A CALDERON-ZYGMUND ESTIMATE WITH
APPLICATIONS TO GENERALIZED RADON
TRANSFORMS AND FOURIER INTEGRAL OPERATORS
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ABSTRACT. We prove a Calderéon—Zygmund type estimate which can be
applied to sharpen known regularity results on spherical means, Fourier
integral operators, generalized Radon transforms and singular oscillatory
integrals.

The main theme in this paper is to strengthen various sharp LP—Sobolev
regularity results for integral operators. To illustrate this we consider the
example of spherical means.

Let o denote surface measure on the unit sphere. Since

(&) < C(A+[¢])

the convolution operator f +— f x o maps L? to the Sobolev space L%d—l)/?
By complex interpolation with an L*-BMO-estimate, Fefferman and Stein
[4] proved that the operator maps LP to L’(’d_l)/p for 2 < p < oo; here the
regularity parameter o« = (d — 1)/p is optimal. It turns out, however, that
the LP—Sobolev result can be improved within the scale of Triebel-Lizorkin
spaces [23] in two ways.

We recall the definition of the quasinorm

> 1/q
1z, = || (222 imesie) |
k=0 P

which we will use for 1 < p < oo and 0 < ¢ < oco. Here the operators
IT; are defined by the standard smooth Littlewood—Paley cutoffs, so that
II f is supported in {2871 < |¢] < 25!} for k > 1 and in a neighborhood
of the origin for k = 0; we assume that ) > II,f = f for all Schwartz
functions. It is well known, and immediate from Littlewood—Paley theory

and embeddings for sequence spaces, that LP C F& p = ng, 2<p<

_d—1
2
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and, for all p € (1,00), F¥, C FE C Fl,=1L%if 0 <r <s <2 Thus the
inequalities

(1) If 0l <Cpulflly ., >0, 2<p<oo,

d;l’r 0,p
strengthen the standard regularity result. The case r = 1 also implies
an Fj ., — FP estimate for 1 < p < 2 and o = (d — 1)/p/, by duality

and composition with Bessel derivatives (I — A)*/2. Related phenomena
have recently been observed in articles on space-time (or local smoothing)
estimates for Schrodinger equations [17] and wave equations [6].

In §1 we formulate a general result which covers the spherical means and
many other related applications. These are discussed in §2.

1. A CALDERON-ZYGMUND ESTIMATE

For each k£ € N, we consider operators T} defined on the Schwartz func-
tions S(RY) by

Tof(x) = / Ki(a,9) f(y)dy,

where each K}, is a continuous and bounded kernel (this qualitative as-
sumption is made to avoid measurability questions). Let ¢ € S(R?). Define
G = 2F¢(2%.) and

Pof =G * f.
In applications the operators Py often arise from dyadic frequency decompo-
sitions, however we emphasize that no cancellation condition on ( is needed
in the following result.

Theorem 1.1. Let 0 < a <d, e >0, and 1 < g < p < co. Assume the
operators Ty, satisfy

(2) sup 28VP|| Ty || o e < A
k>0

(3) sup 289\ Ty || pa—.po < By .
k>0

Furthermore let I' > 1, and assume that for each cube ) there is a measur-
able set Eg so that

(4) [Eql < T max{|Q['~,|Q[},
and for every k € N and every cube Q with 28diam(Q) > 1,

(5) sup/ | Ky (2,y)| dy < By max { (2*diam(Q)) ", 27"},
reQ Rd\gQ
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Let
(6) B := BY/P(ATYP 4+ By)'-9/7,
Then there is a C' (depending only on d,(,a,e,p,q,7) so that

(7) H(sz“"/plkakfkl")l/er < CAflog (3+§)]1/T_1/p(z IIkaIZ)l/p.
k k

In some interesting applications A < B so that the logarithmic growth
in (7) is helpful. The power of the logarithm is sharp (see [8], [22], [23]
for a relevant counterexample and [18], [1] for positive results on families of
translation invariant and pseudo-differential operators).

