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Abstract

We prove a bilinear form sparse domination theorem that applies to many
multi-scale operators beyond Calderén-Zygmund theory, and also establish neces-
sary conditions. Among the applications, we cover large classes of Fourier multi-
pliers, maximal functions, square functions and variation norm operators.
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CHAPTER 1

Introduction

Sparse domination results have received considerable interest in recent years
since the fundamental work of Lerner on Calder6n—Zygmund operators [751[76],
which provided an alternative proof of the As-theorem [57]. The original Ba-
nach space domination result was refined and streamlined to a pointwise result
[311 165 [77.[79], but it is the concept of sparse domination in terms of bilinear
(or multilinear) forms [I8[33] that has allowed to extend the subject to many
operators in harmonic analysis beyond the scope of Calderén-Zygmund theory.
Among other examples, one may find the bilinear Hilbert transform [33], singular
integrals with limited regularity assumptions [I5L29l[78], Bochner—Riesz operators
[161[68], spherical maximal functions [66], singular Radon transforms [2854]89],
pseudo-differential operators [I1], maximally modulated singular integrals [8]38],
non-integral square functions [6], and variational operators [17.[35L[36], as well as
results in a discrete setting (see for instance [21[341[64]).

Many operators in analysis have a multiscale structure, either on the space or
frequency side. We consider sums

T=>"1;,

JEZ

where the Schwartz kernel of T} is supported in a 27 neighborhood of the diagonal
and where suitable rescalings of the individual operators T and their adjoints sat-
isfy uniform L? — L9 bounds. Moreover we assume that all partial sums Zjvj ~ T
satisfy uniform LP — LP*° and L9!' — L4 bounds. The goal of this memoir is
to show bilinear form (p,¢')-sparse domination results (with ¢’ = ¢/(q¢ — 1) the
dual exponent) and investigate to which extent our assumptions are necessary.
We prove such results under a very mild additional regularity assumption on the
rescaled pieces; for a precise statement see Theorem [[LT] To increase applicability,
we cover vector-valued situations, thus consider functions with values in a Banach
space B; and operators that map simple Bj-valued functions to functions with
values in a Banach space By. Our results apply to many classes of operators be-
yond Calderén—Zygmund theory, and cover general classes of convolution operators
with weak assumptions on the dyadic frequency localizations, together with asso-
ciated maximal functions, square functions, variation norm operators, and more.
See Theorem [[4] for a particularly clean result on translation invariant maximal
functions. We shall formulate the results with respect to cubes in the standard
Euclidean geometry but there are no fundamental obstructions to extend them to
other geometries involving nonisotropic dilations (see e.g. [28]). Our approach to
sparse domination extends ideas in the papers by Lacey [66] on spherical maximal
functions and by R. Oberlin [89] on singular Radon transforms to more general
situations.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



2 1. INTRODUCTION

We now describe the framework for our main theorem and first review basic
definitions. For a Banach space B let Sp be the space of all B-valued simple
functions on R? with compact support, i.e. all functions of the form f = Ziil a;lg,
where a; € B and E; are Lebesgue measurable subsets of R? contained in a compact
set. For Banach spaces B, By we consider the space Opp, g, of linear operators
T mapping functions in Sp, to weakly measurable Bs-valued functions (see e.g.
[66] for an exposition of Banach-space integration theory) with the property that
x — (Tf(z),\) is locally integrable for any bounded linear functional A € Bj. If
T € Opg, p,, then the integral

(Thfa) = /R (Th(), f2(2))(5.55)d

is well-defined for all f; € Sp, and f, € Sp;. For a Banach space B and p,r € [1, o0
we define the Lorentz space L%" as the space of strongly measurable functions
f : RY* — B so that the function z ~ |f(z)|p is in the scalar Lorentz space
LP" (and we endow L%" with the topology inherited from LP"). In particular,
LY, = L%P coincides with the standard Banach space valued L space as defined
in [56], up to equivalence of norms. If p € (1,00) and r € [1,00], then L%" is
normable and we write || - ||z~ to denote the norm induced by the norm on scalar
LP" defined via the maximal function of the nonincreasing rearrangement [55].

In the definition of sparse forms it is convenient to work with a dyadic lattice
0 = UgezQy of cubes, in the sense of Lerner and Nazarov [79] §2]. A prototypical
example is when the cubes in the k-th generation 9y are given by
o = {27k +[—327% 227 ) 5 € Z4)  if ks odd,

{27k + [—327FF1 227F)d 5 €z} if k is even,
but many other choices are possible. Notice in this example the cubes in Qj have
side length 27%. This family satisfies the three axioms of a dyadic lattice in [T9].
We briefly review the definition. 9 is a dyadic lattice if
(i) every child of a cube Q € Q is in 9,
(ii) every two cubes @, Q" have a common ancestor in £, and

(iii) every compact set in R? is contained in a cube in Q.
For each dyadic lattice there is an « € [1,2) such that all cubes @ € 9 are of side
length a2~* for some k € Z. Fixing k we then call the cubes of side length a2~*
the k-th generation cubes in Q. If Q € Q we can, for every [ > 0, tile @ into disjoint
subcubes Q of side length equal to 27 times the side length of Q. We denote this
family by D;(Q) and let D(Q) = U;>0D;(Q), the family of all dyadic subcubes of
Q. Then for every Q € 9 we have D(Q) C Q. Note that because of condition (iii)
the standard dyadic lattice is not a dyadic lattice in the above sense.

DEFINITION. Let 0 < v < 1. A collection & C Q is ~y-sparse if for every Q € &
there is a measurable subset Eg C @ such that |[Eg| > v|Q| and such that the sets
on the family {Eg : Q € &} are pairwise disjoint.

We next review the concept of sparse domination. Given a cube @, 1 < p <
oo and a B-valued strongly measurable locally integrable function f we use the
notations

/
avof = Q! /Q f@de,  (Ngps = (101 /Q @)

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1. INTRODUCTION 3

for the average of f over @ and the LP norm on () with normalized measure, thus
(Nops = (avglf|%)'/P. For an operator T € Opp, p, We say that pointwise
sparse domination [3TI[79] by LP-averages holds if for every f € Sp, there are at
most 3¢ sparse families &;(f) such that

(1.1) ITf(x)|B, gcz > (Haepslgla) forae x
=1 Qe&;(f)

and we denote by ||T[sp_(p,5,,5,) the infimum over all C' such that (LIJ) holds for

some collection of 3¢ y-sparse families depending on f.

For many operators it is not possible to obtain pointwise sparse domination
and the concept of sparse domination of bilinear forms, which goes back to [18] and
[33], is an appropriate substitute. Given a v-sparse collection of cubes & and 1 <
p1,p2 < 00, one defines an associated sparse (p1, p2)-form acting on pairs (f1, f2)
where f; is a simple B;-valued function and f; is a simple Bj-valued function. It
is given by
(12) Ag Bi,p2, B* flaf? Z ‘Q| fl Q;Dl,Bl<f2>QP2 B3>

Qe6

and will be abbreviated by Ap " p, (f1, f2) if the choice of By, B3 is clear from context.
The form (L2) acts a bi-sublinear form on (|f1|p,,|f2|B;). All sparse forms are
dominated by a maximal form

(1.3) Azl,Bl,pg,B; (fi,f2) = sup Ap1 Bi1,p2, B3 (f1, f2),

S :y-sparse

again also abbreviated by Ay . (f1, f2) if the choice of By, B is clear from the

context. The maximal form may not be a sparse form itself but, obviously, for
& (f1,f2)

every f1, fo there exists a sparse family &(f1, f2) such that Apl,'Bl',pz,Bg (f1, f2) >
%A;hBl,pQ,B;(flvfb) (¢f. [67], [32] for more explicit constructions). Note from

([T2) that for each pair of simple functions (fi, f2),

Ay, By peBs (f1 f2) <77 i llssll f2 ]l oo meas(supp f1 U supp f2) < oo

We say that T' € Opp, p, satisfies a sparse (p1,p2) bound if there is a constant
C so that for all f1 € Sp, and fy € Sp; the inequality

(1.4) (T f1, f2)| < CAy, By po.B; (f1, f2)
is satisfied. The best constant in (L) defines a norm || - [[sp_ (p1,B, ps,B;) OB @
subspace of Opp, p,. Thus ||T[sp_ (p,,B1p.,5) 1S given by
T
15 s B egy pesy fA0i=12),

p1,B1,p2,B3 (f17 f2)

where f; # 0 means that f;(z) # 0 on a set of positive measure. It is then immediate
that ||T\|Sp7(p1731’p2y33) < ||T\|Spw(p17Bl7B2) for p; > 1. It can be shown that the
space of operators in Opp, p, for which (L) holds for all fi, f2 with a finite C' does
not depend on . We denote this space by Sp(p1, B1, p2, Bs) or simply Sp(p1, p2)
if the choices of By, Bj are clear from context. The norms || - ||Sp’y(plyBlyp27B;)7
0 < v < 1, are equivalent norms on Sp(p1, B1,ps, B3). Moreover, if By, By are
separable Banach spaces and p; < p < ph, then all operators in Sp(py, By, p2, B3)
extend to bounded operators from L'z to Ll .

