2�2`�(1 + `)6� Xaj2a jSj̀;�(j)f j2�1=24k!k2By Rubio de Frania's theorem on square funtions for an arbitrary olletion of intervals [16℄ (or amore elementary version of it where all intervals have omparable length) we know that� Xaj2a jSj̀;�(j)f j2�1=24 . kfk4:Putting these estimates together we dedue thatF�1[em bf ℄4 . 2�`�(1 + `)3kfk4whih implies (3.34) and �nishes the proof of the Lp boundedness of R�. �Convergene in Lp. Given the uniform boundedness of the operators R�;t we sketh the routineproof of the onvergene result as stated in Theorem 1.1. Denote by S0 the spae of Shwartz-funtions with ompatly supported Fourier transform; S0 is dense in Lp if 1 � p <1 and dense inC0. Suppose that g 2 S0 so that bg is supported where j�j � R. Let � 2 C10 (R) so that �(s) = 1 ifjsj � 1=2, �(s) = 0 if jsj > 3=4. De�ne S�;t by[S�;tf(�) = �(�(�)=t)(1� �(�)=t)�+ bf(�);then S�;tg = R�;tg for t � 2R. By Lemma 3.1 the onvolution kernel of S�;t is an L1 kernel, forall � 2 R, and the family fS�;tg is a standard approximation of the identity. Therefore S�;tg ! guniformly, and in Lp, 1 � p < 1. For general f 2 Lp (or C0) the onvergene result follows byapproximating f by funtions in S0 and the uniform boundedness of the operators R�;t. �4. ExamplesGiven two parameters � 2 (0;1), � 2 (0; 1) we onsider a onvex domain 
 = 
(�; �) with C1;�boundary so that �
 = maxf ��+1 ; �2(1+�)g for whih Theorem 1.1 is sharp. We may think of 
 as apolygonal region with in�nitely many verties; however near the verties the boundary is regularizedusing primitives of suitable Lebesgue funtions of lass C�.The set 
 is ontained in fx : 4 � jxj � 8g and symmetri with respet to the reetions(x1; x2) 7! (x1;�x2) and (x1; x2) 7! (�x1; x2). The portion of the boundary whih lies in fx :jx1j > 1; jx2j > 1g is given by segments of the lines x2 = �8� x1. It is then enough to parametrizethe boundary in fx : jx1j � 4; x2 < 0g by an even onvex funtion  with (0) = �15=2, so that(t) = �8 + t for 1 � t � 4.Fix � > 0 and de�ne for k � 0(4.1) �k = 1 + [elog2(1+k)2k�℄19



where [x℄ denotes the largest integer � x.We de�ne a doubly indexed sequene xj;k byxj;k = 2�k � j2k+1�k ;here k is a nonnegative integer and j = 0; : : : ; �k � 1: We also de�nex�k ;k = x0;k+1 (= 2�k�1) :Note that xj;k+1 � xj0;k if j0 � �k, j � 0, and xj+1;k < xj;k if 0 � j < �k.Let �j;k = xj;k + xj+1;k2 = 2�k � 2j + 12 2�k�1��1k ; j = 0; : : : ; �k � 1;��k ;k = �0;k+1 = 2�k�1 � 122�k�2��1k+1;Then �j;k is the slope of the seant onneting the points (xj+1;k ; x2j+1;k2 ) and (xj;k; x2j;k2 ), and it isof ourse also the midpoint of the interval [xj+1;k ; xj;k℄. On a substantial portion of this intervalontaining the midpoint we shall de�ne  so that its graph oinides with the seant, and near theendpoints we shall replae it by a more regular C1;� funtion. We also set��1;k+1 = ��k�1;k;moreover �j;k = �j;k � �j+1;k ; j = 0; : : : ; �k � 1:��1;k+1 = ��k�1;k � �0;k+1:Note that for 0 � j � �k � 1 the expression �j;k is atually independent of j, namely equal to2�k�1��1k .We further split the interval [xj+1;k ; xj;k℄ using points xj+1;k < dj;k < �j;k < bj;k < xj;k wherebj;k = xj;k � 2�k�3��1k if 0 � j � �k � 1dj;k = xj;k � 3 � 2�k�3��1k if 0 � j < �k � 1and d�k�1;k � d�1;k+1 = x�k�1;k + 2�k�2��1k � 2�k�4��1k+1 = ��k�1;k � 2�k�4��1k+1:One may then verify that for 0 � j � �k � 1(4.2) bj;k + dj;k2 = �j;k and bj;k + dj�1;k2 = �j;k + �j�1;k2 :Let g� be the Lebesgue funtion on [0; 1℄ assoiated to the symmetrial perfet sets of Cantortype, with onstant ratio of dissetion = 2�1=� (see Zygmund [26, h.V, 3℄; the dissetions are oftype [2; 0; 1� 2�1=�; 2�1=�℄ in the notation of [26℄). Note that g� is a monotone funtion on [0; 1℄with(4.3) g�(0) = 0; g�(1) = 1;Z 10 g�(t)dt = 12;the integral an be evaluated sine g�(1=2 + s)� 1=2 = 1=2� g�(1=2� s) for 0 � s � 1=2.20



Note that b0;0 = 15=16. On the interval [0; 15=16℄ we de�ne  by(4.4) (t) =8<: � 152 + d2j;k2 + �j;k(t� dj;k) if dj;k � t � bj;k� 152 + b2j;k2 + �j;k(t� bj;k) + �j�1;k R tbj;k g�( s�bj;kdj�1;k�bj;k )ds if bj;k � t � dj�1;kOn [15=16; 4℄ we de�ne(4.5) (t) = ( � 152 + 225512 + 78 (t� 1516 ) + 1256 R 32t�300 g�(s)ds if 1516 � t � 3132�8 + t if 3132 � t � 4One veri�es that for t < 15=16 the funtion  is C1 with (bj;k) = �15=2+b2j;k=2, 0(bj;k) = �j;k,0(dj;k�1) = �j�1;k + �j;k = �j�1;k and in view of (4.2), (4.3) also (dj�1;k) = �15=2 + d2j�1;k=2.Moreover, sine b0;0 = 15=16 and �0;0 = 7=8 it is easily heked that (4.4) and (4.5) together de�nea C1 funtion on [0; 4℄.The funtion g� belongs to C�([0; 1℄) (see [26, p.197℄); from this it easily follows that atually 2 C1;� in [0; 4℄; in fat(4.6) j0(t1)� 0(t2)j . � (2�k��1k )1��jt1 � t2j� if jt1 � t2j � 2�k��1kjt1 � t2j if jt1 � t2j � 2�k��1kif t1; t2 � 2�k.We now estimate the overing numbers N(
; Æ), for small Æ. Let m be so that(4.7) 2�m(1+�)e� log2(1+m) � Æ1=2;then we an over the graph over [0; 2�m℄ with� elog2(1+m)2m� � C"Æ� �2(1+�)�"adjaent retangles with sidelengths (Æ1=2; Æ); here " > 0. Moreover there are(4.8) � Xk�m elog2(1+k)2k� . elog2(1+m)2m�points xj;k in [2�m; 1℄. Therefore if e
 denotes the polygon with symmetry about the x1 and x2axes interpolating the points (xj;k; x2j;k=2) then N(e
) . Æ� �2(1+�)�". Similarly one an obtain theappropriate lower bound to see that �e
 = �2(1+�) : Note that the drawbak of working with e
 isthat the boundary is merely Lipshitz. To remedy this situation we interpolated using the Cantor-Lebesgue funtions. Sine the overing numbers over the interval [2�m; 1℄ may now inrease we shallhave to impose the restrition ��+1 � �2(1+�) .Fix an interval [bj;k; dj�1;k℄ and n > 0. Then there are � 2n subintervals Is;n of length(2�1=�)n2�k�1��1k so that j(0(t1)� 0(t2))(t1 � t2)j . 2�n(1+ 1� )(2�k�1��1k )2 for t1; t2 2 Is;n and sothat 0 is onstant on the omplimentary intervals; here we used (4.6). Given small Æ �nd n so that2�n(1+ 1� )(2�k�1��1k )2 � Æ; then 2n � (22k�2kÆ)� ��+1 . Therefore the sum in (4.8) is now replaed byXk�m elog2(1+k)2k�(22k(1+�)e2 log2(1+k)Æ)� ��+1 �8>><>>: CÆ� ��+1 if ��+1 > �2+2�C"Æ� ��+1�" if ��+1 = �2+2�C"Æ� �2�+2�" if ��+1 < �2+2� :This implies in partiular that(4.9) �
 � maxf �2 + 2� ; ��+ 1g;in fat a more areful examination of the previous argument would show that (4.9) holds withequality. 21



Lower bounds. Let � 2 C1(R) supported in (1=2; 2) so that b�(�) � 1 for j� j � 210. Let T` bede�ned by(4.10) dT`f(�) = �(2`(1� �(�))) bf (�)where � is the Minkowski funtional assoiated to the set 
