SPHERICAL MAXIMAL OPERATORS ON RADIAL FUNCTIONS

ANDREAS SEEGER, STEPHEN WAINGER AND JAMES WRIGHT

1. Introduction

For a function f € LP(R?) we define the spherical means
Af@) = [ fo—tf)aoy)

where do is the rotationally invariant measure on S?~!, normalized such that o(S¢~1) = 1.

Stein [5] showed that lim; .o A;f(z) = f(x) almost everywhere, provided f € LP(RY), p > d/(d — 1)
and d > 3. Later Bourgain [1] extended this result to the case d = 2. If p < d/(d — 1) then pointwise
convergence fails. However if {t; };‘;1 is a fixed sequence converging to 0 then pointwise convergence may
hold for all f € L? even if p < d/(d — 1), and p depends on geometric properties of the sequence {t;}.

According to a theorem by Stein [4] pointwise convergence holds for all f € LP if the associated maximal
operator

Mpf(z) = sup A f(z)]
tep

is of weak type (p,p), here E = {t; : j € N}. Let p(E) be the critical exponent for LP-boundedness of
Mg, in the sense that LP-boundedness holds for p > p(E) and fails for p < p(E). By the Marcinkiewicz
interpolation theorem p(E) is also the critical exponent for Mg being of weak type (p,p) if 1 < p < d/(d—1).
A geometric characterization of p(E) has been found in [3]; here arbitrary subsets E of (0, co) were admitted.
In order to describe the result in [3] we let I, = [2%,2F*1] and

EF =I,NE

and let N(E*, a) be the a-entropy number of E*, that is the minimal number of intervals of length a needed
to cover E*. Define

— log(1+ N(E*,2%6))
F) =1
W(B) = T fsup = S
Then (E)
K
p(E) =1+ PR

Various results concerning the LP-boundedness of Mg for the critical exponent p = p(F) were proven
in [3]; however these results fell short of being necessary and sufficient. If p < d/(d — 1) then a natural
conjecture for the behavior on LP would be that Mg is of weak type (p,p) if and only if the covering
numbers N (E*, 2%§) are bounded by C'6~(¢=D®=1 yniformly in k. Since the LP-boundedness of Mg for
p < p(FE) can be disproved by testing Mg on radial functions (in fact characteristic functions of balls) one
might first examine the behavior of Mg on radial functions in LP. In this paper we completely characterize
the sets E for which Mg is of strong type or of weak type (p,p) on radial functions if d > 3 or if d = 2
and p < 2. Our first result concerns the case p < d/(d — 1).
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Theorem 1.1. Let E C (0,00) andd > 2. Let 1 <p < dfdl. Then the inequality

{z: Mgf(z)>a}| < C

p
||f||Lfad
aP

hold for some C' and all radial LP functions f if and only if for all § € (0,1/2)

(1.1) sup N(E*,2F6) < 0’6~ (@11
kEZ

for some C' independent of §.

The condition for a strong type inequality is somewhat more complicated. More generally we consider
the L? | — LP? mapping properties where LP? is the standard Lorentz-space.

Theorem 1.2. Let E C (0,00),d>2 and let 1 <p<d/(d—1), p < q<oco. Then the inequality
[IMefllLrarey < Cllfllrr, ra)

holds for some C and all radial f € LP(R?) if and only if the condition

(1.2) Sup(Z[N(Ej+", 27 )]q/P2—"<d—1>q/P’)l/q < o0
JEL n=0

is satisfied.

Note that Theorem 1.1 is just the limiting case of Theorem 1.2, for ¢ — oo.

In dimensions d > 3 we can also prove a characterization for LP — LP?-boundedness at the critical
exponent p = (d — 1)/d, on radial functions. For the case ¢ > p we have

Theorem 1.3. Let E C (0,00) and d > 3. Let pg = d/(d —1). Then Mg is of weak type (pa,pa) on
radial functions if and only if for all 6 € (0,1/2)

(1.3) sup N(E*,2%6) < € [log(1/5)] /Y.
kEZ

If pg < q < 0o then Mg maps LY. boundedly into LP49 if and only if for all § € (0,1/2)

rad

(14) s (Do [v(E", 259)] q”’d)pd/q < C6 log(1/8)] MY
=log ™% Mgy

where the supremum is taken over all intervals I of length log 1.

The condition for ¢ = py takes a different form. Let d(; ,) be the Dirac measure in R2 supported at
(k,n). For any subinterval I of the real line let T'(I) be the tent

(1.5) TI) ={(z,t):xz eI, 0<t<|I|}



Theorem 1.4. If d > 3 then Mg maps L', (R?) boundedly into LP4(RY) if and only if the discrete
MEASUTE Y 1y D nsg N(E*, 2’“’”)2*"711/(”[71)5(;@)”) on the upper half plane is a Carleson measure; i.e.
1
(1.6) SUp Z N(E*, 2k=m)2 /=1 < o0,
jriz1 | (k,n)ET(I)

For a different formulation of Theorems 1.3 and 1.4 unifying the statements for p < g < oo see Corollary
2.6 below.