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4 1. INTRODUCTION

1.1. The main result

For a function f define Dil; f(z) = f(tz). For an operator T define the dilated

operator Dil;T" by
Dil;T = Dil; o T o Dil;-1.

Note that if T is given by a Schwartz kernel (z,y) — K(z,y), then the Schwartz
kernel of Dil;T is given by (z,y) = t*K (tz, ty).
Basic assumptions. Let {T)};cz be a family of operators in Opp, p,. We shall
make the following assumptions.

Support condition. For all f € Sp,,

(1.6) supp (Dily;T;)f C {z € RY : dist(z,supp f) < 1}.
This means that if T} is given by integration against a Schwartz kernel K, then
K; lives on a 27-neighborhood of the diagonal.

Weak type (p,p) condition. For all integers N1 < Ns, the sums Z;-\ENl T; are
of weak type (p,p), with uniform bounds,

Ny
(1.7a) sup T; < A(p).
N1 <N, j;Nl Moy, —rpe

Restricted strong type (q,q) condition. For all integers N3 < Na, the sums
Z;V:z ~, T are of restricted strong type (¢,q), with uniform bounds,

N2
> Tj’
=,

Jj=

(1.7b) sup
N1< Ny

< A(g).

1
LL — LY
By Ba

Single scale (p,q) condition. The operators T satisfy the uniform improving
bounds

(1.8) Sup IDilys Tyl Ly, —rg, < Ao(p,q)-
J
Single scale e-regularity conditions. For some ¢ > 0 the operators T} and the
adjoints 77 satisty

(1.9a) sup |h|""sup ||(Dily; Tj) o Apllre, pa < B,
|h|<1 jez 1 2

1.9b sup |h| sup ||[(Dily; TF) o Apll, ot < B,

(1.90) sup 1] sup (DR T5) 0 Ml e

where

(1.10) Apf(z) == f(z+h) — f(x).

The above hypotheses assume certain boundedness assumptions in Lebesgue
or Lorentz spaces of vector-valued functions; it is then implied that all opera-
tors T; map simple Bi-valued functions to Bs-valued functions which are strongly
measurable with respect to Lebesgue measure. We formulate our main result for
1 < p < g < oo and refer to Appendix [Bl for variants with p = 1 or ¢ = oc.

THEOREM 1.1. Let 1 < p < q¢ < oco. Let {T;} ez be a family of operators in
Opg, B, such that
o the support condition (L) holds,
o the weak type (p,p) condition (L Ta) holds,
o the restricted strong type (q,q) condition (LTH) holds,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1.1. THE MAIN RESULT 5

o the single scale (p,q) condition (L) holds,
o the single scale e-regularity conditions (L9al), (LIB) hold.

Define

_ B
(1.11) C = A(p) + Aq) + Ao(p, a) log (2 + 5-075)-
Then, for all integers Ny, No with N3 < No,

Ny
(1.12) H ST
Jj=N1

The estimate (IIZ) implies, via a linearization technique (c¢f. Lemma (7)) the
following variant which leads to a sparse domination result for maximal functions,
square functions and variational operators, see Ch.[ll Instead of T; € Opp, p, we
use the more restrictive assumption that the 7; map functions in Sp, to locally in-
tegrable By-valued functions. We let Lle,loc be the space of all strongly measurable
Bs-valued functions which are Bochner integrable over compact sets.

Sp,q,smd C.

Sp., (p,B1,4’,B3)

COROLLARY 1.2. Let 1 < p < g < oo. Let {T}};ez be a family of operators,
with T : Sp, — L}32710C, and satisfying the assumptions of Theorem [LIl. Let C be
as in (LII). Then for oll f € Sp,, all R-valued nonnegative measurable functions
w, and all integers Ny, No with N1 < Na,

(1.13) /R

No
> L@, w@)de Spacoa CA g, g wlF):
=N, 2

REMARKS.

(i) We emphasize that the implicit constants in (I12) and (LI3) are depen-
dent on the input constants in (L7a), (L7D), (L), (CJa), (LIBH) but
otherwise not dependent on the specific choices of the Banach spaces By,
Bs. In some applications this enables us to perform certain approxima-
tion arguments, where for example the Banach spaces are replaced by
finite-dimensional subspaces of large dimension.

(ii) We note that for operators T; which commute with translations Condition
(L9D) is implied by Condition (.9al).

(iii) The Holder-type regularity assumption () for the operator norm can be
further weakened. In applications this will often be used for the situation
that an operator T is split into a sum _,., 7" where each T = Y ; Tf

satisfies the assumptions with A(p), A(q), 4o(p,q) = 0(2_&/) for some
¢ > 0and B = 2™ for a possibly very large M. The conclusion will
then say that || T* Isp., .07y = O(¢2~%"), which can be summed in ¢, leading
to a sparse bound for T.

(iv) In this memoir we are mainly interested in applications beyond the
Calderon—Zygmund theory and focus on the case p > 1 and ¢ < oo.
There are some elements in our proof such as the property of LP** being
the dual space of L¥"1 for which there is no analog for p = 1 and similarly
the failure of a suitable notion of restricted strong type for ¢ = oo; hence
Theorem [I.T] does not immediately apply to the situations where p = 1
or ¢ = 0o. Nevertheless one can formulate variants of the theorem which
cover these missing cases. We treat them in Appendix [B} indeed they are
close to results already covered in other works, in particular [29].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6 1. INTRODUCTION

(v) The role of the simple functions is not essential in Theorem [l and
the sparse bound can be extended to other classes of functions under
appropriate hypotheses; see Lemma [A 1]

(vi) We use the Banach space valued formulation only to increase applicability.
We emphasize that we make no specific assumptions on the Banach spaces
in our formulation of Theorem [[T] (such as UMD in the theory of Banach
space valued singular integrals). In applications to Banach space valued
singular integrals, such assumptions are made only because they may be
needed to verify LP-boundedness hypotheses but they are not needed to
establish the implication in Theorem [[1]

1.2. Necessary conditions

Under the additional assumption that Tj : Sp, = L}, )., together with p < g,
one has that the weak type (p,p) condition (L7al) and the restricted strong type
condition (7)) are necessary for the conclusion of Theorem [L1lto hold. Moreover,
if we strengthen the support condition (L)) assuming that the Schwartz kernels of
T} are not only supported in {|z —y| < 27} but actually in {|x — y| ~ 27}, then we
can also show that the single scale (p, ¢) condition (L8] is necessary.

We also have an analogous statement for Corollary Indeed, as the corollary
is proved via the implication

12 — @I13),
see Lemma 4] we will simply formulate the necessary conditions for the conclusion
in Corollary [[.2] which will also imply those in Theorem [L.1}
To be precise in the general setting, let us formulate the following assumption
on a family of operators {7} };cz.
Strengthened support condition. There are §; > 2 > 0 such that for all j € Z
and all f € Sp,

(1.14) supp(Dily; T; f) C {x : 41 < dist(x,suppf) < 1},
whenever diam(suppf) < ds.

