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Abstract
We prove a sharp L p-Sobolev regularity result for a class of generalized Radon trans-
forms for families of curves in a three-dimensional manifold, with folding canonical
relations. The proof relies on decoupling inequalities by Wolff and by Bourgain–
Demeter for plate decompositions of thin neighborhoods of cones.
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1 Introduction

In this paperwe continue the study [20] of L p regularity properties of integral operators
along families of curves inR

3 satisfying suitable curvature and torsion conditions. The
previous article dealt with the translation invariant case, i.e., the integrals

A f (x) =
∫

f (x − γ (s))χ(s)ds (1.1)
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where γ is a curve in R
3 with nonvanishing curvature and torsion and χ is smooth

and compactly supported. The authors showed an optimal result with a gain of 1/p
derivatives for sufficiently large p, namely that for large p the operatorAmaps L p(R3)

into the L p-Sobolev space L p
1/p. The usual combination of damping of oscillatory

integrals arguments and improved L∞ bounds, as employed in [24], does not apply to
averaging operators for curves in three or higher dimensions. Instead the authors had
to apply a deep result ofWolff [26] on decompositions of cone multipliers inR

3 which
is now known as an �p-decoupling inequality. The result in [20] can be combined with
a recent result by Bourgain and Demeter [5] which extends the decoupling result for
the cone in R

3 to the optimal L p range p > 6; this combination immediately yields
A : L p(R3) → L p

1/p(R
3) for p > 4. A result by Oberlin and Smith [15] shows that

this range is optimal, up to possibly the endpoint p = 4.
In the current work we shall treat extensions of these results for operators which

are not of convolution type. Let �L , �R be three-dimensional smooth manifolds and
consider families of curves Mx ⊂ �R parametrized by and smoothly depending on
x ∈ �L . Let dσx be arclength measure on Mx and χ◦ ∈ C∞

c (R3 × R
3). We define

the generalized Radon transform operator R : C∞
c (�R) → C∞(�L) by

R f (x) =
∫
Mx

f (y)χ◦(x, y)dσx (y) . (1.2)

In order to formulate our results we use the double fibration formalism of Gelfand
and Helgason (see, e.g., [11], p. 340 ff.). Assume

Mx = {y ∈ �R : (x, y) ∈ M}

where M is a submanifold of �L ×�R of codimension 2 such that the projections

M

�L �R

(1.3)

have surjective differentials. The surjectivity assumption on the differential ofM →
�L implies that theMx are smooth immersed curves in �R (depending smoothly on
x). Similarly the corresponding assumption on the differential of M → �R implies
that My = {x ∈ �L : (x, y) ∈ M} are smooth immersed curves in �L (depending
smoothly on y).

The operatorR can be realized as a Fourier integral operator of order−1/2 belong-

ing to the Hörmander class I− 1
2 (�L ,�R; (N∗M)′) where

(N∗M)′ = {(x, ξ, y, η) : (x, y, ξ,−η) ∈ N∗M}

with N∗M the conormal bundle given by

N∗M := {
(x, y, η, ξ)) ∈ T ∗(�L ×�R) \ {0} : (ξ, η) ⊥ T(x,y)M

}
.
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Lp-Sobolev Regularity of Generalized Radon Transforms

(cf. Sect. 2).
The assumptions on the projections (1.3) imply that

C := (N∗M)′ ⊂ (T ∗�L \ 0L)× (T ∗�R \ 0R)

with 0L and 0R referring to the zero sections of the cotangent spaces T ∗�L and T ∗�R ,
respectively. C is a homogenous canonical relation, i.e., if σL and σR are the canonical
two-forms on T ∗�L and T ∗�R , respectively, then C is Lagrangian with respect to
σL − σR . As is well known from the theory of Fourier integral operators (see [12],
[17]), the L2 Sobolev regularity properties ofR are governed by the geometry of the
projections

C
πL πR

T ∗�L T ∗�R

(1.4)

Since C is Lagrangian the differential (DπL)P is invertible if and only if (DπR)P
is invertible [12]. For the canonical relations for averaging operators over curves in
dimensions ≥ 3 the maps πL (and πR) fail to be diffeomorphisms, namely for every
point (x, y) ∈ M there is P = (x, ξ, y, η) ∈ (N∗M)′ so that (DπL)P and (DπR)P
are not invertible.

Statement of theMain Result

We shall assume that the only singularities πL and πR are Whitney folds and say that
C projects with two-sided fold singularities. Recall the definition from [13, Appendix
C4]. Given a C∞ map g : X → Y between C∞ manifolds and P ∈ X the Hessian
g′′(P) is invariantly defined as a map from ker(g′)P to Coker (g′)g(P). Then g has a
Whitney fold at P if dim(ker(g′)P ) = 1, dim(Coker (g′)g(P ) = 1 and the Hessian at
P is not equal to 0. Equivalently, g is such that for every point P ∈ X , DgP is either
invertible or g has a Whitney fold; then L = {P : det(Dg)P �= 0} is an immersed
hypersurface of X and for any vector field V with VP ∈ ker(Dg)P for all P ∈ L (a
“kernel field”) we have V (det Dg) �= 0 at P .

Theorem 1.1 Let M ⊂ �L × �R be a four-dimensional manifold such that the pro-
jections (1.3) are submersions. Assume that the only singularities of πL : (N ∗M)′ →
T ∗�L and πR : (N ∗M)′ → T ∗�R are Whitney folds. Let L ⊂ (N∗M)′ be the
conic hypersurface manifold where DπL and DπR drop rank by one, and let 
 be
the projection of (N ∗M)′ to the baseM. Suppose that its restriction to L,


 : L �→ M (1.5)

is a submersion. Then R extends to a continuous operator

R : L p
comp(�R) �→ L p

1/p,loc(�L), 4 < p < ∞ .
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The conclusion means that for any C∞-function υ compactly supported in a coor-
dinate chart of �L and for any compact K ⊂ �R we have for all L p functions f
supported in K

‖υR f ‖L p
1/p

≤ Cp(υ, K )‖ f ‖p .

Here L p
s is the standard Sobolev space consisting of tempered distributions g on R

3

with (I − �)s/2g ∈ L p(R3). It is easy to see that the regularity index s = 1/p
cannot be improved. As mentioned above the result fails for p < 4, by a result in [15].
Regarding the hypotheses in Theorem 1.1, one may conjecture that the two-sided fold
assumption can be weakened to a one-sided fold assumption, i.e., that the assumption
of πR being a Whitney fold can be dropped. See Sect. 4.2 for further discussion of
relevant examples, and Sect. 10 for related results.

Using a theorem in [22] the regularity result can be further improved by using
Triebel–Lizorkin spaces Fs

p,q , namely we have

‖υR f ‖
F1/p
p,q

≤ Cp,q(υ, K )‖ f ‖F0
p,p

, 4 < p < ∞, q > 0, (1.6)

for f ∈ F0
p,p supported in K , this is further discussed in Sect. 9. Recall that Fs

p,2 = L p
s

and Fs
p,q ⊂ Fs

p,2 ⊂ Fs
p,p = B0

p,p for q ≤ 2 ≤ p, and any s ∈ R.
NotationWe shall use the notation A � B for A ≤ CB with an unspecified constant

C .

2 Generalized Radon Transforms and Fourier Integral
Representations

We recall some basic facts on generalized Radon transforms and Fourier integrals. By
localization we may assume that the Schwartz kernel of our operator is supported in
a small neighborhood of a base point P◦ = (x◦, y◦) ∈ M. On the neighborhood the
manifold M is given by a defining function 
, i.e., M = {(x, y) : 
(x, y) = 0},
where
 = (
1,
2)ᵀ is a two-dimensional vector function defined on�L ×�R and
such that 
(P0) = 0. The Schwartz kernel of our operator is given by the measure
χ δ ◦ 
 where δ is the Dirac measure in R

2 and χ is C∞ and compactly supported
near the base point which can be chosen to be the origin in R

3 × R
3. By the Fourier

inversion formula the Schwartz kernel is an oscillatory integral distribution, formally
written as [11,12,24]

χ(x, y)δ ◦
(x, y) = (2π)−2
∫∫

ei(τ1
1(x,y)+τ2
2(x,y))χ(x, y)dτ. (2.1)

Since the projectionM → �L is a submersion, the 2×3matrix
y has rank 2, so by
a linear change of variables in y, near y0 we can assume that det[∇y′
1,∇y′
2] �= 0
where y′ = (y1, y2)ᵀ. Then (x, y3) can be chosen as the local coordinates on M, so
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Lp-Sobolev Regularity of Generalized Radon Transforms

that the equation 
(x, y) = 0 is equivalent to

yi = Si (x1, x2, x3, y3), i = 1, 2. (2.2)

Since 
(x, S1, S2, y3) = 0, we can write


(x, y) =
2∑

i=1

(Si (x, y3)− yi )Bi (x, y) (2.3)

where

Bi (x, y) = −
∫ 1

0

yi

(
x, S(x, y3)+ s(y′ − S(x, y3)), y3

)
ds.

Since
y1 and
y2 are linearly independent onM, by choosing the cutoff χ to be sup-
ported sufficiently close toM, we can ensure that B1 and B2 are linearly independent
as well. The equation (2.3) can therefore be rewritten as

(

1(x, y)

2(x, y)

)
= B(x, y)

(
S1(x, y3)− y1
S2(x, y3)− y2

)

where B(x, y) is the 2 × 2 invertible matrix whose column vectors are B1 and B2.
Since the projection M → �R is a submersion the x-gradients S1x (x, y3), S

2
x (x, y3)

are linearly independent. Now (2.1) can be rewritten as

χ(x, y) δ◦
(x, y) = χ(x, y)
∫
τ∈R2

ei〈τ,
(x,y)〉dτ

= χ(x, y)

| det B(x, y)|
∫∫

ei〈τ,S(x,y3)−y′〉dτ.
(2.4)

Then in a neighborhood of the reference point P the canonical relation, that is the
twisted conormal bundle (N∗M)′, is given by

{(x, ξ, y, η) : yi = Si (x, y3), i = 1, 2, ξ = τ1S
1
x (x, y3)+ τ2S

2
x (x, y3),

η = (τ1, τ2,−τ1S1y3(x, y3)− τ2S
2
y3(x, y3))}.

Thus using (x1, x2, x3, τ1, τ2, y3) as coordinates on (N∗M)′ the projection πL :
(N∗M)′ → T ∗�L is identified with

π̃L : (x1, x2, x3, τ1, τ2, y3) �→ (x, τ1S
1
x (x, y3)+ τ2S

2
x (x, y3)). (2.5)

Then

det Dπ̃L = det(S1x , S
2
x , τ1S

1
xy3 + τ2S

2
xy3) = τ1�1 + τ2�2
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with
�i (x, y3) ≡ �S

i (x, y3) := det(S1x , S
2
x , S

i
xy3)

∣∣
(x,y3)

, i = 1, 2. (2.6)

Hence L is the submanifold of (N ∗M)′ consisting of (x, ξ, y, η) such that

ξ = τ1S
1
x (x, y3)+ τ2S

2
x (x, y3), η = (τ1, τ2,−τ1S1y3(x, y3)− τ2S

2
y3(x, y3)),

yi = Si (x, y3), i = 1, 2, τ1�1(x, y3)+ τ2�2(x, y3) = 0.

3 Curvature

We shall show that the assumptions in Theorem 1.1 imply a curvature condition on
the fibers of L, as formulated by Greenleaf and the second author in [8].

