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Abstract. We strengthen the Carleson-Hunt theorem by proving Lp estimates for
the r-variation of the partial sum operators for Fourier series and integrals, for r >

max{p′, 2}. Four appendices are concerned with transference, a variation norm Menshov-
Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic
theory.

1. Introduction

For an integrable function f on the circle group T = R/Z, and k ∈ Z we denote by

f̂k =
∫ 1
0 f(y)e−2πiky dy the Fourier coefficients and consider the partial sum operators

Sn for the Fourier series,

(1) Snf(x) ≡ S[f ](n, x) =

n∑

k=−n

f̂k e
2πikx;

here n ∈ N0 = {0, 1, 2, . . . }. The celebrated theorem by Carleson [4] states that if f is
square integrable then Snf converges to f almost everywhere. Hunt [13] extended this
result to Lp(T) functions, for 1 < p <∞, and proved the inequality

(2)
∥∥ sup

n
|Snf |

∥∥
Lp(T)

≤ C ‖f‖Lp(T)

for all f ∈ Lp(T); see also [10], [20], and [12] for other proofs of this fact.

The purpose of this paper is to strengthen the Carleson-Hunt result for Lp functions,
1 < p < ∞, and show that, for r > max{2, p′}, the (strong) r-variation of the sequence
{Snf(x)}n∈N0 is finite for almost every x ∈ [0, 1]. This can be interpreted as a statement
about the rate of convergence. To fix notation, we consider real or complex valued
sequences {an}n∈N0 and define their r-variation to be

(3) ‖a‖V r = sup
K

sup
n0<···<nK

( K∑

ℓ=1

|anℓ
− anℓ−1

|r
)1/r

where the sup is taken over all K and then over all increasing sequences of nonnegative
integers n0 < · · · < nK . Note that the variation norms are monotone decreasing in
the parameter r. Next, for a sequence F = {Fn} of Lebesgue measurable functions one
defines the r-variation of F at x, sometimes denoted by VrF (x) as the V r norm of the
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sequence {Fn(x)}. We denote the r-variation of the sequence Fn = Snf by VrS[f ]. The
variation norms and the r-variation operator can be defined in a similar fashion, if the
index set N0 is replaced by another subset of R (often R+ or R itself).

Let r′ := r/(r − 1), the conjugate exponent of r.

Theorem 1.1. Suppose r > 2 and r′ < p <∞. Then, for every f ∈ Lp(T),

(4)
∥∥S[f ]

∥∥
Lp(V r)

≤ Cp,r‖f‖Lp .

At the endpoint p = r′ a restricted weak type result holds; namely, for any f ∈ Lr′,1(T)

the function VrS[f ] belongs to Lr′,∞(T).

It is immediate that (4) for r < ∞ implies a quantitative form of almost everywhere
convergence of Fourier series, improving over the standard qualitative result utilizing the
weaker r = ∞ inequality and convergence on a dense subclass of functions.

As will be discussed in Section 2, the conditions on the exponents in (4) are sharp.

Moreover, in the endpoint case p = r′ the Lorentz space Lr′,∞ cannot be replaced by a
smaller Lorentz space.

By standard transference arguments (see Appendix A) Theorem 1.1 is implied by a
result on the partial (inverse) Fourier integral of a Schwartz function f on R is defined
as

S[f ](ξ, x) =

∫ ξ

−∞
f̂(η)e2πiηx dη

where f̂(η) =
∫
f(y)e−2πiyη dy defines the Fourier transform of f .

Theorem 1.2. Suppose r > 2. Then S extends to a bounded operator S : Lp → Lp(V r)

for r′ < p <∞. Moreover S maps Lr′,1 boundedly to Lr′,∞(V r).

Note that if in the above definition of the mixed Lp(V r) spaces we interchange the
order between integration in the x variable and taking the supremum over the choices of
K and the points ξ0 to ξK so that these choices become independent of the variable x,
then the estimates corresponding to Theorem 1.2 are weaker; they follow from a square
function inequality of Rubio de Francia [31] for p ≥ 2, see also [30] for a related endpoint
result for p < 2, and [18] for a proof of Rubio de Francia’s inequality which is closer to
the methods of this paper.

While the concept of r-variation norm is at least as old as Wiener’s 1920s paper on
quadratic variation [35], variational estimates have been pioneered by D. Lépingle ([22])
who proved them for martingales. Simple proofs of Lépingle’s result based on jump
inequalities have been given by Pisier and Xu [27] and by Bourgain [1], and applications
to other families of operators in harmonic analysis such as families of averages and
singular integrals have been considered in [1], and the subsequent papers [14], [2], [15]
(cf. the bibliography of [15] for more references). Bourgain [1] used variation norm
estimates (or related oscillation estimates which are intermediate in difficulty between
maximal and variation norm estimates) to prove pointwise convergence results without
previous knowledge that pointwise convergence holds for a dense subclass of functions.
Such dense subclasses of functions, while usually available in the setting of analysis on
Euclidean space, are less abundant in the ergodic theory setting. In Appendix D we
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demonstrate the use of Theorem 1.2 in the setting of Wiener-Wintner type theorems
as developed in [19]. We note that the Carleson-Hunt theorem has previously been
generalized by using other norms in place of the variation norm, see for example the use
of oscillation norms in [19], and the M∗

2 norms in [8], [9].

We are also motivated by the fact that variation norms are in certain situations more
stable under nonlinear perturbation than supremum norms. For example one can deduce
bounds for certain r-variational lengths of curves in Lie groups from the corresponding
lengths of the “trace” of the curves in the corresponding Lie algebras, see Appendix C
for definitions and details. What we have in mind is proving Carleson type theorems for
nonlinear perturbations of the Fourier transform as discussed in [25], [26]. Unfortunately
the naive approach fails and the ultimate goal remains unattained since we only know
the correlation between lengths of the trace and the original curve for r < 2, while the
variational Carleson theorem only holds for r > 2. Nonetheless, this method allows one
to see that a variational version of the Christ-Kiselev theorem [6] follows from a varia-
tional Menshov-Paley-Zygmund theorem which we prove in Appendix B. The variational
Carleson inequality can be viewed as an endpoint in this theory.

Our proof of Theorem 1.2 will follow the method of [20] as refined in [12]. Naturally one
has to invoke variation norm results in the setting of individual trees, which is achieved
by adapting D. Lépingle’s result ([22]) to the setting of a tree. The authors initially had
a proof of the case p > 2 and r > p of Theorem 1.2 more akin to [20], while improvement
to r > 2 for such p provided a stumbling block. This stumbling block was removed
by better accounting for trees of given energy, as described in the remarks leading to
Proposition 4.3. In Section 3 we reduce the problem to that of bounding certain model
operators which map f to linear combinations of wave-packets associated to collections
of multitiles. In Section 5 we bound the model operators when the collection of multitiles
is of a certain type called a tree; this bound is in terms of two quantities, energy and
density, which are associated to the tree. These quantities are defined in Section 4 and
an algorithm is given to decompose an arbitrary collection of multitiles into a union of
trees with controlled energy and density. Section 6 contains two auxiliary estimates. All
these ingredients are combined to complete the proof in Section 7.

Some notation. For two quantities A and B let A . B denote the statement that A ≤
CB for some constant C (possibly depending on the parameters p and r). The Lebesgue
measure of a set E is denoted either by |E| or by meas(E). The indicator function of E
is denoted by 1E. For a subset E ⊂ R and a ∈ R we set a+E = E+a = {x : x−a ∈ E}.
If I is a finite interval I with center c(I) we denote by CI the C dilate of I with respect

to its center, i.e. the set of all x for which c(I) + x−c(I)
C ∈ I.

2. Optimality of the exponents

Since Theorem 1.2 implies Theorem 1.1 (cf. Appendix A) we have to discuss the
optimality only for the Fourier series case. The necessity of the condition r > 2 follows
from a corresponding result for the Cesaro means; its proof by Jones and Wang [16] was
based on a probabilistic result of Qian [29].
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We show the necessity of the condition p > r′ in Theorem 1.1. Let

Dn(x) =

n∑

k=−n

e2πikx =
sin((2n + 1)πx)

sin(πx)
,

the Dirichlet kernel, and let fN be the de la Vallée-Poussin kernel which is defined by

fN = 2K2N+1 − KN via the Fejér kernel KN = (N + 1)−1
∑N

j=0Dj . Then [f̂N ]k = 1

for |k| ≤ N + 1 and thus Snf
N = Dn for |n| ≤ N + 1. We have ‖fN‖L1(T) = O(1), and

‖fN‖∞ = O(N) and therefore ‖fN‖Lp,q(T) = O(N1−1/p).

Let N ≫ 103 and 8N−1 ≤ x ≤ 1/8. Let K = K(x) be the largest integer < Nx. Then
for 0 ≤ k < 2K(x) there are integers nk(x) ≤ N so that (2nk(x) + 1)x ∈ (1

4 + k, 3
4 + k),

in particular nk(x) < nk+1(x) for k < 2K(x) − 1. Observe sin((2n2j(x) + 1)πx) >
√

2/2

and sin((2n2j+1(x) + 1)πx) < −
√

2/2 for 0 ≤ j ≤ K(x) − 1. This gives

(K(x)−1∑

j=0

∣∣Sn2j+1(x)f
N − Sn2j(x)f

N
∣∣r
)1/r

=
(K(x)−1∑

j=0

∣∣Dn2j+1(x) −Dn2j(x)

∣∣r
)1/r

≥ K(x)1/r
√

2

sin(πx)
≥ cN1/rx1/r−1,

and this implies for large N

‖Vr(SfN )‖Lp,s

‖fN‖Lp,1

≥ cp,s

{
N

1
p
− 1

r′ if p < r′,

(logN)1/s if p = r′.

Thus the Lp → Lp(V r) boundedness does not hold for p < r′; moreover the Lr′,1 →
Lr′,s(V r) boundedness does not hold for s <∞.

3. The model operators

We shall show in appendix A how to deduce Theorem 1.1 from Theorem 1.2. To start
the proof of the main Theorem 1.2, we describe some reductions to model operators
involving wave packet decompositions.

First, by interpolation it suffices to prove for p ≥ r′ the restricted weak type Lp,1 →
Lp,∞(Vr) bound. Next, by the monotone convergence theorem it suffices to estimate
Lp,∞(Vr) on finite x-intervals [−A,A], with constant independent of A. By another
application of the monotone convergence theorem it suffices, for any fixed K, to prove
the Lp,1 → Lp,∞([−A,A]) bound for

(5) sup
ξ0≤···≤ξK

( K∑

ℓ=1

∣∣Sf(ξℓ, x) − Sf(ξℓ−1, x)
∣∣r
)1/r

where the sup is taken over all (ξ0, . . . , ξK) with ξℓ−1 ≤ ξℓ for ℓ = 1, . . . ,K. Moreover,
by the density of Schwartz functions in Lp,1 it suffices to prove a uniform estimate for
all Schwartz functions. Note that for any Schwartz function f the expression S[f ](ξ, x)
depends continuously on (ξ, x). Therefore it suffices to bound the expression analogous
to (5) where we impose the strict inequality ξℓ−1 < ξℓ for ℓ = 1, . . . ,K. Moreover, by the
continuity it suffices for each finite set Ξ ⊂ R to prove bounds for this expression under
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the assumption that the ξℓ belong to Ξ, and we may also assume that Ξ does not contain
any numbers of the form n2m with m,n ∈ Z (i.e. no endpoints of dyadic intervals).

We may now linearize the variation norm. FixK ∈ N, measurable real valued functions
ξ0(x) < . . . < ξK(x), with values in Ξ and measurable complex valued functions a1(x),
. . ., aK(x) satisfying

|a1(x)|r
′

+ . . .+ |aK(x)|r′ = 1.

Let

S ′[f ](x) =

K∑

k=1

(
S[f ](ξk(x), x) − S[f ](ξk−1(x), x)

)
ak(x) .

Theorem 1.2 will now follow from the estimate

(6)
∥∥S ′[f ]

∥∥
Lp,∞(R)

≤ C‖f‖Lp,1(R)

where C is independent of K, Ξ and the linearizing functions, and where f is any

Schwartz function. Finally, in order to prove (6) for any fixed Ξ we may assume that f̂
has compact support in R \ Ξ since the space of Schwartz functions with this property
is dense in Lp,1, 1 < p <∞.

Let D = {[2km, 2k(m + 1)) : m,k ∈ Z} be the set of dyadic intervals. A tile will be
any rectangle I×ω where I, ω are dyadic intervals, and |I||ω| = 1/2. We will write S ′ as
the sum of wave packets adapted to tiles, and then decompose the operator into a finite
sum of model operators by sorting the wave packets into a finite number of classes. For
each k,

S[f ](ξk, x) − S[f ](ξk−1, x) =

∫ 1(ξk−1,ξk)(ξ)f̂(ξ)e2πiξx dξ.

To suitably express the difference above as a sum of wave packets, we will first need
to construct a partition of 1(ξk−1,ξk) adapted to certain dyadic intervals. The fact that
(ξk−1, ξk) has two boundary points instead of the one from (−∞, ξk) will necessitate a
slightly more involved discretization argument than that in [20].

For any ξ < ξ′, let Jξ,ξ′ be the set of maximal dyadic intervals J such that J ⊂ (ξ, ξ′)
and dist(J, ξ) ≥ |J |, dist(J, ξ′) ≥ |J |. Let ν be a C∞ function from R to [0, 1] which
vanishes on (−∞,−10−2], is identically equal to 1 on [10−2,∞), and so that ν ′(x) ≥ 0
for −10−2 < x < 10−2. Given an interval J = [a, b), and i ∈ {−1, 0, 1}, define

ϕJ,i(ξ) = ν

(
ξ − a

2i(b− a)

)
− ν

(
ξ − b

b− a

)
.

Thus if c(J) = a+b
2 , the center of J , then

(7) ϕJ,i(ξ) = νi(
ξ−c(J)

|J | ) where νi(η) = ν(2−i(η + 1
2 )) − ν(η − 1

2) ,

and we notice for i ∈ {−1, 0, 1} both νi and
√
νi are C∞ functions supported in [−13

25 ,
13
25 ]

(more precisely in [−13
25 ,

51
100 ]). Hence ϕJ,i is supported on a 26

25 -dilate of J with respect
to its center.

For each J ∈ Jξ,ξ′, one may check that there is a unique interval J ′ ∈ Jξ,ξ′ which lies
strictly to the left of J and satisfies dist(J ′, J) = 0, and one may check that J ′ has size
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|J |/2, |J |, or 2|J |. We define ϕJ = ϕJ,i(J) where i(J) is chosen so that |J ′| = 2i(J)|J |.
Then

(8) 1(ξ,ξ′)(η)f̂(η) =
∑

J∈Jξ,ξ′

ϕJ (η)f̂(η).