If the T} are given by a Schwartz kernel K, then the condition is satisfied provided
that
supp(K;) C {(2,y) : (61 — 62)27 < |o —y| < 27}

THEOREM 1.3. Suppose that 1 < p < q¢ < oo. Let {T;};ez be a family of
operators, with T; : Sp, — LlBZJOC, and satisfying the support condition (LG).
Assume the conclusion of Corollary [L2, that is, there exists C > 0 such that for all
N1, Ny with Ny < Na, all f1 € Sp,, and all nonnegative simple functions w

I3
Then

(i) Conditions (LTa) and ([LTH) hold, i.e., there is a constant ¢ > 0 only
depending on d,p,q,~y such that for all Ny, Ny with N1 < N,

N2 N2
E Tj S c@, E Tj
LY, —LD
J=Ni B1 "By j=N1

N2
> T/ @)|w@) dz <€A 5, g (fi0).
j=Ni

<cC.

1
LL — LY
By Ba

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



1.3. AN APPLICATION TO MAXIMAL FUNCTIONS 7

(i) If, in addition, the T; satisfy the strengthened support condition ([L14)
then condition (L) holds, i.e., there is a constant ¢ > 0 only depending
on d,p,q,7y such that

sup [Dilyy Tyl g, 15, < €€
REMARKS.

(i) Note that in Theorem [[3] there are no additional assumptions on the
Banach spaces. The a priori assumption 7} : Sp, — L}g%loc enters in the
proof of necessary conditions for both Theorem [LT] and Corollary

(ii) There is an alternative version for necessary conditions for Theorem [T]
where one a priori assumes merely that the T belong to Opp, p, (i.e. T;f
is only a priori weakly integrable for f € Spg, ), but where one imposes the
assumption that By is reflexive. See Theorem

(iii) We have no necessity statement regarding the regularity conditions (3]
in Theorem [[I] or Corollary However, these conditions enter in the
conclusion of both Theorem [[.1] and Corollary only in a logarithmic
way (see (LTT)), hence the gap between necessity and sufficiency appears
to be small. Note that the necessary and sufficient conditions are formu-
lated for a uniform statement on a family of operators {Ejvj Ny LNy Ny
but, with the generality of our current formulation, we are unable to prove
a necessary condition for sparse domination for a specific operator in this
family. Nevertheless, the formulation allows us to show necessary condi-
tions for several specific maximal operators, variation norm operators and
other vector-valued variants, in particular those considered in Sections[B.1],
B2 and Section [T.1]

(iv) The constant ¢ in the conclusion of Theorem is independent of the
particular pair of Banach spaces By, Bs. This is significant for applying
the theorem to families of maximal and variational operators where for
the necessity conditions one can replace the spaces £°°, L>°, V" by finite-
dimensional subspaces of large dimension.

(v) Since ||T||Spw(pl,31,p2’35) < ||T||Sp’Y(pl’Bl’BQ) for po > 1, the necessary
conditions in Theorem can also be used to prove the impossibility of
pointwise sparse domination for many of the operators considered in this
memoir.

1.3. An application to maximal functions

We illustrate Remark (iii) above with a brief discussion about maximal oper-
ators associated to a distribution o compactly supported in R\{0} (for example
a measure), for which we have necessary conditions for sparse bounds. Denote
by oy = t~%(t~!) the t-dilate in the sense of distributions. For a dilation set
E C (0,00) we consider the maximal operator
(1.15) M f(x) = sup | f * o¢(x)].

teE

The maximal function is a priori well defined as measurable function if f is in
the Schwartz class; alternatively we may just restrict to countable E (Section [[.1.]
for comments why this is not a significant restriction).
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8 1. INTRODUCTION

For the formulation of our theorem we also need the rescaled local operators
Mg with

J
(1.16) E;=(27E)n1,2].
A model case is given when F consists of all dyadic dilates of a set in [1,2], i.e.

E=|J2FE° with E°C[1,2].
JEZ

In this case

Mgvj - Mé_jE)m[l,Q] - Mgo fOI' au J S Z.

DEFINITION. The Lebesgue exponent set of the pair (o, E), denoted by L(o, E),
consists of all (1/p,1/q) for which

(117) ||Mg||Lp_>Lp‘oo + ||Mg||Lq‘1an + SHIZ) ||Mg~J ||Lp_>Lq < 0.
je

The sparse exponent set of Mg, denoted by Sp[M§] consists of all pairs

(1/p1,1/p2)
with 1/ps > 1/p; for which there is 0 < v < 1 and a constant C' such that
ME[(@)(a)ds < CA;, L, (f,)
R
for all simple f and simple nonnegative w.
Let € > 0. We let Eann () be the space of tempered distributions whose Fourier
transform is supported in {€ : \/2 < |€| < 2A}. We say that the pair (o, F) satisfies

an e-reqularity condition if there exists C' > 0, and an exponent py > 1 such that
for all A > 2, j € Z, we have

(1.18) Hngpro SOXN | fllpo  for all f €SN Enn(N).

REMARK. The usual lacunary maximal operator correspond to the case where
E, = {1} (so E; = {2’}). Under this assumption, M7 satisfies an e-regularity
condition for some & > 0 if and only if there is an & > 0 such that

a(§) = o(l™)-
Moreover the condition sup;ez | Mg ||Lr—re < oo is, in this particular case, equiv-
alent with the LP improving inequality

llo* flla S 1 F1p
for all f e LP.
Denote by Int(£2) the interior of a planar set Q. Define ® : R> — R? by
(I)(J,‘,y) = ('/Ea 1- y)

We will show that, under the assumption of an e-regularity condition for some
e > 0, the interiors of £(o, E) and Sp[Mg] are in unique correspondence under @
(see Figure 1). That is,

(1.19) Int(Sp[MZ]) = ®(Int(L (0, E)));

this can be deduced as a consequence of Corollary and Theorem [[L3l The next
theorem contains a slightly more precise statement.
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1

7

Q=
Q

3 =
3 =

FIGURE 1.1. Example for £(o, E) (left) and Sp[Mg] (right). It
may occur that the closure of £(o, E) is not a polygonal region,
see for example [93].

THEOREM 1.4. Suppose that o is a compactly supported distribution supported
in R?\ {0}, and suppose that (o, E) satisfies the e-reqularity condition (LIS) for
somee > 0. Let 1 < p < q < oco. Then the following implications hold:

(1.20) (L,1) e mt(£(0, E)) = (L, L) € Sp[M3),
(1.21) (L,1) e £(o,B) = (L, L) e SplMg).
REMARKS.

(i) The correspondence (II9) is an immediate consequence of Theorem [
(ii) If o is as in Theorem [[4] then similar statements characterizing the sparse
exponent set hold for variation norm operators. See the statement of
Propositions
(iii) In the case of o being the surface measure on the unit sphere one recovers
as a special case the results by Lacey [66] on the lacunary and full spherical
maximal functions.

1.4. Fourier multipliers

Given a bounded function m we consider the convolution operator 7 given on
Schwartz functions f : R4 — C by

(1.22) TF(E) =m(&)fE), EeRY

ie. Tf = F '[m]« f where F~![m] is the Fourier inverse of m in the sense of
tempered distributions. If 1 < p < oo, we say that m € MP if T extends to a
bounded operator on L? and we define ||m||pr» to be the LP — LP operator norm of
T. A similar definition applies to p = co; however one replaces L by the space Cy
of continuous functions that vanish at co (i.e. the closure of the Schwartz functions
in the L* norm). By duality we have M? = M? for 1/p’ = 1 —1/p. Moreover,
M? = L>, MP C L*® and M" is the space of Fourier transforms of finite Borel
measures. Similarly, if 1 < p,q < oo, we say that m € MP? if T is bounded from
LP to L% and we define by ||m| pe.e to be the LP — L7 operator norm of 7. For
these and other simple facts on Fourier multipliers see [563] or [106].
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10 1. INTRODUCTION

Let ¢ be a nontrivial radial C¢° function compactly supported in R4 \ {0}. A
natural single scale assumption would be to assume a uniform MP?° bound for the
pieces ¢(t~!-)m which is equivalent by dilation-invariance to the condition

(1.23) sup [|[¢m(t-)|| pro < o0.
>0

Inequality (23]) is a necessary and sufficient condition for 7 to be bounded on the
homogeneous Besov spaces stamq? for any s € R,0 < ¢ < oo; see [107], [110], §2.6].
However, it does not imply boundedness on the Lebesgue spaces, except on L2.
Indeed, Littman, McCarthy and Riviere [84] and Stein and Zygmund [107] give
examples of m satisfying (L23]) for a py # 2 for which m ¢ MP for all p # 2.