 = 
(�; �) de�ned above.Lemma 4.1. The following holds for large positive k. If ` = `(k) is hosen so that(4.11) 2�`(k) < (2k�k)�2 < 2�`(k)+1then there is  > 0 (independent of k) so thatkT`(k)kLp!Lp � � 4p�3k k1� 2pfor p � 1.Proof. Let � 2 C10 (R) so that �(s) = 0 for jsj > 2 and �(s) = 1 for jsj � 1. Then jb�(�)j �C0(1 + j� j)�2 and Re(b�(�)) > 1=2 for j� j � 2�R with suitable R > 10. Fix a small " > 0 and alarge integer L, and assume that `(k)� 100L:We test T`(k) on the funtion fk de�ned bybfk(�) = �(22k(�2 + 152 )) NkX�=1�(2 `(k)2 +R(�1 � �L�;k))where Nk = [�k=10L℄. bfk is bounded and supported on a retangle of sidelengths 02�k and 2�2k.One may think of bfk as a modi�ed bump funtion; however we loalize to tiny strips ontaining thelines �1 = �j;`(k) where j = 0 mod L.Clearly kfkk2 . 2�3k=2, by Planherel's theorem. Moreoverjfk(x)j . 2�2k(1 + 2�2kjx2j)2 2�R�`(k)=2(1 + 2�R�`(k)=2jx1j)2 ��� NkX�=1 ei�L2�k�1��1k x1 ���and the geometri sum is dominated by minfNk; jeiL2�k�1��1k x1 � 1j�1g. Sine 2�k�1��1k � 2�`(k)=2and logNk � k a straightforward omputation shows that kfkk1 . k. By interpolation(4.12) kfkkp . k�1+2=p2�3k=p0 ; 1 � p � 2:Sine �j;k is the midpoint of [xj+1;k ; xj;k℄ only the de�nition of  in [dj;k; bj;k℄ will be relevantin omputing T`(k)fk. We write out the Fourier integral for T`(k)fk and introdue homogeneousoordinates � = s(t; (t)). Set ��;k(s) = �(2R+ `(k)2 (s � �L�;k))). Notie (t) = � 152 + d2L�;k2 +�L�;k(t � dL�;k) if st 2 supp��;k and that t0(t) � (t) = g�;k where the onstant g�;k satis�es7 � g�;k � 8. Then(2�)2T`(k)fk(x) = ZZ �(2`(k)(1� s)) NkX�=1 g�;k��;k(st)eis(x1t+x2(t))dsdt= NkX�=1 g�;kF�;k(x)(4.13) 22



whereF�;k(x) = Z �(2`(k)(1� s))s eisx2( d2L�;k2 ��L�;kdL�;k� 152 )ds Z �(2R+`(k)=2(u��L�;k))ei(x1u+x2�L�;ku)du:In the �rst integral we expand 1=s = 1 + (1� s)=s and obtain thatF�;k(x) = �k;�(x)A`(k)(x1 + x2�L�;k) �B�;k((d2L�;k2 � �L�;kdL�;k � 152 )x2) +Ek(x2)�where(4.14) A`(�) = 2�R� 2̀ b�(�2�R� 2̀ �)B�;k(�) = 2�`(k)b�(�2�`(k)�)and(4.15) j�k;�(x)j = 1jEk(x2)j � 2k�k12�2`(k):We derive an estimate for x inS�;k = fx : 2`(k)+2 � jx2j � 2`(k)+3; jx1 + �L�;kx2j � 2`(k)=2g:From (4.14-15) we see that(4.16) jF�;k(x)j � 122�3`(k)=2; if x 2 S�;k:If x 2 S�0;k for � 6= �0 then jx1 + �L�;kx2j � jx2(�L�;k � �L�0;k)j �O(2`(k)=2). Therefore, if L issuÆiently large,(4.17) jF�0;k(x)j . 2�3`(k)=2(Lj� � �0j)�2; if x 2 S�;k:and we see from (4.16-17)(4.18) kT`(k)fkkp � 2�3`(k)=2p0N1=pk � 0(2k�k)�3=p0�1=pk :Comparing (4.12) and (4.18) we obtain the asserted lower bound for the Lp operator norm ofT`(k). �Proof of Theorem 1.3. For given � 2 (0; 1=2) hoose � = 2�1�2� and � = �1�� , and de�ne
� = 
(�; �) as above. Note that � = �2+2� = ��+1 so that by formula (4.9) and Theorem 1.1 weknow that R� is bounded on Lp if 1 < p < 4=3 and � > �(�3 + 4=p).For the onverse �x � > 0 and assume that R� is bounded on Lp. Let � be as in (4.10). Form(s) = �(2`(1� s)) we use the familiar formula(4.19) m(�) = (�1)[�℄+1�(�+ 1) Z 10 s�m(�+1)(s)�1� �s��+dswhere the derivative is de�ned by [m()(�) = (�1)[℄(�i�) bm(�); see [23℄ for the proof of (4.19) forfrational �. 23
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