Let�i be as in (2.6) and P◦ = (a◦, S1(a◦, b◦), S2(a◦, b◦)) be our reference point.
The following preparatory observation is based on the assumption that
 in (1.5) is a
submersion.

Lemma 3.1 We have

|�1(x, y3)| + |�2(x, y3)| �= 0

for (x, y3) near (a, b).

Proof By continuity we have to check |�1| + |�2| �= 0 at P◦.
Let τ ◦ ∈ R

2 \ {0} and let ξ◦ = τ ◦
1 S

1
x (a

◦, b◦)+ τ ◦
2 S

2
x (a

◦, b◦). Clearly if (a◦, ξ◦) /∈
πL(L) then τ ◦

1�1(a◦, b◦) + τ ◦
2�2(a◦, b◦) �= 0 and therefore we may assume that

(a◦, ξ◦) ∈ πL(L), i.e.,

τ ◦
1�1(a

◦, b◦)+ τ ◦
2�2(a

◦, b◦) = 0.

Let VL be a kernel field which we may write as

VL =
2∑

i=1

αi (x, τ )
∂

∂τi
+ α3(x, τ )

∂

∂ y3
+

3∑
i=1

βi (x, y3, τ )
∂

∂xi

where βi = 0, by (2.5). We have

VL(τ1�1 + τ2�2)
∣∣
(a◦,b◦,τ ◦)

=
2∑

i=1

αi (a
◦, τ ◦)�i (a

◦, b◦)+ α3(a
◦, τ ◦)

2∑
i=1

τ ◦
i
∂�i

∂ y3
(a◦, b◦).

We argue by contradiction and assume that

�i (a
◦, b◦) = 0, i = 1, 2. (3.1)
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By assumption VL(det πL) �= 0 on L. Using (3.1) we get

τ ◦
1
∂�1

∂ y3
(a◦, b◦)+ τ ◦

2
∂�2

∂ y3
(a◦, b◦) �= 0. (3.2)

Hence we can, for ( τ
|τ | , x, y3) near (

τ ◦
|τ ◦| , a

◦, b◦), solve τ1�1 + τ2�2 = 0 in y3 and
obtain a function y3(τ1, τ2), homogeneous of degree 0, so that

τ1�1(x, y3)+ τ2�2(x, y3) = 0 ⇐⇒ y3 = y3(x, τ ).

Implicit differentiation gives

∂y3

∂τi
= − �i (x, τ, y3)

τ1∂y3�1 + τ2∂y3�2
, i = 1, 2. (3.3)

Now since we assume that
 : L → M is a submersion the differential of the map
(x, τ ) �→ (x, S1(x, y3(x, τ )), S2(x, y3(x, τ )), y3(x, τ )) is surjective. This implies
that

rank

⎛
⎝∂y3S

1(x, y3)∂τ1y3 ∂y3S
1(x, y3)∂τ2y3

∂y3S
2(x, y3)∂τ1y3 ∂y3S

2(x, y3)∂τ2y3
∂τ1y3 ∂τ2y3

⎞
⎠ = 1

and thus |∂τ1y3| + |∂τ2y3| > 0. But by (3.3) this implies that at least one of the
�i (a◦, b◦) is nonzero, yielding a contradiction to (3.1).

It will be useful to explicitly construct a kernel field VL in a conic neighborhood of
L. Notice that L = L+ ∪ L− where L± =

{(x,±ρ(−�2S
1
x +�1S

2
x ), S

1(x, y3), S
2
x,y3 , y3, τ,±ρ(�2S

1
y3 −�1S

2
y3)) : ρ > 0}.

We identify πL with π̃L as in (2.5).

Lemma 3.2 Define �i (x, y3), i = 1, 2, by

�1 = det
(
S1x S2x,y3 S1xy3

)
, (3.4a)

�2 = det
(
S1xy3 S2x S2xy3

)
. (3.4b)

Let

V±
L = ±|τ |√

�2
1 +�2

2

(
�2(x, y3)

∂

∂τ1
− �1(x, y3)

∂

∂τ2

)
+ ∂

∂ y3
. (3.5)

Then V+
L , V−

L are kernel fields for π̃L near L+, L−, respectively.

Proof We take τ = ±ρ(−�2,�1) and then the assertion reduces to showing that

�2S
1
x − �1S

2
x −�2S

1
xy3 +�1S

2
xy3

∣∣∣
(x,y3)

= 0. (3.6)
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Denote the left-hand side by W . We first observe that

det
(
S1x S2x �1S1x +�2S2x

) = �2
1 +�2

2

which is nonzero, by Lemma 3.1. We use that three vectors v1, v2, v3 ∈ R
3 form a

basis of R
3 if and only if the vector products v1 ∧ v2, v1 ∧ v3, v2 ∧ v3 form a basis,

and apply this fact to {S1x , S2x , �1S1xy3 + �2S2xy3}. Now W = 0 follows by checking
〈W , Six ∧ (�1S1xy3 + �2S2xy3)〉 = 0, for i = 1, 2, and 〈W , S1x ∧ S2x 〉 = 0. These are
straightforward to verify.

We now consider the fibers in T ∗�L of πL(L), namely

�x :=
{
(x, τ1S

1
x (x, y3)+ τ2S

2
x (x, y3)) :

τ1�1(x, y)+ τ2�2(x, y3) = 0, |τ | �= 0
}
. (3.7a)

�x is a cone which splits as ∪±�±
x where

�±
x = {±ρ�(x, y3) : ρ > 0} (3.7b)

with
�(x, y3) = −�2(x, y3)S

1
x (x, y3)+�1(x, y3)S

2
x (x, y3) . (3.7c)

Next, for ρ > 0

V±
L (τ1�1(x, y3)+ τ2�2(x, y3))

∣∣∣
τ=±ρ(−�2,�1)

= ±ρκ(x, y3) (3.8a)

where
κ(x, y3) = �2�1 − �1�2 +�1�2,y3 −�2�1,y3

∣∣∣
(x,y3)

. (3.8b)

This quantity is nonzero, by the assumption that πL projects with a fold singularity.
The following lemma will be crucial to establish the curvature properties of the

cones �x .

Lemma 3.3 Let κ be as in (3.8b). Then

det
(
� �y3 �y3y3

) ∣∣∣
(x,y3)

= −[κ(x, y3)]2.

Proof We have

� = −�2S
1
x +�1S

2
x ,

�y3 = −�2,y3 S
1
x +�1S

2
x −�2S

1
xy3 +�1S

2
xy3,
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and

�y3y3 = −�2,y3y3S
1
x +�1,y3y3 S

2
x

− 2�2,y3 S
1
xy3 + 2�1,y3S

2
xy3 −�2S

1
xy3y3 +�1S

2
xy3y3

where all expressions are evaluated at (x, y3). Also

� ∧�y3 = (�1�2,y3 −�2�1,y3)(S
1
x ∧ S2x )

+ (�1S
2
x −�2S

1
x ) ∧ (�1S

2
xy3 −�2S

1
xy3).

Define

E = �1�2,y3 −�2�1,y3 .

Diligent computation yields

〈� ∧�y3, �y3y3〉 =
5∑

i=1

Ai (3.9)

where

A1 = −2E2,

A2 = E
(
�1 det

(
S1x S2x S2xy3y3

)−�2 det
(
S1x S2x S1xy3y3

) )
,

A3 = (�2�1,y3y3 −�1�2,y3y3)(�1�2 −�2�1) = 0,

A4 = 2E(�2�1 −�1�2)

and

A5 = −�2�1

〈
S1x ∧ S2xy3−�2S

1
xy3y3 +�1S

2
xy3y3

〉

+�2
2

〈
S1x ∧ S1xy3−�2S

1
xy3y3 +�1S

2
xy3y3

〉

+�2
1

〈
S2x ∧ S2xy3−�2S

1
xy3y3 +�1S

2
xy3y3

〉

−�1�2

〈
S2x ∧ S1xy3−�2S

1
xy3y3 +�1S

2
xy3y3

〉
.

We rewrite the expression A5 = A5,1 + A5,2 where

A5,1 = �2
2 det

(
S1x �1S2xy3 S1xy3y3

)−�2
2 det

(
S1x �2S1xy3 S1xy3y3

)
−�1�2 det

(
S2x �1S2xy3 S1xy3y3

)+�1�2 det
(
S2x �2S1xy3 S1xy3y3

)
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and

A5,2 = �2
1 det

(
S2x �1S2xy3 S2xy3y3

)−�2
1 det

(
S2x �2S1xy3 S2xy3y3

)
−�2�1 det

(
S1x �1S2xy3 S2xy3y3

)+�2�1 det
(
S2x �2S2xy3 S2xy3y3

)
.

Now by (3.6) we have

�1S
2
xy3 −�2S

1
xy3 = −�2S

1
x + �1S

2
x .

We use this to simplify A5,1 and A5,2 to

A5,1 = �2(�1�2 − �2�1) det
(
S1x S2x S1xy3y3

)
,

A5,2 = −�1(�1�2 − �2�1) det
(
S1x S2x S2xy3y3

)
.

Wecombine these formulaewith the previous ones for A1, . . . , A4 anduse that A3 = 0.
We get

5∑
j=1

A j = −2E2 + 2E(�2�1 −�1�2)

+ (E +�1�2 −�2�1)
(
�1 det

(
S1x S2x S2xy3y3

)−�2 det
(
S1x S2x S1xy3y3

) )
.

Now using

det
(
S1x S2x Sixy3y3

) = �i,y3 − �i , i = 1, 2,

we obtain

5∑
j=1

A j = −2E2 + 2E(�2�1 −�1�2)

+ (E +�1�2 −�2�1)(�1�2,y3 −�1�2 −�2�1,y3 +�2�1)

= −E2 − 2E(�1�2 −�2�1)− (�1�2 −�2�1)
2

= −(E +�1�2 −�2�1)
2

which gives the assertion.

We now examine the curvature properties of the cone�x = {ρ�(y3)}. Lemma 3.3
implies that�∧�y3 �= 0. The second fundamental form at ρ�(x, y3) with respect to

the unit normal N = �∧�y3|�∧�y3 | is given by

(
ρ〈�y3y3, N 〉 〈�y3, N 〉

〈�y3, N 〉 0

)
=
(
ρ〈�y3y3, N 〉 0

0 0

)
.
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Now, by Lemma 3.3,

ρ〈�y3y3, N 〉 = ρ

|� ∧�y3 |
det
(
� �y3 �y3y3

) = −ρκ(x, y3)2
|� ∧�y3 |

, (3.10)

and the fold condition says that κ does not vanish. Hence �x is a two-dimensional
cone such that everywhere there is exactly one nonvanishing principal curvature, and
it is given by (3.10).

4 SomeModel Operators

The examples motivating the present paper originate from problems in harmonic anal-
ysis and integral geometry. We list a few of them below. The notation used in each of
these examples is self-contained.

4.1 Averages Along Curves with Nonvanishing Curvature and Torsion

Let γ : I → R
3 be a compact space curve with nonvanishing curvature and torsion.

Then, the integral operator A in (1.1) is an example of a Fourier integral operator of
order −1/2 with two-sided fold singularities. Clearly the projection 
 in (1.5) is a
submersion. Thus we recover the result that A : L p → L p

1/p for p > 4 which is
known by a combination of the results in [5,20]. The theorem in this paper shows
that the L p

comp → L p
1/p estimate holds true for small variable perturbations of the

translation invariant case.