Since we assume that f̂ is compactly supported in R \ Ξ we see that that for every pair
ξ < ξ′ with ξ, ξ′ ∈ Ξ only a finite number of dyadic intervals J ∈ Jξ,ξ′ are relevant in (8).

We now write each multiplier ϕJ as the sum of wave packets. For every tile P = I×J ,
define

φP (x) = |I|1/2 F−1[
√
ϕJ ](x− c(I))

where c(I) is the center of I and F−1 denotes the inverse Fourier transform. For each
J , we then have

(9)
∑

|I|=1/(2|J |)

〈f, φI×J〉φ̂I×J = f̂ϕJ .

To see this we use a Fourier series expansion (cf. [34]). We first observe that φ̂P (ξ) =√
|I|
√
ϕJ (ξ)e−2πic(I)ξ and use 〈f, φP 〉 = 〈f̂ , φ̂P 〉. Now let parametrize the centers of the

dyadic intervals I of length L by −(k− 1
2)L, k ∈ Z. Set gJ(ω) := [

√
ϕJ f̂ ](c(J)+L−1ω)eπiω

and note that gJ is supported in [−13
50 ,

13
50 ]. The left hand side of (9) is equal to

√
ϕJ(ξ)

∑

k

∫
f̂(η)

√
ϕJ(η)e−2πi(kL−

L
2 )ηLdη e2πi(kL−

L
2 )ξ

=
√
ϕJ(ξ)e−πiL(ξ−c(J))

∑

k∈Z

∫ 1/2

−1/2
gJ(ω)e−2πikω dω e2πikL(ξ−c(J))

=
√
ϕJ(ξ)e−πiL(ξ−c(J))gJ(L(ξ − c(J))) = f̂(ξ)ϕJ (ξ)

which gives (9). This in turn yields the representation of S ′[f ] in terms of wave packets:

(10) S ′[f ](x) =
K∑

k=1

( ∑

J∈Jξk−1(x),ξk(x)

∑

|I|=(1/(2|J |))

〈f, φI×J〉φI×J

)
ak(x).

For the function f under consideration the above Fourier series expansion converges
in L2-Sobolev spaces of arbitrary high order and thus the convergence in (10) is uniform
for x ∈ [−A,A]. Therefore it suffices, for any finite family P of tiles, to consider the
operator S ′′ defined by

(11) S ′′[f ](x) =

K∑

k=1

( ∑

(I,J)∈P
J∈Jξk−1(x),ξk(x)

〈f, φI×J〉φI×J (x)
)
ak(x).

The wave packets will be sorted into a finite number of classes, each well suited for
further analysis. Sorting is accomplished by dividing every Jξ,ξ′ into a finite number of
disjoint sets. These sets will be indexed by a fixed subset of {1, 2, 3} × {1, 2, 3, 4}2 ×
{left, right}. Specifically, for each (m,n, side) ∈ {1, 2, 3, 4}2 × {left, right}, we define

• Jξ,ξ′,(1,m,n,side) = {J ∈ D : J ⊂ (ξ, ξ′), ξ is in the interval J − (m+ 1)|J |, ξ′ is in
the interval J + (n+ 1)|J |, and J is the side-child of its dyadic parent}.
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• Jξ,ξ′,(2,m,n,side) = {J ∈ D : J ⊂ (ξ, ξ′), ξ is in the interval J − (m + 1)|J |,
dist(ξ′, J) ≥ n|J |, and J is the side-child of its dyadic parent}.

• Jξ,ξ′,(3,m,n,side) = {J ∈ D : J ⊂ (ξ, ξ′), dist(ξ, J) > m|J |, ξ′ is in the interval
J + (n+ 1)|J |, and J is the side-child of its dyadic parent}.

We will choose R ⊂ {1, 2, 3} × {1, 2, 3, 4}2 × {left, right} so that for each ξ, ξ′, the
collection {Jξ,ξ′,ρ}ρ∈R is pairwise disjoint and Jξ,ξ′ = ∪ρ∈RJξ,ξ′,ρ. We will also assume

that for each ρ ∈ R there is an i(ρ) ∈ {−1, 0, 1} such that |J ′| = 2i(ρ)|J | for every ξ < ξ′,
J ∈ Jξ,ξ′,ρ and J ′ ∈ Jξ,ξ′ with J ′ strictly to the left of J and dist(J, J ′) = 0. One may
check that these conditions are satisfied, say, for

R = {(1, 2, 1, left), (1, 2, 2, left), (1, 3, 1, left),
(1, 3, 2, left), (2, 1, 1, left), (2, 1, 1, right), (2, 2, 1, right),

(3, 4, 1, left), (3, 3, 1, right), (3, 4, 2, left)}.

It now follows that

S ′′[f ] =
∑

ρ∈R

Sρ[f ]

where

Sρ[f ](x) =

K∑

k=1

( ∑

(I×J)∈P
J∈Jξk−1(x),ξk(x),ρ

〈f, φI×J〉φI×J

)
ak(x).

It will be convenient to rewrite each operator Sρ in terms of multitiles. A mul-
titile will be a subset of R2 of the form I × ω where I ∈ D and where ω is the
union of three intervals ωl, ωu, ωh in D. For each ρ = (i,m, n, side) ∈ R, we con-
sider a set of ρ-multitiles which is parameterized by {(I, ωu) : I, ωu ∈ D, |I||ωu| =
1/2, and ωu is the side-child of its parent}. Specifically, given ωu = [a, b)

• If ρ = (1,m, n, side) then ωl = ωu − (m+ 1)|ωu| and ωh = ωu + (n+ 1)|ωu|.
• If ρ = (2,m, n, side) then ωl = ωu − (m+ 1)|ωu| and ωh = [a+ (n + 1)|ωu|,∞).
• If ρ = (3,m, n, side) then ωl = (−∞, b− (m+ 1)|ωu|) and ωh = ωu + (n+ 1)|ωu|.

For i = 1, 2, 3 we shall say that ρ is an i-index if ρ = (i,m, n, side). For every ρ-multitile
P , let aP (x) = ak(x) if k satisfies 1 ≤ k ≤ K and ξk−1(x) ∈ ωl and ξk(x) ∈ ωh (such a k
would clearly be unique), and aP (x) = 0 if there is no such k. Then,

Sρ[f ](x) =
∑

P∈Pρ

〈f, φP 〉φP (x)aP (x)

where, for each ρ-multitile P , φP (x) =
√

|I|F−1[
√
ϕωu,i(ρ)](x− c(I)) and Pρ denotes the

set of all ρ-multitiles for which I × ωu belongs to P.

Inequality (6) and hence Theorem 1.2 will then follow after proving the bound

(12) ‖Sρ[f ]‖Lp,∞ . ‖f‖Lp,1

for each ρ ∈ R. We shall only give the proof of this estimate for the case that ρ is a
1-index or ρ is a 2-index, and the case where ρ is a 3-index can be deduced by symmetry

considerations. Indeed, if P = (I, ωu) := ([a, b), [c, d)) and P̃ := ([−b, a), [−d, c)) then
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〈f, φP 〉φP = 〈f(−·), φ̃
eP
〉φ̃

eP
where, in the definition of the φ̃

eP
the function νi in (7)

is replaced with νi(−·) (both are supported in (−13
25 ,

13
25 )). Now reflection sends a half

open interval [a, b) to a half open interval (−b,−a], however this plays no role in our
symmetry argument if, as we do, we assume that the set Ξ does not contain endpoints
of dyadic intervals. We then see that the estimation of Sρ[f ] for ρ = (3,m, n, side) is
equivalent to the estimation of a Sρ̃[f(−·)] where the corresponding set {P} of multitiles

is replaced with a set {P̃} of index ρ̃ = (2, n,m, opposite side) and the set Ξ is replaced
with {ξ : −ξ ∈ Ξ}. Beginning with (14) both νi or νi(−·) are allowed in the definition of
the functions ϕJ,i and φP .

By the usual characterization of Lp,1 as superpositions of functions bounded by char-
acteristic functions it suffices to show that

meas
(
{x : |Sρ[f ](x)| > λ}

)
≤ Cpλ−p|F |

where F ⊂ R, |F | > 0, |f | ≤ 1F , λ > 0, 2 < r < ∞, and r′ ≤ p < (1/2 − 1/r)−1. This is
accomplished by proving that for every measurable E ⊂ R,

(13) meas
({
x ∈ E : |Sρ[f ](x)| > C

(
|F |/|E|

)1/p}) ≤ |E|/2.

Indeed, if we set Eλ = {x : |Sρ[f ](x)| > λ} then by the finiteness of the set of tiles
under consideration the set Eλ has a priori finite measure. If |Eλ| ≤ Cpλ−p|F | then
there is nothing to prove. If the opposite inequality |Eλ| > Cpλ−p|F | were true then λ >

C(|F |/|Eλ|)1/p and inequality (13) applied to E = Eλ would yield that |Eλ| ≤ |Eλ|/2, a
contradiction.

We finally note that, after possibly rescaling, we may assume that 1 ≤ |E| ≤ 2 in (13).
The next four sections will be devoted to the proof of inequality (13) in this case.

4. Energy and density

Recall that Sρ[f ](x) =
∑

P 〈f, φP 〉φPaP where P ranges over an arbitrary finite col-
lection of ρ-multitiles, ρ is a 1 or 2-index. It is our goal to show (13) and for this and
the next chapter we fix the function f with |f | ≤ 1F and the set E.

Fix 1 ≤ C3 < C2 < C1, with C2 ∈ N, such that for every multitile P ,

supp(φ̂P ) ⊂ C3ωu

C2ωu ∩ C2ωl = ∅, C2ωu ∩ ωh = ∅,
C2ωl ⊂ C1ωu, C2ωu ⊂ C1ωl;

recall that dilations of finite intervals are with respect to their center. One may check
that the values C3 = 11/10, C2 = 2, and C1 = 12 satisfy all these properties.

The wave packet is adapted to the multitile P . As φ̂P is compactly supported (in
C3ωu) the function φP cannot have compact support, but as a replacement we have the
following bounds involving

wI(x) :=
1

|I|

(
1 +

|x− c(I)|
|I|

)−N
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for a fixed large N ≫ 10; namely

(14)
∣∣∣ d

n

dxn

(
exp(−2πic(ωu) ·

)
φP

)
(x)
∣∣∣ ≤ C ′(n)|I|(1/2)−n|wI(x)|

for each n ≥ 0.

We are working with a given finite set of ρ-multitiles P (with ρ a 1- or 2-index) and
we let M◦ = M◦(P) be the smallest integer M for which all tiles are contained in the
square [−2M , 2M ]2. Throughout this paper we fix

Ξtop = {η : |η| ≤ C12
M◦+10, η = n2−M◦−10, for some n ∈ Z }

as the set of admissible top-frequencies for trees, as in the following definition.

Definition. Consider a triple T = (TT , IT , ξT ), with a set of multitiles TT , a dyadic
interval IT ⊂ [−2M◦ , 2M◦) and a point ξT ∈ Ξtop. We say that T is a tree if the following
properties are satisfied.

(i) I ⊂ IT for all P = (I, ωu) ∈ TT .

(ii) If P = (I, ωu) and ωm denotes the convex hull of C2ωu ∪ C2ωl then

ωT :=
[
ξT − C2−1

4|IT | , ξT + C2−1
4|IT |

)

is contained in ωm.

We refer to IT as the top interval of the tree, and to ξT as the top frequency of the
tree.

In order not to overload the notation we usually refer to the set T as “the” tree
(keeping in mind that it carries additional information of a top frequency and a top
interval), and we shall also use the notation IT , ξT and ωT in place of IT , ξT and ωT .
With this convention we also define

Definition.

(i) A tree (T, IT , ξT ) is l-overlapping if ξT ∈ C2ωl for every P ∈ T .

(ii) A tree (T, IT , ξT ) is l-lacunary if ξT 6∈ C2ωl for every P ∈ T.

Notice that the union of two trees with the top data IT , ξT is again a tree with the
same top data. Also, the union of two l-overlapping trees with the same top data is
again an l-overlapping tree with the same top data.

We split our finite collection of multitiles into a bounded number of subcollections
satisfying certain separation conditions (i.e. henceforth all multitiles will be assumed to
belong to a fixed subcollection).

Separation assumptions.

(15) If P,P ′ satisfy |ω′
u| < |ωu|, then |ω′

u| ≤
C2 −C3

2C1
|ωu|.

(16) If P,P ′ satisfy C1ωu ∩ C1ω
′
u 6= ∅ and |ωu| = |ω′

u| then ωu = ω′
u.
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As immediate but important consequence of the separation assumptions is the fre-
quently used

Observation 4.1. Let T be a tree satisfying the separation properties (15) and (16).
Then the following properties hold.

(i) If T is an l-overlapping tree, P,P ′ ∈ T , and |ω′
u| < |ωu| then C3ωu ∩C2ω

′
u = ∅.

(ii) If T is an l-lacunary tree, P,P ′ ∈ T , and |ω′
u| < |ωu| then C3ωl ∩ C3ω

′
l = ∅.

(iii) If P,P ′ ∈ T , P 6= P ′, and |ωu| = |ω′
u|, then I ∩ I ′ = ∅.

As in previous proofs of Carleson’s theorem (in particular [20]) we shall split the set
of multitiles into subsets with controllable energy and density associated to the function
f and the set E, respectively. Here we work with the following definitions.

Definition. Fix f ∈ L2(R) and a measurable set E ⊂ R. Given any collection of
multitiles P we define

energy(P) = sup
T

√
1

|IT |
∑

P∈T

|〈f, φP 〉|2

where the sup ranges over all l-overlapping trees T ⊂ P.

Given a measurable set E ⊂ R we set

density(P) = sup
T

( 1

|IT |

∫

E

(
1 +

|x− c(IT )|
|IT |

)−4
K∑

k=1

|ak(x)|r
′1ωT

(ξk−1(x)) dx
)1/r′

where the sup is over all non-empty trees T ⊂ P.

Remark. Concerning the terminology, one can argue that the squareroot should be omit-
ted in the definition of an energy. However we work with the above definition to conform
to [20] and other papers in time-frequency analysis.

Lemma 4.2. Let |f | be bounded by 1F . For any family P of multitiles the density of P

(with respect to the set E) and the energy (with respect to f) are bounded by a universal
constant.

Proof. Clearly the density is bounded by
∫

R
(1 + |x|)−4 dx < 3. Concerning the energy

bound we let T be any l-overlapping tree, and split f = f ′ + f ′′ where f ′ = 13IT
f .

