SPHERICAL MAXIMAL OPERATORS WITH FRACTAL SETS
OF DILATIONS ON RADIAL FUNCTIONS
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ABSTRACT. For a given set of dilations E C [1,2], Lebesgue space mapping
properties of the spherical maximal operator with dilations restricted to E
are studied when acting on radial functions. In higher dimensions, the type
set only depends on the upper Minkowski dimension of F, and in this case
complete endpoint results are obtained. In two dimensions we determine the
closure of the LP — L1 type set for every given set E in terms of a dimensional
spectrum closely related to the upper Assouad spectrum of E.

1. INTRODUCTION

For d > 2 and f € LL_(R?), define A;f(z) as the average of f over a sphere

of radius t centered at x € R?. Given a set of dilations E C [1,2] the spherical
maximal operator Mg is given by

Mg [ = sup A, f(x)].
telE

Let L? , C LP denote the space of radial L? functions f, that is f taking the form
f(@) = fo(Jz|). In this paper we are interested in the radial type set of Mg, that is
5 ={(G, 1) €[0,1] : Mp: LL,, — L}

With 7g denoting the (full) type set of exponent pairs (%, %) € [0,1)2 such that Mg

is bounded LP — LY it is clear that T C TE*4. This inclusion is typically strict.

Bounds for spherical maximal functions have been studied extensively in the
literature, starting with the work of Stein [21] and Bourgain [3] in the ¢ = p case
and of Schlag [I5] and Schlag and Sogge [16] in the ¢ > p case, whenever FE = [1,2];
see also the work of Leckband [9] and, more recently, by Nowak, Roncal and Szarek
[12] in the case of radial functions. The case of restricted sets of dilations F C [1,2]
was first explored by Wainger and Wright and one of the authors [I9], and continued
in [20], [18] in the ¢ = p case. For the case ¢ > p, two of the authors [13] described
the class of closed convex sets that may arise as Tg for some E C [1,2]. Moreover,
for large classes of sets E, the shape of Tz was determined in [I], [13]. However, it
is currently not known how to determine Tz for general subsets E C [1,2].

In this paper we solve this problem for radial functions, by describing 734 for
all dilation sets E C [1,2]. When d > 3 we also settle all endpoint cases, and thus
determine T35 for all E C [1,2].
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For d > 3, the set 75! is a closed triangle depending on the upper Minkowski
dimension of E (Theorem [1.1). In the more interesting case d = 2, the shape

of TE* is not necessarily polygonal and we give a closed formula in terms of a
spectrum of dimensional quantities closely related to the upper Assouad spectrum
of E (Theorem [1.2)).

The case d > 3. We begin by describing the more elementary result on L? , — L7
boundedness for d > 3. For 0 < § < 1/2let N(E, §) denote the minimum number of
intervals of length § required to cover E. Let S be the upper Minkowski dimension
of E, defined by

log N(E,§
B = dimy E = lim sup M.
§—0 logg

We denote by Ag = A(Py, Pa, Ps) the closed triangle with vertices

_ _ (_d—1 d—1 d._ (d(d-1) d—1
Py =(0,0), Py g = (m, m% P:;ag = (m7 m)

Theorem 1.1. Let d >3 and E C [1,2]. Then T4 = Ag. More precisely:
(i) If B <1 and supy5., 6°N(E, ) < oo, then
TE™ = Agp.
(ii) If B < 1 and supg. 5.1 6°N(E, ) = oo, then
TE = Ag\[Pas, P3%].
(iii) If 8 =1, then

TR = {(%, %) €A Ll o sup 5(log%)%N(E,§) < 00}

6€(0,1/2)

=

Remark. For g = 1, and the corresponding endpoint case pg = ffw the operator
Mg maps L? , to L7 if and only if ¢ < dpg and
sup (log(1/8))V4N(E,§)Y1 < .
0<6<1/2
Note that the displayed condition is dependent on ¢, in contrast to the case 5 < 1,
where the endpoint bounds for p = d;irﬁ , ¢ < pgq involve the g-independent
condition sups, 6°N(E,§) < oco.

Figure[I]relates the result of Theorem[I.1]to the results for Mg acting on general
(not necessarily radial) LP functions, see [I], [I3]. For parameters 0 < § <~y <1
let Q(3,~) denote the closed quadrangle with vertices

d— d—
Pl:(0’0)7 PQﬁZ(mvm)y

_ [ d-pB 1 _ [ d(d-1) d—1
Psp = (d,5+17 d*,BJrl)’ Pyy= (d2+27—1’ d2+2771)‘

If v = dimga E is the quasi-Assouad dimension of E (for definitions see below) then
Q(B,7) € Te C Q(B,); moreover it was shown in [I3] that a closed convex set
W C [0,1]? takes the form W = T for some E with dimyE = 3, dimga (E) = v if
and only if

Q(B,v) cW C Q(B,B).
We note that the radial type set is strictly larger (here for d > 3, 8 < 1): Q(8, ) ;

’Tb‘iad. This is expected for ¢ > p, as the non-radial Knapp examples no longer apply
in the radial case.
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FIGURE 1. The triangle Ag.

The case d = 2. We shall now describe our results for L” ; — L9 boundedness of
Mg when d = 2. In order to formulate these we need to first recall some defini-
tions from fractal geometry beyond Minkowski dimension. The Assouad dimension
dima F is defined as the infimum of all @ > 0 such that there exists ¢ € (0, 00) such
that for all § € (0,1) and all intervals J C [1,2] with |J| > 4,
N(ENJ,8) < c(%l)a. (1.1)
The upper Assouad spectrum of E is the function 6 — dimp ¢ E defined for every
6 € [0,1) as the infinimum of all a > 0 such that there exists ¢ > 0 such that
holds for all § € (0,1) and all intervals J C [1,2] of length |J| > §%. The upper
Assouad spectrum (Fraser—Hare-Hare—Troscheit—Yu [5]) is a variant of the Assouad
spectrum (Fraser-Yu [7], [6]), which arises when |J| > 67 is replaced by |J| = &°
and is denoted dimp g E. We refer to Jonathan Fraser’s book [4] for an introduction
to Assouad-type dimensions. For § = 0 we recover dimy £ = dima o £. The upper
Assouad spectrum extends to a continuous function on [0, 1] and the limit

diqu F = lim dimA,g E
0—1—

is called the quasi-Assouad dimension (Li—Xi [I1]). From the definitions one sees
that always dimgqa £ < dima F and in some examples the inequality is strict (see
[]). Rutar [I4] gave a simple characterization of the functions that can occur as
the (upper) Assouad spectrum of a set. We shall adopt the convention that when
a set £ C [1,2] is given, we denote by v either the quasi-Assouad or the Assouad
dimension, depending on the context. Then 0 < g <~ < 1.

To state our result for d = 2 we introduce, for a € R, the quantity

g ] log sups<|s1<1 |J|7*N(E N J,6)
V(@) := limsup i
5—0 10%(3)

Theorem 1.2. Let d=2 and E C [1,2], and 8 = dimy E. Then

(1.2)

TET =00 {(55): WAG - D+ 5 - 1< 3),
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Observe v#(a) = B if a < 0. In practice, it may be difficult to compute v*(a)
for @ > 0. However, the definition implies for o > 0 (see Lemma ,

a <vi(a) <max(a, (1 - 2)a + 8), (1.3)
where v = dimga E. In particular, v¥(a) = a if a > 7.

Remark. To see how v¥ relates to the Assouad spectrum, suppose that

sup N(ENJ,8)~ 6@

|J|=50
for a function v and for all § € (0,1),0 € [0,1] with constants independent of ¢, 6.
Then »* is equal to the Legendre transform of the function v and the Assouad
spectrum is given by dima g E = —v(6)/(1 — 0) for 6 € [0,1) (and if v is non-
decreasing, this also equals the upper Assouad spectrum diimA)gE).