4.2 Restricted X-Ray Transforms inR
3

Arestricted X -ray transform inR
3 is the restrictionof theX-ray transform to a line com-

plex, that is, a three-dimensional manifold of lines. Under a suitable well-curvedness
assumption it was shown in [9] (see also [8]) that (local versions) of this operator are
Fourier integral operators of order −1/2 for which the projection πR has Whitney
folds. For a class of generic line complexes we have two-sided fold singularities but
this is not the case for the important class satisfying Gelfand’s admissibility condition
(see [9]) which is relevant for invertibility of the restricted X-ray transform. The opti-
mal L2 → L2

1/4-Sobolev regularity for the latter was obtained in [10], and can also
be seen as a part of a result on more general Fourier integral operators with one-sided
fold singularities in [8].

We discuss a model case. Let I be a compact interval and γ : I → R
2 a smooth

regular curve γ (t) = (t, g(t)), t ∈ I . We assume that γ has nonvanishing curvature,
i.e.,

g′′(t) �= 0, t ∈ I . (4.1)
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Let β ∈ (−1, 1) and let e2 = (0, 1) ∈ R
2. For f ∈ C∞

0 (R3) we define

Rβ f (x1, x2, t) = χ1(t)
∫

f (x1 + st, x2 + s(βx2 + g(t)), s)χ2(s)ds (4.2)

where x ′ = (x1, x2) and χ1, χ2 are smooth real-valued functions, with χ1 supported
in the interior of I and χ2 with compact support contained in R \ {−β−1}.

We examine the adjoint operator which is given by

R∗
βh(x) =

∫
h(S1(x, y3), S

2(x, y3), y3)χ2(x2)χ1(y3)dy3

with

S1(x, y3) = x1 − x3y3, S2(x, y3) = x2 − x3g(y3)

1 + x3β
.

Then
(
S1x S2x τ1S

1
xy3 + τ2S2xy3

)
is given by

⎛
⎜⎝

1 0 0
0 (1 + x3β)−1 0

−y3
−g(y3)−βx2
(1+x3β)2

−τ1 − τ2
g′(y3)

(1+x3β)2

⎞
⎟⎠

and hence

det πL = τ1�1 + τ2�2 = −(1 + x3β)
−1(τ1 + τ2

g′(y3)
(1 + x3β)2

)
.

Now ∂/∂ y3 is a kernel field and the fold condition holds iff and only if (4.1) holds on
I .

The cones �x are given by

�x =
{
ξ ∈ R

3 : ξ = λ(−g′(t), 1 + βx3, tg
′(t)− g(t)− βx2, λ ∈ R, t ∈ I

}
.

To check that the cone �x has one nonvanishing curvature everywhere one verifies
that the plane curve �(t) = (−g′(t), tg′(t)− g(t)) has nonvanishing curvature. This
holds since �′

1�
′′
2 − �′′

1�
′
2(t) = −(g′′(t))2.

In order to apply our main result one also needs to check that the projection πR (for
the adjoint R∗

β ) has only fold singularities; this turns out to be the case when β �= 0.
πR is given by

(x1, x2, x3, τ1, τ2, y3) �→ (S1(x, y3), S
2(x, y3), y3, τ1, τ2, τ1S

1
y3 + τ2S

2
y3)
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and a calculation shows that VR = y3
∂
∂x1

+ ∂
∂x3

is a kernel field. Then

VR(τ1�1 + τ2�2) = −τ2g′(y3)
2β

(1 + βx3)3
.

Thus, if β �= 0, πR has only fold singularities. Now Theorem 1.1 implies that for
β �= 0 the operator R∗

β maps L p to L p
1/p for p > 4, and more generally L p

α to L p
α+1/p.

Hence
Rβ : L p → L p

1/p′ , 1 < p < 4/3, (4.3)

when β �= 0. Our theorem does not apply to the case β = 0, when πR has maximal
degeneracy (a blowdown singularity). However by a rather straightforward argument
it was shown in [19] that (4.3) remains valid if β = 0 (provided one uses the result
by Bourgain and Demeter in conjunction with [19]). This leads one to conjecture that
the assumption on DπR in Theorem 1.1 can be dropped.

4.3 Averages Along Curves inHHH
1

Convolutionoperators onnoncommutative groups canoftenbe analyzed as generalized
Radon transforms. Let us consider theHeisenberg groupH

1 which isR
3 with the group

multiplication defined by

x · y = (
x1 + y1, x2 + y2, x3 + y3 + 1

2 (x1y2 − x2y1)
)
.

4.3.1 Measures on Curves in the Plane

Let I be a bounded open interval and g ∈ C∞. We consider convolution on H
1 with

a measure on R
2 × {0} supported on {(t, g(t), 0) : t ∈ I } where g′′(t) �= 0 for t ∈ I .

For χ ∈ C∞
0 (I ) define μ by

〈μ, f 〉 :=
∫
γ

f (t, g(t), 0)χ(t)dt

and the convolution

A1 f (x) := f ∗ μ(x) =
∫

f
(
x ′ − y′, x3 − 1

2 (x1y2 − x2y1)
)
dμ0(y

′).

Then A1 f (x) can be written as
∫

f (y1, S2(x, y1), S3(x, y1))χ(x1 − y1)dy1 with

S2(x, y1) = x2 − g(x1 − y1),

S3(x, y1) = x3 − x1
2
g(x1 − y1)+ x2

2
(x1 − y1).
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As observed in [14], A1 is a Fourier integral operator with folding canonical relation
(i.e., πL and πR) project with folds. Moreover

πL(N
∗M) = {

(x, τ2S
2
x (x, y1)+ τ3S

3
x (x, y1)

}

and det πL = g′′(x1 − y1)(τ2 + τ3x1/2) and thus �x is given by the parametrization

�(τ3, t) = τ3

2

(
x2 − g(t),−x1 + t, 1

)
.

This example and higher dimensional versions were considered in [14] for the L2-
Sobolev category, together with some refinements, that yield sharp maximal function
estimates on H

n , n ≥ 2. The measure in the horizontal plane can also be replaced by
other measures in other planes transversal to the center, in which case the estimates
in [14] yield less satisfactory results for maximal function bounds. However in this
case sharp L p-Sobolev estimates and maximal function bounds for n ≥ 2 have been
recently established in [1], using methods which are closely related to the current
paper. For a more recent result on circular maximal functions on the Heisenberg group
see [2] where the case of Heisenberg radial functions is considered.

4.3.2 Averages Along Space Curves inHHH
1

A closely related example was considered by Phong and Stein [18] and Secco [23].
Let γα : I → H

1 be the curve given by γα(s) = (s, s2, αs3), where α is a real-
valued parameter, and I a bounded interval. Given a cutoff function χ ∈ C∞

0 (I ), let
us consider the singular measure μα on H

1 supported on γα given by

〈μα, f 〉 =
∫
I
f (γα(s))χ(s) ds,

and the right convolution operator by μα:

A2,α f (x) = f ∗ μα(x) :=
∫

f (x · γα(s)−1) ds, x ∈ H
1. (4.4)

As shown in [18]A2,α is a Fourier integral operator, with two-sided folds for α �= ± 1
6

and with one-sided folds for α = ± 1
6 . A special role of the parameters ± 1

6 has also
been observed by Secco [23] in the context of L p → Lq estimates. It is straightforward
to verify that the projection πL in this problem is a fold if and only if α = 1

6 , and the
cone �x ⊆ R

3
ξ is generated by the parabola

ξ1 = x2
2

+ 2(6α − 1)t2, ξ2 = − x1
2

− (6α − 1)t, ξ3 = 1.

Our result yields the sharp L p regularity properties for all α ∈ R \ {±1/6} but it does
not cover the cases α = ±1/6. Bentsen [4] obtained a sharp L p regularity results for
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a class of averaging operators over curves in the Heisenberg group for which one of
πL , πR is a fold and the other is a blowdown. It turns out that in the case α = −1/6
of (4.4) the local regularity results follow by changes of variables directly from the
regularity results for the restricted X-ray transform in (4.2) when β = 0 (i.e., the case
considered in [19]).

5 Basic Decompositions

We decompose dyadically in τ (for large τ ). Then for |τ | ≈ 2k we decompose further
according to the size of 2−k det πL which is approximately the size of 2−k(τ1�1 +
τ2�2),which is also approximately the distance to the fold surface. This decomposition
is standard and goes back to [18] (with earlier precursors).

Let η0 ∈ C∞
c (R) be an even function so that η0(s) = 1 for |s| ≤ 1

2 and supp(η0) ⊂
(−1, 1), and set η1(s) = η0(

s
2 )−η0(s). Then η0(s)+∑k≥1 η1(2

1−ks) ≡ 1 for s ≥ 0.
Define

χk(x, y, τ ) := χ(x, y)η1(2
1−k |τ |) for k ≥ 1, (5.1a)

χ0(x, y, τ ) := χ(x, y)η0(|τ |), (5.1b)

and, after changing variables in τ

Rk f (x) := 22k
∫∫

ei2
k 〈τ,S(x,y3)−y′〉χk(x, y, 2kτ)dτ f (y)dy, (5.1c)

with 〈τ, S(x, y3)− y′〉 = ∑2
i=1 τi (S

i (x, y3)− yi ) and now |τ | ≈ 1. We then have

R f =
∑
k≥0

Rk f

for all Schwartz functions f . For 0 ≤ � ≤ �k/3�, let

χk,�(x, y, τ ) :=
{
χk(x, y, 2kτ)η1

(
2�(τ1�1 + τ2�2)

)
, if � < �k/3�,

χk(x, y, 2kτ)η0
(
2� k

3 �(τ1�1 + τ2�2)
)
, if � = �k/3�,

and

Rk,�(x, y) := 22k
∫

ei2
k 〈τ,y′−S(x,y3)〉χk,�(x, y, 2kτ) dτ, (5.2a)

Rk,� f (x) :=
∫

Rk,�(x, y) f (y) dy. (5.2b)

so that Rk = ∑
�≤ k

3
Rk,�. For k > 0 the τ -integration is extended over a subset

of the annulus {1/2 < |τ | < 2} (indeed the intersection of this annulus with a
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C2−�-neighborhood of a line l(x, y3)). The quantity τ1�1 + τ2�2, when |τ | ≈ 1
is comparable to the distance to the fold surface L.

The by now standard L2 estimate for the operators Rk,� is

‖Rk,�‖L2→L2 � 2
�−k
2 (5.3)

for � = 0, 1, . . . �k/3�, see [7]. The following estimates will be the main ingredient
for the proof of Theorem 1.1.

Theorem 5.1 Let 0 < ε < 1/6. For � ≤ �k/3� we have

‖Rk,�‖L p→L p ≤ Cε,p ·
{
2�(ε+

2
p − 1

2 )2− k
p , 4 < p ≤ 6,

2−�( 1−6ε
p )2− k

p , 6 ≤ p ≤ ∞.
(5.4)

The endpoint Sobolev bound will follow from this theorem with some additional
arguments, see §9.

The main important tool in the proof is the following decoupling inequality.

Theorem 5.2 Let � ≤ k/3 and let ε > 0. Let, for ν ∈ Z

fν(y) = f (y)1[2−�ν,2−�(ν+1)](y3). (5.5)

Then for 2 ≤ p ≤ 6,

∥∥∥∥∥
∑
ν

Rk,� fν

∥∥∥∥∥
p

≤ Cε2
�
(
ε+ 1

2− 1
p

) (∑
ν

∥∥Rk,� fν
∥∥p
p

)1/p

+ Cε2
−k‖ f ‖p. (5.6)

Theorem 5.2 will be proved by induction, see §8. In each induction step we will
combine a standard application of the Wolff–Bourgain–Demeter decoupling theorem
in combinations with suitable changes of variables.