The papers by Carbery [24] and by one of the authors [98] provide positive
results under an additional dilation invariant regularity condition,

(1.24) sup [|pm(t-)[|c= < oo,
t>0

where C¢ is the standard Holder space. Indeed, it is shown in [241[98] that for
1<pp<2,0<e<l,

lmllare < C(p, ) sup (lm(t)l[arvo + llgm(t-)llc=),  po <p < pp-

If the standard Hoélder condition |[¢m(t-)||ce = O(1) is replaced by its MP° variant,
Sup;s.q [|Anlem(t-)]||aroe = O(|R|%), one obtains a conclusion for p = pg. We will
show that for fixed p € (po,p;), the LP-boundedness self-improves to a sparse
domination inequality.

THEOREM 1.5. Let 1 <pg < 2,0 <e <1, and assume that (L23) and (CZ4)
hold. Then for everyp € (po,2] thereis ad = §(p) > 0 such that T € Sp(p—0,p’—9).

We note that, in view of the compact support, for p < g the quantity

[[m(t-)| arv-a

can be bounded by C||¢m(t-)|| s via Young’s inequality. In Theorem [[H] the self-
improvement to a sparse bound is due to a tiny bit of regularity as hypothesized
in (L24). This together with (L23) implies a mild regularity condition for ¢m(t-)
measured in the MP¢ norm. If one seeks better results on the sparse bound in
terms of ¢ a further specification of this regularity is needed. For this we use the
iterated difference operators

AN = A AV for M > 2,
where Ay, is as in ([I0). With ¢ as above we get the following.

THEOREM 1.6. Let m € L*®(R?) and T as in (L22). Let 1 < p < q < <.
Assume that there exists s > d(1/p —1/q) and an M € N such that

(1.25) sup sup |h|~*(|AY [gm(t)]]] .0 < 00
>0 |n|<1

Then T € Sp(p,¢).

One should always take M > s. Indeed, note that if M < s, then ([2H)
implies m = 0. We note that the LP — L% conditions (LJ)), (LY) in Theorem
[T correspond in the instance of convolution operators to an MP>? condition of

derivatives of order s > d(1/p — 1/q) on the localizations of the Fourier multiplier.
Also, for fixed s > d(1/p — 1/q), if (L25) holds with some M > s, then it holds
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1.6. ORGANIZATION AND NOTATION 11

for all integers M > s. For an illustration of this and the broad scope of Theorem
[[6], see the discussion on singular Radon transforms in Section [[.3.]]and on various
classes of Fourier multipliers related to oscillatory multipliers in Section and to
radial multipliers in Section

Theorems and will be deduced in Section from the more precise,
but also more technical Theorem which expresses the regularity via dyadic
decompositions of F~![¢m(t-)]. Moreover, there we will cover a version involving
Hilbert space valued functions which is useful for sparse domination results for
objects such as Stein’s square function associated with Bochner—Riesz means.

1.5. Application to weighted norm inequalities

It is well known that sparse domination implies a number of weighted inequali-
ties in the context of Muckenhoupt and reverse Holder classes of weights, and indeed
this serves as a first motivation for the subject; see the lecture notes by Pereyra
[91] for more information. Here we just cite a general result about this connection
which can be directly applied to all of our results on sparse domination and is due
to Bernicot, Frey and Petermichl [I8]. Recall the definition of the Muckenhoupt
class A; consisting of weights for which

[w]a, = sgp <w>Q,1<w71>Q,t’fl < 00,
and the definition of the reverse Holder class RH, consisting of weights for which

=su (Wlg.s
el = Qp <U’>Q,1

< o0

In both cases the supremum is taken over all cubes @Q in R%.

ProposITION 1.7 ([18]). If T € Sp(L, L‘gg), then one has the weighted norm
inequality

1
([ @ () de)” < 1Tl 0 .
1

(1wl wlasn ) ([ 1@, 0(0) do)

NRH /)y and p <1 < g, where a := mabx(ﬁ7 g:—i).

forallwe A

r/p

We refer to [I8), §6] for more information and a detailed exposition. See also
[44] for other weighted norm inequalities.

1.6. Organization and notation

Structure of the memoir. We begin addressing necessary conditions, and prove
Theorem [[L3l In Chapter ] we review useful preliminary facts needed in the proof
of Theorem [[.1] regarding the single scale regularity conditions; in particular, an
alternative form for the regularity conditions in (I9). The proof of Theorem [Tl is
presented in Chapter @l The main part of the argument consists of an induction
step, which is contained in Section 4l The implication that yields Corollary
from Theorem [[1] is given in Section {3l In Chapter Bl we apply Corollary
to deduce sparse domination results for maximal functions, square functions and
variation norm operators, as well as Cotlar-type operators associated to truncations
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12 1. INTRODUCTION

of operators. In the case of maximal functions, the assumptions of Theorem [Tl can
be slightly weakened, and we present this in Section (.4l Theorems and are
proved in Chapter [6l Finally, in Chapter [ we apply our main theorems to several
specific examples, including the proof of Theorem [[.4] in Section [[.T.Il Moreover,
we give several applications of Theorem to specific classes of multipliers. For
completeness, we include several appendices. Appendix [A] covers some basic facts
on sparse domination. Appendix [B] covers versions of the main Theorem [IT] for
p =1 and/or ¢ = co. Some basic facts on Fourier multipliers needed in Chapter
are covered in Appendix Theorems, Propositions and Lemmata are numbered
as N.Y where N is the chapter number, likewise displayed formulas may be labelled
(N.Y) when this occurs in chapter N. In cross references we refer to §X as a section
in the same chapter, unless the chapter is explicitly specified.

NoTATION. The notation A < B will be used to denote that A < C - B,
where the constant C' may change from line to line. Dependence of C' on various
parameters may be denoted by a subscript or will be clear from the context. We
use A = B to denote that A < B and B < A.

We shall use the definition f(ﬁ) = Ff(€) = [pa e~ "8 f(y)dy for the Fourier
transform on R, We let F ~! be the inverse Fourier transform and use the notation
m(D)f = F~Y[mf]. We denote by S = S(R?) the space of Schwartz functions on
R?, by &' the space of tempered distributions on R, and by E.un()\) the space
of all f € 8’ such that the Fourier transform fis supported in the open annulus
{€eRT: \/2 < |€] < 27}

For a d-dimensional rectangle R = [a,b1] X -+ X [ag, bg] we denote by xg the
center of R, i.e. the points with coordinates zg; = (a; +b;)/2, i = 1,...,d. If
7 > 0, we denote by TR to be the T-dilate of R with respect to its center, i.e.
€ R}.

r— TR

TR:{xERd T xR+

We shall use many spatial or frequency decomposition throughout this work:

o {Ak}r>0s {Xk} k>0 are specific families of Littlewood—Paley type operators
that can be used for a reproducing formula B.Il); they are compactly
supported and have vanishing moments (c¢f. Section B.2));

o {U,}s>0 is an inhomogeneous dyadic decomposition in z-space, compactly
supported where |z| a2 2¢ if £ > 0 (¢f. Section [BG.1));

o {ne}e>o0 is an inhomogeneous dyadic frequency decomposition so that 7
is supported where |£| ~ 2° if £ > 0 (¢f. Sections B3] and [7.4)).