In two dimensions, the triangle Ag has vertices
d
PL=(0,0), Pos= (s ih) P = (25 755).
For 2v — 3 > 1 we denote by Qrﬁaﬁ the closed quadrangle with vertices

rad __ 1 1
P17P2,ﬂa P4,afy _(m7m)7

prd (U=B@-g08/) 1By
5,07 2-P+2(-p/7)  T=p+20-p/m) )"

Then Theorem and (/1.3 imply the following (also see Figure .

Corollary 1.3. Let d =2 and E C [1,2], and = dimy E, v = dimqa E.
(i) If 2v — B <1, then

TEd = Ag.
(ii) If 2y — 8 > 1, then
QR C T C Ag.
Moreover, the left inclusion is sharp in the sense that there exist sets E for
which the inclusion is an equality.

Regarding the boundary of 7524, it was shown in [20] that it includes the segment
[P1,Ps5). In the LY | — L9 category we can ensure the following endpoint results,
which feature the Assouad dimension instead of the quasi-Assouad dimension.

Theorem 1.4. Let d =2, E C [1,2], 8 = dimy E and v = dimpa E. Then the
following hold.

(i) For2vy—p <1,

Tid = Ay <= sup §°N(E,9) < oo
0<6<1

(i) For 2y — B =1, B <1 and if supy5.1 6’ N(E,§) < oo,
Ap\ {P5%'} C T C Ap
(i4) For 2y — B =1 and if supy5.1 6’ N(E, ) = oo, then
T = Ap\[Poys, P35
(iv) For 2y — 3> 1, then [Py, P{%) C T,

(v) If 8 =1 and if sups; o 6 log(5) N (E, ) = oo then Mg : LY,y — L9 is bounded
if and only if p > 2 and p < q < 2p.
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FIGURE 2. If d = 2,8 = 0.5,7 = 1, then 724 is contained in Ag
and contains Qg’f{. The condition 2y — 8 > 1 says that the point
prad = P:,f%d lies above the horizontal line ¢ = 2(1 4 ).

For the case f = v < 1, part gives a characterization of the radial type set;
this applies to self-similar set such as the Cantor middle third set. Note that the
last part applies to the full set E = [1,2], in which case Mg : L? ; — L7 is bounded
if and only if p > 2, p < ¢ < 2p.

Remark. For 2v — 3 > 1, 8 < 1, LP boundedness holds for a part of [Pg’ﬂ,ngiﬁ({,y)

if supgcs<q §PN(E,§) < oo. However, it is currently an open question whether

LP — L7 boundedness holds for all (%, é) € [Po5, Pg%dﬁ).

Notation. Given a list of objects L and real numbers A, B > 0, here and throughout
we write A <p B or B 21 A to indicate A < Cp B for some constant C which
depends only items in the list L. We write A ~; B to indicate A <y B and
B < A

Structure of the paper.
e §2discusses properties of the dimensional quantity ¥, in particular proving

and Corollary assuming Theorem
e §3| concerns necessary conditions for LY ; — L9 boundedness of M.
e In {4 the upper bounds for d > 3 in Theorem [I.1] are proved.
e In §5| the upper bounds for d = 2 and Theorems and are proved.
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2. PROPERTIES OF /!

Let E C [1,2] be nonempty, a € R and v#(a) as in (1.2). Equivalently, v#(a)
equals the infimum over all v > 0 such that for every € > 0 there exists C. € (0, 00)
such that for all intervals J C [1,2] with |J| >4,

N(ENJ,8) < Ce|J[*67<.

If @ <0, then v#(a) = B. If & > 0, then v#(a) may be difficult to compute, but we
have the following bounds.

Lemma 2.1. Let v = dimgqa &£ > 0. For all o > 0,
a < v¥(a) < max(a, (1 — %)a + f).
In particular, v¥(a) = a if v > a.

Proof. Choosing an interval J of length |.J| = § shows that v*(a) > a.

To prove the upper bound we use three different estimates for N(ENJ, §) depend-
ing on the magnitude of |J|. For the remainder of this proof set 8§ = 0(.J) € [0,1]
such that |J| = §%. We note the following:

- For 6 near 0 we can estimate N(ENJ,§) < N(E,d). Thus, by the definition
of the upper Minkowski dimension 8, for every ¢ > 0 there exists C. €
(0, 00) such that

N(ENJ,8) < CloB+e) (2.1)
for all J C [1,2].

- For 0 away from 0 and away from 1, we will use the definition of the quasi-
Assouad dimension v: for every € > 0 there exists C. € (0,00) such that

N(ENJ,6) < C.6-1=00+9) (2.2)
for all J C [1,2] with 6 <1 —e.
- For 6 close to 1 we estimate N(E N J,d) < N(J,d), which gives
N(ENJ,8) <6 =9 41 (2.3)
for all J C [1,2].

With this in mind, consider two cases.

Case 1: a < 7. Then we need to show v#(a) < (1 — g)a + 8. Note that the
exponents on the right-hand sides of (2.1)) and (2.2)) coincide up to e when § = 1— g
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This motivates the estimate

C! 5~ (af+5+e) ifo<1-2
N(ENJ0)J|7% < q Coo=(00=atrte) i1 L cp<i—e
§—(ab+e) 11 ifl—-e<6<1.

In the first two cases the largest value is assumed when § = 1 — %, and in the third
case the largest value is assumed when 6 = 1. Hence

N(ENJ,8)|J|~* < max(C.,CL)§~ (a(1=5)+B+e) | s—(at+e) 4 1,

Since o < (1 — ;)a + B, the claim follows.

Case 2: a > ~. Then a > (1 — g)aqLB, so we need to show vf(a) < a. By (2.2)
and (2.3),

N(ENJ8)J|™* < Coo=C@MT+a gy 4+ (670 4 D) lspsrg
Since & —y > 0, the first term on the right hand side is < C.¢~((1=e)(a=+r+e),

which is < C.6~(*+<) with ¢’ = £(1 — (a — 7)), and the second term is < §~(*+¢),
By definition of v#(«), this implies v#(a) < a. O

We now discuss how to deduce Corollary [L.3] from Theorem [[.2} We note that
this implication is unrelated to spherical averaging operators.

Proof of Corollary[1.3, given Theorem[I.4 By Theorem |1 ., Trad C Ag. For the
other inclusion note that (5, 5) € T4 if and only if

(a) 3 <3
(b) 24+ 224 <1, and
1 1 1 1

Since v¥(a) > a, the scaling condition % > % follows from (c) for ¢ > 2 (and the
condition also holds for ¢ < 2 since p > 1).

(i) Assume that 2y — 3 < 1. From we have v#(1 —1) = 2 — 1 if }1 < ﬁ
Note Py = (575, 375) and 513 < 55y for 2y — B < 1, therefore Pyl e T
Hence 724 = Ag by convexity, since Pp, P g € T2,

(ii) Assume that 2y — 8 > 1. In this case m > (1+v If é < 2(1+v) we have
V(4 —1) = £ — 1 and condition (c) yields the point Pya. If 1 Q(IJW), we have

AL -1)<(1- %)(% —1)+ B, and in particular (c) is satlsﬁed if (1— %)(% - é) +

ﬁ + l — % < 1. A computation shows that this matches condition (b) at the point

Pgaﬁdv Therefore, Qrad - T’ad
It remains to show sharpness, in the sense that the inclusion Q’ad Trad may
be an equality for some sets E. This happens when the upper bound in is

an equality. For example, if F is the (3,~)-Assouad regular set constructed in [137
§6.2] and v(6) = —min((1 — 6)~, ), then

sup N(ENJ,8) ~ 6@
7| =5°
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uniformly in §, 8 (in particular, the Assouad spectrum and upper Assouad spectrum
both equal v(0) = min(lfﬁe, ~)). This implies
vH(a) = max(a, (1 - £)a + )

as required. For v = 1 and 8 < 1, another example is given by the convex se-
quences £ = {1 + nt=f7 > 1} which also have (upper) Assouad spectrum
equal to y(0) = min( 16 7 1). Additional examples are provided by the Moran set
constructions in [I4], §3] (also see [2]). O

3. NECESSARY CONDITIONS

We start with the necessary condition p < gq. We provide a direct proof, since
for the class of radial functions one cannot directly appeal to the standard example
of Hérmander [8] for translation-invariant operators.