Proof that Theorem 5.2 implies Theorem 5.1 We first note that for gν ∈ L∞ and with
1ν,�(y3) := 1[2−�ν,2−�(ν+1)](y3)

sup
ν

‖Rk,�[1ν,�gν]
∥∥∞ � 2−� sup

ν
‖gν‖∞. (5.7)

To see this one derives an estimate for the Schwartz kernel Rk,�(x, y) by integrat-
ing by parts, distinguishing the directions (�1,�2) and (−�2,�1). This shows that
|Rk,�(x, y)| ≤ CN

∏2
i=1Uk,�,i (x, y) where

Uk,�,1(x, y) = 2k−�

(1 + 2k−�|�1(y1 − S1)+�2(y2 − S2)|)N

Uk,�,2(x, y) = 2k

(1 + 2k | −�2(y1 − S1)+�1(y2 − S2)|)N
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where S1, S2,�1,�2 are evaluated at (x, y3). We integrate in (y1, y2) first and then
use that the y3 integration is extended over an interval of length 2−�. This yields (5.7).

From (5.3) and averaging with Rademacher functions we also get

(∑
ν

∥∥Rk,�[1ν,�gν]
∥∥2
2

)1/2

� 2
�−k
2

(∑
ν

‖gν‖22
)1/2

,

and by interpolation,

(∑
ν

∥∥Rk,�[1�,νgν]
∥∥p
) 1

p

� 2�(
3
p −1)2− k

p

(∑
ν

‖gν‖p
p

) 1
p

, 2 ≤ p ≤ ∞. (5.8)

Combining this with (5.6) we obtain

∥∥Rk,� f
∥∥
p � Cε2

�
(
ε+ 2

p − 1
2

)
2− k

p ‖ f ‖p, 2 ≤ p ≤ 6.

Finally from (5.7) we also have the bound ‖Rk,�‖L∞→L∞ = O(1) and a further
interpolation gives the inequality asserted in (5.4) for 6 ≤ p ≤ ∞.

An Estimate in Besov Spaces

Theorem 5.1 implies an estimate in Besov spaces. To see that we let Lk be the operator
defined by L̂k f = β(2−kξ) f̂ whereβ ∈ C∞

c (R3\{0}). Integration by parts arguments
show that there exists a constant C such that

‖Lk′Rk,�Lk′′ ‖L p→L p ≤ CN2
−N max{k,k′,k"} if max{|k − k′|, |k − k′′|} > C (5.9)

whenever min{k, k′, k′′} ≥ 3�. This, together with the main estimate

‖Rk‖L p→L p ≤ C(p)2−k/p for p > 4. (5.10)

implies the boundedness result

R : (Bs
p,q)comp → (Bs+1/p

p,q )loc, for p > 4.

For the more sophisticated Sobolev bounds, and improvements, see §9.

6 The Decoupling Step in aModel Case

In this section we consider a model version of the operatorRk,� defined in (5.2), where
the functions Si are replaced by Si satisfying additional assumptions at the origin,
see (6.9). These normalizing assumptions will enable us to carry out a decoupling step
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as suggested by the Bourgain–Demeter decoupling theorem which we review in §6.1.
The reduction of the general case to the model case will be carried out later in Sect.
8, using suitable changes of variables discussed in Sect. 7.

6.1 The Bourgain–Demeter Decoupling Theorem

Let κ0 �= 0 be a constant. We use the decoupling result in [5], for the part of the cone

� = {
ξ : κ0ξ2ξ3 + 1

2ξ
2
1 = 0

}

where |ξ2| ≈ 1, |ξ1| � 1. A parametrization is given by

ξ(b, λ) = λ(−κ0be1 + e2 − 1
2κ0b

2e3)

where |λ| ≈ 1, |b| � |b|M0 � 1. Let

T1(b) = ∂

∂λ
ξ(b, λ) = −κ0be1 + e2 − 1

2κ0b
2e3, (6.1)

be the tangent vector pointing towards the origin and let

T̃2(b) = −κ−1
0 λ−1 ∂

∂b
ξ(b, λ) = e1 + be3. (6.2)

Then T1(b) and T̃2(b) form a basis of the tangent space of� at λξ(b). A normal vector
is given by

N (b) = T1(b) ∧ T̃2(b) = be1 + 1
2κ0b

2e2 − e3. (6.3)

For the definition of our plate we need to replace T̃2(b) by a vector in the span of T1(b)
and T̃2(b) that is perpendicular to T1(b). Such a vector is given by

T2(b) =
(
1 − 1

4
κ20b

4
)
e1 + κ0b

(
1 + 1

2b
2
)
e2 +

(
b + 1

2κ
2
0b

3
)
e3

= e1 + κ0be2 + be3 + O(b3). (6.4)

Let A > 1. For δ � 1 let

ΠA,b(δ)

=
{
ξ ∈ R

3 : A−1 ≤
∣∣∣
〈
T1(b)|T1(b)|ξ

〉∣∣∣ ≤ A,
∣∣∣
〈
T2(b)|T2(b)|ξ

〉∣∣∣ ≤ Aδ,
∣∣∣
〈
N (b)

|N (b)|ξ
〉∣∣∣ ≤ Aδ2

}
.

(6.5)

One refers to the sets ΠA,b(δ) as plates; they are unions of A(1, δ, δ2)-boxes with
the long, middle, short side parallel to T1(b), T2(b), N (b), respectively.
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Theorem [5]Let ε > 0, A > 1. There exists a constant C(ε, A) such that the following
holds for 0 < δ1 < δ0 < 1.

Let B = {bν}Mν=1 be a set of points in [−1, 1] such that |bν − bν′ | ≥ δ1 for
bν, bν′ ∈ B, ν �= ν′, and B is contained in an interval of length δ0. Let 2 ≤ p ≤ 6. Let
fν ∈ L p(R3) such that the Fourier transform of fν is supported in ΠA,bν (δ1). Then

∥∥∥∥∥
∑
ν

fν

∥∥∥∥∥
p

≤ C(ε, A)(δ0/δ1)
ε

(∑
ν

‖ fν‖2p
)1/2

. (6.6)

One also has

∥∥∥∥∥
∑
ν

fν

∥∥∥∥∥
p

≤ C(ε, A)

⎧⎪⎨
⎪⎩
(δ0/δ)

ε+1/2−1/p
(∑

ν ‖ fν‖p
p

)1/p
, p ≤ 6,

(δ0/δ)
ε+1−4/p

(∑
ν ‖ fν‖p

p

)1/p
, 6 ≤ p ≤ ∞.

(6.7)

This is the �p-decoupling result that was first proved for large p by Wolff [26]. (6.7)
follows from (6.6) by Hölder’s inequality and interpolation arguments. Our proof of
Theorem 1.1 will be based on (6.6) but could also be based on the case p > 6 of (6.7),
as it was in [20], in the case of convolution operators. A variant of this argument was
also given in the manuscript [21] on the variable case, an unpublished precursor to the
current paper, with only a preliminary result.

6.2 TheModel Case

For i = 1, 2 consider C∞ functions (w, z3) �→ Si (w, z3) defined on a neighborhood
U of [−r , r ]4, for some r ∈ (0, 1). Assume that M0 satisfies

M0 ≥ 2 + ‖S1‖C5([−r ,r ]4) + ‖S2‖C5([−r ,r ]4) (6.8)

where the C5 norm is the maximum of the supremum of all derivatives of order
0, . . . , 5. We assume that for w ∈ [−r , r ]3

(S1,S2,S1
z3)
∣∣
(w,0) = (w1, w2, w3); (6.9a)

moreover
S2
wz3(0, 0) = 0, (6.9b)

and
S2
w3z3z3(0, 0) = κ0. (6.9c)

Let in (5.1a) the function χ0 be supported in a neighborhood V of (0, 0) ∈ R
3×R

3

which is of diameter ≤ 10−10M0 � r and let (w, z) �→ α(w, z) be a C∞ function
satisfying

M−1
0 ≤ |α(w, z)| ≤ M0 (6.10)

and with the higher derivatives of α depending on M0 and the order of differentiation.
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Let (w, z3, μ) �→ ζ(w, z3, μ) belong to a bounded family of C∞ functions sup-
ported where −r ≤ wi , z3 ≤ r and 1/4 ≤ |μ| ≤ 4. Let η be C∞ and supported in
(−2, 2) and let Tk,� be the operator with Schwartz kernel

Tk,�(w, z) := 22k
∫
R2

ei2
k 〈μ,S(w,z3)−z′〉

×η(2�α(w, z)(μ1�
S
1 (w, z3)+ μ2�

S
2 (w, z3))

)
ζ(w, z, μ) dμ .

(6.11)

Here �S
i (w, z3) = det(S1

w,S
2
w,S

i
wz3). We shall omit the superscript and assume

throughout this subsection §6.2 that �i ≡ �S
i . The operator T k,� is a version of

Rk,� defined before under the additional assumptions in (6.9). We need to include the
function α in the localization to provide added flexibility in the later stages of the proof
of Theorem 5.2 when we apply repeated changes of variables (cf. formula (7.15)).

The basic decoupling step is summarized in

Proposition 6.1 Let 0 < ε < 1/2. There is a constant Cε so that the following holds.
Let � ≤ �k/3� and let

δ0, δ1 ∈ (M2
0 2

20−�(1−ε2), 2−�ε2−20M−2
0

)
(6.12a)

such that
2100M0 max

{
(2−�δ0)1/2, δ3/20

}
< δ1 < δ0. (6.12b)

Let IJ be a collection of intervals of length δ1 which have disjoint interior and which
are contained in [0, δ0]. Let a ∈ R

3, ς ∈ C∞
c supported in (−1, 1)3 and ς�,0(w) =

ς(2�w). Then for 2 ≤ p ≤ 6, for g ∈ L p(R3) and gI (y) := g(y)1I (z3) we have

∥∥∥∥∥∥ς�,0
∑
I∈IJ

Tk,�gI

∥∥∥∥∥∥
p

≤ Cε(δ0/δ1)
ε

⎛
⎝∑

I∈IJ

∥∥ς�,0Tk,�gI∥∥2p
⎞
⎠

1/2

+ Cε2
−10k‖g‖p.

(6.13)

In order to apply (6.6) in this situation we need to consider the Fourier transforms
of ς�,0

∑
I∈IJ

Tk,�gI and show that they are concentrated on the plates 2kΠA,bI (δ1)

for bI ∈ I and suitable A > 1. We establish this plate localization in Sect. 6.4 and
conclude the proof of Proposition 6.1 in §6.5.