Similarly, we shall use the following bump functions:

e ¢ is a radial Cm(@d) function supported in |£] ~ 1 and not identically
zero (cf. Section [6.1]);

e §isaradial C>(R?) function supported in |z| < 1 with vanishing moments

and such that (¢) > 0 in |¢| ~ 1 (¢f. Section 6]
e (3 is any nontrivial C°(R) function with compact support in (0, 00) (cf.

Section [7.5]).

REMARK. After we circulated the first version of the manuscript, José M.
Conde-Alonso, Francesco Di Plinio, Ioannis Parissis and Manasa N. Vempati kindly
shared their preprint [30], in which they develop a metric theory of sparse domina-
tion on spaces of homogeneous type. There is a small overlap with our work, as [30]
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CHAPTER 2

Necessary Conditions

In this chapter we prove Theorem [[.3]and another partial converse for Theorem
[L1l namely Theorem

We begin with an immediate and well known, but significant estimate for the
maximal sparse forms which will lead to simple necessary conditions. In what
follows, let M denote the Hardy—Littlewood maximal operator.

LEMMA 2.1. The following hold for the mazimal forms defined in (L3)).
(i) For f1 S 831; fz € SB;;

@1 A pupa; (1 f2) <77 / (MA@ P (M| fol ) () /7 dar

(i) If1<p1<p. and f1 € L}, fo € LY., then

(2.2) A3 (1 J2) S v Il 12 o -
2

(iil) If 1 <p <ph, and f € L'y , f2 € LB* , then
(2.3) A} B, pa,B; (15 12) Spops 7_1||f1||L§;1 Hf2||Lzé’;1~
2

PrROOF. For a vy-sparse family of cubes we have

Ny 12 S 32 5 [ I )7 (M ol o)

Qec

and (Z1)) follows by the disjointness of the sets Fg and taking supremum over all
sparse families.

Now let f1 € Sp,, f2 € Sp;. For [2.2)) we use ([2.1)), with p; = p’, together with
the fact that for p; < p the operator g — (./\/l|g|][]f;§1)1/p1 maps L%}l1 to itself; this
follows by real interpolation from the fact that it maps LP to itself, for all p > p;.
We can now estimate

o8By (F1s F2) S T ML DY e (MU £

Sp. ’Y_l”leLgll ||f2||L%’5

’ ’
DY

Since simple Bj-valued functions are dense in L%’ll and simple Bj-valued functions

are dense in L%/E we get (27) for all f; € L%:ll and fy € ng, by a straightforward
limiting argument.

15
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16 2. NECESSARY CONDITIONS

For (23]) we argue similarly. We use [2.1]) with p; = p, together with the fact
that for ps < p’ the operator g — (M|g\%"‘;)1/p2 maps L%él to itself, and hence

Ay By pass (F1, J2) S 97 IMIL DY P e | (M f2 1) 72 o

Spope ’V_l”leL%leQ”Lz};’;l- O
2

The estimates in Lemma [ZT] immediate yield estimates for the forms (T'f1, fa),
since by the definition (5

|<Tf17 f2>| < ||T||Spw(p1,Bl;pz,B§) AZ:Bl,pQ,B; (flu f2)

We shall now prove Theorem [[3]in Section 2.1l and a variant under reflexivity
of By in Section

2.1. The local integrability hypothesis

IfTf e L}BQJOC, Lemma ] further yields bounds for the L or L norms
of T f1 via a duality result for scalar functions.

LEMMA 2.2. Suppose T : Sp, — L}32,10c~ Then the following hold.

(i) If 1 < p1 < p < o0 and if for all f € Sp, and all R-valued nonnegative
simple functions w

@) (@) < AN, (5.,
then T extends to a bounded operator from L%l to LY, so that
1 2
(2.4) ||THLT§1HLT;3 Spip '7_1141'
1 2

(ii) If 1 < p < ph and if for oll f € Sp, and all R-valued nonnegative simple
functions w

[ T H@p,0(@)ds < 40, 5, 55
then T extends to a bounded operator from LY, to L}, so that
1 2
(2.5) ITllzs, s no Spep 7™ Ae.

PROOF. We rely on Lemma 21 For part (i) we use ([22) to estimate, for
f2 € Sp,,

| 5@,z S Al g ol
R 1

By LP duality this implies an LP bound for the locally integrable scalar function
z = |Tf(x)|p, and consequently T'f € L with

||Tf||L§32 < 7_1A1||f||u;3»11

and (24) follows.
For part (ii) we argue similarly. We use ([Z3)) to estimate

[ @) wt@)de v Aal s ol
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2.1. THE LOCAL INTEGRABILITY HYPOTHESIS 17

By the duality (LP"!)* = L»> for scalar functions for 1 < p < oo [55] we get
—1
HTf”L’gj S A2Hf1||L%1
and (Z3)) follows. 0

COROLLARY 2.3. Assume that T : Sg, — LlBg,loc and let 1 < p; <p <ph. If
for all f € Sp, and all R-valued nonnegative simple functions w

| @), w(@)de < AK;, b x(F0)

then T extends to a bounded operator from L%l to L%z so that
(2'6) HTHL%IHL’;EQ 51%?1472 771‘4'

PROOF. Lemma[22implies T' maps boundedly L’;}l — L%Z’OO and Lg?l’l — L%z
for any p1 < p1 < p and p < py < py; the desired L — L%z boundedness for
p1 < p < ph then follows by interpolation.

Alternatively, one could deduce this result directly from (ZI). Arguing as in
the proofs of (ii) or (iii) in Lemma 2], by the Hardy—Littlewood theorem and (2.1))
one has

(2.7) A;hBl,pz,B; (f15 f2) Spprps ’V*l ll.f1 ||L§’31 Il f2 ||sz;'*
2

for 1 < p; < p < p. Then one can argue as in the proof of Lemma 2.2] to deduce

238) from 27). O

We next turn to the necessity of the condition (L8] in Corollary and Theo-
rem [Tl In this generality, this type of implication appears to be new in the sparse
domination literature. It is inspired by the philosophy of adapting the counterex-
amples for LP — L9 estimates to sparse bounds (see i.e. the examples for spherical
maximal operators in [66]).

LemMMA 2.4. Let {T;}jez be a family of operators, with Ty : Sp, — L
and satisfying the strengthened support condition (LI4). Let 1 < p < ¢ < 0o and
suppose that for all f € Sp, and all R-valued nonnegative simple function w, the
estimate

loc”

[ @) (e)ds < €85 g 2(0.)
holds uniformly in j € Z. Then
SIGIIZ ||Dﬂ2jTj”LZI’BIHL‘}‘32 Svdér 2. €
j

Proor. Fix j € Z and let S = Dily;T;. We first apply a scaling argment. Note
that by assumption

[188@)ptads =2 [ 1152w, w2 iz)ds
< eI b (F27) (2

If Ag B, q.r 18 @ sparse form with a -sparse collection of cubes we form the collection
&, of dilated cubes {277y : y € Q} where Q € &. Then

—q 5 s Gj
2N, L R(F27),w(27)) = AL R (fow)
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18 2. NECESSARY CONDITIONS

and therefore we get the estimate

(28) [ 187@)lp,w(@)ds < €85 5, 57
Suppose that b is the smallest positive integer such that
27t < a2 min{6,/2, 8}
For 3 € Z¢ let
Q,={z:27% <& <273 +1), i=1,....d}

and let f; = flg,. Let R; the cube of side length 3 centered at 27, Then Sf; is
supported in R;. We decompose R; into 3924 cubes R; ., of side length 27° here
v € 1; with #I, = 3dgbd,

Fix 3,v and a simple nonnegative function w with [jw||;+ < 1. We first prove
that for v € Z;

(2.9) /ISfa(I)IBQw(I)]lRa,V(I)dI S Cllfley, el

In this argument we shall not use strong measurability of Sf;. By (Z38)) we have

[181@lg,@)1r, @)z <€A 5,y alFrlr,.)

and therefore we find a sparse family &; , such that
210)  [ISA@l,e@)n, @ <2 Y Qg Lk, )g,
QEG; .