We estimate
∑

P∈T |〈f ′, φP 〉|2 ≤ ‖f ′‖L2(
∑

P∈T |〈f ′, φP 〉|2)1/2, by the Cauchy-Schwarz

inequality. Now use that the supports of the φ̂P are disjoint for different sizes of frequency
intervals, and then, for a fixed size, use the bounds (14) (for n = 0) to see that

∥∥∥
∑

P∈T

〈f ′, φP 〉φP

∥∥∥
L2

≤
(∑

j∈Z

∥∥∥
∑

P∈T
|ωu|=2−j

〈f ′, φP 〉φP

∥∥∥
2

L2

)1/2
.
(∑

P∈T

|〈f ′, φP 〉|2
)1/2

.

Hence, ∑

P∈T

|〈f ′, φP 〉|2 . ‖f ′‖2
L2 ≤ |F ∩ 3IT | . |IT |.
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Furthermore, since |f ′′| ≤ 1R\3IT
, we have the estimate

|〈f ′′, φP 〉| . |I|1/2(1 + dist(I,R \ 3IT )/|I|)−(N−1) . |I|1/2(|I|/|IT |)N−1

Summing in P , we obtain ∑

P∈T

|〈f ′′, φP 〉|2 . |IT |.

Combining the estimates for f ′ and f ′′ we see that
∑

P∈T |〈f, φP 〉|2 . |IT | for every
l-overlapping tree and it follows that the energy of P with respect to f is bounded above
by a universal constant. �

The following proposition allows one to decompose an arbitrary collection of multitiles
into the union of trees, where the trees are divided into collections Tj with the energy
of trees from Tj bounded by 2−j . The control over energy is balanced by an Lq bound
for the functions Nj,ℓ :=

∑
T∈Tj

12ℓIT
. In contrast to [20] and [12], it is necessary here

to consider q > 1 and ℓ > 0 in order to effectively use the tree estimate Proposition 5.1
with q > 1. Note that such Lq bound for Nj,ℓ is established by combining (17) and (18)
below. The bound (20) permits one to make further decompositions to take advantage
of large |F | in the Lq bound for the Nj,ℓ while maintaining compatibility with bounds
for trees with a fixed density obtained from Proposition 4.4.

Proposition 4.3. Let E > 0, let |f | be bounded above by 1F and let P be a collection
of multitiles with energy bounded above by E . Then, there is a collection of trees T such
that

(17)
∑

T∈T

|IT | . E−2|F |

and

energy

(
P \

⋃

T∈T

T

)
≤ E/2,

and such that, for every integer ℓ ≥ 0,

(18)
∥∥∥
∑

T∈T

12ℓIT

∥∥∥
BMO

. 22ℓE−2.

Furthermore, if for some collection of trees T′,

(19) P =
⋃

T ′∈T′

T ′

then

(20)
∑

T∈T

|IT | .
∑

T ′∈T′

|IT ′ |.

Above, and subsequently, ‖ · ‖BMO denotes the dyadic BMO norm.

Proof. We select trees through an iterative procedure. First, if energy(P) ≤ E/2 then
no tree is chosen and T = ∅.
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If energy(P) ≥ E/2 then we observe that there is an l-overlapping tree S ⊂ P for
which

(21)
1

|IS |
∑

P∈S

|〈f, φP 〉|2 ≥ E2/4.

There is only a finite number of such trees and as S1 we choose one for which the top
datum ξS is maximal (in R). Note that the maximality can be achieved as we restrict
all top frequency data to the finite set Ξtop. Let T1 be the tree in P which has top data
(ξS1 , IS1) and which is maximal with respect to inclusion.

Suppose that trees Sk, Tk have been chosen for k = 1, . . . , j. Set

Pj = P \
j⋃

k=1

Tk

If energy(Pj) ≤ E/2 then we terminate the procedure, set T = {Tk}1≤k≤j and n = j.
Otherwise, we may find an l-overlapping tree S ⊂ Pj such that (21) holds. Among
l-overlapping in Pj satisfying (21) choose one with maximal top-frequency (in Ξtop) and
label this tree Sj+1. Let Tj+1 be the maximal tree in Pj which has top data (ξSj+1 , ISj+1)
and which is maximal with respect to inclusion. This process will eventually stop since
each Tj is nonempty and P is finite.

Proof of (17). It suffices to show

(22)
( E2

|F |
n∑

j=1

|ISj |
)2

.
E2

|F |
n∑

j=1

|ISj |.

Since the Sj satisfy (21), we have

( E2

|F |
n∑

j=1

|ISj |
)2

≤ 16|F |−2
( n∑

j=1

∑

P∈Sj

|〈f, φP 〉|2
)2
.

Now

( n∑

j=1

∑

P∈Sj

|〈f, φP 〉|2
)2

=
(〈 n∑

j=1

∑

P∈Sj

〈f, φP 〉φP , f
〉)2

≤ ‖f‖2
2

∥∥∥
n∑

j=1

∑

P∈Sj

〈f, φP 〉φP

∥∥∥
2

2
≤ |F |

n∑

j=1

∑

P∈Sj

n∑

k=1

∑

P ′∈Sj

|〈f, φP 〉| |〈f, φP ′〉| |〈φP , φP ′〉|

where in the last inequality we used |f | ≤ 1F . By symmetry, it remains, for (22) to show
that

(23)

n∑

j=1

n∑

k=1

∑

P∈Sj

∑

P ′∈Sk:|I′|=|I|

|〈f, φP 〉| |〈f, φP ′〉| |〈φP , φP ′〉| . E2
n∑

j=1

|ISj |

and

(24)
n∑

j=1

n∑

k=1

∑

P∈Sj

∑

P ′∈Sk:|I′|<|I|

|〈f, φP 〉| |〈f, φP ′〉| |〈φP , φP ′〉| . E2
n∑

j=1

|ISj |.

In both cases, we will use the estimate

(25) |〈φP , φP ′〉| .
( |I|
|I ′|
)1/2

〈wI ,1I′〉.
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which holds whenever |I ′| ≤ |I|.

Estimating the product of two terms by the square of their maximum, we see that the
left side of (23) is

≤ 2
n∑

j=1

n∑

k=1

∑

P∈Sj

∑

P ′∈Sk:|I′|=|I|

|〈f, φP 〉|2|〈φP , φP ′〉|.

Recall that 〈φP , φ
′
P 〉 = 0 unless C3ωu ∩ C3ω

′
u 6= ∅. Thus, by (16), (25) and the fact that

the Sk are pairwise disjoint, we can estimate the last display by

2

n∑

j=1

∑

P∈Sj

|〈f, φP 〉|2
∑

I′:|I′|=|I|

〈wI ,1I′〉 .

n∑

j=1

∑

P∈Sj

|〈f, φP 〉|2 .

n∑

j=1

E2|ISj |.

This finishes the proof of (23).

Applying the Cauchy-Schwarz inequality, we see that the left side of (24) is bounded
by

n∑

j=1

( ∑

P∈Sj

|〈f, φP 〉|2
)1/2( ∑

P∈Sj

( n∑

k=1

∑

P ′∈Sk :|I′|<|I|

|〈f, φP ′〉||〈φP , φP ′〉|
)2)1/2

.

Twice using the fact that the energy of P is bounded by E , we see that the last display
is

≤ E2
n∑

j=1

|ISj |1/2

(∑

P∈Sj

( n∑

k=1

∑

P ′∈Sk:|I′|<|I|

∣∣〈φP , |IP ′ |1/2φP ′

〉∣∣
)2
)1/2

.

Thus, to prove (24) it remains to show that, for each j,

(26)
∑

P∈Sj

( n∑

k=1

∑

P ′∈Sk:|I′|<|I|

∣∣〈φP , |IP ′ |1/2φP ′

〉∣∣
)2

. |ISj |.

Again, we only have |〈φP , |IP ′ |1/2φP ′〉| nonzero when C3ωu ∩ C3ω
′
u 6= ∅ which can only

happen if supC3ωu ∈ C3ω
′
u or inf C3ωu ∈ C3ω

′
u. Applying (25), we thus see that the left

side of (26) is dominated by a constant times the expression

∑

P∈Sj

|IP |
( n∑

k=1

∑

P ′∈Sk:|I′|<|I|
sup C3ωu∈C3ω′

u

〈wI ,1I′〉
)2

+
∑

P∈Sj

|IP |
( n∑

k=1

∑

P ′∈Sk:|I′|<|I|
inf C3ωu∈C3ω′

u

〈wI ,1I′〉
)2
.

We now claim that, for each P ∈ Sj (with time interval I),

(27)
( n∑

k=1

∑

P ′∈Sk:|I′|<|I|
sup C3ωu∈C3ω′

u

〈wI ,1I′〉
)2 ≤ 〈wI ,1R\ISj

〉

and that the same inequality with sup replaced by inf in the P ′ summation holds as
well. To see this consider two multitiles P 1 = (I1, ω1

u) ∈ Sκ1 and P 2 = (I2, ω2
u) ∈ Sκ2,

P 1 6= P 2. so that |I2| ≤ |I1| and C3ω
1
u ∩ C3ω

2
u 6= ∅. The last condition implies κ1 6= κ2

(since Sκ1 and Sκ2 are l-overlapping). The inequality (27) is immediate if we can show
that I1 and I2 are disjoint and if in addition |I2| < |I1|, then I2 does not belong to
the top interval of the tree Sκ1. Now, if |I1| = |I2|, then from (16) it follows that
ω1

u = ω2
u and hence, since P 1 6= P 2, we have I1 ∩ I2 = ∅. If |I2| < |I1|, then by (15)

|ω1
u| ≤ C2−C3

2C1
|ω2

u|; since C3ω
1
u ∩ C3ω

2
u 6= ∅ this implies that inf C2ω

1
l > supC2ω

2
l . As

both trees are l-overlapping the top frequency of Sκ1 belongs to C2ω
1
l and is above the
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top frequency of Sκ2 which belongs to C2ω
2
l . Thus by the maximality condition on the

top frequency in the selection process of the trees we see that the tree Sκ1 was selected
before the tree Sκ2, i.e. κ1 < κ2. This implies that P2 does not belong to the tree Tκ1 ,
and since the interval ωSκ1

is contained in the convex hull of ω2
l and ω2

u we see that the

time intervals I2 and ITκ1
= ISκ1

cannot intersect. Thus I1 ∩ I2 = ∅ as I1 ⊂ ITκ1
. This

concludes the argument for (27).

Now by the disjointness condition we see that indeed the left hand side of (26) is
bounded by a constant times

∑

P∈Sj

|IP |
〈
wI ,1R\ISj

〉2
.

∑

ℓ:2ℓ≤|ISj
|

2ℓ
∑

P∈Sj :|I|=2ℓ

〈
wI ,1R\ISj

〉

. |ISj | sup
ℓ:2ℓ≤|ISj

|

∑

P∈Sj :|I|=2ℓ

〈
wI ,1R\ISj

〉

One may check that, for each ℓ,
∑

P∈Sj :|I|=2ℓ

〈
wI ,1R\ISj

〉
. 1

and (26) follows. We have already seen that (26) implies (24); this completes the proof
of (17).

Proof of (18). We need to show that for each dyadic interval J , we have

1

|J |

∫

J

∣∣∣
∑

T∈T

12ℓIT
(x) − 1

|J |

∫

J

∑

T∈T

12ℓIT
(y) dy

∣∣∣ dx . 22ℓE−2.

This is an immediate consequence of

(28)
∑

T∈T

J∩2ℓIT 6=∅,J

|IT | . E−22ℓ|J |.

Let

T̃ = {T ∈ T : IT ⊂ 2ℓ+1J, |IT | ≤ |J |}
and note that if T ∈ T with 2ℓIT ∩ J 6= ∅, J then T ∈ T̃. Write f = f ′ + f ′′ where
|f ′| ≤ 1F∩2ℓ+5J and |f ′′| ≤ 1F∩R\2ℓ+5J .

We will write T̃ as the union of collections of trees Tmain ∪ T0 ∪ T1 ∪ . . . each of
which will have certain properties related to the energy. For each tree T ∈ T̃ there is an
l-overlapping tree S = S(T ) chosen in the algorithm above with IS = IT and

(29)
1

|IS |
∑

P∈S

|〈f, φP 〉|2 ≥ E2/4.

Let

T0 = {T ∈ T̃ :
1

|IS |
∑

P∈S

|〈f ′′, φP 〉|2 ≥ E2/16}.

For j ≥ 1, define

Tj = {T ∈ T̃ : sup
S′⊂S(T )

|IS′ |=2−j |IT |

1

|IS′ |
∑

P∈S′

|〈f ′′, φP 〉|2 ≥ E2/16}
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where, for each T , the sup above is taken over all l-overlapping trees S′ with S′ ⊂ S(T ).
Finally, let

Tmain = {T ∈ T̃ \ (T0 ∪ T1 ∪ . . .)}.
We split the sum (28) into the “main” term involving trees in Tmain and an error term
involving ∪j≥0Tj.

We first consider the main term. It is our objective to prove

(30)
∑

T∈Tmain

|IT | . E−22ℓ|J |.

Let T ∈ Tmain and let S′ be any l-overlapping tree contained in S satisfying |IS′ | ≤ |IS |.
Since the energy of P is bounded by E and since T is not in any Tj, we have

1

|IS′ |
∑

P∈S′

|〈f ′, φP 〉|2 ≤ 2
1

|IS′ |
∑

P∈S′

|〈f, φP 〉|2 + 2
1

|IS′ |
∑

P∈S′

|〈f ′′, φP 〉|2 . E2.

From (29) and the fact that T /∈ T0, we have

1

|S(T )|
∑

P∈S(T )

|〈f ′, φP 〉|2 ≥ E2/8 − E2/16 = E2/16.

This inequality allows us to essentially repeat the above proof of (17). The l-overlapping
trees S(T ) form a (finite or infinite) subsequence of the sequence Sj which we denote by
Sj(ν) so that we have j(ν) > j(ν ′) for ν > ν ′. We need to prove the analogue of (22)
which is

(31)
E2

|F ∩ 2ℓ+5J |
n∑

ν=1

|ISj(ν)
| . 1

and as before we are aiming to estimate the square of the expression on the left hand
side by the expression itself. The Sj(ν) satisfy

1

|Sj(ν)|
∑

P∈Sj(ν)

|〈f ′, φP 〉|2 ≥ E2

16

and therefore

( E2

|F ∩ 2ℓ+5J |
n∑

ν=1

|ISj(ν)
|
)2

≤ 256|F ∩ 2ℓ+5J |−2
( n∑

ν=1

∑

P∈Sj(ν)

|〈f, φP 〉|2
)2
.

We continue to argue with exactly the same reasoning as in the proof of (22), replacing
f with f ′ and F with F ∩ 2ℓ+5J . This leads to the proof of (31) and thus to

∑

T∈Tmain

|IT | . E−2|F ∩ 2ℓ+5J |

which is clearly . E−22ℓ|J |. Thus (30) is established.