Remarks. In various instances the conditions for boundedness take a simpler form, see also the discussion
in §2.
(i) Let E = E° be supported in [1,2]. Let

(1.7) wy, = |{r: dist(r, E°) < 27"}|.
Then for 1 < p < d/(d—1) the local maximal operator M go is bounded on L? , if and only if the inequality

(1.8) wy, < 9~ n(1=(d=1)(p—1))

d/(d-1)
rad

holds uniformly in n > 1. Moreover M go is bounded on L if and only if the inequality

(1.9) w, < Cn~ 71

holds uniformly in » > 1. These facts are immediate consequences of Theorems 1.2 and 1.4. Note also
that in this case the condition for L? , — LP9-boundedness does not depend on ¢ € [p, oo].

(ii) Suppose that F is the union of 2*-dilates of a fixed set E° supported in [1,2] and let w,, be defined
as in (1.7). Then the condition

> 1/q

(1.10) (Z [ann(l—(d—l)(p—l))}Q/p) < o

n=0

is equivalent to (1.2) and the condition
(1.11) w, < Cn~#1(1+E)

is equivalent to (1.4) (or (1.3) respectively). Finally condition (1.6) becomes

(1.12) annl/(d_l) < 00.
n=1

Various equivalent forms of our conditions are discussed in §2. There the necessity of these conditions
is also proved. The proofs of the sufficiency are contained in §3-5. The proofs of Theorem 1.1 and 1.2 are
contained in §3 for the case d = 3 and in §5 for the case d = 2. The proofs of Theorems 1.3 and 1.4 are
given in §4.

The following notation is used: For a set E C R? we denote the Lebesgue measure of E by |E|. The
measure g on R, is defined by dug = r¢1dr. We always let I;, = [2%,28+1] and I, = [2F—1, 22]. Given
two quantities a and b we write a < b or b 2 a if there is a positive constant C' such that a < Cb. We write
axbifa<band a2 b.
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2. Preliminaries

We begin by recalling a characterization of Lorentz-spaces LPY. Let f be a measurable function in
a measure space () with measure p. Let A\¢(a) = p({z : |f(z)] > «a}) be the distribution function and
f*(t) = inf{a : Af(a) < t} the nonincreasing rearrangement. Then one defines the LP?-quasinorm with

respect to the measure p by
q [~ T AN
Pl = (2 [ e 01'S)
P Jo

This is not actually a norm but for 1 < p < co the space LP? = {f : || f||Lr« < 0o} carries a Banach space
topology ([7]). The following Lemma is probably well known, but we include a proof because of lack of an
appropriate reference.

Lemma 2.1. For any measurable function f

(2.1) e = (o [ a2 s (S aia )

«
oEL

Proof. The equivalence of the second and third expression follows from a standard argument (as in [7,
p.192]). It suffices to show the equality of the first two terms for nonnegative simple functions; the general
case follows by a limiting argument (see [7, p.191]). Therefore assume f(z) = >, a;xm, (), with

a1 > az - > an > 0. Let v; = Zi:l 1(Ey). Set vop =0 and a,41 = 0. Then Af(a) = Z;L=1 va[ajH,aj)(a)
and f*(t) = >7_} @ X[;_, .v;)(t). An evaluation of the integrals yields

4 [ ppedt - N
@) = Y - o)
P Jo L
° da -
0 [ @ = 3ol —af )
j=1

and since vg = 0, a,+1 = 0 the two expressions coincide. [

It is sometimes useful to express the conditions in Theorems 1.1 and 1.2 in different ways. Let
N(E*,2k=m) be as in the introduction and define

(2.2) Wk = {r € Iy : dist(r, E¥) < 2FF1}
and
(2.3) DE = {r eI, : 2" < dist(r, E¥) < 2F—n+1,

By a binary interval of length 27 we mean an interval of the form [m27, (m + 1)27] for m, j € Z. We first
note

Lemma 2.2. Let E C (0,00). Let N(E, 27) be the minimal number of binary intervals of length 27 needed
to cover E. Then

N(E,27) < N(E,27) < 3N(E, 2%).

Moreover for any interval I with 27 < |I|

PEN(ENTLY) < |{rel:dist(r,ENT) < 27T} < 273N(ENT,27).

We omit the elementary proof.



Lemma 2.3. Let E C (0,00) such that |E| = 0. Suppose that 1 < p < d/(d — 1) and ¢ > 1. Then the
following conditions are equivalent:

o0
(2.4) SUP(Z [N(E”“, zj)]l/pzfn(dfl)/p’r)l/q >
i€Z n=0
. 0 . , 1/
(2.5) sup 27J/P (Z [‘Wﬂb+”‘1/p2*n(d*1)/p ]‘1> q < 0o
jez <
(2.6) sup 279/P (Z [‘D%+n|l/p2—n(d71)/p/:| q> v
ez n=0

For g = oo these statements remain true if one replaces the £1-norm by the supremum.

Proof. The equivalence of (2.4) and (2.5) for all p immediately follows from Lemma 2.2. Clearly (2.5)
implies (2.6). Since we assume that the closure of E is a null set we also have

@7 Wil =3 DL

m>n

Using (2.7) and Minkowski’s inequality we obtain

. s . 9N\ 1/
9—i/p (Z {|W7]l+n|1/p2—n(d—l)/p } )
n=0
L s . i1y 19\ 4
<2 J/pZ(Z[\D%isWPQ (d 1)/17} )
s>0 n=0

< Z 9sl(d—1)/p'—1/p] sup [2—(l—s)/p(z ‘qu;s+m|q/p2—m(d—1)q/p’) 1/!1 _
- 520 lez m=s

Since j was arbitrary and p < d/(d — 1) we see that (2.6) implies (2.5). O

We now discuss alternative formulations of the conditions in Theorems 1.3 and 1.4. Define for any
subset A of Z x N

(2.8) oA(A) = > [DE[2FAY
(k,n)eA

where in our application A = d. Let
(2.9) Tx(8) = {(k,n) : n27**~1 > g}
and for any interval I let T'(I) be the tent of I as defined in (1.5).