By the strengthened support condition, (LI4]),
(2.11) Sflg,, #0 = dist(Q;, R,,) > & — 27 °Vd.

Assuming that the left-hand side is not 0 in (2I0), and in view of [2ZIII), we see
that for a cube () € &; , we have, recalling that §; > Vd 2t

Q,NQ#0
R, NQ#D
Hence all cubes that contribute to the sum in ([ZI0) have side length > 27°. Denote

the cubes in &;, with side length in [2¢,2¢7!) by &; ,(¢) and note that for every
¢ > —b there are at most C(d) many cubes that contribute. Hence we may estimate

Z |Q|<f3>Q,p<w]1Rér”>qu/

QeG;

< Z Z |Q%_%</Q|f5(y) 11)31dy>%(/Q|w($)]lRéw(x)q/dx)q%

L>-bQeG; (L)

— diam(Q) > &, — 27"Vd > 27"Vd.

ed(L—1
Sa Yy 2 p)”f:a”L%l iz Sbapa fslles,
2>—b

where we used the assumption ¢ > p to sum in £. This establishes (Z9]).
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2.2. THE REFLEXIVITY HYPOTHESIS 19
By duality combined with (2.9) we have
212) 185l S s [ 1S5@) k@)Lr,. @) S €l
llwll g <1

Considering this for various v € 7, we get

1S£lzs, < D 18Ky, (r,) S D ClFilzy, Sass Cllfillzy, -

vETL; veL;
Then

(213)  18fly, = 32 54|
3EZ4

1/q
bd q
L SC2 (X Il )
2 3€zd

1/q 1/p
Sasa €( AL, ) Se( XA, )T Selfly, - O

3€z4 ;€74

Theorem [I.3] now follows from Lemmata and [2.4]

2.2. The reflexivity hypothesis

In this section we prove a version of Theorem [[.3] where we drop the a priori
assumption on T} sending Sp, to L}B%loc and thus we can no longer assume the
strong Bs measurability of T'f. We still get a partial converse to Theorem [I1]if we
assume that the Banach space Bs is reflexive.

THEOREM 2.5. Let By be reflexive and let 1 < p < q¢ < oo. Let {Tj}jez be a
family of operators in Opp, p, satisfying the support condition ([LE). Assume the
conclusion of Theorem [, that is, there exists € > 0 such that for all Ny, Ny with
N1 < Ny and every fi € Sp,, f2 € Sg;,

N2
(O Tiis £2)] < Ay s (s fo):

j=N1
Then

(i) Conditions (LTal) and ([L7D) hold, i.e., there is a constant ¢ > 0 only
depending on d,p,q,~ such that for all Ny, No with N1 < N,

N2 N2
2T <cC, X T
Lb LB
j=N; B1 Ba j=N1

(i) If, in addition, the T; satisfy the strengthened support condition ([L14)
then condition (L) holds, i.e., there is a constant ¢ > 0 only depending
on d,p,q,7y such that

<cC.

1
LY — L1
By Ba

sup IDilys Tyl 23, < cC.

In the vector valued setting of Theorem we need to use a more abstract
duality argument which requires some care because of a potential lack of strong
local integrability. We briefly discuss the issue of duality.

Let B be a Banach space. Recall that for 1 < p < oo, 1/p+1/p’ = 1, the space
L%,* is embedded in (L%)* via the canonical isometric homomorphism. In the scalar
case this isometry is also surjective when 1 < p < oo, and the proof of this fact
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20 2. NECESSARY CONDITIONS

relies on the Radon—Nikodym theorem. In the vector-valued case the surjectivity
is equivalent with the dual space B* having the Radon-Nikodym property (RNP)
with respect to Lebesgue measure (see [66], Chapter 1.3.b] for the formal definition).

Thus under this assumption we have an identification of the dual of L%, with L%/*.
To summarize,

(2.14) B* €RNP «= (L) =1I%., 1<p<oc.
Similarly, the Radon—-Nikodym property for B* also implies
(L%T)*:Lg;rl, l<p<oo, 1<7r <o

this is not stated in [56] but follows by a similar argument as in the scalar case
[65] (2.7)], essentially with the exception of the application of the Radon—Nikodym
property in place of the scalar Radon—Nikodym theorem. For a detailed discussion
of the Radon-Nikodym properties and its applications we refer to [56, Chapter
1.3.c]. The class of spaces which have the Radon—Nikodym property with respect
to all o-finite measure spaces includes all reflexive spaces and also all spaces that
have a separable dual (¢f. [66l Theorem 1.3.21]). If B is reflexive, so is B*, and
therefore (ZXI4]) holds for reflexive spaces B.

Under the assumption that the double dual B3* satisfies the Radon-Nikodym
property, we can show that the sparse bound implies that T'f can be identified with
a B3* strongly measurable function. This leads to a satisfactory conclusion under
the stronger assumption that By is reflexive.

LEMMA 2.6. Assume that T € Opp, g, and that B3* satisfies the Radon-
Nikodym property. Then the following hold.

(i) f1 < p1 <p < ooand T € Sp,(p1,B1,p', B3) then T extends to a
bounded operator from L’gll to L%S* so that

(2.15) Tl e Soe v 1T s, o031 B5) -
2
(ii) If 1 < p < py and T € Sp,(p, B1,p2, B3) then T extends to a bounded
operator from L%l to L%gf so that
(2.16) 1Ty, —ryz Spe Y T lIsp., (p,B1.02,35)-

ProOF. We rely, as in the proof of Lemma [2.2] on Lemma 211
For part (i), we use (Z2)) to obtain

(T f1, f2)] S 771||T||Spw(p,Bl;pz,B;)||f1||Lg11 1F21l o -
2

This inequality establishes the form fo — (T'f1, f2) as a linear functional on L%;.
Since B3* has the Radon-Nikodym property and thus (Lg;)* = L%E‘*’ we can
identify T'f; as a member of L%S*' Since

1Tl a2 pe,, = sup sup  [(Tf1, f2)l,

T
2 Il o a <TlIf2ll <1
3 Ly,

B3

we have established (ZT5)).
Similarly, for part (ii) we use [23)) to obtain

(TS F2)l ST o, 0815085 I g, gl
2
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2.2. THE REFLEXIVITY HYPOTHESIS 21

Since L% can be identified with (L%/;)* we then get

Ty, —pyz = sup sup  [(T'f1, f2)]
||f1|\LP <Ll '1<1
2

and obtain (2.I6]). O

LEMMA 2.7. Assume that B3* satisfies the Radon-Nikodym property. Let
{Tj}jez be a family of operators in Opg, p,, satisfying the strengthened support
condition (LI4). Suppose that 1 < p < q < oo and

Slelp 1T ||SpW (p.B1.q',B3) = C.
J

Then
sup ||D112J'TjHL§’3 L. Svd.o1,62,p,a €
JEL ! 2

ProOF. We let S = Dily; T}, R;, R;,, v € Z; as in the proof of Lemma 24
The proof of (29) can be modified just with appropriate notational changes, such
as replacing expressions as one the left-hand side of (23] with

Arswl(9) == (5f;, 9lR, )
This leads to the inequality

(2.17) (S5 9Lr I S Cllilleg, lglles,

in the place of (29). Inequality (2I7) shows that Ay, is a continuous linear
functional on the space LqB; (R;,.); recall that by assumption 1 < ¢’ < co. By

the Radon-Nikodym property of B3*, the linear functional A , is identified with
a function Sf; restricted to R, ,, in the space L%;* (R;,). Hence we now get a

variant of inequality (2:12), namely
1S filles,. < D0 IS Fley,. r)

VEI

<S> swp [(Sfi9lr,,) Sass Clly -
sz, lolg <1 !

We finish as in (2I3]) to bound ||Sf||LB** < G||pr . O

CONCLUSION OF THE PROOF OF THEOREM Since we are assuming that
By is reflexive we have that By = B3* satisfies the Radon-Nikodym property.
Hence now the necessity of the L%;ll — L%, and L — L% conditions follow
from Lemma [2.6] and the necessity of the single scale LP — L7 conditions follows
from using the assumption with Ny = N, and applying Lemma 2.7 O
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CHAPTER 3

Single scale sparse domination

We collect some preliminary results which are needed in the proof of Theorem

LT

3.1. A single scale estimate

We state an elementary lemma which is used to establish the base case in the
induction proof of Theorem [Tl Recall that for a cube @, we let 3Q) denote the
cube centered at the center of () with three times the side length of @, which is
also the union of @) and its neighbors of the same side length.