6.3 Derivatives ofS and1

We use this section to record some facts needed later in §6.4, about various derivatives
of Si (w, z3) and �i (w, z3), under the assumption that

|w|∞ ≤ 2−� ≤ δ0, |z3| ≤ δ0, (6.14)

under the specifications in (6.12).
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6.3.1 Taylor Expansion ofS1
w andS2

w

Lemma 6.2 Let w, z3, 2−�, δ0 be as in (6.14). Then

S1
w(w, z3) = e1 + z3e3 + E1(w, z3)

S2
w(w, z3) = e2 + 1

2κ0z
2
3e3 + E2(w, z3)

(6.15)

where
|〈ei , E1(w, z3)〉| ≤ 8M0δ

2
0, i = 1, 2, 3, (6.16)

and

|〈ei , E2(w, z3)〉| ≤ 8M0δ
2
0, i = 1, 2, (6.17a)

|〈e3, E2(w, z3)〉| ≤ M0(8δ02
−� + 2δ30), (6.17b)

Proof We expand using conditions (6.9a) and obtain

S1
w(w, z3) = e1 + z3e3 + Ẽ1(w, z3)

S2
w(w, z3) = e2 + Ẽ2(w, z3)

where for ν = 1, 2 we have 〈ei , Ẽν〉 = Ii,ν + I Ii,ν + I I Ii,ν with

Ii,ν(w, z3) =
∫ 1

0
(1 − s)

3∑
j=1

3∑
k=1

Sν
wiw jwk

(sw, sz)w jwk ds

I Ii,ν(w, z3) =
∫ 1

0
(1 − s) 2

3∑
j=1

Sν
wiw j z3(sw, sz)w j z3 ds

I I Ii,ν(w, z3) =
∫ 1

0
(1 − s)Sν

wi z3z3(sw, sz)z
2
3 ds

and obtain the bounds

|Ii,ν(w, z3)| ≤ 9
2M0|w|2∞ ≤ 9

2M02
−2�

|I Ii,ν(w, z3)| ≤ 6
2M0|w|∞|z3| ≤ 3M02

−�δ0
|I I Ii,ν(w, z3)| ≤ 1

2M0|z3|2 ≤ 1
2M0δ

2
0 .

Recall κ0 = S2
w3z3z3(0, 0). For i = 3, ν = 2 we expand further

I I I3,2(w, z3) = 1
2κ0z

2
3 + E3,2(w, z3)

where

|E3,2(w, z3)| ≤ M0
( 3
2 |w|∞|z3|2 + 1

2 |z3|3
) ≤ 2M0δ

3
0
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(where we used 2−� ≤ δ0). Combining terms we obtain the stated error estimates.

6.3.2 Computations Involving11 and12

By the assumption δ0 ≤ 2−10M−1
0 we have from above |S1

wi
(w, z3)| ≤ 2,

|S2
wi
(w, z3)| ≤ 2 and |S1

wi z3(w, z3)| ≤ 2. Moreover |S2
wz3(w, z3)| ≤ 4M0δ0 � 1.

Using upper bounds for Si
w, S

i
wz3 and higher derivatives, the permutation formula

for determinants, trilinearity of the determinants and differentiation of products, we
see that any first-order partial derivative of ±�i is a sum of 3 · 6 terms, each bounded
by 4M0. Hence any first-order partial derivative of ±�S

i is bounded by 72M0, and
similarly, by the structure of the �i , any second-order partial derivative of ±�S

i is
bounded by 216M0. Moreover, any third-order partial derivative of ±�S

i is bounded
by 54 · 2M2

0 . These observations also yield

|�1(w, z3)− 1|, |�2(w, z3)| ≤ 72M0δ0 ≤ 2−10.

In Sect. 6.4 we shall use a Taylor expansion and rely on the conditions (6.9). This
yields

�1(w, 0) = 1, �2(w, 0) = 0,

and straightforward computations give

�1,z3(w, 0) = S1
w3z3z3(w, 0)+ S2

w2z3(w, 0)

�2,z3(w, 0) = S2
w3z3z3(w, 0)+ S2

w1z3(w, 0)

and thus

�1,z3(0, 0) = S1
w3z3z3(0, 0), �2,z3(0, 0) = S2

w3z3z3(0, 0) = κ0.

Further calculations give

�1,z3z3(0, 0) = 3S1
w1z3z3(0, 0)+ S2

w2z3z3(0, 0)+ S1
w3z3z3z3(0, 0)

�2,z3z3(0, 0) = 2S2
w1z3z3(0, 0)+ S2

w3z3z3z3(0, 0),

�1,w j z3(0, 0) = S2
w2w j z3(0, 0)+ S1

w3w j z3z3(0, 0)

�2,w j z3(0, 0) = S2
w3w j z3z3(0, 0),

and

�1,w jwk (0, 0) = 0

�2,w jwk (0, 0) = S2
w3z3w jwk

(0, 0).
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6.4 Plate Localization in theModel Case

The following lemma contains the information that will allow us to apply the decou-
pling inequality (6.6).

Lemma 6.3 Let δ0, δ1 be as in (6.12). Let 2−� � r , M02−� ≤ 2−10,w ∈ [−2−�, 2−�],
|z3| ≤ δ0. Suppose 1/4 < |μ| ≤ 4 and

∣∣μ1�1(w, z3)+ μ2�2(w, z3)
∣∣ ≤ M02

−�. (6.18)

Then

μ1S
1
w(w, z3)+ μ2S

2
w(w, z3) ∈ ΠA,b(δ1), A = 2(1 + |κ0|). (6.19)

Proof We examine the quantity μ1S
1
w + μ2S

2
w, for 1/4 < |μ| ≤ 4 and under the

condition (6.18), and rewrite it as

1

�1

(
(μ1�1 + μ2�2)S

1
w + μ2(�1S

2
w −�2S

1
w)
)
. (6.20)

The assumption (6.18) and |μ| ∈ (1/4, 4) implies that |μ1| ≤ 2−8 and hence |μ2| ∈
(1/5, 4).

The second expression in (6.20) is the main term for our analysis. We use a Taylor
expansion:

�1S
2
w −�2S

1
w

∣∣∣
(w,z3)

= e2 + v0z3 +
3∑
j=1

v j x j

+ 1

2

⎛
⎝v0,0z23 + 2

3∑
j=1

v0, j z3w j +
3∑
j=1

3∑
k=1

v j,kw jwk

⎞
⎠

+ E(w, z3) (6.21)

where E(w, z3) is the Taylor reminderwhich vanishes of third order. Since�1(w, 0) =
1, �2(w, 0) = 0 the leading term is e2. For the R

3-valued coefficients of the linear
term we get (with all terms on the right-hand side evaluated at 0, and using input from
Sect. 6.3)

v0 = �1,z3S
2
w +�1S

2
wz3 −�2,z3S

1
w −�2S

1
wz3

∣∣∣
0,0

= S1
w3z3z3(0, 0)e2 − κ0e1

and, for j = 1, 2, 3,

v j = �1,w jS
2
w +�1S

2
ww j

−�2,w jS
1
w −�2S

1
ww j

∣∣∣
(0,0)

= 0.
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For the coefficients of the quadratic terms we have

v0,0 = �1,z3z3S
2
w + 2�1,z3S

2
wz3 +�1S

2
wz3z3

−�2,z3z3S
1
w − 2�2,z3S

1
wz3 −�2S

1
wz3z3

∣∣∣
(0,0)

= (S2
w1z3z3 −�2,z3z3)e1 + (S2

w2z3z3 +�1,z3z3)e2 + (S2
w3z3z3 − 2�2,z3)e3

∣∣∣
(0,0)

;

in particular
〈v0,0, e3〉 = −κ0. (6.22)

Moreover, for j = 1, 2, 3,

v0, j =�1S
2
ww j z3 +�1,w jS

2
wz3 +�1,z3S

2
ww j

+�1,w j z3S
2
w

−�2S
1
ww j z3 −�2,w jS

1
wz3 −�2,z3S

1
ww j

−�2,w j z3S
1
w

∣∣∣
(0,0)

= (S2
w1w j z3 −�2,w j z3)e1 + (S2

w2w j z3 +�1,w j z3)e2 + S2
w3w j z3e3

∣∣∣
(0,0)

,

and, for j, k = 1, 2, 3,

v j,k =�1S
2
ww jwk

+�1,w jS
2
wwk

+�1,wkS
2
ww j

+�1,w jwkS
2
w

−�2S
1
ww jwk

−�2,w jS
1
wwk

−�2,wkS
1
ww j

−�2,w jwkS
1
w

∣∣∣
(0,0)

=�1,w jwk (0, 0)e2 −�2,w jwk (0, 0)e1.

Gathering terms in the above Taylor expansion leads to

�1S
2
w −�2S

1
w

∣∣∣
(w,z3)

= e2 − κ0z3e1 − 1
2κ0z

2
3e3

+ S1
w3z3z3(0, 0)z3e2 +

3∑
j=1

S2
w3w j z3(0, 0)w j z3e3 +

2∑
i=1

ri (w, z3)ei + E3(w, z3)

(6.23)

where we get ∣∣S1
w3z3z3(0, 0)z3

∣∣ ≤ M0δ0, (6.24a)

and by assumption (6.12b),

3∑
j=1

∣∣S2
w3w j z3(0, 0)w j z3

∣∣ ≤ 3M02
−�δ0 � δ21 . (6.24b)

For the quadratic error terms in the first two coordinates we have

|ri (w, z3)| ≤ 8M0δ
2
0 , i = 1, 2, (6.24c)
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and finally for the cubic error terms we have the straightforward estimate

|E3(w, z3)| ≤ 220M2
0 δ

3
0 . (6.24d)

Now consider the situation where |z3 − b| ≤ δ1. Let T2(b) be as in (6.4), that is,
T2(b) = e1 + κ0be2 + be3 + O(b3) with 1/2 ≤ |T2(b)| ≤ 2. We compute

〈
T2(b)|T2(b)|�1S

2
w −�2S

1
w

〉∣∣∣
(w,z3)

= 1
|T2(b)|κ0(b − z3)+ ET2(w, z3) (6.25)

where (cf. (6.12b))

|ET2(w, z3)| ≤ 213M0δ
2
0 ≤ 213M0

(
2−100M−1

0 δ1
)4/3 � δ1.

The computation for the normal component is more subtle. With N (b) = be1 +
1
2κ0b

2e2−e3, we consider the contributions of the terms in the above Taylor expansion
to 〈N (b),�1S

2
w −�2S

1
w〉. We get

〈
N (b)�1S

2
w −�2S

1
w

〉
= 1

2κ0b
2 − κ0bz3 + 1

2κ0z
2
3

+ 1
2κ0b

2z3S
1
w3z3z3(0, 0)−

3∑
j=1

S2
w3w j z3(0, 0)w j z3

+ br1(w, z3)+ 1
2κ0b

2r2(w, z3)+ 〈N (b), E3(w, z3)〉.

By (6.24),

〈
N (b)

|N (b)|�1S
2
w −�2S

1
w

〉
= 1

|N (b)|
(
1
2κ0(z3 − b)2 + EN (w, z3)

)

with |EN (w, z3)| ≤ 221M2
0 δ

3
0 + 22−�M0δ0 � δ21 (6.26)

where for the error estimate we have used (6.12b). Clearly the main term on the
right-hand side is ≤ |κ0|δ21/2.

This finishes the analysis of the second term in (6.20). Finally consider the first
term in (6.20), again under the assumption (6.18). We get the estimates

|(μ1�1 + μ2�2)〈S1
w(w, z3), Ti (b)〉| ≤ 10M02

−� � δ1, i = 1, 2

and

|(μ1�1 + μ2�2)〈S1
w(w, z3), N (b)〉|

≤ 2−�|〈e1 + z3e3, be1 − e3〉| + 102M2
0 2

−�δ20 ≤ 22−�δ1 � δ21 .

The proof is completed by combining terms.
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6.5 Proof of the Decoupling Step in theModel Case

Fix b and let mk,δ1,b be a multiplier that is equal to 1 on Π2A,b(δ1) and equal to 0 on
R
3 \Π3A,b(δ1), and satisfies the natural differentiability properties

∣∣〈T1(b),∇〉α1〈T2(b),∇〉α2〈N (b),∇〉α3mk,δ1,b(ξ)
∣∣

�α 2−kα3(2kδ1)
−α2(2kδ21)−α3 .