Lemma 2.4. Suppose E C (0,00) and |E| = 0. Suppose 1 < p < oo, 1 <\ < oco. Then

r NnNT(I
supsup|I/fo|2_k(’\_1)(p_1)np_1 ~ sup supﬂpu)‘( A(0) ()
n>1kezZ 1>1 8 1]

and for 1 <p < qg< o0

sup sup (Z“Wm_m_n(p—nnp—l]q/p)P/q ~ sup (/“’ 6{1[%@(5&0 T(I))]Q/Pdﬁﬁ)l’/?
0

n>1|I1=n \2y [1]>1
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Proof. We only consider the case p < ¢ < 0o, the case ¢ = o is proved in the same way.
First fix n > 1 and an interval I = [a,b], b—a =n. For [ > 1 let I' = [a — 2'n,b + 2'n] and let

By(k,n) = 21~ 2 KO-

so that

ﬁl(k TL)

)\ 1
Bk +1,n) #1

(2.10)

Then using (2.7) we obtain

(Z [2%(,\71)@71) ‘Wmnpfl] q/p)p/q

kel
2ln
<3 (S Y gy
I=1 kel m=2l—1p
r/q

<03 (D[R 2 ) or(T(1) N TAB (R 1)) ™" )

=1 kel

SRS ”@A(ﬁz(k, )y
k

(/OOO 5 [U,\(T(I)|Iﬂ| F,\(ﬂ))]Q/pdﬂﬂ)p/q

N
Il
—

where for the last inequality we have used (2.10).
For the opposite inequality we fix an interval I of length |I| > 1 and set for 8 > 0, m > 1,1 < 2% < 2|I|

A, ={kel:pam 2" <27h-1 < gom=stl)

and observe that the cardinality of 22  is bounded independently of s, m and 3. Moreover for fixed k, s
and m

(2.11) / 4 < C».
(g:kex?,y B

We estimate
° _ _ a/pdB\r/a
([ ol > ooy

(k,n)eT(IH)NCA(B)
oo [l+log, [1]]

Z Z / B \I\ Y Z 9~k @=1)| pk|(25-m ) g)p }Q/Pdﬁ)p/q

kEﬂ?m n=2s—1

2/\

00 1+lo I 00
- Z 2ﬂnp[ fl 1] -1 (/ [ Z 2716()\71)(1771)‘1/[/2]2_1‘28@71)}q/p%)p/q
m=0 s=1 0 kéﬂfm B
[1+log, |1]] v/a
< Z 28‘]‘—1<Z[2—k()\—1)(p—1)|W21€871|28(p—1)]Q/P)
s=1 kel
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where for the last inequality we have used (2.11) and the statement preceding it. Now for each s with
1 < 2° < 2|I| the interval I is a union of &~ |I|27° intervals J; of length 2° and therefore

[1+log, |1]] "
Z 25|]—|71 <Z [2716()\71)(1771) |VV2I€S_1 |25(p71)] ‘I/P)
s=1 kel
[1+log, | 1]] "
g Z 25|I| 1(2 Z k(A=1)(p— 1)|Wk |23(p—1)]‘I/P)
s=1 v keJs
[1+log, IIH »
S Z s(=p/a)| | =14P/9 sup sup (Z k()‘_l)(p_l)|W7/1€|np—1:|q/P)
s=1 n>1|J|=n ey

and the desired inequality follows since ¢ > p. 0O

Lemma 2.5. Suppose 1 < p < oo, 0 < XA < co. Then the condition

(2.12) sup

| | Z |W7’f|2*k(/\*1)(p*1)np71 < o
|1)>1

(k,n)eT(I)

holds if and only if |E| = 0 and the condition

= poa(A(B) NT(1)) dB
19 T A T

holds.

Proof. We first observe that

» >~ 3P oA(A(B)NT()) ag _ ﬁp ‘Dk|2k(>\—1)%
1] g |I| " g
0 (k,n eFA(ﬁ)ﬂT(I)
1 na—kO-1)
=g X e/ pBrdp
(k,n)ET(I) 0
1
(2.14) = i Y. D27 FDe e,
(k,n)ET(I)

Now suppose that (2.12) holds. Then it is easy to see that |[E| = 0. Fix an interval I and let I* the
double interval. Since the sequence n — |W}| is monotone we obtain that

1 [1+logs (17])]
o Z |DE |2~ FA-DE-1pp < i Z Z Wk |2~ A= D (-1 gsp
| ‘(k,n)ET(I) [ |k€I 5=0
1
2.1 < k1g—k(A=1)(p—1),,(p—1)
(2.15) Sooox wal n

(k,n)eT(I*)

Conversely assume that |E| = 0 so that (2.7) applies. Fix I = [a,b] and let I} = [a—2"F1T], b+ 211 T]).
7



Then

1 ST WE DDt

‘I‘ (k,n)eT(I)
1 [logs (|7])+1]
< mz Z Q—k(k—l)(p—1)|W2kS|2sz)
kel s=0
[log, (|1])+1]
S5 3 DD DRI T DT
=0 kel s=0 25 +Hl—1<m <28+l
oo 2 [log, (1])+1]
D S Y
| kel 5=0 25 Hl—1 < <25+l
= 1
< 9—ip—1) _—_ 9—kA=D(P=1)| Dk |;mP
syreg % D3|
= (k,m)eT(11)
1
(2.16) S sup — Z 2_k()\—1)(P—1)‘D§T|mP_

iy (k,m)€T(J)

The asserted equivalence follows from (2.14-16). O
Lemmas 2.2, 2.4 and 2.5 can be used to unify the statements of Theorems 1.3 and 1.4.