To prove Theorem 1.1 we begin with a standard L*°~bound. In what
follows the notation fQ f will be used for the average |Q|™* [ ol

Lemma 1.2. Assuming (2), (4) and (5), the following statements hold true.
(i) If 27% < diam(Q) < 1, then

(8) ][ | P Tih| dy < C(ATYP (2kdiam(Q))_a/p + By (28diam(Q)) ™) ||| co-
Q
(i) If diam(Q) > 1, then

(9) ][ |PTih| dy < C(ATYP27%e/r 4 B 2=k |||
Q

Proof. We split h = hxe, + hxrag,- By Holder’s inequality, (2), and
then (4),

1/p
]Q}Tk[hXEQde < \Ql‘l/p(/\Tk[hngdex)
S1QITPA2 ||y, || S A27M QTP IEQIMP oo
< ATYP27Ra/P max{diam(Q) %", 1}||h)|os -

On the other hand, by (5),
F T Jdo <sup [ Ko y)lhty) dy
Q Q @ JRINEg
< Bymax { (deiam(Q))_e, 2"“} 1A || -
A combination of these two bounds shows that the stated estimates hold

with P.T} replaced by T}.

IThe expression A < B denotes A < C'B, where the value of the positive constant C
will vary from line to line.
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We now use straightforward estimates to incorporate the operators Py.
In view of the rapid decay of ( we have

2kd
P, < T, .
fipsn@l s < on f [ G b duds

Now for m = 0,1,2,... we let @)}, denote the cube parallel to ) with the
same center, but with sidelength equal to 2™*! times the sidelength of Q.
Then the last estimate (with N > d) implies

][ |\ PTih ()] da
Q

<O A |Tih(w)| dw + f: (2kdiam(Q;))d_N][ Tuh(w)| dw
m=1

Q5 *

The term corresponding to m = 0 has already been estimated and, also by
the bounds above applied to @)}, the mth term is controlled by

27N =) (2 diam(Q)) ( (

if 2"diam(Q) < 1, and by
27N (2 diam(Q)) T (ATVP2 7R 4 B2 [ o

if 2diam(Q) > 1. We sum in m to obtain the claimed result. O

A -y Ba-me
MR T
2kdiam(Q)) (2kdiam(Q))

Proof of Theorem 1.1. We first note that the asserted inequality for r =
p follows by assumption (2) and Fubini’s theorem. We prove the theorem
for r < 1 and the intermediate cases 1 < r < p follow by interpolation.

By the monotone convergence theorem it suffices to prove (7) for all finite
sequences F' = { fi }ren, i.€., we may assume that f,, = 0 for large k.

We use the Fefferman-Stein theorem [4] for the # maximal operator.
The left hand side of (7) is then rewritten and estimated as

1/
H Z |2ka/pPkafk|rH

sup ][ ‘Zpka/pPkafk )| —][Z\2ka/pPkafk )| dz‘dy

Q z€Q Lp/7(dzx)
S H sup Qkar/p][ ][ PeTy fe(y) — BTy f dz dy
Q:zeqQ ; QJQ | ( ) ( )| LP/T(dSL‘)

In the last step we simply use |u” — v"| < |u — v|" for nonnegative u,v and
0 <r <1, combined with the triangle inequality.
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Note that the application of the Fefferman-Stein inequality is valid be-
cause of our a priori assumption involving finite sums.

Given a sequence f; we can choose cubes Q(z) depending measurably on
x so that the supremum in () can be up to a factor of two realized by the
choice of Q(x). This means that it suffices to prove the inequality

1/r
Lp/7(dx)

<o+ D] (S a)”
k

10 okar/p P.T, — PTfu(2)|" dzd
(10) H; ]é(x) ]é(x)‘ %L fr(y) L fr(2)] Y

where C' does not depend on the choice of = +— Q(x). We define L(z) to be
the integer L for which the sidelength of Q(x) belongs to [2F, 21F1).