LEMMA 3.1. Let T; € Opg, g, satisfy (LE) and ([L8) for some exponents
p,q € [1,00]. Let Q be a cube of side length 29. Then for fi € Sp,, fa € Sgy,
(T5Lf11Q), f2)] < 3% Ao(p, )IQI(f1) g p{ f2) a0 -

PRrROOF. By the support property (L6), 7;[f11l¢] is supported in 3Q. By re-
scaling we get from (L8] that

T\l v pa < 2799/P1/D A (p, q)

and thus
(T;[f11q), f2)| = KT f11q), f2130)]
< Ao(p, )27 WPVD| filgllpll f Lol
= Ao (p: )37 1Q( 1) g p{ F2) 3000
as claimed. 0O

This implies a sparse bound for the single scale operators T; indeed the sparse
collection is a disjoint collection of cubes.
COROLLARY 3.2. For0<~v <1 and1l <p,q < oo,

I T lIsp, (prary < 3*/PH9) Ag(p, q).

ProOF. We tile R? by a family 9; of dyadic cubes of side length 2/ and
estimate

(Tifr f2)l <Y (Tilfilel )

QEN;

< Ao(p, )37 " 1QIA) o, (F2)30.4

QEDJ'

< Ao(p, @)3" TV N T 3QU ) s, (f2)sg.r

QeQ;

23
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24 3. SINGLE SCALE SPARSE DOMINATION

The family {3Q : @ € Q,} can be split into 3¢ subfamilies consisting each of disjoint
cubes of side length 3 - 27. This implies the assertion (for every 0 < v < 1) since
for every 3@ involved in each subfamily we can choose F3g = 3Q). ]

3.2. A resolution of the identity

It will be quite convenient to work with a resolution of the identity using
Littlewood—Paley decompositions which are localized in space. We have

k=

which converges in the strong operator topology on L%l (R?), 1 < p < co. Here Ay,
]N\k are convolution operators with convolution kernels Ag, Xk such that A\g € C° has
support in {z : [z < 1/2}, [ Ao =1, Ay = 2X0(2-)=Ag and X, \; € S with [ g = 1,
and le = 0. Moreover, for k > 1, A, = 2(k=Dd ), (2k=1.), i = 2(’“_1)”&1(2’“_1).
For later applicability we may choose A1, so that

d d
/)\1(:6) Hmf‘ dr =0, for Zai < 100d
i=1

=1

and the same for Xl

A proof of ([B.I) with these specifications can be found in [100, Lemma 2.1]
(the calculation there shows that /\07 /\1 can be chosen with compact support as
well). For later use we let P, be the operator given by convolution with 2%\ (2*.)
for k£ > 0, and also set P_; = 0, and observe that by our construction

(32) Ak = Pk - Pkfl, for k Z 1.

3.3. Single scale regularity

In our proof of Theorem [I.1]it will be useful to work with other versions of the
regularity conditions (([L9) which are adapted to the dyadic setting. To formulate
these, we fix a dyadic lattice of cubes Q. Let {E,, },cz be the conditional expectation
operators associated to the o-algebra generated by the subfamily £,, of cubes in Q
of side length in [277,2!7"), that is, E,, f(z) = avg f for every z € Q with Q € Q,,.
Define the martingale difference operator D,, by

D,=E,—-E,_; forn>1.
We also use the operators Ay, Ay in the decomposition (B1]).

LEMMA 3.3. Let T € Opp, p,-
(i) Let 1 <p<g<oo, 0<¥<1/p. Then

3:3)  ITEollzy, —rg, +ilipo 27“9||Tﬂ))n||yfglﬁyzBz <v ig%Qkﬂ”TAk”L%l%LqBQ'

(ii) Let 1<p<g<oo0,0<d9<1. Then

(3.4) SUP2]“9||TA1€||L';3 —L% =Y ||T||L§; L% T sup ‘hrﬁ”TAh”L% =Ly -
k>0 ! 2 ! 2 o<|hl<1 1 2

(iii) Let 1< p<qg<o0,0<¥<1—1/p. Then
ke nd
(3.5) ilé%2 1Tk, —rg, <o ITEollLy, —r9, +sup2 1T Dl g, 13, -
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3.3. SINGLE SCALE REGULARITY 25

An immediate consequence is the following.
COROLLARY 34. For1 <p<g< oo and0< ¥ <min{l/p,1—1/p},
0
HTEOHLI;BI—)L}IBQ +21;IS 2" HTDTL||L’]’31~>L‘}132 9
-9
HTHL%I—)L%? + O<S‘1’111‘D<1 || ||TAh||L’}’31aL}‘32-

PrOOF OF LEMMA B3l We rely on arguments used before in considerations of
variational estimates [58], [59], of basis properties of the Haar system in spaces
measuring smoothness [47] and elsewhere. We use

1Akl op =0, IRkllay uy, =OQ),  [Enllzy -2y = O0(1)
throughout the proof. Since ¥ > 0 we get from (B
ITEollLy, »rs, S D) NTAkllLy —rg So sup 2k19||TA/€||LP LY, -
Boy

k>0
To estimate TID,, we will need
(3.6) 1ADal gy —rp S min{t, 207/,
and only the case k < n needs a proof. A standard calculation using cancellation

of D, yields (B8) for p = 1 and the rest follows by interpolation. Consequently we
can estimate

2| TDul| 1y, —spg, <2 > ITARARDn Ly, —p,

k>0

<2™ kz; ||TA]€||LI;31—)L;132 HAan||L%1~>L%1
>0

k9 —(n—k)(3—9)
< )2 ITAkllzy, —rg, 2
0<k<n

+ Z 2kﬂ||TAk:||L%1—>L‘}32 g~ (k=m0
k>n

< sup 21“9”TA1€||L% —L% s
k}ZO 1 2

where we used ¥ < 1/p for the first sum. This proves (B.3).
We now turn to (84) and estimate the left-hand side. By (8.2) we can write
ITAklzy, —zg, < ITA=Polley, ~rg, + 1T = Pe-)lley, —rg, -

Note that, as [ Ao = 1,
(I—Peq)f(z) = / ok=Dd ) (=R Ay, f(2)dh
SO
1T = Po1)fllzy, 1y = /2(k_1)d\)\0(2k_1h)|||TA—hHLg1—>LqBQdh

< sup ||TA
N |h\§2p—’€ | h||L§;1—>L"B2

and the same bound for ||T(I— Py) f||» _a . This establishes that the left-hand
1 2
side is smaller than the right-hand side in (34).
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26 3. SINGLE SCALE SPARSE DOMINATION

We argue similarly for the converse inequality. We estimate
ko
1Ty, ~rg, < ];) ITAkll g, 29, < i?gQ ITAkl s, —rg, -

For the main terms

ITARlLy, —rg, < Z ITAklzy, —rg, 1ARAnllLy, i, -
k>0

Now
(3.7) IAkARNzs, —rn S IAC+h) = Akl S min{1,25[A[}
and therefore

W= NTAwlpy, rs, < I;J||TAk||L;;1ﬁLqB22kﬂ(2’f\h|)—ﬁ min{1, 2"|h|}

< sup QWHTAk”Lg —LY
k>0 1 2
since Zk20(2k|h\)_‘9 min{1,2*|h|} <y 1if 0 <9 < 1. This completes the proof of

It remains to prove (B.). Setting Dy := Eg we observe that I = ano D,, and
D,, = D,D,, and thus

TNy, s, <> I1TDalley, —rg IDaAels —rp -
n>0

We use ||DnAk»||L!}’3 —LP, ,S 1 forn > k and
1 1

_ _1
(3.8) IDaArllze, rp S 2=k =3 for n < k.