Corollary 2.6. For any interval I with |I| > 1 let

va(Ca(B) ﬂT(I))T/p.

(2.17) a(B) = B[~

Then the condition

(2.18) sup [lap,, 1llLo(ry.as/8) < 0
1121

is equivalent with (1.3) if ¢ = oo, with (1.4) if p < g < oo and with (1.6) if g=1p

Necessary conditions. We now consider the spherical mean A;f for a radial function f with f(x) =
fo(lz|). Then A,f is also a radial function, given by

o10) Mgy =ea [ Fulel e
: +f(x) =ca et ¢z, s) fo(s)ds
where
CV(r1)2 = s2y/s2 — (r —1)27d-3 S
(2.20) Ki(r,s) = [ (r +t)2 (rft) } (r+1t)2—(r—1t?2

This follows from a straightforward computation, see [2]. In order to derive necessary conditions for
LP — LP? boundedness we shall use the following lower bounds which immediately follow from (2.19-20).
8



Lemma 2.7. Suppose fo(r) > 0 for all v > 0. Then there is ¢ > 0, independent of fo, such that

2k

Mpf(z) > c27HaD / s % fo(s)ds if |z| € D},

ok—n+2

We first note set if fo(s) = s~(¢=D[log 1/s] " x[0,1/9(s) then f € LP(R?), p < d/(d—1), but Mpf(z) =
oo for # € E. Thus LP — LP9 boundedness for p < d/(d — 1) implies that E is a null set.
In order to see the sharpness of Theorem 1.1 and Theorem 1.2 we test Mg on the radial f with

fols) = s7PX (a1 pi1)(s),

then || f|l, = 1. Also

Hz: Mgf(z) > C2°} 2 Z |Ditn |20 +n)(d=1)

n:2—n(d—1)2—35d/p>90c

for suitable C' > 0. We estimate from below the sum of the right hand side by the sum over those terms
with 27(d=1)9=3d/p ~ 29410 and use only those expressions in the definition of the Lorentz-space via the
distribution function. This yields

(Z 27z : Mpf(x) > 02”}\1/p]q)1/q 2 (i[|Dfl+n\1/p2—j/p2—n(d—1)/P']q)l/q.
7 n=0

Since j is arbitrary the necessity of the conditions in Theorems 1.1 and 1.2 follows from the last inequality
and Lemma 2.3.

In order to see the sharpness of Theorems 1.3 and 1.4 we fix I = [a — L,a + L] and define f via
fols) = 51X gamtor gesrons ().
Then
(2.21) £l prageay = O( =D/,
Now if |z| € DF, k € I, 0 < n < |I| then Mg f(x) > ¢27*@=p by Lemma 2.7 and therefore
(2.22) Hz € RT: Mpf(z) > a}| > v4(Ta(ca) NT(I)).

In view of Corollary 2.6 the necessity of the conditions in Theorem 1.3 and Theorem 1.4 is an immediate
consequence of (2.21) and (2.22).
3. Estimates in higher dimensions

We shall use the following pointwise estimate for the spherical means acting on radial functions f
defined in R¢, d > 3 such that

f(x) = fo(r) where r = |z|.

9



Lemma 3.1. Fizx 1 <p <2 and set

(3.1) g(s) = fols)s"71/P.
Then
(3.2) Mg f(z) < CL[Mg(r) + R fo(r) + Rafo(r)]
where
r+t d—1
(3.3) Mg(r) = sup rlfd/ s lg(s)ds
teE |r—t]
7/2<t<3r/2
1 r+t
(3.4) Ry fo(r) = sup n fo(s)ds
t<r/2 r—t
1 t+r
(3.5) Rsofo(r) = sup — fo(s)ds.

t>3r/2 7 Jt—r

The estimate (3.2) is an easy consequence of (2.19-20); we shall omit the proof. Theorems 1.1 and
1.2 for d > 3 are immediate consequences of the estimates for R;, Ry and 9 in Lemmas 3.2, 3.3 and
Proposition 3.4 below.

Lemma 3.2. For 1 <p <o0o,d>1 the operator Ry is bounded on LP(ug4). Moreover Ry is of weak type
(1,1), with respect to the measure fiq; i.e.

pallr s Rafo(r) > a)) S o [ 1fo(s)ls" s,
for all a > 0.

Proof. Since R; is bounded on L it suffices to prove the weak-type inequality and the conclusion follows
by the Marcinkiewicz interpolation theorem. We observe that if supp h C [2¥,2%+1] then supp Rih C

[2571,252]. Let f¥(s) = 320__5 | fo($) X, (5). Then

pa({r : Rifo(r) > a}) S 22’“(‘1*1”{7" €l Riff(r) > a}
k

and by the weak type inequality for the Hardy-Littlewood maximal function the right hand side is domi-
nated by a constant times

a1 S kD | p Y < o7 / fo(s)|s¢ds. DO
k

Lemma 3.3. Suppose d > 1. Then the operator Ry is bounded on LP(uq), 1 < p < oo.