Let Pk,δ1,b be defined by P̂k,δ1,b f = mk,δ1,b f̂ . Let I be an interval of length δ1 and
let f I (y) = f (y)1I (y3). The Schwartz kernel of

f �→ (I − Pk,δ,b)[ς�,0Tk,� f ]

is given as a sum of oscillatory integrals
∑∞

n=0 Kn,k,� where for n > 0

Kn,k,�(w, z) = 22k
∫∫∫

ei(〈w−v,ξ 〉+2k 〈τ,S(v,z3)−z′〉ς�,0(v)

×(1 − mk,δ1,b(ξ))η1(|ξ |2−n)χk,�(v, z, 2
kτ)dv dξdτ 1I (z3),

with

χk,�(v, z, 2
kτ) := η

(
2�α(w, z)(τ1�

S
1 (w, z3)+ τ2�

S
2 (w, z3))

)
ζ(w, z, τ, k) dτ

and the family ζ(·, ·, ·, k) is bounded uniformly in C∞
c . If |n − k| > 10, then repeated

integration by parts in the v-variables (followed by subsequent integration by parts in
the ξ -variables) shows that

|Kn,k,�(w, z)| � min{2−10n, 2−10k(1 + |w − z|)−N }, |k − n| ≥ C .

For |k − n| ≤ C a similar argument applies to the assumption that on the support of
(1 − mk,δ1,b) we have 2

−kξ /∈ Π3A,b(δ1). That means

∣∣∇v[−〈v, ξ 〉 + 〈2kτ,S(v, z3)〉]
∣∣ ≥ c2kδ21 .

Differentiating the amplitude gives a factor of 2� with each differentiation. Thus for
|k − n| ≤ C an N -fold integration by parts in the v variables followed by integration
by parts in the ξ -variables shows that

|Kn,k,�(w, z)| �N
(
2kδ212

−�)−N
(1 + |w − z|)−N1, |k − n| ≤ C .

Notice that by � ≤ k/3 and δ1 ≥ 2−(1−ε2)� we have

2kδ212
−� ≥ 2kε

2/3.
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Thus a �40/ε2�-fold integration by parts in v (again followed by multiple integration
by parts in ξ ) yields

|Kn,k,�(w, z)| � 2−11k(1 + |w − z|)−N1 .

Let bI be the left endpoint of the interval I . We decompose the left-hand side of (6.13)
as ∥∥∥∥∥∥

∑
I∈IJ

Pk,δ1,bI [ς�,0Tk,�gI ]
∥∥∥∥∥∥
p

+
∥∥∥∥∥∥
∑
I∈IJ

(I − Pk,δ1,bI )[ς�,0Tk,�gI ]
∥∥∥∥∥∥
p

(6.27)

By Lemma 6.3 we can apply the decoupling inequality (6.6) (with ε replaced by ε2)
to bound the first term in (6.27) by

C(ε2, A)δ−ε2
⎛
⎝∑

I∈IJ

∥∥Pk,δ1,bI [ς�,0Tk,�gI ]
∥∥p
p

⎞
⎠

1/p

� C(ε2, A)δ−ε2
⎛
⎝∑

I∈IJ

∥∥ς�,0Tk,�gI∥∥pp
⎞
⎠

1/p

.

For the second term in (6.27) we use the above error estimates, apply Minkowski’s
inequality and get the bound (6.27) by

2−11k
∑
I∈IJ

( ∫ ∣∣∣
∫
(1 + |w − z|)−N |g(z)1I (z3)|dz

∣∣∣pdw
)1/p

� 2−10k‖g‖p.

This finishes the proof of Proposition 6.1.

7 Families of Changes of Variables

Let P◦ = (a◦, y◦) ∈ M, with y◦ = S1(a◦, b◦), S2(a◦, b◦), b◦). For r > 0 let

Q(r) := {(x, y3) : |x − a◦|∞ ≤ r} and I (r) := {y3 : |y3 − b◦| ≤ r}.

Let Si be smooth functions in a neighborhood of Q(2r0)× I (2r0), for some r0 > 0.
After possibly permuting the variables y1, y2 we may assume, by Lemma 3.1 that
�1(x, y3) = det(S1x , S

2
x , S

1
xy3) �= 0 on Q(2r0)× I (2r0)). Choose M so that

M > 2 + ‖S‖C5(Q(2r0)×I (2r0)) + max
(x,y3)∈Q(2r0)

|�1(x, y3)|−1.

We now consider (a, b) close to (a◦, b◦) and construct changes of variables so that
in the new coordinates the constant coefficient decoupling theorem in Proposition 6.1
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can be applied at suitable scales. The idea of applying a constant coefficient decoupling
theorem in a variable coefficient situation also appears in [3].

For a ∈ Q(2r0), b ∈ I (2r0) let �1, �2 be as in (3.4), and let ρ ≡ ρ(a, b) ∈ R
3 be

defined by

(ρ1, ρ2, ρ3) = 1

�1(a, b)

(− �2(a, b), �1(a, b),�2(a, b)
)
. (7.1)

For (x, y3), (a, y3) ∈ Q(r0) and (a, y3) ∈ I (2r0) consider the function

(x, a, y3) �→ w(x, a, y3)

Q(r0)× Q(r0)× I (2r0) → R
3

defined by

⎛
⎝w1
w2
w3

⎞
⎠ =

⎛
⎝ S1(x, b)− S1(a, b),
S2(x, b)− ρ3(a, b)S1(x, b)− S2(a, b)+ ρ3(a, b)S1(a, b)

S1y3(x, b)− S1y3(a, b)

⎞
⎠ . (7.2)

We have

det(Dw(x, a, b)/Dx) = det
(
S1x , S

2
x − ρ3S

1
x , S

1
x,y3

)|(x,b) = �1(x, b). (7.3)

By the implicit function theorem there exists r1 > 0 with r1 < r0 such that for
|w|∞ < 2r1, |a − a◦| < 2r1, b − b◦| < 2r1 the equation w(x, a, b) = w is solved by
a unique C∞ function

x = x(w, a, b). (7.4)

Note the estimate

|ρi (a, b)| ≤ 6M4, for a ∈ Q(2r0), b ∈ I (2r0). (7.5)

By the definition of w and the mean value theorem for the coordinate functions, this
implies |w(x, a, b)|∞ ≤ 3M(1+6M4)|x −a|∞ for x, a ∈ Q(r0), b ∈ I (2r0). Hence
if r2 < r1 and if |x − a◦|∞ < r2 and |a − a◦|∞ < r2, then |w(x, a, b)|∞ ≤ 42M5r2
and if we define

r2 = (50M5)−1r1 (7.6)

we get |w(x, a, b)|∞ < r1 for x, a ∈ Q(r2), b ∈ I (2r1). By the uniqueness of the
function x, we thus see that x(w(x, a, b)) = x for x, a ∈ Q(r2) for x, a ∈ Q(r2),
b ∈ I (2r1).

We will also need to change variables in the y-variables, in a more explicit form.
Define

z = (z1, z2, z3) : R
2 × Q(2r0)× I (2r0) → R

3 (7.7)

by

z1(y, a, b) = y1 − S1(a, y3), z3(y, a, b) = y3 − b,
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and

z2(y, a, b) = y2 − ρ3(a, b)y1 − S2(a, y3)+ ρ3(a, b)S
1(a, y3)

− (y3 − b)
2∑

i=1

ρi (yi − Si (a, y3)).

We have
det(Dz/Dy) = (1 − ρ2(y3 − b)). (7.8)

By (7.5) this quantity lies in (1/2, 3/2) provided that y3, b ∈ I (2r3) with

r3 < min{r1, (24M4)−1}. (7.9)

The inverse z �→ y(z, a, b), defined for |z3| ≤ r3, |b − b◦| ≤ r3, |a − a◦| ≤ 2r0, is
given by

y1(z, a, b) = z1 + S1(a, b + z3),

y2(z, a, b) = z2 + z1(ρ3(a, b)+ ρ1(a, b)z3)+ (1 − z3)S2(a, b + z3)

1 − ρ2(a, b)z3
,

y3(z, a, b) = b + z3.

(7.10)

Lemma 7.1 The functions x, y defined above have the following properties.

(i) x(0, a, b) = a, y(0, a, b) = (S1(a, b), S2(a, b), b), y3(z, a, b) = b + z3.
(ii) det

( Dx(w,a,b)
Dw

) = 1
�1(x(w,a,b),b)

.

(iii) Let ρ ≡ ρ(a, b) be as in (7.1) and let

B(z3, a, b) =
(

1 0
−ρ3 − ρ1z3 1 − ρ2z3

)
. (7.11)

Then for |z3| ≤ r3, |a − a◦|∞ ≤ r2, |w| ≤ r2

B(z3, a, b)

(
S1(x(w, a, b), b + z3)− y1(z, a, b)
S2(x(w, a, b), b + z3)− y2(z, a, b)

)
=
(
S1(w, z3, a, b)− z1
S2(w, z3, a, b)− z2

)

(7.12)
where Si are C∞ with

S1(w, 0) = w1, S2(w, 0) = w2, S1
z3(w, 0) = w3; (7.13)

moreover
S2
wz3(0, 0, a, b) = 0. (7.14)

(iv) Let

�S
i (x, y3) = det(S1x , S

2
x , S

1
xy3)|(x,y3),

�S
i (w, z3) = det(S1

w,S
2
w,S

1
wz3)|(w,z3).
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Then, for (τ1, τ2) = (μ1, μ2)B(z3, a, b),

2∑
i=1

τi�
S
i (x(w, a, b), b + z3) = �S

1 (x(w, a, b), b)

1 − ρ2(a, b)z3

2∑
i=1

μi�
S
i (w, z3). (7.15)

(v) Let κ be as in (3.8b). Then

S2
w3z3z3(0, 0, a, b) = κ(a, b)

�1(a, b)2
. (7.16)

Proof We write for i = 1, 2

Si (x, y3)− yi = Si (a, b)+ Si (x, b)− Si (a, b)

+ Si (x, y3)− Si (a, y3)− Si (x, b)+ Si (a, b)

+ Si (a, y3)− Si (a, b)− yi

and set

x̃i = Si (x, b)− Si (a, b), i = 1, 2,

x̃3 = S1y3(x, b)− S1y3(a, b)

so that

det

(
Dx̃

Dx

)
= �S

1 (x, b).

Also let

ỹi = yi − Si (a, y3), i = 1, 2.