Let X = {z : L(z) < 0}. We shall first estimate the LP/" norm over
X (the main and more interesting part) and then provide the bound on
LP/"(R%\ X) separately.

Define

1/r
gkh<x>=(][ ][ IRTih(y) ~ BIh(:))" dzdy)
Q(x) JQ(x)

so that the left hand side of (10) is equal to || D, 2’fa’“/P\gkka||1/". Let N

p/r
be a positive integer (it will later be chosen as C'log (3 + %) with a large

(). For x € X we split the k—sum into three pieces acting on F' = {fi.},

ZQkar/p|gkfk($)‘r _ ‘GIOWI:F:I(:E)‘T + ‘Gmld[F](x)‘T 4 ‘Ghigh[F](x”r

where
1/r
S™[Fl@)=( Y 2Gh))
k+L(z)<0
. 1/r
s F@)=( Y 2"MGAE)I)
0<k+L(z)<N
high k Lr
S Flw) = Y 2UPIGA)
k+L(z)>N

We need to bound the LP norms of the three terms by the right hand side
of (10). The terms &[F] and G™4[F] will be estimated by using just

hypothesis (2).
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To bound &'°V[F] we first consider the expression
BT fu(y) — Pl fu(2) =

/ / (2F(y — 2), 28V (252 — w + s(y — 2))) Tk fro(w)dw ds.

For y, z € Q(z) we have 2F|y — 2| < 2¢7L(®) and by Hélder’s inequality and
the rapid decay of ¢,

1/r
G fr(x ][ ][ | PeTh fe(y) — Pl fu(2)]" dZdy)
Qz) JQ(=)
< 2O My [Ty fi) ().

Here My, denotes the standard Hardy-Littlewood maximal operator. Now,
by Holder’s inequality with respect to the k—summation,

1/r 1/p
> 2GA@r) S (LR Ml @r)
k+L(2)<0 k
Thus
1/p
184171l < (302 Iae Al

k

(1) < (X omay) s a(Xag)
k k

Next we take care of &™4[F|(z) which may often be considered the main
term but is also estimated using just (2). Now

Gufi@)]” <2 f P T fo(y) dy
Q@)
and therefore

Z 2kar/p|gkfk($)‘r

0<k+L(z)<N

r/p
< ][ Nl—r/p< Z |2ka/pkakfk () |p) dy.
Q(z)

0<k+L(z) <N

By Holder’s inequality, this implies
S™F) ()] SNV My [() 257 BT, fiP) 7 (),

k
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so that
||6mid[F]||p ’S/\/’l/r—l/p MHL[(Z |2ka/pkakfk|p)1/p}
k p
5 Nl/r—l/p( Z 2kaHPkaka£) 1/p
k
(12) 5 ANl/r—l/p( Z ||fk||£) 1/17.
k

We now turn to the expression G which we estimate for L(z) < 0.
Again by Holder’s inequality,

S F@) < (2 Y 2t ][

1/r
P fuly)"dy)

k>N —L(z) Q()
r\ 1/r
< (2 > 2kar/p<][ |Pkafk(y)|dy) ) :
k>N —L(z) Q(z)

If » < 1 then we choose a small § > 0 and use Holder’s inequality with
respect to the £ summation to get

(13) &M (F)(z) < C(r,0) 232WWHWWf P fo(y)] dy
E>N—L(z) Q)

where

” 1—r
C(’f’, 5) = 21/r< Z 2—(k+L(x))5ﬁ> g 2—N5r(7,5)r_1’
k>N—L(z)
so that C'(r,d) < (r§)" 1.