Proof. Clearly R, is bounded on L*°, so it suffices to check the claim for p = 1. Then

2k+1 2k+1 2k+L+1

Z/Zk \Rafo(r)r*'dr < ZZ/% pd—29—(k+L)(d—1) /2k+L \fo(s)|s%ds dr
kez” =" keZ L>0 -1
2k+L+1
S Y2t [ el S ol O
L>0 keZ

The assumptions on the set E will be needed now when we estimate 9 fj.
10



Proposition 3.4. Suppose that 1 <p <d/(d—1), p < ¢ < o0 and

1/q
SHP(Z Ej+n 2] 1/pg—n(d— 1)/1)] ) <A ifp < q< oo
n>0
sup N (E7+n, 27)l/pg=—nd-1/r" < 4 if g = o0
7n
Then MM maps LP boundedly into LP(juq).
Proof. Define for £ > 0

2k—n+@+l

3.6 m pl=d / g (s)ds;
(3.6) () =D > xpi(r e 07 gl)ds:

k n>¢-3

then Mg(r) < >0, Meg(r). We now derive an LP4(u,)-estimate for Mg in terms of the LP-norm of g
(which is equal to the LP(uq)-norm of fp).

First note that the assumption on E implies |E| = 0 and therefore also ug(E) = 0. Consequently it
suffices to estimate the functions Myg on the set Uk,nDﬁ. By Holder’s inequality

d— 1
Meg(r) < 012_k(d_1)2(k_n+2)(71_5)||9||LP(1kw+e) if r € Dy
Therefore
pa({r : Mg >27}) S > 2H@=D|DE|
where in the starred sum we sum over all pairs (k,n) with the property that

n d*l 1 p
2 kA= Dg(k—nt0)(“+ P)||g||Lp(1k—n+e) S 90
We change variables j = k — n and set for fixed j and k =0, 1, 2,
K —(J+n)(d— j+¢ d;/lf,l o+K go+kK
B}, = {n>0:C2 (+n)(d=1)o(I+O(F p)”g”Lp(NH) € [27F%, 20t +1)}

= {n20: CP2 a2 @I T glip ) (2P gl n )

Then
pa({r: Mg > 27}) < Z Z Z 9i(d=1)gn(d=1)| pitn|
k>0 J nEBZJa
Now
|D¥L+n| 5 QjN(Ej+"7 2]')
and

j —n(d— —(o+kK L le*l : K
27 S2 (d=Dpg=(e+mpgtlsy; p)pHgH]Zp([HZ) ifn € Blja'

Therefore by Minkowski’s inequality

(Z 204 [ﬂd({T : Meg > 2(?})](1/17)
< Z(Z 274 [Z Z 2(j+n)(d—1)|D¥L+n|:|Q/p)l/q

1/q

k>0 o Jj neBy;,
o pd=1_1 n n o a/p\1/aq
Y (X[ X 2 e N (i gl |
k>0 o Jj neBy

ljo

22 N(Z{Z( S gnld-n- UN(EH”,Qj))q/p}p/quHip(pu))l/p.

k>0 7 o nEB“U
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Now observe that for every o there are at most three n in BY. and for every n there are at most three o

ljo
such that n € BZU. Therefore

(3.8) Z[ Z Q—H(d—l)(P—l)N(Ej-ﬁ-"’Qj)}q/p SSup22_"(d_1)q/p/[N(Ej+",Zj)]q/p < A9,

o nEB’gJU J

Consequently

(Z 271 ['ud({r : ng(r) > 20})] q/p) 1/q < A9

Yo ”(Z o0 rr)

k>0

o= -1
< A2°C7 7 ||g| .

We have shown that 9%, maps LP boundedly into LP%(ug), with norm O(2Z(%_%))7 for 1 < p < o0,
p < g < oo (provided that A < co). The same argument applies to the case ¢ = oo, with only notational
changes. Note that the operator norms ||9%|| are controlled by a geometric sequence converging to 0 if
p < d/(d—1). Since for 1 < p < oo the Lorentz-spaces carry a Banach-space topology we may sum in £ and
the proposition is proved in the case p > 1. However using a result by Stein and N.Weiss [8] on summing
functions in weak-L' one can extend the argument to cover the case p =1 as well. [

4. Estimates in higher dimensions, cont.

We now give a proof of Theorems 1.3 and 1.4. For g € LP(R;) and fixed p, 1 < p < 00, A > 0 we
define an operator 9 =N, \ by

ok+1

= S 2 [ (s

k€Zn>0 2k
and let duy = " dr.

Proposition 4.1. Let E C (0,00) such that |E| =0 and 1 < p < oo, p < q < 0o0. Define I'x(3), vy as in
(2.8-9). Suppose that

oA @) AT jerdiy e _
() #PEEEERTE) e s
sup supﬁ{n)‘(r)‘(fzm T(I))} e < o0 (if ¢ = o).
[I|>1 B

Then M maps LP boundedly into LP(jy).

Proof of Theorems 1.3 and 1.4. In view of Corollary 2.6 the L? ;, — LP? boundedness of Mg is a
direct consequence of Lemmas 3.2 and 3.3 and Proposition 4.1; the latter is applied for p = pg = d/(d — 1),
A =d and g(s) = fo(s)s4V/ra. O

The special case D = 1 of the following result concerning averages turns out to be crucial in the proof
of Proposition 4.1.