Lemma 3.1. Let 1 < p,q < co. Assume that ||ME||Lp oLt S < 1. Then p < gq.
Proof. Let k > 0 be a large parameter. For n > 0, let
I =2+ 8n+ 1,2 +8n 47, IF:=[2"+8n+3,2" 4 8n +5

and define
2k —5

fr(w) = 27RE=DP N1
n=1

Then || fx||, < 2°/P. Let t € E C [1,2] and observe that

ALy (- D) =1, for Jz] € 1%
Ae[Lpe (|- Di(z) =0, for |z] € IF, n#n
Therefore
2k 5 2k75 1/
q q
407l = (3 27k / > At (D) dx)
{w:lzlell}y ' 7y "
216 5 1
_ (Z 27k<d71>q/p/ -1 dr) 115 g=k@-10/p-1/0)gk/a.
Ik
Consequently,
HMEkaq >2 kd(1/p—1/q) (31)

I frllp

and since | Mg||z» L < 1 by assumption, we must have p < ¢ by letting k& — oo

in . O

The next lemma is standard, and can be found, for instance, in [I]. We note
that the first condition is the usual scaling condition from fixed-time averages and
thus does not depend on the set of dilations F.

Lemma 3.2. Let 1 <p<g<oo,d>2.
(Z) If ||M[1,2]||Lfad—>Lq S ]., then q S pd
(i) For any E C [1,2]

_ 1_a4d
Mgl —pe 2 sup N(E,8)"95% +a5. (3:2)
0<6<1
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The previous conditions imply that L? ; — L? bounds for Mg cannot hold for
(%, %) ¢ Ag. This was essentially implicit in previous works such as [I].
Corollary 3.3. Let d > 2, E C [1,2] with dimys E = 8. Then TE4 C Ag.
1_11_ 1
p q>q pd
and d—1+ % = g. Using the definition of Minkowski dimension, these correspond
to the necessary conditions in Lemma [3.1] and Lemma [3.2] respectively. (]

Proof. The triangle Ag is determined by the intersection of the lines

We note that when p = % there is a more refined necessary condition than

B2).

Lemma 3.4. Let pg = %. Then
IMgllpra pe 2 sup  N(E,6)"16"/9log(1/6)]"/".
rad 0<8<1/2

Proof. First consider f(z) = |x\1_d1og(|x|_1)_1]l[07%](|x\), the familiar example by
Stein [2I]. Then f € LP¢ and Mg f(z) = oo for |z| € E. Hence if ||ME||LPda_>Lq <
oo then E must be of measure zero.
Let 6 < 1072 and define
1-d

g(x) = 2"~ (log (1)) ™ Ligisz s1/41(J2).
Then

s1/4

1 1
1/pa 5 log(3) 1/p
loll~ ([, 57 0g Dy as) ™ o (2 T utan)
ot/2 1 loa(})

uniformly in 6.
Next, let D,, = {r: 27" < dist(r, F) < 2'7"}. As stated in [20, Lemma 2.7], we
have that for nonnegative f and f(z) = fo(|z|),

1
Mgf(z) > c/ 5772 fy(s) ds  for |x| € Dy;
2—n+2
indeed, this is a consequence of formula (4.2]) below. Thus, for |z| € D,, and 27" < §
we get

51/ 10g(2)

1 1\1=4 o R 1\11/d

s log($) @ ds = ) u/u” " du 2 [log(5)] .
1 log(3)

Meg(@) 2 [

§51/2
Therefore, letting Ws := {r : dist(r, E') < 4},
1/q
IMefllo 2 (30 IDalllog(H]") ™ 2 Ws|allog(3))/;
n:2—" <4
here we used that [E| = 0. Noting that |[Ws| > $N(E,0)d, the asserted lower
bound follows. O

We continue with a further necessary condition involving the Assouad spectrum.
To the best of our knowledge, this condition has not shown up before in the litera-
ture. It turns out to be relevant only for d = 2.
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Lemma 3.5. Let 1 < p < g < oo. Given 0 < § <1 and an interval J of length
|J| > 6, define

N‘
=

Cp(8,J) = N(ENJ,8)c|J|~ @G- i3,

Then

IMllze e 2 sup sup €u(d, ). (3.3)
0<6<1 |J|>5
In particular, if ¢ > 2 and V¥ () is as in (1.2)) the L? , — L9 boundedness of Mg
implies

Lt d-1)(4 - 1) + < 4

Sl
Q=

Proof. Let 1 < p < g < 2. Then the exponent of the factor |J|_(d_1)(%_%) is
positive and thus, for any 0 < d < 1,

sup €p(5,J) = N(E,8)i6°7 Ta~5 < N(E,6)15% a5
[J|=6

where the inequality follows since p < 2. Thus, the desired lower bound follows
from Lemma [3.2] (ii).

We next assume 2 < g < co. Let 0 < § < 1 and J = [t,tr] C [1/2,5/2] be
an interval with |J| > 0. Let gs(z) := L, 5,6, +5(|7]). Clearly, |lgsll, S §1/P. For
eacht € ENJ with |t —¢| > 4§, let I :== [t —tp — /10, — ¢t + 6/10]. For any
r € R? such that |z| € I, let t(x) =t € E. We claim that

d—1

Ay 95(2)] 2 (é')?. (3.4)

Thus, if D := Uepg -ty |>6 It» We have Mpgs(z) 2 (6/|z))“=" whenever |z| € D.
Consequently, noting that r < 2|.J| for » € D, we have for ¢ > 2

_ (d—1) 1/q
Mgl 2 6% ([ 450 ar)
D

1

> 5% ||~ @ DG | pli/a

Using that |D| > N(E N J,8)Y/95'/% we have

1

Wssslls > n(E 0,670 G- D575 — ep(a),

||95||p

as desired.
We now prove the claim (3.4). Note that, by rotation invariance, we can assume
x = (21,0) with 1 > 0 and 21 — ¢t(x) = —t1 + 16, where |¢1] < 1/10. Let

Ry ={(y1,y) € S iy >0,y < ;' (8/21)"/?}

with ¢ > 2. Note that if y € R, we have (1 — ;) < |¢v/|? < 2. Now, a

9 — — cg |z ]
computation shows that for y € R,

thl‘S—O <z —t(x)y| <tp+9. (3.5)
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On the one hand, we have
|z — t(z)y|? = 2T + (t(2))? — 221t (2)p1
= (21— t(2))* + 2t(x)a1 (1 — 1)
(tr — 015) + 2t(x)z1 (1 — y1)
t(z)

<t + 6% —20tL6+ 25110
tL62

<UL+ 8242616 — (1 - c)0% = 2(1 + e1)trd +4ey *trd
< (tp +9)%.

In the last line we used that —2(1 + c1) + 4¢3 < 2(—=% + 2¢; %) < 0, and in the
previous one, t(x) < 2t. On the other hand, since 2t(x )xl(l —y1) > 0 we have

|z — t(2)y|® = (tr + c16)® + 2t(z)z1 (1 — y1) > (tp — 50)°.
In view of (3.5) and the definition of g5, we immediately have

Ayy9s(z) > / g5(x — t(x)y) do(y) 2 (v/o o),

which verifies the claim (3.4)).