In order to estimate the expression (13) it suffices to bound the LP-norm
of

TUF)e) = Y0 2 e ) BTl dy
E>N—L(x) Q)
where wy(z,y) are measurable functions satisfying sup, , ; |we(z,y)| < 1,
with the constants in the estimates independent of the particular choice of
the wi. We now fix one such choice.
Write n = k + L(z), so that n > N, and define, for 0 < Re (z) < 1,
(14)
SZF(SL’) _ 9(n—L(x))a(1-2)/q ][( | Wn—L(z) (x’ y)Pn—L(x)Tn—L(x)fn—L(x) (y) dy.
Qx
Observe that
(15) T(F)(z) = Y 27°S0F(z) for =12
p
n>N
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We estimate the LP norm of SZF' for z = 6 by interpolating between an L4
bound for Re (z) = 0 and an L*> bound for Re (z) = 1.
For z =ir, 7 € R we obtain

STP@)| < £ sup2 BTy dy
Q(z)

< M (3 2/ BT 1)) (@)
k

and therefore, by the L7 estimate for My, Fubini, and assumption (3),
. 1/q 1/q
157 Fll, < (32 1ATiil) " < Bo(3o i)
k k

The L estimate for Re (z) = 1 follows from Lemma 1.2; for L(x) < 0, we
get

ST R(2)| < ]é . 1P @) T 1) 1) (4) | dy

< (ATYP27P 4 B2 || fe Ly lloo

and of course || fy—r@)lle < supy ||fill- Interpolating the two bounds
yields,

1/p
(16) 186 F i) S 2700 B( S Ifill)
k

with ¢ := min{a/p,e} and B as in (6). Choosing 6 = (1 — ¢/p)eo/2, this
yields

1T [Py S 2 ISAF v
n>N

1/p
5 881(1 . q/p)—182—N(1—Q/P)60/2<Z ||fk||£>
k

and then, by suitably choosing wy,
. 1/p
167 Fll o) S 2*(1 = q/p) 2B2 V0002 (37 | e} .
k
We combine the three bounds for GM&h &mid and &% and get
1/r
| Y2 g |
: Lr/7(X)

1/p
<C, (ANl/r—l/p + 562(1 _ q/p)—282—/\f(1—q/p)60/2> (Z kang)
k
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and choosing N = Clage log(3 + B/A) (with Clarge depending on p and q)
we obtain the bound

00 [ mgar]),, <o D] ()

It remains to give the estimation on R?\ X (the set where L(z) > 0)
which is similar in spirit, but more straightforward. We first single out the
terms for k¥ < N and by an estimate similar to the one for S™id ghove we
get

1/p
a8) | oG | S AN (S fl)
k<N k

On the other hand, by assumption (3)
2°%Ge filly S Boll fillq

Lp/r

and by (9)

1Gs fill oo ey S (ATVP27FP 4 B 2~) || | oo
Thus, with eg = min{a/p, e} we get by interpolation,

2ka/p||gkfk||LP(Rd\X) < 27ke=aIg|| £l
By a straightforward application of Holder’s inequality,

s) | > Gl

—1/r —1/rao— —
o S0 (L= /p) M2 N B sup | fe,

which is slightly better than the ¢?(L?) bound that we are aiming for. Com-
bining (18) and (19), choosing N as before, yields

szkw‘/p\gkfk . A[log(3+ } (anku)

which concludes the proof. O

2. APPLICATIONS

Integrals over hypersurfaces. Consider the example of spherical means.
For k € N, let P, be a Littlewood—Paley cutoff operator Il (localizing to
frequencies of size ~ 2* as in the introduction) such that ﬁka = II,. Take
Tif = oI f and fi = I f. If Q is a cube satisfying 2% < diam(Q) < 1,
with center xg, then the exceptional set &, is the tubular neighborhood of
the unit sphere centered at xg, with width C'diam(Q); if diam(Q) > 1 we
can simply choose the double cube. Then the hypotheses of Theorem 1.1
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are easily verified with a =d — 1, ¢ = 2, any p > 2, and with A, By, By, I’
all comparable. Then (1) is implied by Theorem 1.1.