For the complimentary terms we prove better estimates, namely, for j = 0, 1, 2, . . . ,

(32)
∑

T∈Tj

|IT | . 2−ℓ−jE−2|J |.
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For each T ∈ Tj and P ∈ S(T ) we have |I| ≤ 2−j|IT | ≤ 2−j |J |. Thus
∑

T∈Tj

|IT | .
∑

T∈Tj

2jE−2
∑

P∈S(T ):|I|≤2−j|J |

|〈f ′′, φP 〉|2.

Since the S are pairwise disjoint, the right hand side is

. 2jE−2
∑

k≥j

∑

P :|I|=2−k|J |
I⊂2ℓ+1J

|〈f ′′, φP 〉|2.

Fixing k ≥ j, we apply Minkowski’s inequality to obtain

∑

P :|I|=2−k|J |
I⊂2ℓ+1J

|〈f ′′, φP 〉|2 ≤
( ∑

K:|K|=21−k|J |
K∩2ℓ+2J=∅

( ∑

P :|I|=2−k|J |
I⊂2ℓ+1J

|〈1Kf
′′, φP 〉|2

)1/2
)2

where above, we sum over dyadic intervals K and use the fact that f ′′ is supported on
R \ 2ℓ+5J.

Now note that φP ′ = c exp(2πi(c(ω′
u) − c(ωu))·)φP when I = I ′. Thus if P(I◦) is a

collection of disjoint multitiles with common time interval I◦, if g is supported on CI◦
and if PI◦ is any fixed multitile in P(I◦) then Bessel’s inequality gives

∑

P∈P(I◦)

|〈g, φP 〉|2 . |I◦|
∫

|gφPI◦
|2dx.

We apply this observation to the inner sums in the previous display and obtain the
inequality

(33)
∑

P :|I|=2−k|J |
I⊂2ℓ+1J

|〈f ′′, φP 〉|2 . 2−k|J |
( ∑

K:|K|=21−k|J |
K∩2ℓ+2J=∅

( ∑

I:|I|=2−k|J |
I⊂2ℓ+1J

∥∥1Kf
′′φPI

∥∥2

L2

)1/2
)2

where for each I, PI is any multitile with time interval I. Since |f ′′| ≤ 1 the bound (14)
yields ∥∥1Kf

′′φPI

∥∥2

L2 .
(
1 + dist(K,I)

|I|

)−N
.

Applying it with large N we see that the right hand side of (33) is . 2−(k+ℓ)(N−4)2−k|J |.
Summing over k ≥ j we obtain inequality (32). This concludes the proof of (18).

Proof of (20). For each T ∈ T, let S ≡ S(T ) be the corresponding l-overlapping tree
from the selection algorithm above and recall

∑

T∈T

|IT |(E/2)2 ≤
∑

P∈
S

T∈T
S

|〈f, φP 〉|2.

Since P =
⋃

T ′∈T′ T ′, the right side above is dominated by

(34)
∑

T ′∈T′

∑

P∈T ′∩
S

T∈T
S

ξT ′∈C2ωl

|〈f, φP 〉|2 +
∑

T ′∈T′

∑

P∈T ′∩
S

T∈T
S

ξT ′≥inf C3ωu

|〈f, φP 〉|2

+
∑

T ′∈T′

∑

P∈T ′∩
S

T∈T
S

sup C2ωl≤ξT ′<inf C3ωu

|〈f, φP 〉|2.
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For each T ′ ∈ T′ the set of tiles P ∈ T ′∩⋃T∈T
S(T ) with the property that ξT ′ ∈ C2ωl is

by definition an l-overlapping tree. Thus, since P has energy bounded by E , we estimate
the first term in (34)

∑

T ′∈T′

∑

P∈T ′∩
S

T∈T
S

ξT ′∈C2ωl

|〈f,wu〉|2 ≤
∑

T ′∈T′

E2|IT ′ |.

For the estimation of the second term in (34) we observe that any fixed multitile forms
an l-overlapping tree (with respect to some top data), and we use the energy bound for
fixed tiles. We observe that the rectangles {I × [inf C3ωu, supC2ωu) : P ∈ ⋃

T∈T
S}

are pairwise disjoint. Indeed if P ∈ S, P ′ ∈ S this follows since S is l-overlapping
(cf. Observation 4.1). If P ∈ Sκ1 and P ′ ∈ Sκ2 κ1 < κ2 then ξSκ1

≥ ξSκ2
and an

overlap of [inf C3ωu, supC2ωu) and [inf C3ω
′
u, supC2ω

′
u) would imply that P ′ belongs to

the maximal tree with the same top data as Sκ1, i.e. this would imply that P ′ ∈ Tκ1

which is disjoint from Sκ2.

This allows us to estimate for any fixed T ′ ∈ T′

∑

P∈T ′∩
S

T∈T
S

ξT ′≥inf C3ωu

|〈f, φP 〉|2 ≤
∑

P∈T ′∩
S

T∈T
S

ξT ′≥inf C3ωu

E2|I| ≤ E2|IT ′ |.

Now sum over T ′ ∈ T′ and it follows that the middle term in (34) is .
∑

T ′∈T′ E2|IT ′ |.
and summing

For the estimation of the third term in (34) we begin with a preliminary observation,

also related to the selection of the S. Suppose P ∈ T ′ ∩ S, P̃ ∈ T ′ ∩ S̃ where T, T̃ ∈ T

and

ξT ′ ∈ [supC2ωl, inf C3ωu) ∩ [supC2ω̃l, inf C3ω̃u),

and suppose I ⊂ Ĩ and P 6= P̃ . From (16) we have I $ Ĩ . We also have inf C2ω̃l <

supC2ωl since otherwise it would follow that S̃ was selected prior to S and hence P ∈ T̃
which is impossible. From (15), we have inf C2ω̃l ≥ supC3ωl and so P is in the maximal

l-overlapping tree contained in T ′ with top data (Ĩ , inf C2ω̃l).

For each T ′ ∈ T′ let T ′′ be the collection of multitiles P ∈ T ′ ∩ ⋃T∈T
S with ξT ′ ∈

[supC2ωl, inf C3ωu) and I maximal among such multitiles. Then
∑

T ′∈T′

∑

P∈T ′∩
S

T∈T
S

sup C2ωl≤ξT ′<inf C3ωu

|〈f, φP 〉|2 ≤
∑

T ′∈T′

∑

P ′′∈T ′′

∑

P∈T ′∩
S

T∈T
S

sup C2ωl≤ξT ′<inf C3ωu

I⊂I′′

|〈f, φP 〉|2

Considering the discussion in the preceding paragraph, we may apply the energy bound

to the maximal l-overlapping tree contained in T ′ with top data (Ĩ , inf C2ω̃l) . Since the
I ′′ are disjoint subintervals of IT ′ we see that the right side in the last display is bounded
by ∑

T ′∈T′

∑

P ′′∈T ′′

2E2|I ′′| ≤
∑

T ′∈T′

2E2|IT ′ |.

This completes the proof of (20). �

The proposition below is for use in tandem with Proposition 4.3.
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Proposition 4.4. Let P be a collection of multitiles and µ > 0. Then, there is a
collection of trees T such that

(35)
∑

T∈T

|IT | . µ−r′ |E|

and such that

density (P \ ∪T∈TT ) ≤ µ/2.

Proof. We select trees through an iterative procedure. Suppose that trees Tj , T
+
j , T

−
j

have been chosen for j = 1, . . . , k. Let

Pk = P \
k⋃

j=1

Tj ∪ T+
j ∪ T−

j .

If density(Pk) ≤ µ/2 then we terminate the procedure and set

T = {T1, T
+
1 , T

−
1 , . . . , Tk, T

+
k , T

−
k }.

Otherwise, we may find a nonempty tree T ⊂ Pk such that

(36)
1

|IT |

∫

E

(
1 + |x−c(IT )

|IT |

)−4
∑

k:ξk−1(x)∈ωT

|ak(x)|r
′

dx > (µ/2)r
′

.

Choose Tk+1 ⊂ Pk so that |ITk+1
| is maximal among all nonempty trees contained

in Pk which satisfy (36), and so that Tk+1 is the maximal, with respect to inclusion,
tree contained in Pk with top data (ITk+1

, ξTk+1
). Let T+

k+1 ⊂ Pk be the maximal tree

contained in Pk with top data (ITk+1
, ξTk+1

+ (C2 − 1)/(2|ITk+1
|)) and T−

k+1 ⊂ Pk be the
maximal tree contained in Pk with top data (ITk+1

, ξTk+1
− (C2 − 1)/(2|ITk+1

|)). Since
each Tj is nonempty and P is finite, this process will eventually stop.

To prove (35), it will suffice to verify

(37)
∑

j

|ITj | . µ−r′ |E|.

To this end, we first observe that the tiles ITj ×ωTj are pairwise disjoint. Indeed, suppose
that (ITj × ωTj) ∩ (ITj′

× ωTj′
) 6= ∅ and j < j′. Then, by the first maximality condition,

we have |ITj | ≥ |ITj′
| and so ITj′

⊂ ITj and |ωTj | ≤ |ωTj′
|. From the latter inequality,

it follows that for every P ∈ Tj′ , either ωTj ⊂ ωm, ωT+
j

⊂ ωm, or ωT−

j
⊂ ωm. Thus,

Tj′ ⊂ Tj ∪ T+
j ∪ T−

j which contradicts the selection algorithm.

Breaking the integral up into pieces and applying a pigeonhole argument, it follows
from (36) that for each j there is a positive integer ℓj such that

(38) |ITj | ≤ C2−3ℓjµ−r′
∫

E∩2ℓj ITj

∑

k:ξk−1(x)∈ωTj

|ak(x)|r
′

dx.

For each ℓ we let T(ℓ) = {Tj : ℓj = ℓ} and choose elements of T(ℓ): T
(ℓ)
1 , T

(ℓ)
2 , . . .

and subsets of T(ℓ): T
(ℓ)
1 ,T

(ℓ)
2 , . . . as follows. Suppose T

(ℓ)
j and T

(ℓ)
j have been chosen
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for j = 1, . . . , k. If T(ℓ) \ ⋃k
j=1 T

(ℓ)
j is empty, then terminate the selection procedure.

Otherwise, let T
(ℓ)
k+1 be an element of T(ℓ) \⋃k

j=1 T
(ℓ)
j with |I

T
(ℓ)
k+1

| maximal, and let

T
(ℓ)
k+1 = {T ∈ T(ℓ) \

k⋃

j=1

T
(ℓ)
j : (2ℓIT × ωT ) ∩ (2ℓI

T
(ℓ)
k+1

× ω
T

(ℓ)
k+1

) 6= ∅}.

By construction, T(ℓ) =
⋃

j T
(ℓ)
j and so

(39)
∑

T∈T(ℓ)

|IT | ≤
∑

j

∑

T∈T
(ℓ)
j

|IT |.

Using the fact that the tiles ITj × ωTj are pairwise disjoint, and (twice) the fact that

|IT | ≤ |I
T

(ℓ)
j

| for every T ∈ T
(ℓ)
j , we see that for each j

∑

T∈T
(ℓ)
j

|IT | . 2ℓ|I
T

(ℓ)
j

|.

From (38), we thus see that the right side of (39) is dominated by a constant times

2−2ℓµ−r′
∫

E

∑

j

12ℓI
T

(ℓ)
j

(x)
∑

k:ξk−1(x)∈ω
T

(ℓ)
j

|ak(x)|r
′

dx

= 2−2ℓµ−r′
∫

E

∑

k

|ak(x)|r
′

#
{
j : (x, ξk−1(x)) ∈ 2ℓI

T
(ℓ)
j

× ω
T

(ℓ)
j

}
dx

≤ 2−2ℓµ−r′ |E|.

where we used the disjointness of the rectangles 2ℓI
T

(ℓ)
j

× ω
T

(l)
j

, and
∑K

k=1 |ak(x)|r
′ ≤ 1.

Summing over ℓ, we obtain (37). �

5. The tree estimate

In this section we prove the basic estimate for the model operators in the special case
where the collection of multitiles is a tree. In what follows we use the notation VrAf(x)
for the r-variation of k 7→ Akf(x), for a given family of operators Ak indexed by k ∈ N.

An essential tool introduced to harmonic analysis by Bourgain [1] is Lépingle’s in-
equality for martingales ([22]). Consider the martingale of dyadic averages

Ek[f ](x) =
1

|Ik(x)|

∫

Ik(x)
f(y) dy

where Ik(x) is the dyadic interval of length 2k containing x. It is a special case of
Lépingle’s inequality that

(40) ‖VrE(·)[f ]‖Lp ≤ Cp,r‖f‖Lp

whenever 1 < p < ∞ and r > 2. Simple proofs (based on jump inequalities) have
been obtained in [1] and [27] (see also [9], [15] for other expositions). Inequality (40)
has been extended to various families of convolution operators ([1],[14], [2], [15]). Let
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ψ be a Schwartz function on R with
∫
ψ = 1, for each k let ψk = 2−kψ(2−k·) and let

Akf(x) = ψk ∗ f . Then

(41) ‖VrAf‖Lp ≤ C ′
p,r‖f‖Lp , 1 < p <∞, r > 2,

follows from (40); the essential tool is the square function estimate

(42)
∥∥∥
( ∞∑

k=−∞

∣∣Akf − Ek[f ]
∣∣2
)1/2∥∥∥

p
, 1 < p <∞.

For a proof we refer to [14] or [15].

We shall use (41) to prove the following estimate in terms of energy and density. The
bound will be applied in Section 7 with q = r′ and q = 1.

Proposition 5.1. Let E > 0, 0 < µ < 3 and let T be a tree with energy bounded above
by E and density bounded above by µ. Then, for each 1 ≤ q ≤ 2

(43)
∥∥∥
∑

P∈T

〈f, φP 〉φPaP1E

∥∥∥
Lq

. E µmin(1,r′/q)|IT |1/q.

Furthermore, for ℓ ≥ 0 we have

(44)
∥∥∥
∑

P∈T

〈f, φP 〉φP aP1E

∥∥∥
Lq(R\2ℓIT )

. 2−ℓ(N−10)E µmin(1,r′/q)|IT |1/q.

We remark that the bounds above also hold for 2 < q < ∞, but the result for this
range of exponents is not needed for our purposes; it requires an additional Lp estimate
for
∑

P∈T 〈f, φP 〉φP .

Proof. We begin with some preliminary reduction. Every tree can be split into an l-
lacunary tree and an l-overlapping tree and it suffices to prove the asserted estimate for
these cases.

If the tree is l-overlapping we introduce further decompositions. By breaking up T
into a bounded number of subtrees we may and shall assume without loss of generality
that for each P ∈ T ,

(45) ξT ∈ ωl + j|ωl| for some integer j with |j| ≤ C2.