Finally, note that by the definition of v#(a) in (1.2)), given € > 0, there exists a
sequence (d,,) with lim,, ,~ d,, = 0, such that

sup [ J|TON(E N J,8,) > 8577
[J|Z6m
Using this in (3.3) with oo = (d — 1)(% — 1) we see that there exist an interval .J
such that

1

|J|((dfl)%*l)%(gfn*”u((dfl)3 /q|J‘ (d— 1)(***)5 R <1

for 6, < |J|. Letting m — oo, this implies Eyﬁ((d -(E-1)+- -

1 1 d—1
1 1 ~d-1

. » q 3 as
desired. O

Remark. The scaling condition ¢ < pd in Lemmal3.2] (i), is implicit in the previous
lemma by simply taking |J| = § in the definition of €g(d, J).

4. ESTIMATES FOR d > 3

As in [9, 20] it is useful to rewrite the spherical averages, when acting on radial
functions, as integral transforms on R*. As shown in [9] one has for f(z) = fo(|z|)

|z| 4t
A, f(z) = cd/ K(lz], 5)fo(s) ds (4.1)

x|t
with

)2 — 52,/s2 —1)2\d-3
Kt(r,s):(\/TJr s\/s 7’ ) S
(r+t)2—(r—1t)? (r+6)2—(r—1)?
In this section we consider the higher dimensional case and prove Theorem
As stated in [20] the formulas (4.1) and (4.2)) imply expressions for the maximal
functions which are easy to handle in dimension d > 3.

(4.2)
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Lemma 4.1 ([20, Lemma 3.1]). Letd > 3,1 < p < 0o and set g(s) := fo(s)s4=D/P,
Then for r = ||,
Mpf(x) S Mpg(r) + Rifo(r) + Rafo(r),

where r = |z| and

—a| [T s

Mpg(r) == sup r ’/ s g(s)ds|, (4.3)
|r—t|

teE
r/2<t<3r/2

Ry fo(r) :== sup f‘/ fo(s)ds|,
te[t,2] t
t<r/2

1 t+4r
Rofo(r) := sup —
te[1,2] T
t>3r/2

fo(s) ds).

t—r

The dependence of the p-range on 3 is only used when we estimate 91,g. We have
not kept dependence of the set F in the operators Ry and Ry since the operators
with supremum over the full interval [1,2] already satisfy satisfactory estimates.
The operator R; is rather straightforward.

Proposition 4.2. For all1 < p < g < oo we have
||R1f0||Lq(rd*1dr) S HfOHLP(sd*lds)'

Proof. The estimate is trivial for ¢ = p = 00, so we assume that 1 < p < co. For
any t € [1,2] and r > 2t, we have

T+t d—1 T+t d—1 d—1 T+2 d—1
/ fo(s)ds <+ 5 / fos)| 855" ds < v %5 / fols)] 7 ds.
r—t r—t r—2

Thus, by Holder’s inequality

a1 r+2
Rufolr) S ([ 1ot as)

The case ¢ = oo is immediate. For 1 < ¢ < oco, we note that Ry fo(r) =0if r < 2,
and thus ([ |Ry fo(r)|?r¢? dr)'/? is bounded by a constant times

(/:O —(d—1) _M(/Lj|f0(5)|p8d_1ds)q/pdr>l/q,

Since ¢ > p, a standard spatial orthogonality argument implies that the above
1/p

is further bounded by a constant times ( fo |fo(s)[Psi—t ds) , concluding the

proof. (I

The condition ¢ < pd is necessary for the estimation of Ry. The only non-trivial
for the endpoint ¢ = pd.

Proposition 4.3. Letd > 3. For 1 <p < o0, ¢ < pd,

||R2f0||L‘1(rd*1dr) 5 HfOHLP(Sd*lds)' (44)
Furthermore, the inequality also holds for p =1 and q < pd.
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Proof. By Hélder’s inequality, we have the pointwise estimate

L t+r i1 1/p
Rofol) S s (1 [ o)t ds)
te(1,2] t—r
t>3r/2

< / fo(lPstas) ", (4.5)

Define the measure g on R by djug = r?~!dr. Direct integration in L7(dug) gives
(4.4) for 1 < p < o0 and ¢ < pd. To get the endpoint, we first prove a weak-type
inequality. By (4.5)) we have that for some C > 1

4
pa({r:|Rafo(r)] > a}) < pa({r:r7" /1/4 [fo(s)[Ps™ds > (C™la)P})

1 4 d
_ ~rpd,  —pd pd—1
o (/1/4f0(s)| s ds) ,

which shows that Ro maps LP(pg) to L9 (ug) for ¢ = pd. Applying the Marcinkiewicz
interpolation theorem with different values of p, this upgrades to the LP(uq) —
L%(p4) inequality for 1 < p < oo. O

We now estimate the operator 91,. The interesting p-regime is for 1 < p < d%'ll,
since for p > % one can obtain bounds rather trivially, uniformly in FE.

Proposition 4.4. Let E C [1,2]. For all p > %1 and 1 < ¢ < oo,

19l La(ra-rary S N9lp-

Proof. We note that 9,g is supported in [2/3,4]. Moreover M,g = M, (g1 4]
Since sdil’p/]l[OA] belongs to L (ds) for p > -4 the pointwise bound [M,g(r)| <

llgll, follows from Hélder’s inequality. This implies the L? — L9 bounds, by the

stated support properties. [l
For the interesting range p < % we distinguish the cases 1 < p < ﬁ, and
d
P=3a-7

Proposition 4.5. Let 1 <p < d%‘ll, For all p < g < o0,

_q_d_ 1 1
||§mpg||Lq(rd*1dr) < C(p,d) sup 5! p+qN(Ea5)"||9||p’
0<s<1

where C(p,d) < %.

Proof. We argue as in [20]. In (i) assume 1 < N(E, )4 < C5—@=1=5+3) other-
wise there is nothing to prove. Note that for nonempty FE this inequality can only
holdifd—l—%—!—% >0, 1i.efor g < %. Since p < ﬁ and p < g we see that

dimMqu(%+%f%):1f@(%f%)<1.Foreachn20,let

Uy, = {r: dist(r, E) < 27"}, D, =U,\ Upis (4.6)

Note that (| >, D))t =, U, = E is a set of measure zero since dimyE < 1.
n=1

n=1
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Observe that M,g(r) = 0 unless % <r<4.IfreD,, then

d

6 d—1 n+2 —1
M,g(r) < / ST g(s)ds S 3 20O
2—n

—n+L4+1
£=0

2
/ l9(s)|ds
2—n+[
n42 g—n+e+1

1
< Z ol= —n+£)/p’ (/2_n+e lg(s)|? ds) P

We have from the above observations and Minkowski’s inequality that

Il rrsan 5 (3 [ oirar)”

n>0
n+2 2f+i-n 1ogy L
ST B[ eere)'])
n>0 26-m
and by Minkowski’s inequality this is
27n+l+1 1 q 1
Sy 2 (3 [ ([ e as)])’
>0 neNo: 27t
n>0—2
g—n+i+1 1
d d P P
g22—6(;—d+1)(z2n(;—d+1)p|Dn‘g/ |g(s)|pds) .
>0 n>0 27t

We may estimate, for each fixed ¢, the n-sum by sup, > 2”(%’d+1)\Dn|1/q||g||p.
Since p < 7% we may then sum in ¢ and use |D,,| < N(E,27)27" to get

n da
199 a1 ary S —5= sup 2" 5D, [V g]l,

d
12 e >0

a_dq N —n\ =
S apte 2N E 2 gl

which concludes the proof. ([
We argue in a slightly different way for the endpoint p = %;.