ỹ3 = y3 − b

Note that x̃ᵀ = (x−a)ᵀAᵀ+O(|x−a|2)where Aᵀ is the matrix with column vectors
(S1x , S

2
x , S

1
xy3)|(a,b). We then expand

S1(x, y3)− y1 = x̃1 − ỹ1 + x̃3 ỹ3 + R1,1(x̃, ỹ3, a, b)

S2(x, y3)− y2 = x̃2 − ỹ2 + ỹ3

3∑
i=1

ρ
i
x̃i + R2,1(x̃, ỹ3, a, b)

where
ρ
i
= 〈A−1ei , S

2
x,y3(a, b)〉, (7.17)

and where R1,1, R2,1 vanish to third order with no pure x̃ or pure ỹ3 terms; moreover
∂ỹ3R1,1 has no pure x̃ terms. We label R1,1 an error term of type I and R2,1 an error
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term of type I I . Precisely, an error term of type I is of the form

ỹ23

3∑
i=1

x̃i β̃i (x̃, ỹ3, a, b) (7.18a)

with β̃i smooth, and a term of type I I is of the form

y3

3∑
j=1

3∑
k=1

x̃ j x̃k β̃ jk(x̃, ỹ3, a, b) + term of type I , (7.18b)

with β̃ jk smooth. Note that (ρ
1
, ρ

2
, ρ

3
) satisfies

ρ
1
S1x (a, b)+ ρ

2
S2x (a, b)+ ρ

3
S1xy3(a, b) = S2xy3(a, b)

and hence, by Cramer’s rule, we see that �1(ρ1
, ρ

2
, ρ

3
) = (−�2, �1,�2), i.e.,

ρ
i
= ρi

where ρi is as in (7.1).
Given c1, c2, c3 ∈ R we compute

(c3 + c1 ỹ3)(S
1(x, y3)− y1)+ (1 + c2 ỹ3)(S

2(x, y3)− y2)

= (x̃2 + c3 x̃1)− (ỹ2 + c3 ỹ1)

− ỹ3(
3∑

i=1

x̃i (ρi + ci ))− c1 ỹ1 ỹ3 − c2 ỹ2 ỹ3 + R2,2(x̃, ỹ3, a, b)

where R2,2 is an error term of type I I . We choose ci = −ρi (a, b) so that the mixed
quadratic terms drop out.

We now change variable in x̃ and in ỹ separately, setting

z1 = ỹ1, z2 = ỹ2 − ρ3 ỹ1 − ρ1 ỹ1 ỹ3 − ρ2 ỹ2 ỹ3, z3 = ỹ3

and

w1 = x̃1, w2 = x̃2 − ρ3 x̃1, w3 = x̃3.

Define

Si (w, z3, a, b) = Si (x(w, a, b), b + z3), i = 1, 2.

Setting

B(z3, b) =
(

1 0
−ρ3 − ρ1z3 1 − ρ2z3

)
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we obtain

B(y3 − b, b)

(
S1(x, y3)− y1
S2(x, y3)− y2

)
=
(
S1(w, z3, a, b)− z1
S2(w, z3, a, b)− z2

)
(7.19)

if w = w(x, a, b) and y = y(z, a, b) and w and y are as in (7.2) and (7.10). Now
(7.19) implies (7.12).

The functions S1, S2 satisfy

S1(w, z3, a, b) = w1 + w3z3 + R1,3(w, z3, a, b)

S2(w, z3, a, b) = w2 + R2,3(w, z3, a, b)

where R1,3 is an error term of type I (with (x̃, ỹ3) replaced by (w, z3), cf. (7.18a))
and R2,3 is a term of type I I (again in the (w, z3)-variables, cf. (7.18b)). We see that
(7.12) and (7.13), (7.14) hold.

In order to obtain (7.15) we calculate

2∑
i=1

(Bᵀμ)i�S
i (x(w, a, b), b + z3)

= det
(∇w(S

1(x, y3)),∇w(S
2(x, y3)),∇w(〈Bᵀμ, Sy3(x, y3)〉)

)
det

Dw

Dx
(x)

with x ≡ x(w) ≡ x(w, a, b). We have

∇wS
1(x(w), z3) = ∇w(S

1(x(w), b + z3)),

and, with b22(z3) = 1 − ρ2z3,

∇wS
2(x(w), z3) = b22(z3)∇w(S

2(x(w), b + z3))− b21(z3)∇w(S
1(x(w), b + z3));

moreover

∇wS
1
z3(x(w), b + z3) = ∇w(S

1
y3(x(w), b + z3)),

and

∇wS
2
z3(x(w), b + z3) = − ρ1∇w(S

1(x(w), b + z3))− ρ2∇w(S
2(x(w), b + z3))

+ b21(z3)∇w(S
1
y3(x(w), b + z3))

+ b22(z3)∇w(S
1
y3(x(w), b + z3)).

A quick calculation with determinants and (7.3) yields the asserted identity (7.15).
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For the curvature calculation we start with the equation (7.12) for the second com-
ponent and differentiate with respect to w3. This yields

S2
w3
(w, z3)

= (−ρ3 − ρ1z3)

(
Dx

Dw
e3

)ᵀ
S1x (x, b + z3)+ (1 − ρ2z3)

(
Dx

Dw
e3

)ᵀ
S2x (x, b + z3).

Here the Jacobian Dx/Dw is evaluated at (w, b). We differentiate twice with respect
to z3 to obtain

S2
w3z3z3(w, z3) = −2ρ1

(
Dx

Dw
e3

)ᵀ
S1xy3(x, b + z3)− 2ρ2

(
Dx

Dw
e3

)ᵀ
S2xy3(x, b + z3)

− (ρ3 + ρ1z3)

(
Dx

Dw
e3

)ᵀ
S1xy3y3(x, b + z3)

+ (1 − ρ2z3)
( Dx

Dw
e3
)ᵀ
S2xy3y3(x, b + z3)

where x ≡ x(w, a, b). Using Cramer’s rule we find that

Dx

Dw
e3
∣∣
(w,a,b) = 1

�1(x(w, a, b), b)
S1x ∧ S2x

∣∣
(x(w,a,b),b).

We evaluate the previous identity at z3 = 0, and w = 0 to obtain

S2
w3z3z3(0, 0) = 1

�1(a, b)

(
− 2ρ1〈S1x ∧ S2x , S

1
xy3〉 − 2ρ2〈S1x ∧ S2x , S

2
xy3〉

− ρ3〈S1x ∧ S2x , S
1
xy3y3〉 + 〈S1x ∧ S2x , S

2
xy3y3〉

∣∣∣
(a,b)

)
.

Using (7.1) we see that S2
w3z3z3(0, 0) equals

1

�1

(− 2ρ1�1 − 2ρ2�2 − ρ3(�1,y3 − �1)+ (�2,y3 − �2)
)∣∣∣
(a,b)

= 1

�2
1

(
2�2�1 − 2�1�2 − (�1,y3 − �1)�2 + (�2,y3 − �2)�1

)∣∣∣
(a,b)

which equals κ(a, b)/�1(a, b)2 so that (7.16) is proved.

8 Decoupling in the General Case

We consider the operator Rk.� as in (5.2). With χ is as in (5.1a) we assume that χ is
zero if x /∈ [−r2/2, r2/2] or if y3 /∈ [r3/2, r3/2] (see the paragraph leading to (7.4)
and (7.6), (7.9)).
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Proposition 8.1 Let 0 < ε < 1/2, � ≤ �k/3�. Let δ0, δ1 ∈ (2−�(1−ε2), 2−�ε2) such
that

max
{
(2−�δ0)1/2, δ3/20

}
< δ1 < δ0. (8.1)

Let J be an interval of length δ0, near b◦, and let IJ be a collection of intervals of
length δ1 which have disjoint interior and which intersect J . For each I , let f I be
defined by fI (y) = f (y)1I (y3). Let a ∈ R

3, ε0 = (10M)−4, ϑ ∈ C∞
c supported in

(−r2, r2)3 and ϑ�,a(x) = ϑ(2�ε−1
0 (x − a)). Then for 2 ≤ p ≤ 6,

∥∥∥∥∥∥ϑ�,a
∑
I∈IJ

Rk,� f I

∥∥∥∥∥∥
p

≤ Cε(δ0/δ1)
ε

⎛
⎝∑

I∈IJ

∥∥ϑ�,aRk,� f I
∥∥2
p

⎞
⎠

1/2

+ CN ,ε2
−kN‖ f ‖p.

(8.2)
The constants do not depend on the choice of J and IJ .

Proof. Fix a near a◦ and b ∈ J . We apply (7.12) and then the changes of variables
y = y(z, a, b) in (7.10) and τ = Bᵀ−1(z3, a, b))μ. Note from (7.8), (7.11) that
det(Dy/Dz) det B = 1. Let f (y) = ∑

I∈JI
f 1I (y3) and g(z, a, b) = f (y(z, a, b)).

Let

M1 ≥ 1 +
2∑

i=1

sup
(a,b)∈[−r0,r0]4

‖Si (·, a, b)‖C5([−r0,r0]4) (8.3)

which is just the uniform version of the condition (6.8). By applications of Hölder’s
inequality it suffices to prove (8.2) under a slightly more restrictive assumptions on
δ0, δ1, namely

δ0, δ1 ∈ (M2
1 2

20−�(1−ε2), 2−�ε2−20M−2
1

)
2100M1 max

{
(2−�δ0)1/2, δ3/20

}
< δ1 < δ0.

These are the uniform versions of (6.12) which will allow us to apply Proposition 6.1.
We have

Rk,� f (x) = 22k
∫∫

ei2
k 〈μ,S(w(x,a,b),z3)−z′〉χ̃k,�(x, z, μ, a, b)g(z, a, b)dμdz

with

χ̃k,�(x, z, μ, a, b) = χ(x, y(z, a, b))η1(|Bᵀ−1(z3, a, b)μ|)
×η
(
2� �1(x)

1−ρ3(a,b)z3 (μ1�
S
1 (w, z3, a, b)+ μ2�

S
2 (w, z3, a, b))

)
.

Hence we get, with ς�,a(w) := ϑ�,a(x(w, a, b)),

ϑ�,a(x(w, a, b))
∑
I

Rk,� f I (x(w, a, b)) = ς�,0(w)
∑
I∈JI

Tk,�,a,bgI (w)
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where gI (z, a, b) = g(z, a, b)1−b+I (z3) and Tk,� ≡ Tk,�,a,b is as in (6.11).
We can now write the left-hand side of (5.6) as

( ∫ ∣∣∣ϑ�,a(x(w, a, b)) ∑
I∈IJ

Rk,� f I (x(w, a, b))
∣∣∣p| det

(
Dx
Dw |dw

)1/p

�

∥∥∥∥∥∥ς�,0
∑
I∈IJ

Tk,�gI

∥∥∥∥∥∥
p

where we used uniform upper bounds on | det( Dx
Dw )|. By Proposition 6.1 we can bound

∥∥∥∥∥∥ς�,0
∑
I∈IJ

Tk,�gI

∥∥∥∥∥∥
p

≤ Cε(δ0/δ1)
ε

⎛
⎝∑

I∈IJ

∥∥ς�,0Tk,�gI∥∥2p
⎞
⎠

1/2

+ Cε2
−10k‖g‖p.

Undoing the above change of variable (and using uniform lower bounds on | det( Dx
Dw )|)

we may bound this, using Proposition 6.1, by

C ′
ε(δ0/δ1)

ε

⎛
⎝∑

I∈IJ

∥∥ϑ�,aRk,� f I
∥∥2
p

⎞
⎠

1/2

+ Cε2
−10k‖ f ‖p.