One can extend this observation to more general averaging operators
over hypersurfaces which are not necessarily translation invariant. Let y €
C®(R4\ {0}) and let (z,y) — ®(x,y) be a smooth function defined in a
neighborhood of supp x and assume that V,®(x,y) # 0 and V,®(z,y) # 0.
Let 0 be the Dirac measure on the real line and define the generalized
Radon—transform R as the integral operator with Schwartz kernel

Kr(z,y) = x(2,y)0(®(z,y)).

As shown in [21] (¢f. also [7]), regularity properties of R are determined by
the rotational curvature

_ Dy Dy
/@(:)s,y)—det<q> 0) :

Y

Strengthening the results in [21] slightly we obtain

Corollary 2.1. (i) Suppose that k(x,y) # 0 on supp(x). Then R maps
F§,(RY) — Fi_, (RY), for2 <p < oo, r>0.

(i1) Suppose that k(z,y) # 0 vanishes only of finite order on suppy, i.e.
there is n such that 3, 10)k(x,y)| # 0, then there is po(n,d) < oo so

that R maps F{ (R?) — FL’T(]R‘[), for po(n,d) < p < oo, r>0.

The proof of (i) is essentially the same as for the spherical means. One
decomposes R = ZZO:O R, where for k > 0 the Schwartz kernel of R, is
given by

(20) Ri(e,y) = / D27y, ) €D dr

with a suitable 1 supported in (1/2,2). One may then write

R=> IR+ > Ex,
k=0 k=0

where E}, is negligible, i.e. mapping L” to any Sobolev space L% with norm
< On27FN: this decomposition follows by an integration by parts argument
in [7], and uses only the assumptions ®, # 0 and ®, # 0 (see also §2 in [19]
for an exposition of this kind of argument). To estimate the main operator
S ore I REIT, we use Theorem 1.1, setting Py = Iy, fi = I f, Tk = Ru,
and choose all parameters as in the example for the spherical means. For the
exceptional sets £g we choose a tubular neighborhood of width C'diam(Q)
of the surface {y : ®(zq,y) = 0}.
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For part (ii) one decomposes the operators R according to the size of
Kk, using a suitable cutoff function of the form [3;(2¢|x(z,y)|) where 3; is
supported in (1/2,2). Let Rf, be defined as in (20) but with x(z,y) replaced
by x(z,v)B:(2°|k(x,y)|). Then the proof of Proposition 2.2 in [21] shows
that the operators RY are bounded on L? with operator norm < 2¢M 9k
(in fact with M = 5d/2 + (d — 1)/2). By the finite type assumption on s
(and a standard sublevel set estimate related to van der Corput’s lemma)
the operator R¢ is bounded on L* with operator norm < 2=t/ Hence for
p > q > (2Mn + 1) hypothesis (2) and (3) are satisfied with A = 27%®)
By = 27 for some £(p) > 0, (q) > 0. We choose the exceptional set as
in part (i) and (4), (5) hold as well with some By, I' independent of /.

Fourier integral operators. Another application concerns general Fourier
integral operators associated to a canonical graph. Let y € C$°(RY), let a
be a standard smooth symbol supported in {£ : || > 1}. Let

~

57(0) = x(o) [ ale. O F(e) =g

where ¢ is smooth in R%\ {0} and £ — ¢(x, €) is homogeneous of degree 1.
We assume that det ¢, # 0 on the support of the symbol. The following
statement sharpens the LP estimates of [11], [9] for the wave equation and
of [20] for more general Fourier integral operators. One can use general

facts about Fourier integral operators [7] to see that it implies part (i) of
Corollary 2.1.

Corollary 2.2. Letd > 2, 2 < p < oo, r > 0, and let a be a standard
symbol of order —(d —1)(3 — 1—19) Then S : F§ ,(R?) — Fg.(R?) is bounded.