Proposition 4.6. Let E C [1,2], and pg := ﬁ. Then for q > pq,

1 1 1
Mgl a(ra-rary S 58111325QN(E, 6)1(log )7 llgllp,- (4.7)
<

Proof. We may assume sup;. 1 (S%N(E,d)é(log%)é < oo. Let U,, D, be as in
([#.6), and conclude that |U,| < n~9¢. This implies that E is of measure zero.
Note that 9,g(r) = 0 unless % <r < 4. We set, for £ > 0,

Qg = U Dn.
2¢-1<n<2t
Note that
1] S [{r: dist(r, B) S 272 "} S N(E, 272 )22 < Bra—a/d,
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where B := sups1 5%N(E, 5)%(10g %)5 2 1; here we assume without loss of gen-
erality E # (. We estimate 9M,g(r) < N,g(r) + Eg(r) where

1/2
Z 1p,( / s /g(s) ds,

n>0
4
E9(r) < 11 ja.21(r) / 5 gt s
1/2

For the term £ we just use Holder’s inequality and obtain

4 4 14 qa \1/q
gl ran s ([ [ [ s ts)as]" ar) ™ S Nl
1/2 LJ1y2

We turn to the term MN,g(r). For m > 0, let J,, = [272""",272"]. Then, if
r € D, with 2671 < n < 2¢, we have by Hélder’s inequality

1
Mpg(r)] < / s 4g(s |ds<Z / 54 g(s)] ds

Jo—k
<,;J(/JH s_lds)l/d(/hk sl ds) T

< iw—m/d(/
k=0

Joi—k

(s ds) "

Consequently,

M9l a(ra—1ar) S (Z Z /|‘ﬁpg |qdr) e

I=12t-1<n<2¢

< (Sw( ([ ras)”))"
=1 k=0 Je

—k

By the triangle inequality in 9 the above right-hand side is

< 22 k/d(Z|Q 2@q/d(/]£k |g|pd8>q/p)1/q

/ /
< BZT’““(Z (/) \gl”ds)q N
<322 v Z /J 7 ds) " < Blgl
L—k

here we have used (| in the second inequality, the embedding ¢F — ¢7 for p < q
in the third and the disjointness of the intervals Jy_; for £ > k and fixed & > 0.
This establishes the bound M, 9| za(ra-1ar) S Bllgllp, which concludes the proof of

(.7). O
We are now in a position to conclude Theorem
Proof of Theorem[I.1. We recall that the triangle AB is given by
1 1-p _ d
Ap={(3,1)e0,1?: 5 <1< S rd—1>14},

pd = q = p’
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and note that the line segment [P, ﬁ,Prad] satisfies the second condition with

equality. From Corollary [3.3| we have Tz2d C Ag. For the suflicient conditions,

we have by Propositions and H that if (l, é) € Ag then Ry and Ry are

LP(s%~1ds) — Li(r?~'dr) bounded. Thus, by Lemma we shall only focus on

-

(i) Let B < 1. If (%,) € [Pop, P37 and B < 1 then 1 < p < 7%5. We can
then apply Proposition [4.5together with the assumption sups_, §PN(E, ) < oo to
deduce that M, is LP — L9(r%~1dr) bounded on that line segment. The remaining
bounds for (%, %) € Ag follow by interpolation with the case ¢ = p = co. Therefore
TEd = Ag.

(ii) If sups., 0 N(E,§) = oo, we have by Lemma that |Mplr e 2
sups.; N(E,8)Y150/1 = oo if (%, %) [P, 5,Prad] For the positive bounds, we
note by Proposition that 9, is LP — L9(r~'dr) bounded for p > ffr For
p < d 7, we use that for every € > 0 we have N(F,0) <. §~A=¢ uniformly in 6 > 0.

Since 8 < 1, Proposition [4.6| guarantees LP¢ — L4(r¢~1dr) boundedness for ¢ > pg
for a choice of € > 0 sufficiently small. Finally, note that

JIIETIN(E, 6)V/e <, s (4.8)

For p < 2% and (1 ;) € Ap\[P2p, P5%], we have that % +d-1> g.
Thus, choosing a sufﬁc1ently small € > 0, the right-hand side of is uni-
formly bounded in 0 < § < 1. We can then apply Proposition to deduce
that M, is LP — L9(r?~1dr) bounded in this case. Consequently, we have proven
Tit = Ap\[P2 s, P55

(iii) Assume that dimp/E = 1. We already noted that T4 C A;. Moreover,
for pg = ddl, we have from Lemma that sups.q/, d(log ;)%N(E 4) must be
finite if | Mg|| LPd spa S < 1. This estabhshes the C implication. For the sufficient
condition, we note that Py = (41, 41) and Pyt = (4, 45, Of ( ) € A
with p > d 7, LP — Lq(rdfldr) bounds immediately follow from Proposwion
On the other hand, if p = d 7, the bounds follow from Proposition under
the assumption SUPs<1 ON(E,)(log 3) 4 < oo. This establishes the D 1mphcat10n7
which concludes the proof. (I

5. 2-DIMENSIONAL RESULTS

In this section we consider the circular maximal function Mg for radial functions
on the plane. As stated in [20, Lemma 5.1] the formulas and yield by
straightforward estimation a pointwise inequality which involves kernels that are
more singular than their higher-dimensional counterparts. In what follows, for a
radial function f, we continue to use the notation f(z) = fo(s) for s = |z|.

Lemma 5.1. Let d=2. Fiz 1 < p < oo and set g(s) := fo(s)s'/P. Then

Mpf(z) S My g(r) + M, g(r +ZZRifo

+ =1
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where r = |z| and

T+t

Mm,g(r) : sup 7“_1’ / 81/2_1/p(8 —|r— t|)_1/zg(s) ds‘,
teE [r—t|

r/2<t<3r/2

r4+t
i)ﬁ;g(r) = sup 7"*1’-/ sl/zfl/p(rﬁ—t—s)*lmg(s) ds‘,
teE |r—t|
r/2<t<3r/2

R fo(r) := sup t_l/z‘/ |s—r+t|_1/2fo(s) ds|,
teE r—t

t<r/2

r+t
Rffo(r) = iug t_1/2‘/ |7"+t—8|_1/2f0(8) ds
tger/Z "

i

and

t

R5 fo(r) := sup r_1/2‘/ |s—t+r|_1/2f0(s)ds7
tekE t—r

t>3r/2

R;‘fo(r) = sup r1/2
teE
t>3r/2

t+r
/ Ir 4+t —s| 72 fo(s)ds]|.

t

Given this lemma, it suffices to establish Lebesgue space bounds for the operators
RE,RE and mt;t.

5.1. The operators Rli. Boundedness for these operators hold under a condition
involving the Minkowski dimension. The argument is analogous to that in [20]
Proposition 5.2].

Proposition 5.2. For all1 < p < g < 0o, we have

(il 1 L
IR follograry S ) 27T W N(E,27™) | foll o (sas) -

m>0

Proof. We only give the estimate for Ry := Ry ; the same arguments apply to R
First, note that without loss of generality, we can assume that f; is supported on
[1,00). For each r > 2 we can write, after a dyadic decomposition,

Ry fo(r) S M5 fo(r) + > 2" PR fo(s) (5.1)
m>0
where
r—t42-mt!
RY fo(r) := sup / [fo(s)|ds
teE Jr—ty2—m

t<r/2

and M5 h(r) :==sup,<,<o 1 [1_, |h(s)| ds. Clearly

1L (2,00) MEE foll Larary S N foll Lo rar)

for all 1 < p < g < co. For each fixed m > 0, let {I)}, : v € M,,,(E)} be a minimal
cover of E by intervals of length 2= and note that #MN,,(E) = N(E,2™™). For
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each I define JY := {t € R : dist(¢,I%) < 27™ %1} that is, its concentric interval
with 5 times the length. Then

RPfo(r) S sup / olr—s)ds= sup |fola|* Ly (r)
VEN,, (E) J Tk, veN,, (E)

whenever r € [2F 25+1] for k > 0, where A, := [max{1,2¥—3},2*+1]. Consequently,
by Young’s convolution inequality,
2k+1

/;OIRTfo(T)I"TdTS DD IES M TS PREE PRI

k
vEN,, (E) k>0 2

a /
s Y Sl ( [ ineras)”
VEN,, (E) k>0 Ak
2k+l

) ) \ q/p
S 2D N (B, 27 sup 2t -0 Y (/ ofe)Psds)
k>0 k>0 Y2F7?