Proposition 4.2. For (z,t) € RP x R, define



where u is a nonnegative measurable function. Let

LB = {(z,t) : tPu(z,t) > 8}

and let p be a positive measure in RP x Ry. Suppose 1 < p < 0o, p < q < oo and that

<O O T@) rdsy e
(], P ) e e
supsupﬁ[W} " if g =00
ups Q)

holds; here we take the supremum over all cubes in RP and T(Q) is the cube in RP x Ry with bottom Q.
Then

”SfHqu(RJrD“,du) < C”fHLP(RD)-

Proof. For m € Z let

Qp = {z: Mf(z)>2"}
where M f is the Hardy-Littlewood maximal function of f. Let {Q7'} be a Whitney-decomposition of €,,,;
here we assume that the Whitney cubes are binary cubes such that the coordinates of the corners are of
the form k,2%2 with kq, ke € Z. Define

=T7@MH\ U T@.
m+1CQm

Then, if f # 0, it is easy to see that every (z,t) € RYT! belongs to some T(Q1) (for suitable m depending
on z and t) and thus

RYT = [ Ry

Let
Eo = {(z,t) : |Sf(z,t)] > a}

If (x,t) € R}’ then we may pick zo such that | — x| < ¢1t (c1 is some geometrical constant) and such
that 2o ¢ Q™*! which means M f(xq) < 2™*1. Therefore

- /| WA fe) <2
y—x|<2t

Consequently if [Sf(z,t)| > aand (z,t) € R then u(z, )tP > a(c2™ 1)~ or E,NRT C T(cy 127 1a).
Thus

then it follows that

WENRY) < p(T(ez 27" 1) NT(Q)))

(/ [QPZZM (C27 "« OT(Qm))]Q/p%J‘)I/q
( (/o aq[ﬂ(r(027ma)mT(QT))]Q/p%)p/Q)l/p

h mY)14q/p p/a\ 1/p
(ZZCT‘ |C2’”|(/0 ﬂq[u(r(ﬁig;'@u))} %) )
SIPIEAIHIRE

= (Z2mp\9m\)l/p S IMflp
" 13

and therefore

(/Ooo [apu(Ea)}q/pdg)l/q

(07

A N

2/\



and since p > 1 the asserted inequality follows from the LP-boundedness of the Hardy-Littlewood maximal
function. O

Proof of Proposition 4.1. We apply Proposition 4.2 with D = 1 and

2n+1

ZXHH+1 / 5_1/1)/9(8)6[5;

KEZ
t) = Z Xk, ()27 FOD,

ZZX[k k1) (@)X 41) (D[ D [2FA D dt.
k€Zn>0

Let
2k
Us = {(kn) : Q—W—D/ sV g(s)|ds > o).

2k—mn

Then
T+2t
u(:r,t)/ fydy>a if(kn)eUy, k<z<k+1,n<t<n+1.

T2t

Therefore an application of Proposition 4.2 yields that under our hypothesis

([ o] X ote)" ) < (2]

(k,n)eUqy KEZL

gr+1

/ N 1/p
s g(s)ds] ) S Nl

which implies the assertion. [

5. Estimates in two dimensions

Again we begin by stating a pointwise inequality for Mg acting on radial functions f in R? with

f(z) = fo(r) where r = |z|.

Lemma 5.1. Fiz 1 <p <2 and set

(5.1) g(s) = fo(s)s'/".
Then
(5:2) Mg f(x) < ClMg(r) + Mg(r) + ZR folr
where
r+t
(5.3) Mg(r)= sup 7 * / sY2VP(s — |r —t)) "V %g(s)ds
telE |r—t|
r/2<t<3r/2
o ey /
(5.4) Mg(r)= sup 1! st2VP(r 4t — 5)"H2g(s)ds
r/2<tff3r/2 =t

14



(5.5) Rufo(r) = sup fl/?/ Is — 4+ 1|~ 2fy(s) ds
tt<€rl/?2 Tt

r+t
(5.6) Rsfo(r) = sup t_l/z/ |r+t—s|_1/2f0(s) ds
teR r
t<r/2

t
(5.7) Rsfo(r) = sup 7,—1/2/ |s—t+7’\_1/2f0(s) ds
tekE t—r
t>3r/2

t+r
(5.8) Ryfo(r) = sup r*1/2/ Ir 4+t —s| 72 fo(s) ds.
tek t
t>3r/2

The proof consists of straightforward manipulations of (2.19-20) and is omitted. The case d = 2 of
Theorems 1.1 and 1.2 follows from the results on 9, 9t and R; stated in Propositions 5.2-5.4 below.

Proposition 5.2. Forl1<p<oo andi=1,2

([T 1rasstiprar) ™ < € 3 supiv (s 22+ 0 ([ )
0

m>0 0

moreover there is the weak-type inequality

pa({r: Rifo(r) > a}) < C Z 27™/2(m + 1) sup N(EF,2F"™) o1 /OO | fo(r)|rdr.
50 k 0

Proof. We only consider R;; the operator Ry is handled analogously.