The statement is equivalent with the Ff, — F (’;_1) Ipir boundedness of a
similar Fourier integral operator T" of order —(d — 1)/2. We use the dyadic
decomposition in § to split T' = Ty +Y -, T}, where T} is smoothing to arbi-
trary order. Exceptional sets are also constructed as in [20]. Given a cube Q)
with center z¢ and diameter dg < 1 one chooses a maximal \/%fseparated

set of unit vectors &,, thus this set has cardinality O(dé(d_l)/ %). For each v
consider the rectangle let 7, be the orthogonal projection to the hyperplane
perpendicular to &,. Form for large C' the rectangle p,(Q) consisting of y
for which |(y — ¢e(wq, &), &)| < Cdg and |m,(y — ¢¢(7q, &))| < Cdgf”. The
exceptional set £ for |Q)] < 1 is then defined to be the union of the p,(Q)
and has measure O(|Q|~"/%). We refer to [20] for the arguments proving
| Thl| 2o e S 278@D/P 2 < p < 00 and the integration by parts arguments
leading to (5).
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Strongly singular integrals. Define the convolution operator S by

o exp(i[§]")

SbAf(€) = Wf(@

We assume 0 < v < 1 and 1 < p < co. The classical result [4] states that
S%7 is bounded on LP(RY) if and only if b > ~vd|1/2 — 1/p|.
Theorem 1.1 can be used to upgrade the endpoint version to

Corollary 2.3. For2 < p < oo,
S¥ LRy — FY b=0b(y) =~d(1/2—1/p), r>0.

To prove it we define 77 f(£) = (1+ |§|2)_;_ZSb(V)’Vf(§). For diam(Q) < 1
we choose for the exceptional set £; the cube with the same center but di-
ameter C'(diam(Q))'~7, for large C'. Then the verification of the hypotheses
with a = d is done using the arguments in [4] or [10].

Remarks. (i) For the range 2 < p < s, it is known that the operator S*)
is not bounded on Fy, (see [2]).

(ii) There are also corresponding results for the range v > 1 which improve
on the results in [10], but they do not fit precisely our setup of Theorem 1.1
(cf. [17] for the corresponding smoothing space time estimate).

Integrals over curves. We consider the generalized Radon transform as-
sociated to curves given by the equations ®;(z,y) = 0,7 = 1,...,d — 1,
where the V,®; are linearly independent and the V,®; are linearly inde-
pendent, for (z,y) in a neighborhood U = X x Y of the support of a C°
function y. For simplicity (and without loss of generality) we assume that
Q;(x,y) == S x,yq) —y; for i = 1,...,d — 1, and V,S? are linearly inde-
pendent.

An important model case arises when S'(z,yq) = z; + (Tq — Ya
(i.e. for convolution with arclength measure on the curve (t¢,¢471 ... ),
for a compact t-interval). The complete sharp LP—Sobolev estimates for
2 < p < oo are unknown in dimension d > 3. However in three dimensions
the sharp estimates are known for some range of large p (see [14]), and
this result is strongly related to deep questions on Wolft’s inequality for
decompositions of cone multipliers [24]. A variable coefficient generalization
of the result in [14] is in [16]. To discuss and apply the latter result we
now let § be the Dirac measure on R?! and define the generalized Radon
transform R as the operator with Schwartz kernel

K(z,y) = x(2,y)8(8(z,y)).

)d+1—i
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Again we shall also consider the dyadic pieces R; with Schwartz kernel

2 fivtew) ://6(2_k|7|)x(x,y)e”"f’(x’y)df

The analogue of the rotational curvature now depends on 7; we define it as
a homogeneous of degree zero function and, for |7| = 1, set

- d-1
k(x,y,7) = det (T bay éx) = mdet(Sy, S; - Si').
o, 0 — ¢

Note that for d > 3 there are always directions where k(x,y, 7) vanishes.