<2 D N(E 2 foll L s

where the last inequality follows since p < g. Combining this with (5.1]) concludes
the proof. O

5.2. The operators Ry. We first record a result from [20] for the case p = q.

Lemma 5.3. For all 1 < p < oo, we have

HRQifHLp(,.dr) < Z N(E’2*m)1/1’27m/2Hf”Lp(sds).

m>0

For the proof see |20, Prop. 5.3]. The L?(sds) — L4(rdr) estimates for Ry are
more involved, and can be obtained under a condition on the quantity v#(a) in
(T:2). We note that the behaviour of Rj is responsible for the different outcomes
in two versus higher dimensions.

Proposition 5.4. Let 1 <p < g<oo and E C [1,2]. For k,m > 0, define

whi(E k) == sup 2 PG RIN(ENJ 2 ™ R)a (5.2)
|J|=2—*

where the supremum is taken over all intervals J C [1,2] of length 27F.
(i) For2 < q < 2p, we have

iyl 1
IRE follaany S 30 27 G028 (B, B) o= | foll o sas) (5.3)

m>0

(i) If 1 < q < 2, we have

_ 1,1 1
IBS foll Lagrary S Y 27" F a7 w0 (B, k)|

m>0

21| foll L (sas)- (5.4)

£

Proof. We only give the estimate for Ry := R, ; the same arguments apply to Ry .
Note that Rafo(r) = 0 for r > 4/3. Furthermore, without loss of generality, we
may assume that fq is supported on [1/3,2]. Let Iy := [1/2,4/3] and, for k > 0, let
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Iy := [27%71 27%]. Let o € C° be even, such that xo(y) = 1 for |y| < 2712 and
Xo(y) = 0 for |y| > 271, For k > 0, we define

Arfo(r,t) == r~21y,(r) /OO Xo(2F(t —r—s))|t —r — 5|7/ fo(s) ds

t—r
t

B folr,t) =r~11, (7“)/ (1= xo(2(t —r—s))t —r— |7 fo(s) ds

t—r
and note that
Rofo(r) < sup > [Axfo(r,t)| + sup Y [By fo(r, 1)]. (5.5)
teE 15 t€E 150

We start bounding the By terms. For ¢t € F and r € I we have by Hdlder’s
inequality

el S24( [ 1)t 20 [ / o) as) 17, (),

t—r

and thus

sup > [Byfo(r,t)] S v Tsup2 KT £, < e fo
1<t<2 (55 k>0

for ¢ < 2p. Since r~2/9 € L%*®(rdr) we have LP(sds) — L%°°(rdr) bounds for
q < 2p. Therefore, by the Marcinkiewicz interpolation theorem, we obtain the
strong-type bounds

| sup S BesoC ol S I olaras, (5.6)
k>0

1<t<

for 1 < p < oo and g < 2p.
We turn to the Ay terms. Let

i () 0 ifx >0,
€Tr) =
¥ xo(2Fz)|z| =% if x <0.

In particular, hy, is supported on (—27 1'% 0). Note that
Arfo(r,t) = =21, (1) by * fo(t — 7).

We perform a further decomposition of the operator A which will quantify the size
of [t —r — s|~/2. To this end, we use, for k > 0, the resolutions of the identity

o0
0 =uL + Z Vk+4m ¥ Q/Jk+m (57)
m=1

where up = 2Fu(2F.), vy = 27 0 (2671, W = 2671 (2°71) and u, vy, ¢y are C°
functions supported on (—2710 2710} and with vy, v satisfying moment conditions
up to a certain fixed order N > 0. See [I7, Lemma 2.1] for a proof. The convergence
in is in the sense of tempered distributions. This resolution of the identity is
convenient since it will allow for an application of Littlewood—Paley theory to sum
in the k-variable. With this at our disposal, define

Ak ofolr,t) == 7‘71/2111,c (r)hg * ug * fo(t —7),
A fo(ryt) := =211 () hi % U * Ypgem * folt — 1), m > 1.
In view of (5.7) we have Ay = > Ag,m for all k > 0.
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Consider first the Ay 0. Note that hy *uy, is supported in [—27F=10 27+=20] apnq
Pk k]| oo < ||kl ]|us]lso < 2%/2. Thus, one can argue exactly as for the By, terms
and deduce the estimate

H sup Y |[Akofol |‘
1<t<2 50

for 1 < p < oo and g < 2p.

We turn to the operators Ay, ,,, for m > 1, k > 0. Note that by (5.5), (5.6) and
(5.8), to conclude the proof of the proposition it suffices to ShOW that the operator

fo = supep D50 | 2>t Akmfo(+ )| satisfies the bounds and (5.4). The
key estimate for this end is

I 5D WAk fo - D)l 10 (rar) S 27 EFTTDWR (B E) [ g * folp (5.9)
S

S P(sds 5.8
potany S 1 ollzouan (53)

for 1 < p < oo and ¢ < 2p. Assuming (5.9, one can conclude the proof using a
Littlewood—Paley inequality for the family of functions {tg4m tr>0, for any fixed
m > 1. Because of the disjointness of the intervals I and (5.9) we have

supZ| Zﬂm kfo(, |’ La(rdr) S Z (ZHSUP A fo (|7 Tdr)>

Q=

tEE 150 m>1 m>1 k>0
1
<S> 2*’"<%+%*%><ngq(E, K- fOHg) ‘. (5.10)
m>1 k>0

In the case ¢ > 2 we use

(S B s« olg) S supatit(BR) (X i = olly)

k>0 k>0

and then by Minkowski’s inequality and Littlewood—Paley theory
1/q 1/q
(Xl = ollg) ™ < || (X Wbk = fol?)
k k

1/2
S (S twsm# 20) | S 1ol ~ Iolzrea
k

This together with (5.10]) implies part (i) of the proposition.
For ¢ < 2 we use Holder’s inequality to get, for w( ) =wki9(E k),

(St + £o12) " < (S wt®)) (S lbwsn » fol2)

k>0 k>0 k>0

By Minkowski’s inequality and Littlewood—Paley theory
1/2 1/2
(X = £ol12) ™ £ (o Wk = o) ]| S ol ~ 1 follzr o
k k

and we see that this together with also implies part (ii) of the proposition.
It remains to prove for fixed m > 1, k > 0. As mentioned above, the
m-decomposition allows to essentially quantify the magnitude of |t — r — s|; in
practice, one shall think of hg * Vg4 as being roughly 2Fm)/21 o v ooy,
More precisely, using the vanishing moment conditions of vg4,, one obtains for
r €R,
|, O ()] S 20F™)/2(1 4 ok4m ) =N (5.11)
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for all N > 0. For |z| < 27%=™ this follows from pulling out |[v4m|lec and direct
integration. For |z| > 27%~™ the case N = 0 is immediate from the support of
Ukm and ||Ug+m|l1 S 1, while for N > 0, we write

s vnm(@) = [ (e =) = 3 0@ Juin () do

Using Taylor’s theorem and |z — y| ~ |z| for [z| > 27%=™ one immediately obtains
(5.11)). By Young’s convolution inequality (5.11)) implies

m)(L—1_1
| * Vo  gllg S 20T™WG a2 g, (5.12)

for any function g € LP, where 1 < p < ¢ < oco. This upgrades to a maximal
estimate at intervals at scale 27%~™. More precisely, for any interval I C [1,2] of
length |I| = 275~ we have

1up [k 5 vk 5 9(E = )lllg S 206G gl (5.13)
S

Indeed, by the vanishing moment conditions for vy, +m» the inequality -, and
consequently the inequality (5.12] -, also hold 1f we replace the function hy * vgim
with 2=F=mh, *Uj - One can then obtain (5.13)) from these by a standard Sobolev-
type application of the fundamental theorem of calculus (see, for instance, [22
Chapter IX, §3, Lemma 1]).