Moreover we shall assume, for every l-overlapping tree T , that either ξT ≤ inf ωl for
every P ∈ T (in which case we refer to T as l−-overlapping) or ξT > inf ωl for every
P ∈ T (in which case we refer to T as l+-overlapping). Every l-overlapping tree can
be split into an l−-overlapping and an l+-overlapping tree. For the remainder of the
proof, we assume without loss of generality that T is either l-lacunary or l+-overlapping
or l−-overlapping, and that for the last two categories property (45) is satisfied.

Let J be the collection of dyadic intervals J which are maximal with respect to the
property that I 6⊂ 3J for every P ∈ T.

Our first goal is to prove that for each J ∈ J

(46)
∥∥∥

∑

P∈T :|I|<C′′|J |

〈f, φP 〉φPaP1E

∥∥∥
Lq(J)

. Eµmin(1,r′/q)|J |1/q
(
1 + dist(IT ,J)

|IT |

)−(N−6)
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where C ′′ ≥ 1 is a constant to be determined later; we shall see that C ′′ = 8C1(C2−1)−1

is an admissible choice.

By Hölder’s inequality, we may assume that q ≥ r′. Fix P ∈ T with |I| ≤ C ′′|J |.
From the energy bound, we have

(47) ‖〈f, φP 〉φPaP1E‖Lq(J) . E
(
1 + dist(I,J)

|I|

)−N‖aP1E‖Lq(J).

From the density bound applied to ≈ 1/(C2 − 1) nonempty trees, each with top time
interval I, we obtain

1

|I|

∫

E

(
1 + |x−c(I)|

|I|

)−4 ∑

k:ξk−1(x)∈ωl

|ak(x)|r
′

dx . µr′ .

Since I 6⊂ 3J , it follows that 1 + |x− y|/|I| ≤ C(1 + dist(I, J)/|I|) for every x ∈ J and
y ∈ I. Thus

‖aP1E‖q
Lq(J) ≤ ‖aP1E‖r′

Lr′(J)
.
(
1 + dist(I,J)

|I|

)4|I|µr′

where, above, we use the fact that |aP | ≤ 1. Thus we can replace (47) by
∥∥〈f, φP 〉φPaP1E

∥∥
Lq(J)

. E µr′/q|I|1/q
(
1 + dist(I,J)

|I|

)−(N−4)
.

Summing this estimate and using the fact that T is a tree, we have∥∥∥
∑

P∈T :|I|=2−k|J |

〈f, φP 〉φPaP1E

∥∥∥
Lq(J)

. E µr′/q(2−k|J |)1/q
(
1 + dist(IT ,J)

|IT |

)−(N−6)

and summing over k gives (46).

We now use (46) to prove (44) for ℓ ≥ 4. Indeed, using the maximality of each J , we
see that if ℓ ≥ 4 and J ∩ (R \ 2ℓIT ) 6= ∅ then dist(IT , J) ≥ |J |/2 and |J | ≥ 2ℓ−3|IT |. It
thus follows from (46) that∥∥∥
∑

P∈T

〈f, φP 〉φPaP1E

∥∥∥
Lq(J)

. (|IT |/|J |)(dist(IT , J)/|J |)−2Eµmin(1,r′/q)|IT |1/q2−ℓ(N−10)

whenever J ∩ (R \ 2ℓIT ) 6= ∅. Summing over all J , we thus obtain (44) for ℓ ≥ 4.

It remains to prove∥∥∥
∑

P∈T

〈f, φP 〉φPaP1E

∥∥∥
Lq(16IT )

. Eµmin(1,r′/q)|IT |1/q

which, by (46), follows from

(48)
∥∥∥

∑

P∈T : |I|≥C′′|J |

〈f, φP 〉φPaP1E

∥∥∥
Lq(16IT )

. Eµmin(1,r′/q)|IT |1/q.

Again, by Hölder’s inequality, we may assume that q ≥ r′. Let

ΩJ =
⋃

P∈T :|I|≥C′′|J |

ωl.

The first step in the proof of (48) will be to demonstrate

(49)

∫

J∩E

∑

k:ξk−1(x)∈ΩJ

|ak(x)|r
′

dx . µr′ |J |.

By the maximality of J there is a multitile P ∗ = (I∗, ω∗
u) ∈ T with I∗ ⊂ 3J̃ where J̃ is the

dyadic double of J . This implies that there is a dyadic interval J ′ with |J | ≤ |J ′| ≤ 4|J |



22 R. OBERLIN, A. SEEGER, T. TAO, C. THIELE, J. WRIGHT

and dist(J, J ′) ≤ |J | and I∗ ⊂ J ′. We wish to apply the density bound assumption to
a tree consisting of the one multitile P ∗, with top interval J ′ and suitable choice of the
top frequency. We distinguish the cases that T is l+-overlapping, l−-overlapping, or
l-lacunary.

If T is l+-overlapping then T ′ = ({P ∗}, ξT , J ′) is a tree. For every P ∈ T we have

ωl ⊂ [ξT − C1
2|I| , ξT + C1

2|I|) and thus, with |I| ≥ C ′′|J |, ωl ⊂ [ξT − C1
2C′′|J | , ξT + C1

2C′′|J |). Thus

with the choice of C ′′ ≥ 8C1
C2−1 we have ΩJ ⊂ ωT ′ .

If T is l−-overlapping then T ′ = ({P ∗}, ξT + C2−1
4|J | , J

′) is a tree. Using that T is l−-

overlapping, we see that ωl ⊂ [ξT , ξT + C2
2C′′|J |) for every P ∈ T with |I| ≥ C ′′|J |. Thus,

by choosing C ′′ ≥ 8C2
C2−1 , we have ΩJ ⊂ ωT ′ .

If T is l-lacunary then T ′ = ({P ∗}, ξT − C2−1
4|J | , J

′) is a tree. Using that T is l-lacunary,

we see that ωl ⊂ [ξT − C1
2C′′|J | , ξT ) for every P ∈ T with |I| ≥ C ′′|J |. Thus, by choosing

C ′′ ≥ 8 C1
C2−1 as in the first case we have ΩJ ⊂ ωT ′ .

In any of the three cases, the density bound gives

1

|J ′|

∫

E

(
1 +

|x− c(J ′)

|J ′|
)−4 ∑

k:ξk−1(x)∈ωT ′

|ak(x)|r
′

dx ≤ µr′

and hence (49).

We now show that if T is l-lacunary then (48) follows from (49). We start by observing
that for each x there is at most one integer m and at most one integer k such that there
exists a P ∈ T with |I| = 2m, ξk−1(x) ∈ ωl, and ξk(x) ∈ ωh. Indeed, suppose such
a P exists, and P ′ ∈ T with |I ′| ≥ |I|. If |I| = |I ′| the uniqueness of k is obvious.
Suppose |I ′| > |I|. Since T is l-lacunary, we have inf(ω′

l) > sup(ωl) by (15), and so
ξk−1(x) < inf(ω′

l).We also have ξk(x) ≥ inf(ωh) > sup(ωT ) > sup(ω′
l) since C2ωu∩ωh = ∅

and ξT 6∈ C2ω
′
l. It follows that there is no k′ with ξk′−1(x) ∈ ω′

l.

Now let a(x) = ak(x) if there exists an m(x) as in the previous paragraph with

2m(x) ≥ C ′′|J |, and a(x) = 0 otherwise. We then have

∥∥∥
∑

P∈T :|I|≥C′′|J |

〈f, φP 〉φP aP1E

∥∥∥
q

Lq(J)
≤
∫

J∩E

(
|a(x)|

∑

P∈T :|I|=2m(x)

|〈f, φP 〉φP (x)|
)q

dx .

From the energy bound (applied to multitiles) and the bound (14) for |φP |, the right
side is bounded by
∫

J∩E

[
|a(x)|

∑

P∈T :
|I|=2m(x)

E |I|wI(x)
]q
dx .

∫

J∩E

[
|a(x)|

∑

P∈T :
|I|=2m(x)

E
(
1 + |x−c(I)|

|I|

)−N
]q
dx.

Noting that
∑

P∈T :|I|=2m(x)(1 + |x− c(I)|/|I|)−N ≤ C, we see that the last display is

. Eq

∫

J∩E
|a(x)|q dx . Eq

∫

J∩E

( ∑

k:ξk−1(x)∈ΩJ

|ak(x)|r
′
)q/r′

dx,
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by our choice of a(x). Using (49), q ≥ r′, and the fact that
∑ |ak(x)|r

′ ≤ 1, the right

hand side is . Eqµr′ |J |. We may now sum over those J ∈ J which satisfy J ∩ 16IT 6= ∅
and (48) follows for l-lacunary trees.

It remains to prove (48) for the case when T is l-overlapping and satisfies condition
(45). For each J ∈ J, and each x ∈ J ∩E we have by Hölder’s inequality

∑

P∈T :|I|≥C′′|J |

〈f, φP 〉φP (x)aP (x) =
∑

k

ak(x)
∑

P∈T :|I|≥C′′|J |
ξk−1(x)∈ωl,ξk(x)∈ωh

〈f, φP 〉φP (x)(50)

≤
( ∑

k:ξk−1(x)∈ΩJ

|ak(x)|r
′
)1/r′( ∑

k:ξk−1(x)∈ΩJ

∣∣∣
∑

P∈T :|I|≥C′′|J |
ξk−1(x)∈ωl,ξk(x)∈ωh

〈f, φP 〉φP (x)
∣∣∣
r)1/r

.

Now let ψ be a Schwartz function with ψ̂(ξ) = 1 for |ξ| ≤ C1 + C3 and ψ̂(ξ) = 0 for
|ξ| ≥ 2C1. Define ψℓ = 2−ℓψ(2−ℓ·), and set

eT (x) = e2πiξT x.

We will show that for any x and any k with ξk−1(x) < ξk(x), there exist integers ℓ1, ℓ2
depending on x and k, such that 2ℓ1 ≥ |J | and

(51)
∑

P∈T :|I|≥C′′|J |,
ξk−1(x)∈ωl, ξk(x)∈ωh

〈f, φP 〉φP (x) = (eT (ψℓ1 − ψℓ2)) ∗
[∑

P∈T

〈f, φP 〉φP

]
(x).

From (15) we have, for each ℓ such that 2ℓ = |I| for some multitile P ,

(eTψℓ) ∗
∑

P∈T

〈f, φP 〉φP (x) =
∑

P∈T :|I|≥2ℓ

〈f, φP 〉φP (x).

Thus, to prove (51) it will suffice to show that there exist integers ℓ1 and ℓ2 such that

(52) {P ∈ T : |I| ≥ C ′′|J |, ξk−1(x) ∈ ωl, ξk(x) ∈ ωh} = {P ∈ T : 2ℓ1 ≤ |I| ≤ 2ℓ2}.
Again using (15), we see that for P,P ′ ∈ T with |I| < |I ′| we have inf ω′

h < inf ωh, and if
we are in the setting of ρ-multitiles where ρ is a 1-index, we have the stronger inequality
supω′

h < inf ωh. Thus, (52) will follow after finding ℓ1 and ℓ2 with

(53) {P ∈ T : ξk−1(x) ∈ ωl} = {P ∈ T : 2ℓ1 ≤ |I| ≤ 2ℓ2}.
Here we use assumption (45). The displayed equation follows when |j| > 1 from the fact
that ωl ∩ ω′

l = ∅ if P,P ′ ∈ T and |I| < |I ′|; it follows when j = 0 from the fact that the
intervals {ωl : P ∈ T} are nested. Finally, when j = ±1 it follows from the property
that if P,P ′, P ′′ ∈ T , |I|,≤ |I ′| ≤ |I ′′| and ωl ∩ ω′′

l 6= ∅ then ω′′
l ⊂ ω′

l ⊂ ωl. Thus we have
established (53) and consequently (52) and (51).

Using (51), we have

( ∑

k:ξk−1(x)∈ΩJ

∣∣∣
∑

P∈T :|I|≥C′′|J |,
ξk−1(x)∈ωl,ξk(x)∈ωh

〈f, φP 〉φP (x)
∣∣∣
r)1/r

≤
∥∥(eTψk) ∗

∑

P∈T

〈f, φP 〉φP (x)
∥∥

V r
k (Z++log2(|J |))
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where the notation refers to the variation norm with respect to the variable k, restricted
to {k ∈ Z : |k| ≥ log2(|J |)}. For log2(|J |) ≤ k1 < k2, we have

(eT (ψk1 − ψk2)) ∗
∑

P∈T

〈f, φP 〉φP = (eTψC+log2(|J |)
) ∗ (eT (ψk1 − ψk2)) ∗

∑

P∈T

〈f, φP 〉φP

and so, for x ∈ J
∥∥(eTψk) ∗

∑

P∈T

〈f, φP 〉φP (x)
∥∥

V r
k (Z++log2(|J |))

. sup
x∈J

sup
R≥|J |

2

|R|

∫ x+R

x−R

∥∥(eTψk) ∗
∑

P∈T

〈f, φP 〉φP (y)
∥∥

V r
k (Z++log2(|J |))

dy.

We now integrate the qth power of the expressions in (50) over E ∩ J and obtain
∥∥∥

∑

P∈T :|I|≥C′′|J |

〈f, φP 〉φPaP1E

∥∥∥
q

Lq(J)
≤
∫

J∩E

( ∑

k:ξk−1(t)∈ΩJ

|ak(t)|r
′

dt
)q/r′

×

sup
x∈J

sup
R≥|J |

2

|R|

∫ x+R

x−R

∥∥(eTψk) ∗
∑

P∈T

〈f, φP 〉φP (y)
∥∥

V r
k (Z++log2(|J |))

dy.

≤ µr′
∫

J

∣∣∣M
[
‖ψk ∗ (e−1

T

∑

P∈T

〈f, φP 〉φP )‖V r
k

]
(x)
∣∣∣
q
dx

where M is the Hardy-Littlewood maximal operator. For the last inequality we have
used q ≥ r′,

∑ |ak(x)|r
′ ≤ 1 and inequality (49). Summing over J ∈ J gives

∥∥∥
∑

P∈T :|I|≥C′′|J |

〈f, φP 〉φPaP1E

∥∥∥
q

Lq(16IT )

. µr′
∥∥M

[
‖ψk ∗ (e−1

T

∑

P∈T

〈f, φP 〉φP )‖V r
k

]
(x)
∥∥q

Lq
x(16IT )

.

Since q ≤ 2, it follows from Hölder’s inequality that the right side above is

. µr′ |IT |(2−q)/2
∥∥M

[
‖ψk ∗ (e−1

T

∑

P∈T

〈f, φP 〉φP )‖V r
k

]
(x)
∥∥q

L2
x(16IT )

.

Applying the variation estimate (41) with p = 2 and the L2 estimate for M one sees
that the display above is

. µr′ |IT |(2−q)/2
∥∥∥
∑

P∈T

〈f, φP 〉φP

∥∥∥
q

L2
.