In [16] we consider the case d = 3 and refer to this paper for further
discussion. Let M = {(z,y) € U : B(z,y) = 0} and let N*M be the
conormal bundle. We assume that (N*M)’ is a folding canonical relation
and satisfies an additional curvature condition. To describe the latter one
consider the fold surface

L= {(ZL’,’T : (f)x(x,y),y, =T- 5y($,y)) : 5($7y) = O> /-@(x,y,T) = O}a

and assume that the projection £ — X has surjective differential. Thus for
any fixed x the set ¥, = {£ € R3: (2,£,y,n) € L for some (y,n)} is a two-
dimensional conic hypersurface, and the additional curvature assumption is
that ¥, has one nonvanishing principal curvature everywhere (see [5], [16]
for further discussion). For d = 3 this covers perturbation of the translation
invariant model case.

Fix ¢ and, for k > 3/, define
Ri(z,y) = /U(Q_klﬂ)x(x,y)ﬁl(%(%(x,y, o)) et dr

where (3; is supported in {£: O~ < [£] < O} for large C, and, for k = 3¢,
define R} (x,y) in the same way but with ; replaced by 3, a smooth cutoff
function which is equal to 1 in a C-neighborhood of the origin. Let R be
the operator with Schwartz kernel R{. We then have to estimate the L?

operator norm for
0. ¢
R = E R

k>3¢
for each ¢ > 0.

In [16] it is shown, based on the previously mentioned Wolff inequality,
that under the above assumptions

IRl oo S Clea,p)27 P27 p > py,

Here (pw, 00) is the range of Wolff’s inequality (in [24] py = 74, but this
has been improved since). Standard L? estimates (see [13], [12]) give that
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for k > 3¢ the operators Rf, are bounded on L? with norm O(2~*)/2). By

interpolation,
HRZ HLP—>LP S 271270 with e(p) > 0 for p > (pw +2)/2.

We claim that this yields the boundedness result

Corollary 2.4. The operator R maps Fy,(R®) to FT (R®), for %2 < p <
p7
.

To see this we use the assumption that V,S® are linearly independent
and thus by integration by parts one can find a constant Cj depending on
S so that

||HkRi/Hk// HLP—>LP < CN mln{z—kN7 2—k,N7 2—k”N}
provided that max{|k — K|, k" —k"|} > Co, k' > 3.

Straightforward arguments (such as those used for the error terms in the
proof of Corollary 2.1) reduce matters to the inequality

(22)
(S ast)”

1

|( o me 1)
k>0

with € (p) > 0 for p > (pw + 2)/2. Here |s1| < Cy and s3] < Cp. Indeed we

apply, for fixed ¢, Theorem 1.1 with P, = [l g, fx = Hgts, f, and Ty = Rk

if & > 3¢ (and Ty = 0 otherwise). For p > ¢ > (pw + 2)/2 assumption

(2) holds with A < 27%(®) and assumption (3) holds with B; < 27%@. We

check assumption (5). By an integration by parts argument we derlve the
crude bound

< 9=te'(p)
p Y

22k

(142" — S(wq, ys) )Y
Now for a given cube () with center zo we let

€q:=1{y: ly' — Slwq,ys)| < C2'diam(Q)}

if diam(@Q) < 1. If diam(Q) > 1 then we let & be a ball of diameter
C2%diam(Q) centered at zg. Clearly assumptions (4) and (5) are satisfied
with I' < 2% and B; < 2%, By Theorem 1.1

[( remaminr) 7| < 0oz (Shg) ™ v > 25

k>3¢

|Ri(2,y)| < O

which concludes the proof of (22) and yields
IRAN,, s O+ 02 Al
0,p

p’r
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Corollary 2.4 follows by summation in ¢ > 0.

Remark. A similar strengthening, with a similar argument, applies to the
restricted X-ray transform model in [15].
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