We first observe that if supp h C [2¥,2F"1] then supp Rih € [2F72,25+%] and we may hence assume
that fy is supported in [2%,2¥+1]. In this case

Ry fo(r) < sup Ky = fo(r)
teE
and the convolution kernel is defined by
Ky(z) =7 (1= t712) 1 Py ) ().
Let 8 € C§° be supported in (1/2,2) such that > 7~ _ 3(2¥s) = 1 and define for m > 0
K (@) = Ky(@)B@m (1 — 1)),
Then

[R1fo(r)| S Mfo(r)+ Y Rimfolr)
m=1

where M is the Hardy-Littlewood maximal operator and Ri ,, fo = sup,c g | K" * fo|. Since Ry, is bounded
on L> with operator norm O(2~™/2) it suffices to prove the weak-type (1,1) inequality with respect to
Lebesgue measure. In view of the above mentioned properties of the support of fy and R; fy the analogous
weighted version is an immediate consequence.

15



In order to prove the weak-type (1,1) inequality we use Calderén-Zygmund theory for vector-valued
operators. It then suffices to check that

(5.9) / sup sup |KT(x —y) — K™(z)| dz < m2~™/2sup N(EF, 28—™).
|lz|>2|y] k teEF k

First observe that supp K/® C {z : |x| < t} and therefore only terms with 2¥ > |y|/8 enter in the
integral (5.9). Choose a minimal cover of E* with binary intervals I¥™ of length 2¥=™. Tt is elementary
to check that

dK["
sup K7 (@) 4257 S (a)] | < cahm?
te[}f?n X

where C does not depend on k; moreover for fixed v the expression on the left hand side is supported in
Jkm = {x € R : dist(z, I¥™) < 2817} which is an interval of length < 2¥=™+3. Therefore the left hand
side of (5.9) is bounded by

> Z/J sup K} (2)|do + ZZ// sup 1y

km km km km
lyl/s<2k<amly| v T EELS 2k>2mly| v tely
—k+m/2| 7tkm m—k kmjo—k+m/2
S > DA Ao I N 71 Aol N P P el
lyl/8<2k<2my| v 2k>2m|y| v

< m2 ™ 2sup N(EF, 2F=™). O
k

m
(33 — sy)|dzds

The following result concerning Rs and Ry is a singular variant of Lemma 3.3.

Proposition 5.3. For1 <p< oo andi= 3,4

([ 1rasotrerar) ™ < 0 3 swpivest 2z ([T wear)
0 0

m>0

Proof. We only consider R3; the corresponding proof for R, is similar. Define

t—r+2 "

Ramfo(r) = sup 2m/%p1 / | fo(s)] ds.
t

teE —r42-m—1p
t>3r/2

Then |R3 fo(r)| < Yop_o |R3,mfo(r)]. We use Lemma 3.3 to see that the operators Rs ., are bounded for
m < 4 and assume henceforth m > 4. For fixed m > 4 we introduce a further decomposition in terms of
the t/r; we then have

Ra,m fo(r ZRSmLfO

where

t—r427™
Roaholr) = (2 2ot sp fols)ls ds.
keZ teER+L Jt—pr42—-m—1p

Note that the operator norm of R3,, ; on L* is bounded by C2~™/2 uniformly in L. We shall prove

that Rj,,. 1, is bounded on L'(us) with operator norm bounded by c2-Lo—m/2 supy, N(EF, 2k—m=L) Ta.

king this for granted we obtain by interpolation that the L”(u2) operator norm of Rj . 1, is bounded by
16



C2-L/P2=m/2 gup, [N (E*, 2F=™=L)]1/P and this implies that

([ 1Rapterar) ™ < Y2t S suplv(et, 2o ([ prar)

L>0 m>0
k ok—m\11/po—n/2 > p
< Zsup (EF, 2k=m))1/p2 ( | fo(r)|prdr) .
n>0 F 0

In order to prove the required L'(us) inequality for R, we cover the set EF+L with intervals
IFHLmtL of length 28— = 2k+L=(m+L) Denote by I¥+L™+L the double interval. Then

ok+1 ok+1
|R3,m.1, fo(r)|rdr <27 2kgm/29-L Z/ / — |fo(s)|sdsrdr

2k+L+3

< Z|15+L,m+L|2fka+m/2/ |fo(s)|sds
~ 2k+L—1
ok+L+3
527L—m/2N(Ek+L72k+L*(m+L))/ | fo(s)|sds.
ok+L—1

Summing in k yields the asserted L' inequality. [
Proposition 5.4. Suppose that

1/q
sup(z N (BT, 29) Vpo- ”/p] ) <A if p<q< oo,

n>0

supN(E]+",2j)1/p2*"/p/ <A if g =0

J.n
Then for1<p<2,p<qg< 0

199l ra(ug) + 1Ml Loy S Allgllre-

Proof. We show this only for the operator 90; the proof for M is similar but simpler. We dominate
My(r) < Mog(r) + Zimeg

where

2|r—t|
Mog(r) = sup ! / 51/271/7”(3 —|r— t\)fl/Qg(s)ds
teE lr—t|
r/2<t<3r/2

and for £ > 0 the operators My are defined in (3.6). We see that for ¢ > 1 the estimate
19eg ]l Loy S 2P P Ag,

was already obtained in the proof of Proposition 3.4. However the term 9ipg is more singular in two
dimensions and in what follows we prove the required estimate for the operator 9.