To finish the proof, it only remains to see that ‖∑P∈T 〈f, φP 〉φP ‖2
L2 . E2|IT |. The

left side of this inequality is dominated by
∑

P∈T

∑

P ′∈T

|〈f, φP 〉||〈f, φ′P 〉||〈φP , φP ′〉| ≤ 2
∑

P∈T

|〈f, φP 〉|2
∑

P ′∈T

|〈φP , φP ′〉|.

Since T is an l-overlapping tree, we have 〈φP , φP ′〉 unless |I| = |I ′|, in which case, we
have |〈φP , φP ′〉| . (1 + dist(I, I ′)/|I|)−N . Therefore we obtain the estimate

∥∥∥
∑

P∈T

〈f, φP 〉φP

∥∥∥
2

L2
.
∑

P∈T

|〈f, φP 〉|2 ≤ CE2|IT |.

This concludes the proof of (48) and thus the proof of the proposition. �
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6. Two auxiliary estimates

Before we give the argument on how to decompose our operators into trees with
suitable energy and density bounds we need two auxiliary estimates.

The following proposition can be found in [34], p. 12, or as a special case of a lemma
from [12].

Proposition 6.1. Let T be an l-overlapping tree. Let λ > 0 and Ωλ,D = {MD[1F ] > λ}
where MD is the maximal dyadic average operator. Then

1

|IT |
∑

P∈T :I 6⊂Ωλ,D

|〈f, φP 〉|2 . λ2 .

The second auxiliary estimate is the special case of an estimate from [12], but we will
provide a proof for convenience.

Proposition 6.2. Let P be a finite set of multitiles, and let λ > 0, F ⊂ R, and |f | ≤ 1F .
Let Ωλ = {M[1F ] > λ}. Then

(54)
∥∥∥

∑

P∈P:I⊂Ω

〈f, φP 〉φP aP

∥∥∥
L1(R\Ω)

.
|F |
λ1/r

.

Proof. Fix ℓ and let Iℓ ⊂ Ωλ be a dyadic interval satisfying

(55) 2ℓIℓ ⊂ Ωλ and 2ℓ+1Iℓ 6⊂ Ωλ.

By Minkowski’s inequality, we estimate

( ∑

P :I=Iℓ

|〈f, φP 〉|2
)1/2

≤
( ∑

P :I=Iℓ

|〈14Iℓ
f, φP 〉|2

)1/2
+

∞∑

j=2

( ∑

P :I=Iℓ

|〈12j+1Iℓ\2jIℓ
f, φP 〉|2

)1/2
.

Using orthogonality, the right hand side is bounded by

(4|Iℓ|)1/2‖14Iℓ
fφP0‖L2 +

∞∑

j=2

(2j+1|Iℓ|)1/2‖12j+1Iℓ\2jIℓ
fφP0‖L2

where P0 is any multitile with I = Iℓ. Applying the bounds (14) and |f | ≤ 1F , we see
that the last display is

. |F ∩ 4Iℓ|1/2 +

∞∑

j=2

C2−j(N−1)|F ∩ 2j+1Iℓ|1/2.

Since 2ℓ+1Iℓ 6⊂ Ωλ, we have |F ∩ 2j+1Iℓ| ≤ C2max(ℓ,j)|Iℓ|λ for each j. Thus, the last
display is . (2lλ|Il|)1/2 and we have proved

( ∑

P :I=Iℓ

|〈f, φP 〉|2
)1/2

. (2ℓλ|Iℓ|)1/2.

Similarly,

sup
P :I=Iℓ

|〈f, φP 〉| . 2ℓλ|Iℓ|1/2
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and so, by interpolation,

(56)
( ∑

P :I=Iℓ

|〈f, φP 〉|r
)1/r

. (2ℓλ)1/r′ |Iℓ|1/2

whenever 2 ≤ r ≤ ∞. For each ξ, Iℓ there is at most one P ∈ P with ξ ∈ ωl and I = Iℓ.
Thus, using the fact that, for each x,

∑K
k=1 |ak(x)|r

′ ≤ 1, we see that
∥∥∥

∑

P∈P:I=Iℓ

〈f, φP 〉φPaP

∥∥∥
L1(R\Ωλ)

. (2ℓλ)1/r′ |Iℓ|1/2‖φP0‖L1(R\Ωλ)

where P0 is any multitile with I0 = Iℓ. Using the fact that 2ℓIℓ ⊂ Ωλ, it follows that the
right side above is

. 2−ℓ(N−2)λ1/r′ |Iℓ|.

For ℓ ≥ 0 let Iℓ be the set of all dyadic intervals satisfying (55). If I ⊂ Iℓ then for each
j > 0 there are at most 2 intervals I ′ ∈ Iℓ with I ′ ⊂ I and |I ′| = 2−j |I|. By considering
the collection of maximal dyadic intervals in Iℓ, one sees that

∑

I∈Iℓ

|I| . |Ωλ|

Thus,

‖
∑

P∈P:I∈Iℓ

〈f, φP 〉φPaP ‖L1(R\Ωλ) . 2−ℓ(N−2)λ1/r′ |Ωλ|.

Summing over ℓ and applying the weak-type 1-1 estimate for M then gives (54). �

7. Conclusion of the proof

Let r > 2 and r′ ≤ p < 2r
r−2 . We shall conclude the proof of (13), with 1 ≤ |E| ≤ 2,

and thus of Theorem 1.2. It will then suffice, by Chebyshev’s inequality, to show

(57)

∫

E\G
|Sρ[f ](x)| dx ≤ C|F |1/p

for any measurable set E with 1 ≤ |E| ≤ 2, |f | ≤ 1F and some exceptional set G =
G(E,F ) with |G| ≤ 1/4.

We shall repeatedly apply Propositions 4.3 and 4.4. By Lemma 4.2 the density of P

(with respect to the set E above) and the energy (with respect to f) are bounded by a
universal constant C.

We distinguish between the cases |F | > 1 and |F | ≤ 1 and first consider the case when
|F | > 1. Repeatedly applying Propositions 4.3 and 4.4 we write P as the disjoint union

P =
⋃

j≥0

⋃

T∈Tj

T

where each Tj is a collection of trees T each of which have energy bounded by C2−j/2|F |1/2,

density bounded by C2−j/r′ , and satisfy
∑

T∈Tj

|IT | . 2j .
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For each j we apply Proposition 4.3 again, this time using (18) and (20) to write
⋃

T∈Tj

T =
⋃

k≥0

⋃

T∈Tj,k

T

where each tree T ∈ Tj,k has energy bounded by C2−(j+k)/2|F |1/2, density bounded by

C2−j/r′ , and satisfies

(58)
∑

T∈Tj,k

|IT | . 2j .

Moreover, for every ℓ ≥ 0

(59)
∥∥∥
∑

T∈Tj,k

12ℓIT

∥∥∥
BMO

. 22ℓ2j+k|F |−1.

Inequality (58) implies ‖∑T∈Tj,k
12ℓIT

‖L1 . 2ℓ+j, and we may interpolate the L1 and the

BMO bound. Here we use a standard technique involving the sharp maximal function
from §5 in [11]. It follows that for 1 ≤ q <∞

∥∥∥
∑

T∈Tj,k

12ℓIT

∥∥∥
Lq

. 2j+k+2ℓ|F |−1/q′ .

Let ǫ > 0 be small and C ′ > 0 be large, depending on p, q, r. For each j, k, l define

Gj,k,ℓ =
{
x :

∑

T∈Tj,k

12ℓIT
≥ C ′|F |−1/q′2(1+ǫ)(j+k+2ℓ)

}
.

By Chebyshev’s inequality, we have

|Gj,k,ℓ| ≤ c′2−ǫ(j+k+2ℓ),

so setting G =
⋃

j,k,ℓ≥0Gj,k,ℓ we have |G| ≤ 1/4.

Applying Minkowski’s inequality gives

∥∥∥1E

∑

P∈P

〈f, φP 〉φPaP

∥∥∥
L1(R\G)

≤
∑

j,k≥0

(∥∥1E

∑

T∈Tj,k

1IT

∑

P∈T

〈f, φP 〉φPaP

∥∥
L1(R\Gj,k,0)

+
∑

ℓ≥1

∥∥1E

∑

T∈Tj,k

12ℓIT \2ℓ−1IT

∑

P∈T

〈f, φP 〉φPaP

∥∥
L1(R\Gj,k,ℓ)

)
.

From Hölder’s inequality, Fubini’s theorem, and the definition of Gj,k,l, it follows that
the right side above is . (S1 + S2) where

S1 =
∑

j,k≥0

|F |−1/(q′r)2(1+ǫ)(j+k)/r
( ∑

T∈Tj,k

∥∥1E

∑

P∈T

〈f, φP 〉φPaP

∥∥r′

Lr′(R)

)1/r′

and

S2 =
∑

j,k≥0
ℓ≥1

|F |−1/(q′r)2(1+ǫ)(j+k+2ℓ)/r
( ∑

T∈Tj,k

∥∥1E

∑

P∈T

〈f, φP 〉φPaP

∥∥r′

Lr′(R\2ℓ−1IT )

)1/r′
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Applying Proposition 5.1 with the energy and density bounds for trees T ∈ Tj,k, we
see that

S2 .
∑

j,k≥0
ℓ≥1

|F |−1/(q′r)2(1+ǫ)(j+k+2ℓ)/r2−ℓ(N−10)2−(j+k)/2|F |1/22−j/r′
( ∑

T∈Tj,k

|IT |
)1/r′

.
∑

j,k≥0
ℓ≥1

2(j+k)((1+ǫ)(2/r)−1)/22−ℓ(N−14)|F |1/2−1/(q′r) .

Choosing ǫ small enough and q large enough so that

(1 + ǫ)
2

r
− 1 < 0 and

1

2
− 1

q′r
<

1

p

we have S2 . |F |1/p. We similarly obtain S1 . |F |1/p, thus giving (57).

We will finish by proving (57) for |F | ≤ 1. Here, we let

G = {x : M[1F ](x) > C ′′|F |}

where M is the Hardy-Littlewood maximal operator and C ′′ is chosen large enough so
that the weak-type 1-1 estimate for M guarantees |G| ≤ 1/4.

By Proposition 6.2 and the fact that p ≥ r′, it will remain to show that

(60)
∥∥∥1E

∑

P∈P′

〈f, φP 〉φPaP

∥∥∥
L1(R\G)

. |F |1/p.

where P′ = {P ∈ P : I 6⊂ G}.

Finally, it follows from Proposition 6.1 that the energy of P′ is bounded above by
C|F |. Repeatedly applying Propositions 4.3 and 4.4 we write P′ as the disjoint union

P′ =
⋃

j≥0

⋃

T∈Tj

T

where each Tj is a collection of trees T each of which have energy bounded by C◦2
−j/2|F |1/2,

density bounded by C◦2
−j/r′ , and satisfy

∑

T∈Tj

|IT | . 2j .

We then have
∥∥∥1E

∑

P∈P′

〈f, φP 〉φPaP

∥∥∥
L1

≤
∑

j≥0

∑

T∈Tj

∥∥∥1E

∑

P∈T

〈f, φP 〉φPaP

∥∥∥
L1
.

Applying Proposition 5.1, we see that the right side above is

.
∑

j≥0

∑

T∈Tj

min(2−j/2|F |1/2, |F |)2−j/r′ |IT | .
∑

j≥0

2j/r min(2−j/2|F |1/2, |F |).

Summing over j, we see that the right side above is . |F |1/r′ . This finishes the proof,
since p ≥ r′.
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A. Transference

In this section we show how to obtain Theorem 1.1 from Theorem 1.2. We employ
arguments from chapter VII in the monograph by Stein and Weiss [32] in their proof of
De Leeuw’s transference result ([21]). The following limiting relation is used:

Lemma A.1. ([32], p. 261). Let m ∈ L∞(Rd) with the property that every k ∈ Zd is a
Lebesgue point of m. Define a convolution operator T on L2(Rd) by the Fourier transform

identity T̂ f(ξ) = m(ξ)f̂(ξ) and a convolution operator on L2(Td) by the relation [T̃ f ]k̂ =
m(k)fk̂ for the Fourier coefficients. Let, for x ∈ R,

w(x) = e−πx2
and wR(x) = R−dw(x/R).

Then, for all trigonometric polynomials P and Q (extended as 1-periodic functions in
every variable) we have

(61)

∫

[0,1]d
T̃ [P ](x)Q(x) dx = lim

R→∞

∫

Rd

T [PwR/p′ ](x)Q(x)wR/p(x) dx.

We also need the following elementary fact on Lorentz spaces.

Lemma A.2. Let f ∈ Lp,q(Td) and extend f to a function fper on Rd which is 1-
periodic in every variable. Let L > d/p and let w be a measurable function satisfying
|w(x)| ≤ (1 + |x|)−L. Let wR(x) = R−dw(R−1x). Then

sup
R≥1

∥∥fperwR

∥∥
Lp,q(Rd)

≤ Cp,q‖f‖Lp,q(Td)

Proof. We first assume p = q. Let Q0 := [−1
2 ,

1
2 ]d. If N ∈ N and N ≤ R ≤ N + 1 then

wR(x) ≈ N−d(1 + |n|/N)−Lp for x ∈ n + Q0 and by the periodicity we can estimate
‖fperwR‖p

p by C
∑

n∈Zd N−d(1 + |n|/N)−Lp‖f‖p
Lp(Q0) which is . ‖f‖p

Lp(Q0) since Lp > d.

For fixed L we apply real interpolation in the range p < L/d and obtain the Lorentz
space result. �

Proof that Theorem 1.2 implies Theorem 1.1. We shall assume that 1 < p < ∞, 1 ≤
q1 < ∞, and q1 ≤ q2 ≤ ∞ and prove that the Lp,q1(R) → Lp,q2(R;V r) for the partial
sum operator S on the real line implies the corresponding result on the torus, i.e.

(62)
∥∥∥ sup

K
sup

0≤n1≤···≤nK

(K−1∑

i=1

|Sni+1f − Snif |r
)1/r∥∥∥

Lp,q2 (T)
. ‖f‖Lp,q2 (T)

By two applications of the monotone convergence theorem it suffices to show for fixed
K ∈ N with K ≥ 2, and fixed M ∈ N that

(63)
∥∥∥ sup

0≤n1≤···≤nK≤M

(K−1∑

i=1

|Sni+1f − Snif |r
)1/r∥∥∥

Lp,q2 (T)
≤ C‖f‖Lp,q1 (T)

where C does not depend on M and K.