We are now in a position to prove . For each fixed k > 0, we tile [1,2]
into intervals of length 2% denoted by Ji , := [u27%, (1 + 1)27*] for each integer
2F < < 281 and set i = [(1—2)27%, (u+3)27%] to be the concentric interval
to Ji,, with 5 times its length. Since hy * Vg, is supported on (—27% 27%) we
have that for r € I, and ¢t € Jy ,

hk * ’Uker * g(t — ’I“) = hk * ’Uker * [g]]_]]:“](t — ’f’). (514)

For each fixed Jj , and m > 1, let {Iy4m ..}, be a minimal cover of E N Jy , by
intervals of length 27*=™ and note that there are N(E N Ji ,,27%~™) of them.
Then we have, by (5.13)) and (5.14]), for g := VYr1m * fo,

sup Vs m o, )l zacrary

1/q
< 2k ZZ/ sup |hk*Uk+m*[QRJ;“](t—TWdT)

t€Jktm, v

1/q
<2’“2“)(ZN B iy, 27k G i gn )

k,u

p
<2k(***)2 m(5+ lf%) Squ (EQJQ_k m (an]lJ ||p)
T|=2

for p < q, and since the Jy; , have bounded overlap, thls yields the asserted inequal-
ity (5.9) in view of the definition of wE:4(E, k) in O
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5.3. The operators Dﬁ;,t. The treatment shares similarities with [20, Proposition
5.4]. We break im;,tg < 93"(;057 + mioog, where

2|r—t
M, o9(r) = sup o /' s e o)) s
r/2<t§<E3r/2 Ir=t|
r4t
M, o9(r) == sup r_l/ s_l/p|g(s)|ds,
r/2<t§f3r/2 2fr—tl

and with analogous definitions for ‘.m;o and 9F  breaking the s-domain in the
regions (£t r+t) and (|r—t|, “£*), respectively. The operators zm;m are pointwise
bounded by the two-dimensional version of 91, in , so one can appeal to the

bounds in The main focus of this subsection is to study the operators zm;ﬁo.

Proposition 5.5. Let E C[1,2] and 1 <p < ¢ < 0.
(i) Forp> 2,
19 gl Larary < Nlgllp-
(ii) Forp < 2,

10 gl agrar) Sp sup N(E,8)78 7254 g]l,. (5.15)
0<6<1
(i) Forp =2,
199 e(rary S D21+ 0)sup N(B, 270271 g]l. (5.16)
>0 n=

Proof. We use the decomposition E)ﬁff g9 S Qﬁi 09 + 93?;009, and for the operators

sm;;m the bounds in (i), (ii) and (iii) follow from Propositions and
respectively.

We shall then focus on 9,0 := M ; the corresponding arguments for 97(;0
require only a minor notational modification. We observe that 9, 0g(r) = 0 if
r € R\ [3,4] and hence |09 Lo (rar) ~ | Mp,09]l -

Case p > 2. For this simpler case, we note the pointwise estimate
lr—tl(1+27™)
Mg S Y. swp | S (s — [ — 1) 7 g(s)] ds
\

m>0 te(1,2] r—t|(142-m-1)
r/2<t<3r/2

[r—t](1427™)

SY, sw 2"‘/2|r—t|*””/ l9(s)| ds.

m>0 t€[l:2] lr—t|(142-m—1)
= r/2<t<3r/2

By Holder’s inequality, this is further estimated by a constant times

m/2 -1/p —m\1/p’ ‘ P 1/p
sup 22— 77 — 27 ([ lg(o)lP ds)

te[1,2]
209 Zi<ar /2
—_m(i_L 1—2
=3 2mG7D  sup et gl S llglls
m>0 te(l,2]

r/2<t<3r/2

since the m-sum converges for p > 2. The L?-bound for 9, o then follows from
trivial integration in the r-variable. This concludes the proof of (i).
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Case p < 2. We treat (ii) and (iii) simultaneously. First, note that we can assume
without loss of generaltiy that |E| = 0. Indeed, for p < 2 the finiteness of the
right-hand side of implies the estimate N (E,J) S 571737 5 0a5 5 — 0.
Thus |E| = 0. Similarly, the finiteness of the right-hand side of also implies
|E| = 0.

For each n > 0, let D, := {r : 27" < dist(r,E) < 27""'} and note that
|Dn| S N(E,27™)27". Write Dy, = U, cqp, 1, where I are disjoint intervals of
length |[I¥] = 27"~1 with #0M,, ~ N(E,2™"). Foreachv € M,,, and 0 < £ < n+1,
let EY ,:={t € E: 27"t <dist(t, I}}) < 27"}, Then we can write

2|r—t| S%—%
My,09(r) Z Z 1py(r) sup  sup / WW(S)MS

n>0veN, 0<5§”+”€E5,e r—t|
|[r—t|(1427™)
SIDILLLD I T | ol
£>0m>0 n€Ng: vEN, teEy [r—t|(142-m—1)
n>0—1
MR
£>0 m>0

We now break the analysis depending on whether m < £ or m > £. If m < ¢, we
have by Holder’s inequality
g—n+i+2

1/ /
f)ﬁm’eg(T)]l[;;(T) < Qm/22(n7€)/17</ lg(s)|P ds) p2(*n+€7m)/17

o—n+e—1

Thus, we estimate |9 *g||, by a constant times

2—n+@+2 q 1
< sz(%fl)QM(%*%)( Z 1D, 27" 1,,)11(/ lg(s)|P ds) P) a
RENO. 2—n+l—1
n>0—1
<2 5(7—1)27%( SI;IEN(E 9~ n)l/qQ n(l+1-2 )||g||
using p < ¢. Summing, we obtain for p < 2
_ _ Cp(lal_z2
SO gl S (2 - p) Esup N(E,27) Va2 a0 g, (5.17)
>0 m<¢ n20
and, for p = 2,
DS mmiglly $ Y (14 € sup N(E, 279279 gl (5.18)
£>0 m<t >0 n2é

We next turn to the terms m > ¢ and perform a finer analysis. We further break
the set £ , into smaller 27~ nH=m intervals; we call these intervals Qn tm and note
there are O(Qm) of them. Note that if m > ¢, these intervals are smaller than the
I? intervals where the r-variable lives in. We then have that for r € I/,

[r—t|(14+27™) [r—t|42-nHemm
sw/ |wmmwpw>/ lg(s)] ds
| \

teEy , Jlr—t|(1427m~1) poteQy’ ,, Jr—t|+2-ntt-m=1
S Zsup/ |h(s)|ds = sup [k * L5v.. (r) + sup |h| * Lgve (1)
o JE(r—Gn [ 0 o n,0.m o n,0.m
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where h(s) := g(s )1{2_n+4_1§s§2_n+z+2}(s), h(s) = h(—s) and Q. = denotes the
concentric triple of Qn tm- Without loss of generality, we can assume the first term
dominates, and using this bound in the definition of 9™ we obtain, using Young’s

convolution inequality,

ol 520 ( 3 3520708 | gy, (0 @)’

neNg: v
n>0—1
g—n+e+2 . 1
n— 1_1 a1
2 30 SN b ([ weras)”)”
n€ENg: v 9—n+te—1
n>{—1
which is
—nte+2
(b4l N(E,2-n+e=my o 27" a1
sy (Y SR ([ eras))
ngN:o 2(n Oa(l+3-3 o—n4eL—1
n>0—1
<2 m(3 + )SliIzN(E g—ntl= m)l/‘IQ( n+£)(1+,,, ||g||

where in the last step we used that p < q. We next note that
Z Z 2= m( (11 SupN(E 92— n-+40— m)l/q2( n+£)(1+ *)

£>0 m>~
= Z Z 2™(3=3) qup N(B, 2~ (ktm))g=(ktm)(1=5+7)
>0 m>1 k=0
<N (@ +m)2mGT) sup N(B,27 )2 )
n>m
m>0 =

and consequently we obtain, for p < 2,

_ e n(1—241
d D gl S (2-p) 2Sgpof\f(l”l2 M2 et g] |,
nz

>0 m>/{
and for p =2
DDl S Y (14 m) sup N(E,27")279 g
>0 m>¢ m>0 nzm
Combining these with (5.17) and (5.18)) concludes the proof of parts (ii) and (iii).