The set DF is a union of intervals I¥,. Let for 0 <1 <n

B, = {t € BF : 2877 < dist(¢, IF,) < 28 LY
17



Then a straightforward estimate yields

Mog(r)
n oo r—t|ok—nAl—mt1
2% /poy(2n—21+m)(1/p—1/2) el )P

DT DREL aup o(s)Pds

k€EZN>0 v " l 0 m=0 teEy,, W |r—t|42kmntiom

o0

=:C1 > Mimg(r)

I,m=0

where we write

Dy g (1 X]k 2—2k‘/p2(2n 2+m)(1/p=1/2) gy (/
DN |

n>l k v teEk,, ~J|r—t|42kmntiom

|r—t|429 FimmtL 1/p
_ Z Z Z Xpitn (T)Z—Q(j-l-n)/p2(2n—2l+m)(1/p—1/2) sup (/ |g(8)‘pd8> .
nw ! | )

j n>l v teE] ) Y r—t2Em

‘T_t|+2k7n+l—7n+1

s as)

Let I;4; = [2971,29%%1] and denote by fj-&-l the expanded interval as defined in the introduction. We
proceed analogously as in the proof of Proposition 3.4 and define

B-;ié-m _ {n > 0: Cvl2*2(jJrn)/ll72(2n72l+m)(1/1)71/2)||g||Lp(T_H [20+n’ 20+n+1]}

) S
There is the crude estimate

(5.10) Mymg(r) < 2_2(j+n)/p2(2"_21+m)(1/p_1/2)H9||Lp(fj+z re D%+n,

) ’
which implies that

ua({r : Myng(r) > 271} ZZ Z it | pitn|,

k20 j neBflm

Here we have of course used that |E| = 0. Now

(Z 2 iy ({r : My g(r) > 20})]q/p)1/q

led

© oy (zels 3y e

k>max{m—1,0} © j TLEBJ’-’”(",T”'
i i a/p\1/4q
Y ([ Y e D Mg () > 23] )
k<max{m—1,0} 0o j nEB‘l;ém
= &+ Eim

where the expression £2, is of course only present when m > [. The estimate of £ follows the lines of
the proof of Proposition 3.4 while for 2, we shall use the finer estimate

p —n)/p’ 9—m —n+l—-m—
) (2] grar) " < o2 N (R 2 g

Now if n € Bf(f_m then

2utn < P (g—r—o )PP olp=2)gm(1=p/2)| 5P
18
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and therefore we obtain by arguing as in (3.7), (3.8)

gllm S Z a2 /e /) (Z {Z Z 2- EJJF" QJ)HQHZP I+z)}q/p)l/q

k>max (m—1,0) o J nEBJ"(’,m
(5.12)
< min{2(m=20(1/p=1/2) 9m(1/p=3/2)921(1-1/p)} g (Z [27 (=D N (B, 27))] q/p) /4 lglly-

J n

Assuming (5.11) we obtain for m > [ by Tshebyshev’s inequality

ns Y (X[X X atemammN @ 2 A

k<m—l o J neBglm
< (m — 1) sup (Z [20=mp—Yg=mp/2 N (fpi+n, 2j+lfm78)]¢1/10) 1/q||g||p
Iy
. . 1/q
(5.13) < (m = 027D qup (3 [ ON (BT 2] ) g
J n

From (5.12) and (5.13) it follows that

SN EL YD & S (1 +m)r /) sup(z [2*"<P*1>N(EJ'+",2j)}q/p)1/qllgllp
J

m>01>0 m>01l<m m n

which proves the asserted inequality for the case 1 < p < 2, p < ¢ < co. The argument for ¢ = oo is
analogous and the case p = 1 can be handled in a similar way using the result of [8], as in the proof of
Proposition 3.4.

Proof of (5.11). For small m the appropriate estimates have already been obtained in the proof of Propo-
sition 3.4. Therefore we may assume that m > 4 in what follows.

For an integer p with 2714 < g < 2n=1+5 Jet JZf”l be the union of all intervals I¥, (in DF) which
have nonempty intersection with [p28 =74 (1 4 1)2F="+=4] and let

Fknl {t c Ek 2k n+l—1 < dlSt( ’Jlljnl) < 2k—n+l+1}.

Thus Ef,, C Ff™ whenever I}, has nonempty intersection with [p25=" =4, (p 4 1)2k=n+i=4],
We choose a minimal cover of F™ with binary intervals Q"' = [a,,b,] of length 2~ nH=m=8 " [f

rE Jl]f"l then for given p we have elther b, <7 orr <a,. Define for r € Jl]f"l

Aknl

) { [r— b, + 2~ Hlmm=3 g, 4 QM=) <
Hp -

la, — 7+ 2k—nHl=m=3p gy ok—ntl=m=21 fp < g,
For fixed s let

Rﬁzl( y={re Jk"l s € k”l(r)}.
Then the measure of Rﬁzl(s) is O(2F—"*1=™) We estimate

1/p
(2 [ 1tumgorar)

< 9 2k/po(2n—21+m)(1/p=1/2) (QkZ/ sup /
J |

. llfnl tEF[fnl r7t|+2k7n+l77n
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(5.14)

‘T*t‘+2k_n+l_m’+l

1/
lg(s)|Pds dr) :



and

|r—t|+2k—nHl=ml

Z/ sup / lg(s)|Pds dr
P Jﬁnl teF‘chnl |’r‘—t‘+2k_"+l_m
SES [ dtsrdsdr

w o JIEIQknN(r)

ok—n+i+2
< gk—n+i—m Z N(FZLmI, 2k7n+l7m78) - lg(s)|Pds
: ok —n+i+2
(5.15) < ohmntl=m N (pk ghmntlmm=8) lg(s)[Pds.

2k—n+l

Combining (5.14) and (5.15) we immediately get the desired estimate (5.11). O
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