For ~n = (n1, . . . , nK) ∈ NK
0 , 1 ≤ i ≤ K − 1 define T f(x, ~n, i) = Sni+1f(x)−Snif(x) if

n1 ≤ · · · ≤ nK and T f(x, ~n, i) = 0 otherwise. Then the inequality (63) just says that T
is bounded from Lp,q1 to Lp,q2(ℓ∞(ℓr)) where the ℓ∞ norm is taken for functions on the
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finite set {1, . . . ,M}K and the ℓr norm is for functions on {1, . . . ,K − 1}. By duality

(63) follows from the Lp′,q′2(ℓ1(ℓr
′

)) → Lp′,q′1 inequality for the adjoint operator T ∗, i.e.
from the inequality

(64)
∣∣∣
∫ 1

0

∑

0≤n1≤···≤nK≤M

K−1∑

i=1

[
Sni+1f~n,i(x) − Snif~n,i(x)

]
Q(x) dx

∣∣∣

.
∥∥∥
∑

~n

(K−1∑

i=1

|f~n,i|r
′
)1/r′∥∥∥

Lp′,q′
2 (T)

‖Q‖Lp,q1 (T).

We fix an irrational number λ in (0, 1), say λ = 1/
√

2. We then define “partial sum

operators” for Fourier integrals by Ŝtf(ξ) = χ[−λ,λ](ξ/t)f̂ (ξ) and a corresponding partial

sum operator S̃t on Fourier series by letting the kth Fourier coefficient of S̃tf be equal

to χ[−λ,λ](k/t)f̂k. We define a function ν : N0 → N0 as follows: set ν(0) = 0 and for
n > 0 let ν(n) be the smallest positive integer ν for which λν > n. Notice that then

(65) Sni+1f~n,i(x) − Snif~n,i(x) = S̃ν(ni+1)f~n,i − S̃ν(ni)f~n,i.

Now in order to prove (64) it clearly suffices to verify it for the case that the function
f~n,i and Q are trigonometric polynomials. The multipliers corresponding to St are
continuous at every integer. Thus by (61) (applied with d = 1) and (65) we see that (64)
is implied by

(66)
∣∣∣

∑

0≤n1≤···≤nK≤M

K−1∑

i=1

∫ 1

0

[
Sν(ni+1)(f~n,iwR,p′) − Sν(ni)(f~n,iwR,p′)

]
QwR/p dx

∣∣∣

.
∥∥∥
∑

~n

(K−1∑

i=1

|f~n,i|r
′
)1/r′∥∥∥

Lp′,q′2 (T)
‖Q‖Lp,q1 (T).

for sufficiently large R.

Now notice that St = Sλt −S−λt so that the assumed Lp,q1(R) → Lp,q2(V r,R) bound-
edness for the family {St} implies the analogous statement for the family {St}. We
run the duality argument in the reverse direction (now for functions defined on R) and
deduce

∣∣∣
∫

R

∑

0≤n1≤···≤nK≤M

K−1∑

i=1

(
Sν(ni+1)[f~n,iwR/p′ ] − Sν(ni)[f~n,iwR/p′ ]

)
QwR/p dx

∣∣∣

.
∥∥∥
∑

~n

(K−1∑

i=1

|f~n,i|r
′
)1/r′

wR/p′

∥∥∥
Lp′,q′

2 (R)
‖QwR/p‖Lp,q1 (R).

By Lemma A.2 the right hand side of this inequality is for R ≥ max{p, p′} bounded by
the right hand side of (66). Thus we have established inequality (66) and this concludes
the proof. �
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B. A variational Menshov-Paley-Zygmund theorem

For ξ, x ∈ R let

C[f ](ξ, x) =

∫ x

−∞
e−2πiξx′

f(x′) dx′.

Menshov, Paley, and Zygmund extended the Hausdorff-Young inequality by proving a
version of the bound

(67) ‖C[f ]‖
Lp′

ξ (L∞
x )

≤ Cp‖f‖Lp(R)

for 1 ≤ p < 2. The bound at p = 2 is a special case of the much more difficult maximal
inequality for the partial sum operator of proved by Carleson and Hunt. Interpolat-
ing Theorem 1.2 at p = 2 with a trivial estimate at p = 1, one obtains the following
stregthened version of (67)

(68) ‖C[f ]‖
Lp′

ξ (V r
x )

≤ Cp,r‖f‖Lp(R)

for 1 ≤ p ≤ 2 and r > p. It follows from the same arguments given in Section 2 that this
range of r is the best possible. Our interest in this variational bound primarily stems from
the fact, which will be proven in Appendix C, that it may be transferred, when r < 2, to
give a corresponding estimate for certain nonlinear Fourier summation operators. The
purpose of the present appendix is to give an easier alternate proof of (68) when p < 2.
Note that Pisier and Xu [27] have proved closely related Lp → L2(V p) inequalities for
orthonormal systems of (not necessarily bounded) functions on an arbitrary measure
space.

A now-famous lemma of Christ and Kiselev [5] asserts that if an integral operator

Tf(x) =

∫

R

K(x, y)f(y) dy

is bounded from Lp(R) to Lq(X) for some measure space X and some q > p, thus

‖Tf‖Lq(X) ≤ A‖f‖Lp(R),

then automatically the maximal function

T∗f(x) = sup
N∈R

∣∣∣
∫

y<N
K(x, y)f(y) dy

∣∣∣

is also bounded from Lp(R) to Lq(X), with a slightly larger constant. Another way to
phrase this is as follows. If we define the partial integrals

T≤f(x,N) =

∫

y<N
K(x, y)f(y) dy

then we have

(69) ‖T≤f‖Lq
x(L∞

N ) ≤ Cp,qA‖f‖Lp(R).

As was observed by Christ and Kiselev, this may be applied in conjunction with the
Hausdorff-Young inequality to obtain (67) for p < 2.

The L∞
N norm can also be interpreted as the V∞

N norm, and we will now see that V∞

can be replaced by V r for r > p, thus giving (68) from the Hausdorff-Young inequality.
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Lemma B.1. Under the same assumptions, we have

‖T≤f‖Lq
x(V r

N ) ≤ Cp,q,rA‖f‖Lp(R)

for any r > p.

Proof. This follows by an adaption of the argument by Christ and Kiselev, or by the
following argument. Without loss of generality we may take r < q, in particular r <∞.
We use a bootstrap argument. Let us make the a priori assumption that

(70) ‖T≤f‖Lq
x(V r

N ) ≤ BA‖f‖Lp(R)

for some constant 0 < B < ∞; this can be accomplished for instance by truncating the
kernel K appropriately. We will show that this a priori bound automatically implies the
bound

(71) ‖T≤f‖Lq
x(V r

N ) ≤ (21/r−1/pBA+ Cp,q,rA)‖f‖Lp(R)

for some Cp,q,r > 0. This implies that the best bound B in the above inequality will
necessarily obey the inequality

B ≤ 21/r−1/pB + Cp,q,r;

since r > p, this implies B ≤ C ′
p,q,r for some finite C ′

p,q,r, and the claim follows.

It remains to deduce (71) from (70). Fix f ; we may normalize ‖f‖Lp(R) = 1. We find
a partition point N0 in the real line which halves the Lp norm of f :

∫ N0

−∞
|f(y)|p dy =

∫ +∞

N0

|f(y)|p dy =
1

2
.

Write f−(y) = f(y)1(−∞,N0](y) and f+(y) = f(y)1[N0,+∞)(y), thus ‖f−‖Lp(R) = 2−1/p

and ‖f+‖Lp(R) = 2−1/p. We observe that

T≤f(x,N) =

{
T≤f−(x,N) when N ≤ N0

Tf−(x) + T≤f+(x,N) when N > N0

Furthermore, T≤f−(x, ·) and T≤f+(x, ·) are bounded in L∞ norm by O(T∗f(x)). Thus
we have

‖T≤f(x, ·)‖V r
N
≤ (‖T≤f−(x, ·)‖r

V r
N

+ ‖T≤f+(x, ·)‖r
V r

N
)1/r +O(T∗f(x)).

(The O(T∗f(x)) error comes because the partition used to define ‖T≤f(x, ·)‖V r
N

may have
one interval which straddles N0). We take Lq norms of both sides to obtain

‖T≤f‖Lq
xV r

N
≤ ‖(‖T≤f−(x, ·)‖r

V r
N

+ ‖T≤f−(x, ·)‖r
V r

N
)1/r‖Lq

x
+O(‖T∗f‖Lq

x
).

The error term is at most Cp,qA by the ordinary Christ-Kiselev lemma. For the main
term, we take advantage of the fact that r < q to interchange the lr and Lq norms, thus
obtaining

‖T≤f‖Lq
xV r

N
≤ (‖T≤f−‖r

Lq
xV r

N
+ ‖T≤f+‖r

Lq
xV r

N
)1/r +O(Cp,qA).

By inductive hypothesis we thus have

‖T≤f‖Lq
xV r

N
≤ ((2−1/pBA)r + (2−1/pBA)r)1/r +O(Cp,qA),

and the claim follows.

�
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C. Variation norms on Lie groups

In this appendix, we will show that certain r-variation norms for curves on Lie groups
can be controlled by the corresponding variation norms of their “traces” on the Lie
algebra as long as r < 2. This follows from work of Terry Lyons [23]; we present a self
contained proof in this appendix. Combining this fact with the variational Menshov-
Paley-Zygmund theorem of Appendix B, we rederive the Christ-Kiselev theorem on the
pointwise convergence of the nonlinear Fourier summation operator for Lp(R) functions,
1 ≤ p < 2.

Let G be a connected finite-dimensional Lie group with Lie algebra g. We give g any
norm ‖ · ‖g, and push forward this norm using left multiplication by the Lie group to
define a norm ‖x‖TgG = ‖g−1x‖g on each tangent space TgG of the group. Observe that
this norm structure is preserved under left group multiplication.

We can now define the length |γ| of a continuously differentiable path γ : [a, b] → G
by the usual formula

|γ| =

∫ b

a
‖γ′(t)‖Tγ(t)G dt.

Observe that this notion of length is invariant under left group multiplication, and also
under reparameterization of the path γ.

From this notion of length, we can define a metric d(g, g′) on G as

d(g, g′) = inf
γ:γ(a)=g,γ(b)=g′

|γ|

where γ ranges over all differentiable paths from g to g′. It is easy to see that this does
indeed give a metric on G.

Integral curves of left invariant vectorfields need not be geodesic for this metric [28],
but the length of a short segment of such an integral curve is within a quadratically small
error of the distance between the two endpoints. This is the content of the following
lemma:

Lemma C.1. If x ∈ g is such that ‖x‖g ≤ ǫ for some sufficiently small ǫ, then
d(1, exp(x)) = ‖x‖g +O(‖x‖2

g).

Proof. By considering the exponential curve γ : [0, 1] → G defined by γ(t) := exp(tx)
we obtain the upper bound d(1, exp(x)) ≤ ‖x‖g. Now consider any competitor curve
γ̃ : [0, 1] → G from 1 to exp(x) which has shorter length than ‖x‖g. We write γ̃(t) =
exp(f(t)) for some smooth curve f : [0, 1] → g from 1 to x; this is well-defined if ǫ is
small enough.

There are two cases. First suppose that f stays inside the ball {y : ‖y‖g ≤ 2‖x‖g}.
Then from Taylor expansion we see that

‖γ̃′(t)‖Tγ(t)G = (1 +O(‖x‖g))‖f ′(t)‖g

and hence
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|γ̃| = (1 +O(‖x‖g))

∫ 1

0
‖f ′(t)‖g dt.

But from Minkowski’s inequality one has
∫ 1
0 ‖f ′(t)‖g dt ≥ ‖x‖g, and the claim follows.

Now suppose instead that f leaves this ball. Let 0 < t0 < 1 be the first time at which
this occurs. Then the above argument gives

|γ̃| ≥ (1 +O(‖x‖g))

∫ t0

0
‖f ′(t)‖g dt.

By Minkowski’s inequality one has
∫ t0
0 ‖f ′(t)‖g dt ≥ 2‖x‖g, and this gives a contra-

diction to |γ̃| ≤ ‖x‖g ≤ ǫ if ǫ is sufficiently small. The claim follows. �

Given any continuous path γ : [a, b] → G and 1 ≤ r < ∞, we define the r-variation
‖γ‖V r of γ to be the quantity

‖γ‖V r = sup
a=t0<t1<...<tn=b

( n−1∑

j=0

d(γ(tj+1), γ(tj))
r
)1/r

where the infimum ranges over all partitions of [a, b] by finitely many times a = t0, t1,
. . . , tn = b. We can extend this to the r = ∞ case in the usual manner as

‖γ‖V ∞ = sup
a=t0<t1<...<tn=b

sup
0≤j≤n−1

d(γ(tj+1), γ(tj)),

and indeed it is clear that the V∞ norm of γ is simply the diameter of the range of γ.
The V 1 norm of γ is finite precisely when γ is rectifiable, and when γ is differentiable
it corresponds exactly with the length |γ| of γ defined earlier. It is easy to see the
monotonicity property

‖γ‖V p ≤ ‖γ‖V r whenever 1 ≤ r ≤ p ≤ ∞
and the triangle inequalities

(‖γ1‖r
V r + ‖γ2‖r

V r)1/r ≤ ‖γ1 + γ2‖V r ≤ ‖γ1‖V r + ‖γ2‖V r

where γ1 + γ2 is the concatenation of γ1 and γ2. A key fact about the V r norms is that
they can be subdivided:

Lemma C.2. Let γ : [a, b] → G be a continuously differentiable curve with finite V r

norm. Then there exists a decomposition γ = γ1 + γ2 of the curve into two sub-curves
such that

‖γ1‖V r , ‖γ2‖V r ≤ 2−1/r‖γ‖V r .

Proof. Let t∗ = sup{t ∈ [a, b] : ‖γ|[a,t]‖V r ≤ 2−1/r‖γ‖V r}. Letting γ1 = γ|[a,t∗] we have

‖γ1‖V r = 2−1/r‖γ‖V r . The bound for γ2 = γ|[t∗,b] follows from the left triangle inequality
above. �
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Given a continuously differentiable curve γ : [a, b] → G, we can define its left trace
γl : [a, b] → g by the formula

γl(t) =

∫ t

a
γ(s)−1γ′(s) ds

Note that the trace is also a continuously differentiable curve, but taking values now in
the Lie algebra g instead of G. Clearly γl is determined uniquely from γ. The converse
is also true after specifying the initial point γ(a) of γ, since γ can then be recovered by
solving the ordinary differential equation

(72) γ′(t) = γ(t)γ′l(t).

This equation is fundamental in the theory of eigenfunctions of a one-dimensional Schrö-
dinger or Dirac operator, or equivalently in the study of the nonlinear Fourier transform;
see, for example, [33], [25] for a full discussion. Basically for a fixed potential f(t) and
a frequency k, the nonlinear Fourier transform traces out a curve γ(t) (depending on k)
taking values in a Lie group (e.g. SU(1, 1)), and the corresponding left trace is essentially
the ordinary linear Fourier transform.

It is easy to see that these curves have the same length (i.e. they have the same V 1

norm):

(73) |γ| = |γl|.
We now show that something similar is true for the V r norms provided that r < 2.