Proof of Theorem 5.2 We may assume ε < 1/10. Let ϑ ∈ C∞
c (R3) supported in

(−1, 1)3 such that ϑ ≥ 0 everywhere and
∑

n∈Z3 ϑ(· − n) = 1.
Let, for n ∈ Z

3, ζ �,n(x) = υ(x)ζ(2�ε−1
0 x − n). Thus

‖υRk,� f ‖p �

⎛
⎝∑

n∈Z3

∥∥ϑ�,nRk,� f
∥∥p
p

⎞
⎠

1/p

. (8.4)

Now let I(m) be the family of dyadic intervals with length 2−m . Let I ′ be a dyadic
interval of length≥ 2−m ; then we denote by I(m, I ′) the collection of dyadic intervals
which are of length 2−m and are contained in I ′. For any dyadic interval define f I (y) =
f (y)1I (y3). Let m0 = ��ε2�. By Hölder’s inequality,

∥∥ϑ�,nRk,� f
∥∥
p ≤ 2m0(1− 1

p )

⎛
⎝ ∑

J∈I(m0)

∥∥ϑ�,nRk,� f J
∥∥p
p

⎞
⎠

1/p

. (8.5)

It is not hard to see that we can pick a sequence of integers

m1, . . . ,mN (�)
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such that m j ≤ m j+1 ≤ � for j = 0, . . . , N (�)− 1, and such that

m j+1 ≤ min
{� 3m j

2 �, �m j+�
2 �}; (8.6a)

moreover
mN ≥ ��(1 − ε2)�, and N (�) ≤ Cε log2(�). (8.6b)

We claim that for j = 0, . . . , N (�)− 1

∥∥ϑ�,nRk,� f
∥∥
p ≤ C j

ε2
2m0

(
1− 1

p

)
+(m j−m0)

(
1
2− 1

p +ε2
) ⎛⎝ ∑

I∈I(m j )

∥∥ϑ�,nRk,� f I
∥∥p
p

⎞
⎠

1/p

+2−9k

⎛
⎝

j−1∑
ν=0

Cν
ε2

⎞
⎠ ‖ f ‖p. (8.7)

We show this by induction. The case j = 0 is covered by (8.5). For the induction step
assume (8.7) for some j < N (�)−1. Observe that for I ∈ I(m j ) Proposition 8.1 and
Hölder’s inequality give

∥∥ϑ�,nRk,� f I
∥∥
p =

∥∥∥ϑ�,n ∑
I ′∈I(m j+1,I )

Rk,� f I ′
∥∥
p

≤ Cε22
(m j+1−m j )ε

2

⎛
⎝ ∑

I ′∈I(m j+1,I )

‖ϑ�,nRk,� f I ′
∥∥2
p

⎞
⎠

1/2

+ Cε22
−10k‖ f I ‖p

≤ Cε22
(m j+1−m j )

(
1
2− 1

p+ε2
) ⎛⎝ ∑

I ′∈I(m j+1,I )

‖ϑ�,nRk,� f I ′
∥∥p
p

⎞
⎠

1/p

+ Cε22
−10k‖ f I ‖p.

We use the induction hypothesis (8.7) and by the last inequality we bound∥∥ϑ�,nRk,� f
∥∥
p by

C j+1
ε2

2m0

(
1− 1

p

)
+(m j+1−m0)

(
1
2− 1

p +ε2
) ⎛⎝ ∑

I ′∈I(m j+1)

∥∥ϑ�,nRk,� f I ′
∥∥p
p

⎞
⎠

1/p

+ C j
ε2
2m0

(
1− 1

p

)
+(m j+1−m0)

(
1
2− 1

p +ε2
)
2−10k

⎛
⎝ ∑

I∈I(m j )

∥∥ f I∥∥pp
⎞
⎠

1/p

+ 2−9k

⎛
⎝

j−1∑
ν=0

Cν
ε2

⎞
⎠ ‖ f ‖p.
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Sincem0(1− 1
p )+(m j+1−m0)(

1
2 − 1

p +ε2) ≤ k and (
∑

I∈I(m j )

∥∥ f I∥∥pp)1/p ≤ ‖ f ‖p,
we obtain the case for j + 1 of (8.7).

We consider the case j = N (�) of (8.7). Observe that each interval I ∈ I(mN (�))

is the union of 2�−mN (�) dyadic intervals of length 2−�. We also sum in n ∈ Z
3 and

use the finite overlap of the supports of ζ �,n . Observe that the cardinality of the index
set of n which give a nonzero contribution is O(23�) = O(2k). We get

∥∥Rk,� f
∥∥
p

�

⎛
⎝∑

n∈Z3

‖ζ �,nRk,� f
∥∥p
p

⎞
⎠

1/p

≤ C j
ε2
2m0

(
1− 1

p

)
+(m j−m0)

(
1
2− 1

p +ε2
)
+(�−mN (�))

(
1− 1

p

) ⎛⎝ ∑
I∈I(�)

∑
n∈Z3

∥∥ζ �,nRk,� f I
∥∥p
p

⎞
⎠

1/p

+ 2−8k

⎛
⎝N (�)−1∑

ν=0

Cν
ε2

⎞
⎠ ‖ f ‖p.

Observe

m0

(
1 − 1

p

)
+ (m j − m0)

(
1

2
− 1

p
+ ε2

)
+ (�− mN (�))

(
1 − 1

p

)

≤ �(ε2)

(
1 − 1

p

)
+ (1 − 2ε2)

(
1

2
− 1

p
+ ε2

)
≤ �(2ε2 + 1/2 − 1/p)

and (with N (�) as in (8.6b))

N (�)−1∑
l=0

Cl
ε2

� (1 + �)B(ε)

for some large constant B(ε). This yields the assertion of the theorem.

9 Lp-Sobolev Estimate

In order to prove our Sobolev estimate we have to combine the estimates for the
operatorsRk . Here we use a special case of Theorem 1.1. in [22]. In what follows the
operators Pk are defined by P̂k f (ξ) = φ(2−kξ) f̂ , where φ is supported in {ξ : 1

2 <

|ξ | < 2}
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Proposition 9.1 [22] Assume ε > 0, p0 < p < ∞ and λ > 1. We are given operators
Tk, k > 0, with smooth Schwartz kernels Kk (acting on functions in R

3) satisfying

sup
k>0

2k/p‖Tk‖L p→L p ≤ A (9.1a)

sup
k>0

2k/p0‖Tk‖L p0→L p0 ≤ B0. (9.1b)

Assume that for each cube Q there is a measurable exceptional set EQ such that

meas(EQ) ≤ λmax{diam(Q)2, |Q|} (9.1c)

and such that for every k > 0 and every cube Q with 2kdiam(Q) ≥ 1 we have

∫
R3\EQ

|Kk(x, y)|dy ≤ B1 max{(2kdiam(Q)−ε, 2−kε} for a.e. x ∈ Q. (9.1d)

Then for q > 0,

∥∥∥∥∥∥
(∑
k>0

2kq/p|PkTk fk |q
)1/q

∥∥∥∥∥∥
p

� A

⎡
⎣log

⎛
⎝3 + B

p0
p

0 (Aλ1/p + B1)
1− p0

p

A

⎞
⎠
⎤
⎦

1
q − 1

p (∑
k

‖ fk‖p
p

) 1
p

. (9.2)

We claim that for � > 0

∥∥∥∥∥∥∥

⎛
⎝ ∑

k:�k/3�≥�
2kq/p|PkRk,� fk |q

⎞
⎠

1/q
∥∥∥∥∥∥∥
p

≤ Cp2
−�ε(p)

(∑
k

‖ fk‖p
p

) 1
p

, p > 4

(9.3)
which can be used, together with (5.9) to deduce

R : (Bs
p,p

)
comp → (

Fs+1/p
p,q

)
loc, p > 4, q > 0. (9.4)

Since Ls
p = Fs

p,2 ↪→ Bs
p,p for p > 2 and F0

p,q ↪→ F0
p,2 = L p, q ≤ 2, this implies

the asserted L p-Sobolev estimates. In order to check (9.3) we need to verify the
assumptions of the proposition for the family {Rk,�}k≥3�.

Let 4 < p0 < p. By Theorem 5.1 we have (9.1a) with A = Cp2−�β and β <

2/p − 1/2 if 4 < p ≤ 6 and β < 1/p if p ≥ 6. Moreover we have (9.1b) with
B0 = Cp02

−�β0 and β0 < 2/p0 − 1/2 if 4 < p0 ≤ 6 and β0 < 1/p if p0 ≥ 6.
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By integration by parts argument one has the bound

|Rk,�(x, y)| ≤ CN
22k

(1 + 2k−�|y′ − S(xQ, y3)|)N

for the Schwartz kernel of Rk,�. For a cube Q with center xQ define

EQ := {y : |y′ − S(xQ, y3)| ≤ C22�diam(Q)}

if diam(Q) ≤ 1. If diam(Q) ≥ 1 we let EQ be a ball of diameter C22�diam(Q),
centered at xQ . Assumption (9.1c) is then satisfied with the choice of λ = 22� and
(9.1d) holds with B1 = 22�. The logarithmic term in (9.2) gives us an additional factor
O(�). Thus we have verified (9.3) with ε(p) < β and (9.4) follows by summation in
� ≥ 0.

10 Further Results and Conjectures

In our analysis we heavily used the condition � ≤ �k/3� for the operators Rk,�. If
one is interested to relax the assumption that πR is a fold, one needs to explore finer
localizations of τ1�1 + τ2�2 as used by Comech in [6]. There he proves sharp L2-
Sobolev estimates under the assumption that πL is a fold but πR satisfies a finite-type
condition of order t, i.e., if VR is a kernel field for πR then

∑t
j=0 |V j

R (det πR)| �= 0.
The case t = 1 applies to the fold assumption onπR . In the general finite-type situation
we can show the L p

comp → L p
1/p,loc estimate for p ≥ 5, and in fact in a slightly larger

range.

Theorem 10.1 LetM ⊂ �L ×�R be a four-dimensional manifold such that the pro-
jections (1.3) are submersions. Assume that the only singularities of πL : (N ∗M)′ →
T ∗�L are Whitney folds and that πR : (N ∗M)′ → T ∗�R is of finite type ≤ t, for
some t ≥ 0. With L,
 be as in Theorem 1.1 suppose that 
 is a submersion. Then
R is extends to a continuous operator

R : L p
comp(�R) → L p

1/p,loc(�L),
10t+2
2t+1 < p < ∞ .

Sketch of Proof By the L2 estimates in [6] the operators R�,k the L2 bound in (5.3)
is still valid, and all of our previous arguments apply. Hence we just need to consider
the case � = �k/3�.

The operatorR�k/3�,k , forwhich |τ1�1+τ2�2| � 2−k/3, satisfies the normestimate

‖Rk,�k/3�‖L2→L2 � 2− k
2

t+1
2t+1 , a less satisfactory bound. One can show this estimate

as a consequence of more refined L2-estimates in [6]. This yields an analogue of (5.8)
in the finite-type case, namely for 2 ≤ p ≤ ∞,

(∑
ν

∥∥Rk,�k/3�[1�k/3�,νgν]
∥∥p
) 1

p

� 2− k
p

t+1
2t+1− k

3

(
1− 2

p

)(∑
ν

‖gν‖p
p

) 1
p

.
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Combining this with the decoupling estimate (5.6) (which remains true for � = �k/3�)
yields

∥∥Rk,�k/3� f
∥∥
p � Cε2

k
3

(
1
2− 1

p +ε
)
2− k

p
t+1
2t+1− k

3

(
1− 2

p

)
‖ f ‖p, 2 ≤ p ≤ 6,

i.e., ‖Rk,�k/3� f ‖p � 2−k(α(p)+1/p) with α(p) > 0 for 10t+2
2t+1 < p ≤ 6. Further

interpolation with the bound ‖Rk,�k/3�‖L∞→L∞ = O(1) gives a similar statement for
6 ≤ p ≤ ∞ with an α(p) > 0 for 6 ≤ p < ∞.

To improve on this result, one would have to employ finer localizations in terms
of det πL (which would correspond to the assumption |τ1�1 + τ2�2| ≈ 2−� where a
range of � > k/3 will depend on t). Our current arguments for the plate localization
in Lemma 6.3 are not effective in that situation. Nevertheless we conjecture that the
result of Theorem 10.1 remains true for all p > 4, and even that the assumptions on
πR can be dropped altogether in Theorem 1.1. See the discussion of model examples
in Sects. 4.2 and 4.3.2.
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