O

5.4. Proofs of Theorems and We are now in a position to prove the
2-dimensional results stated in the introduction. We observe that for d = 2 the
triangle Ag is given by

Ag={EhHep1P:E<icl =8>2_ 1) (5.19)

1
P’ q T p
We start with Theorem which gives a complete answer regarding 754

Proof of Theorem[I.4 The implication C follows from the necessary conditions in

Corollary [3:3] and Lemma
We turn to the sufﬁment conditions. By Lemma [5.1] it suffices to consider the

operators 7] ,Ri and QJTi We first assume g = dimy; F < 1.
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(a) By Proposition and the definition of Minkowski dimension, we have that
RT are LP(sds) — L9(rdr) bounded if % +1- % > 0. Note that this only

constitutes a constraint for p < 2, which is subdominant with respect to the
condition in (5.19). Thus, bounds for RE hold when § < 1 and (5.3) € Ap.

(b) By the definition of v# in (1.2), we have for any v > v#(2 — 1)

sup |J|'EIN(ENJ,6) <67 (5.20)
|J|=2-F

for all 0 < § < 2%, with implicit constant independent of k. Recalling the
definition of wk:4(E, k) in (5.2), we get from (5.20))

2*m(%+%*%)w%q(E7 k) < o(m+k)(5-5—-157)
Thus, by Proposition (i), and choosing a suitable v we see that Ry is
LP(sds) — L4(rdr) bounded if % -1< %(1 —v#(2—1)) and 2 < ¢ < 2p. For
q < 2, we directly use the definition of Minkowski dimension in wP;4(E, k) and

obtain that, for every € > 0,
Q*m(%+§*%)wp,q(E’ k)

< Q*m(%*%*%)2*’“(%+%*1*§)2*(m+k)(%*%+1).
This is further bounded by 2772722 *GHa=170) 4f (1 1) € Ap. Fur-
thermore, these exponents are negative if p < ¢ < 2, provided ¢ > 0 is cho-
sen sufficiently small. Thus, by Proposition (ii) gives that that RY is
LP(sds) — Li(rdr) bounded if 1 < p < ¢ < 2 and (%,%) € Ag for < 1.
Consequently, we have shown the inclusion O for Rzi if B <1.

(¢) By Proposition and the definition of Minkowski dimension, the operators

DJTI? are LP — L9(rdr) bounded for 2 < p < ¢q. For 1 < p < 2, we have
boundedness if % +1- % > 0. Thus, in view of (5.19), we have the zm;t

bounds for (%, %) € int(Ag).

For the case 8 =1, we use N(E,d) <6~ ! forany 0 <4 < 1. If (%, %) € int(Aq)
we have p > 2. The desired bounds for RljE and zm;,t follow immediately from
Propositions and (i). For the operator Ry, the argument in (b) above
yields that it is LP(sds) — L%(rdr) bounded if 2 < p < ¢ < 2p and % -1<
%(1 —v#(4 —1)). This completes the proof. O

We conclude by giving the proof of Theorem [1.4] which addresses endpoint sit-
uations in 2 dimensions.

Proof of Theorem[I.4) Recall from Corollary [3.3| that 77 C Ag. We first note
the following:
(a) If B < 1, we have shown in the proof of Theorem[1.2] (a), that RT : L?(sds) —
Li(rdr) for (%, %) € Ag.
(b) By the definition of wk:?(E, k) in (5.2]), we get for all € > 0
Wb (B k) <. 2m0+e)/2p,

Using this in Proposition (i), yields that RE is LP(sds) — L2 (rdr)
bounded if p > 1+ ~.
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1-8 2 ”» +
(¢) f1 <p<g<ooand = t1-=5>0,we have by Proposition that 2t

is LP — L9(rdr) bounded. If supy. 5.1 6’ N(E, ) < oo and 8 < 1, Proposition

implies that M is LP — L7(rdr) bounded for all (1, 1) € Ag.

In view of (a), the endpoint bounds in parts (i)-(iv) of Theorem [1.4]are only deter-
mined by the operators R; and zm;f. We now discuss item by item.

(i)

(iii)

Assume 2y — 8 < 1; this implies 5 < 1. For the left to right implication, note
that if 7724 = Ag, we have that L” ; — L7 bounds for Mg hold on the line

% = % — 1: see (5.19). But this implies, by Lemma (ii), the claimed
necessary condition supg 5., IN(E,6) < oco.

For the reverse implication, we have by Lemma that R2i is bounded on

LY**B(rdr), which corresponds to the point P, g. By interpolation, it suffices
to show LP(sds) — L?P(rdr) boundedness for (%, %) € [P, ng@‘?], that is, for
p > # But since 2y — 8 < 1, this follows by (b) above. This implies
Ag C TE,
Assume 2y — B =1, B < 1 and sups 6’ N(E,6) < co. If B = 0, we have by
assumption that N(E,§) = O(1) uniformly in §. The bounds for M are then
an immediate consequence of the classical result of [I0] on a single spherical
average, which also includes the point P3 = (%, %)

We can therefore assume, in what follows, 0 < 8 < 1. By (a) and (c),

it suffices to consider RQi. Since 1 + v = 3'55 , the argument in (b) only

gives boundedness for (%, %) € [P, P3”ﬂd) However, we have by Lemma
that RY is LP(rdr)-bounded if either § < 1/2 and p > 1, or § > 1/2 and
p > 2B. Thus, if (1, 1) € (Pyp, P57 (hence 122 = 2 — 1), we can find po

2
with max{1,28} < py < 1+ and p; > 1+~ with (1, 51) € (Pl,P?ff*Bd) such
that

-l

17 2p1

bS]

11y (11— 1 1 1 1

(5’ 5) =( 19)(100’ po) T 19(1)1’ 2p1)
for some 0 < ¥ < 1, and with R3 bounded on L (rdr) and from LP*(sds) —
L?"1(rdr) bounded. Hence, Ry maps LP(sds) to Li(rdr) by interpolation.
This yields the desired inclusion Ag\{ngﬁd} C T
Assume 27y — 3 = 1 and sup; 0’ N(E,§) = oo (note this means 3 < 1). Since
the line joining P> g and P?ff"ﬁd is given by % = % — 1, we have by Lemma
(ii), that Mp is not L}, — L% bounded for (1,7) € [Po5, P3%/]. The
bounds on R2i are as in . Furthermore, if % > % — 1, the item (c) above
guarantees LP — L9(rdr) bounds for 9. Thus, T = Ag\[Py,, Ps%].
Assume 2y — 8 > 1; this implies § < 1. Since Pj%' = (5=, ﬁ), the

claimed bounds for R¥ on [P, P;ad) follow from (b) above. The boundedness

of S)J“(]f)'E on this line segment follows from (c) above, since Pif,yd lies in the line
segment, (Pp, P}%').

Assume B = 1. Then the line segment [Py, Pi2d] is vertical with p = 2,
and the condition supgs<q /s §log($)N(E,6) = oo and Lemma exclude
L2 , — L% boundedness for any ¢ > 2. On the other hand, if p > 2 we have
by Proposition that RljE is LP(sds) — Li(rdr) for all 2 < p < g < oo,
with analogous bounds for imff by Proposition (i). For Rzi, the bounds
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for 2 < p < ¢ < 2p follow from (b) above. Consequently, Mg is LY , — L9
bounded if and only if 2 < p < g < 2p.

This concludes the proof. O
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