Lemma C.3. Let 1 ≤ r < 2, let G be a connected finite-dimensional Lie group, and let
‖ · ‖g be a norm on the Lie algebra of G. Then there exist a constant C > 0 depending
only on these above quantities, such that for all smooth curves γ : [a, b] → G, we have

(74) ‖γ‖V r ≤ ‖γl‖V r + Cmin(‖γl‖2
V r , ‖γl‖r

V r)

and

(75) ‖γl‖V r ≤ ‖γ‖V r + Cmin(‖γ‖2
V r , ‖γ‖r

V r).

An analogous result holds for the right trace,
∫ t
a γ

′(s)γ(s)−1 ds, once the left-invariant
norm on TgG is replaced by a right-invariant norm.

Proof. We may take r > 1 since the claim is already known for r = 1 thanks to (73).

It shall suffice to prove the existence of a small δ > 0 such that we have the estimate

(76) ‖γ‖V r = ‖γl‖V r +O(‖γl‖2
V r)

whenever ‖γl‖V r ≤ δ, and similarly

(77) ‖γl‖V r = ‖γ‖V r +O(‖γ‖2
V r)

whenever ‖γ‖V r ≤ δ. (We allow the O() constants here to depend on r, the Lie group
G, and the norm structure, but not on δ). Let us now see why these estimates will prove
the lemma. Let us begin by showing that (76) implies (74). Certainly this will be the
case if γl has V r norm less than δ. If instead γl has V r norm larger than δ, we can use
Lemma C.2 repeatedly to partition it into O(δ−r‖γl‖r

V r) curves, all of whose V r norms
are less than δ. These curves are the left-traces of various components of γ, and thus
by (76) these components have a V r norm bounded by some quantity depending on δ.
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Concatenating these components together (using the triangle inequality) we obtain the
result. A similar argument allows one to deduce (75) from (77).

Next, we observe that to prove the two estimates (76), (77) it suffices to just prove
one of the two, for instance (76), as this will also imply (77) for ‖γ‖V r sufficiently small
by the usual continuity argument (look at the set of times t for which the restriction of γ
to [a, b] obeys a suitable version of (77), and use (76) to show that this set is both open
and closed if ‖γ‖V r is small enough).

It remains to prove (76) for δ sufficiently small. We shall in fact prove the more precise
statement (note γl(a) = 0)

(78) ‖ log(γ(a)−1γ(b)) − γl(b)‖g ≤ K‖γl‖2
V r

for some absolute constant K > 0 (and for δ sufficiently small), where log is the inverse
of the exponential map exp : g → G. Note that it follows from a continuity argument
as in the previous paragraph that if δ is sufficiently small then γ(b)−1γ(a) is sufficiently
close to the identity so that the logarithm is well-defined. Let us now see why (78)
implies (76). Applying the inequality to any segment [tj , tj+1] in [a, b] we see that

‖ log(γ(tj)
−1γ(tj+1)) − (γl(tj+1) − γl(tj))‖g ≤ K‖γl|[tj ,tj+1]‖2

V r

and hence with Lemma C.1 (since δ is small)

d(γ(tj+1), γ(tj)) = ‖γl(tj+1) − γl(tj)‖g +O(‖γl|[tj ,tj+1]‖2
V r).

Estimating O(‖γl|[tj ,tj+1]‖2
V r) crudely by ‖γl‖V rO(‖γl|[tj ,tj+1]‖V r) and taking the ℓr sum

in the j index, we see that for any partition a = t0 < . . . < tn = b we have

( n−1∑

j=0

d(γ(tj+1), γ(tj))
r
)1/r

=
( n−1∑

j=0

‖γl(tj+1) − γl(tj)‖r
g

)1/r
+O(‖γl‖2

V r).

Taking suprema over all partitions we obtain the result.

It remains to prove (78) for some suitably large K. This we shall do by an induction
on scale (or “Bellman function”) argument. Let us fix the smooth curve γ. We shall
prove the estimate for all subcurves of γ, i.e. for all intervals [t1, t2] in [a, b], we shall
prove that

(79) ‖ log(γ(t1)
−1γ(t2)) − (γl(t2) − γl(t1))‖g ≤ K‖γl|[t1,t2]‖2

V r .

Let us first prove this in the case when the interval [t1, t2] is sufficiently short, say of
length at most ǫ for some very small ǫ (depending on γ). In that case, we perform a
Taylor expansion to obtain

(80) γl(t) = γl(t1) + γ′l(t1)(t− t1) +
1

2
γ′′l (t1)(t− t1)

2 +Oγ((t− t1)
3)

and

(81) γ′l(t) = γ′l(t1) + γ′′l (t1)(t− t1) +Oγ((t− t1)
2)

when t ∈ [t1, t2], and where the γ subscript in Oγ means that the constants here are
allowed to depend on γ (more specifically, on the C3 norm of γ), and the O() is with
respect to the ‖‖g norm. Also we remark that as γ is assumed smooth, γ′l(t1) is bounded
away from zero. It is then an easy matter to conclude that

(82) ‖γl|[t1,t2]‖V r ≥ 1

2
‖γ′l(t1)‖g|t2 − t1|
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if ǫ is sufficiently small depending on γ. On the other hand, from (72) and (81) we have

γ′(t) = γ(t)(γ′l(t1) + γ′′l (t1)(t− t1) +Oγ((t− t1)
2))

from which one may conclude that

γ(t) = γ(t1) exp(γ′l(t1)(t− t1) +
1

2
γ′′l (t1)(t− t1)

2 +O(‖γ′l(t1)2‖g|t− t1|2) +Oγ((t− t1)
3))

for all t ∈ [t1, t2], if γ is sufficiently small. We rewrite this as

log(γ(t1)
−1γ(t))

= γ′l(t1)(t− t1) +
1

2
γ′′l (t1)(t− t1)

2 +O(‖γ′l(t1)2‖g|t− t1|2) +Oγ((t− t1)
3),

and then specialize to the case t = t2. By (80), we have

log(γ(t1)
−1γ(t2)) − (γl(t2) − γl(t1)) = O(‖γ′l(t1)2‖g|t2 − t1|2) +Oγ((t2 − t1)

3),

and hence by (82) we have (79) if t2 − t1 is small enough (depending on γ) and K is
large enough (independent of γ).

This proves (79) when the interval [t1, t2] is small enough. By (82), it also proves (79)
when ‖γl|[t1,t2]‖V r is sufficiently small. To conclude the proof of (79) in general, we now
assert the following inductive claim: if (79) holds whenever ‖γl|[t1,t2]‖V r < ǫ and some

given 0 < ǫ ≤ δ, then it also holds whenever ‖γl|[t1,t2]‖V r < 21/rǫ, providing that K
is sufficiently large (independent of ǫ) and δ is sufficiently small (depending on K, but
independent of ǫ). Iterating this we will obtain the claim (79) for all intervals [t1, t2] in
[a, b].

It remains to prove the inductive claim. Let [t1, t2] be any subinterval of [a, b] such

that the quantity A = ‖γl|[t1,t2]‖V r is less than 21/rǫ. Applying Lemma C.2, we may
subdivide [t1, t2] = [t1, t∗] ∪ [t∗, t2] such that

‖γl|[t1,t∗]‖V r , ‖γl|[t∗,t2]‖V r ≤ 2−1/rA < ǫ ≤ r.

By the inductive hypothesis, we thus have

‖ log(γ(t1)
−1γ(t∗)) − (γl(t∗) − γl(t1))‖g ≤ K2−2/rA2

and

‖ log(γ(t∗)
−1γ(t2)) − (γl(t2) − γl(t∗))‖g ≤ K2−2/rA2.

In particular, we have

‖ log(γ(t1)
−1γ(t∗))‖g ≤ ‖γl(t∗) − γl(t1)‖g +K2−2/rA2

≤ ‖γl|[t1,t∗]‖V r +O(KA2)

= O(A(1 +KA)) = O(A(1 +Kδ)) = O(A)

if δ is sufficiently small depending on K. Similarly we have

‖ log(γ(t∗)
−1γ(t2))‖g = O(A)

and hence by the Baker-Campbell-Hausdorff formula (if δ is sufficiently small)

‖ log(γ(t1)
−1γ(t2)) − log(γ(t1)

−1γ(t∗)) − log(γ(t∗)
−1γ(t2))‖g = O(A2).

By the triangle inequality, we thus have

‖ log(γ(t1)
−1γ(t2)) − (γl(t2) − γl(t1))‖g ≤ 2K2−2/rA2 +O(A2).
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We now use the hypothesis r < 2, which forces 2 × 2−2/r < 1. If K is large enough
(depending on r, but independently of δ, A, or ǫ) we thus have (79). This closes the
inductive argument. �

Letting w, v be any elements of the Lie algebra g, one can define a nonlinear Fourier
summation operator associated to G,w, v by means of the left trace

NC[f ](k, 0) = I

∂

∂x
NC[f ](k, x) = NC[f ](k, x)

(
Re(e−2πikxf(x))w + Im(e−2πikxf(x))v

)

or (giving a different operator) by the right trace

NC[f ](k, 0) = I

∂

∂x
NC[f ](k, x) =

(
Re(e−2πikxf(x))w + Im(e−2πikxf(x))v

)
NC[f ](k, x).

Above, k, x ∈ R, NC[f ] takes values in G, I is the identity element of G, and Re, Im are
the real and imaginary parts of a complex number. An example of interest is given by
G = SU(1, 1), and

w =

(
0 1
1 0

)
, v =

(
0 i
−i 0

)
.

Combining Lemma C.3 with the variational Menshov-Paley-Zygmund theorem of the
previous section, we obtain a variational version of the Christ-Kiselev theorem [6].
Namely, we see that for 1 ≤ p < 2 and r > p

∥∥1|NC[f ]|≤1NC[f ]
∥∥

Lp′

k (V r
x )

≤ Cp,r,G,w,v‖f‖Lp(R)

and ∥∥1|NC[f ]|≥1NC[f ]
∥∥1/r

L
p′/r
k (V r

x )
≤ Cp,r,G,w,v‖f‖Lp(R).

Note that the usual logarithms are hidden in the d metric we have placed on the Lie
group G.

Extending these estimates to the case p = 2 is an interesting and challenging problem,
even when r = ∞, which would correspond to a nonlinear Carleson theorem. Lemma
C.3 cannot be extended to any exponent r ≥ 2. Sandy Davie and the fifth author of
this paper have an unpublished example of a curve in the Lie group SU(1, 1) with trace
in the subspace of su(1, 1) of matrices vanishing on the diagonal so that the diameter of
the curve is not controlled by the 2-variation of the trace.

Terry Lyons’ machinery [24] via iterated integrals faces an obstruction in a potential
application to a nonlinear Carleson theorem because of the unboundedness results for
the iterated integrals shown in [26].

D. An application to ergodic theory

Wiener-Wintner type theorems is an area in ergodic theory that is most closely related
to the study of Carleson’s operator. In [19], Lacey and Terwilleger prove the following
singular integral variant of the Wiener-Wintner theorem:
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Theorem D.1. For 1 < p, all measure preserving flows {Tt : t ∈ R} on a probability
space (X,µ) and functions f ∈ Lp(µ), there is a set Xf ⊂ X of probability one, so that
for all x ∈ Xf we have that the limit

lim
s→0

∫

s<|t|<1/s
eiθtf(Ttx)

dt

t
.

exists for all θ ∈ R.

One idea to approach such convergence results is to study quantitative estimates in
the parameter s that imply convergence, as pioneered by Bourgain’s paper [1] in similar
context. We first need to pass to a mollified variant of the above theorem:

Theorem D.2. Let φ be a function on R in the Wiener space, i.e. the Fourier transform

φ̂ is in L1(R). For 1 < p, all measure preserving flows {Tt : t ∈ R} on a probability space
(X,µ) and functions f ∈ Lp(µ), there is a set Xf ⊂ X of probability one, so that for all
x ∈ Xf we have that the limits

lim
s→∞

∫
eiθtf(Ttx)φ(st)

dt

t
,

lim
s→0

∫
eiθtf(Ttx)φ(st)

dt

t
.

exist for all θ ∈ R.

This theorem clearly follows from an a priori estimate
∥∥∥ sup

θ

∥∥
∫
eiθtf(Ttx)φ(st)

dt

t

∥∥
V r(s)

∥∥∥
Lp(x)

≤ C‖f‖Lp

for r > max(2, p′). Here we have written V r(s) for the variation norm taken in the
parameter s of the expression inside, and likewise for Lp(x). The variation norm is the
strongest norm widely used in this context, while Lacey and Terwilliger use a weaker
oscillation norm in the proof of their Theorem.

By a standard transfer method ([3], [7]) involving replacing f by translates Tyf and
an averaging procedure in y, the a priori estimate can be deduced from an analogous
estimate on the real line

(83)
∥∥∥ sup

ξ

∥∥∥
∫
eξitf(x+ t)φ(st)

dt

t

∥∥∥
V r(s)

∥∥∥
Lp(x)

. ‖f‖Lp .

The main purpose of this appendix is to show how this estimate (83) can be deduced
from the main theorem of this paper by an averaging argument. We write the V r(s)
norm explicitly and expand φ into a Fourier integral to obtain for the left hand side of
(83) the expression

∥∥∥ sup
ξ

sup
s0<s1<···<sK

( K∑

k=1

∣∣∣
∫ ∫

eξitf(x+ t)eiη(sk−sk−1)t
dt

t
φ̂(η) dη

∣∣∣
r)1/r∥∥∥

Lp(x)
.

Now pulling the integral in η out of the various norms and considering only positive η
(with the case of negative η being similar) and defining ξk = ξ+ηsk we obtain the upper
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bound
∫

η>0

∥∥∥ sup
ξ0<ξ1<···<ξK

( K∑

k=1

∣∣∣
∫
ei(ξk−ξk−1)tf(x+ t)

dt

t

∣∣∣
r)1/r∥∥∥

Lp(x)
|φ̂(η)| dη .

Now applying the variational Carleson estimate and doing the trivial integral in η bounds
this term by a constant times ‖f‖Lp .

Remark D.3. To prove the Lacey-Terwilleger theorem D.1 from the mollified version,
one may approximate the characteristic functions used as cutoff functions by Wiener
space functions so that the difference is small in L1 norm. Then at least for f in L∞ one
can show convergence of the limits by an approximation argument, even though one will
not recover the full strength of the quantitative estimate in the Wiener space setting.
The result for f in L∞ can then be used as a dense subclass result in other Lp spaces,
which can be handled by easier maximal function estimates and further approximation
arguments.

Remark D.4. The classical version of the Wiener-Wintner theorem does not invoke sin-
gular integrals but more classical averages of the type

1

2s

∫

|t|<s
eiθtf(Ttx) dt .

We note that the same technique as above may be applied to these easier averages.
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