This is clear for p = 1 and by interpolation it suffices to show it for p = co. Let @
be a dyadic cube of side length 27 "*!. Let Ch(Q) be the set of 2¢ dyadic children
of @ (i.e. the dyadic sub-cubes of side length 27™). Let

Fgp = {z : dist(x,0Q) < 27F for some Q € Ch(Q)}.

Then |Fg 1| S 27"47D27% Let gox = flo\r,, and observe that by Fubini’s
theorem and the cancellation and support properties of A

EnArgor(e) =0 and  E, 1Argor(z) =0 forzeq.
Hence for z € @,
DpAgf(2)] = DnAr(flr, ) (2)]

< gnd / / el — )| ()| dwl g, , (4)dy

< 2" Fgilllflee £ 2" F(1f oo

This implies [B.8) for p = co.
To finish we write
2"\ Tkl g, < D ITDullzy, rg 25 min{1, 20 H0=1/P)y
n>0

< sup 2’ ”T]D)n ”L’I’3 —L%
TLZO 1 2
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3.3. SINGLE SCALE REGULARITY 27

where we used }, 2(k=m)9 min{1,2n=F -1/} < 1 provided that 0 < ¥ <
1 —1/p. This proves (B3). O

In the proof of Theorem [T we use the following Corollary.

COROLLARY 3.5. Let 1 <p<qg< oo and 0 < ¥ < 1/p. Then
(i) For anyn >0,

_ < —nd -9
ITA=En)llLy, L3, So 2 0<S‘1}1L]‘P<1|h| ITAR Ly, —Lg, -

(ii) If T is such that (I9al) holds then
mGe—jd(i—1
I3 = B j)llzg, g, So B27027700 70

PrROOF. We write [ =E, + > 2, Dy, and thus

o0
I~ Bl oz, < 30 WTDnseli, -,

oo

So Y27 sup (B TUYT AR Ly, S

By Bo
b1 0<|h|<1

by combining part (33), (84) in the statement of Lemma 331 We sum and get the
assertion. Part (ii) follows by rescaling and the hypotheses. O

We finally discuss a formulation of the regularity condition which involves the
Fourier support of the function and is therefore limited to the case where B is a
separable Hilbert space, here denoted by H. It is convenient to use a frequency
decomposition

(3.9) F=> m*f,

£>0

with 7 is supported in {& : || < 1} such that 7o(§) = 1 for |¢| < %, and with 7,
defined by 7,(&) = Mo (274€) — 7o(2' 7€) for £ > 1, i.e. we have

(3.10) supp(iie) € {€: 272 < ¢ <2}, £> 1.

Recall that Eann(A) denotes the space of tempered distributions whose Fourier trans-
form is supported in {€: /2 < [§| < 2A}.

LEMMA 3.6. Let 3 be a separable Hilbert space and T' € Opgc p,. Suppose that
T: L5 — LY, satisfies

(3.11) Tles, s, < A,

and for all A > 2 and all H-valued Schwartz functions f € Eann(N),
—v

(3.12) TSz, < AN lzs.

Then

sup |k 7| T AWz —ra So A
0<|h|<1 2

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



28 3. SINGLE SCALE SPARSE DOMINATION

PRrROOF. By the assumptions (811 (¢ = 0) and BI2) (¢ > 1) we have
[TTne = Anfllle, < A2079 g« Ay f s,
Arguing as in (B1) we get
lne * A fllez, = [Anne* fllez, S min{1, 25} £z,
Thus using (39) we obtain
ITAF g, <D ITTe* Anflley, S AD 27 min{1, 2°A[}|f] oz,
=0 =0

and after summing in £ we arrive at [|TAp fl[Ls <o |h|19||f||Lz;(. O
2
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CHAPTER 4

Proof of the main result

4.1. A modified version of sparse forms

We fix a dyadic lattice 2 in the sense of Lerner and Nazarov, where we assume
that the side length of each cube in £ is dyadic, i.e. of the form 2% with k € Z. Also
fixy € (0,1) and 1 < p < g < co. It will be convenient to use variants &g, = G,
of the maximal form A%  defined in (L3). The presence of the triple cubes in the
new form allows one to exploit more effectively the support condition (LG).

DEFINITION 4.1. Given a cube Qg € Q let

B0, (f1 f2) = sup 3 QU0 )50y 5

Q€6
where the supremum is taken over all y-sparse collections & consisting of cubes in
D(Qo).
Notational convention. From now on in this proof, the dependence on the Banach
spaces By, B3 will not be explicitly indicated, i.e. (f1) op should be understood as
(f1)gp.B, and (f2)q , should be understood as (f2)q ¢\Bs-

The key step towards proving Theorem [[.1] is to establish a variant in which
A; s is replaced by 8¢q,, that is,

No
(4~1) |< Z ij17f2>} 5107!1757(1,7 C®Q0(f1,f2)

J=N1

for f1 € Sp,, f2 € Sp; and a sufficiently large cube Qo € Q. The reader will notice
that B¢, does not define a sparse form, and we will show in §£2 how to finish the
proof of Theorem [Tl given ([@Il). The proof of (@I will be done by induction,
which leads us to the following definition.

DEFINITION 4.2. For n = 0,1,2,... let U(n) be the smallest constant U so
that for all families of operators {7} satisfying the assumptions of Theorem [[T]
for all pairs (N1, N2) with 0 < Ny — N7 < n and for all dyadic cubes Qp € Q of
side length 2™V2 we have

No
(N T f2)| < UG, (f1. f2)
j=N;
whenever f1 € Sp, with supp(f1) C Qo and f> € Spy.
Thus, in order to show ([@II), it suffices to show that
U(n) Sp.aedn €

29
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30 4. PROOF OF THE MAIN RESULT

uniformly in n € Ny. This will be proven by induction on n. By Lemma B we
have the base case

(4.2) U(0) < 3% Ay(p, q)

and, more generally, U(n) < (n+1)3%% A,(p, q), which shows the finiteness of the
U(n). The proof then reduces to the verification of the following inductive claim.

CLAIM 4.3. There is a constant ¢ = ¢ 4.c.4,4 such that for all n > 0,
U(n) <max{U(n —1), c¢C},
with C defined as in (LIT]).

Our proof of the claim is an extension of the proof for sparse bounds of the
prototypical singular Radon transforms in [89], which itself builds on ideas in [66].
It is contained in §4.41

4.2. Proof of the main theorem given the inductive claim

We prove Theorem [LT] given Claim A3l Fix Ny < Na, f1 € Sp,, fa € Spy. We
choose any dyadic lattice with cubes of dyadic side length as in the previous section.
By (L8) we may choose a cube Qo € Q of side length 21(%0) with L(Q) > Ny
such that f; is supported in 9. Then Z;\E ~, Tjf1 is supported in 3Qo. Define
the operators S; = T; when N; < j < N and S; = 0 otherwise. Then the
assumptions of Theorem [Tl apply to the family {S;}. By (&2) and Claim £3]

applied to S = ZJL:(%) S; = Z;V:QNI T; we obtain

|<Sflaf2>| < Cp,q,s,d,VC®Qo(f17f2)~

In order to complete the proof of Theorem [[I] it remains to replace &g, by the
maximal sparse form Aj . This argument relies on facts in dyadic analysis which
we quote from the book by Lerner and Nazarov [79].

We first note that for € > 0 there is a y-sparse collection &, C D(Qy) such that

’<Sf17f2>| < (Cp,q,s,d,vc +6) Z |Q|<f1>Q,p<f2>3Q,q’

QEG.

(4.3) <3P g0 CHe) D B3RN0, (f2)ag.
QGGF

By the Three Lattice Theorem [79, Theorem 3.1] there are dyadic lattices IR
v=1,...,3% such that every cube in the collection 36, := {3Q : Q € &.} belongs
to one of the dyadic lattices D*). Moreover, each collection

W =36.nDW
is a 3~ ~-sparse collection of cubes in D*). Each GEV) is a 3¢y~ !-Carleson family
in the sense of [79, Definition 6.2]. By [79, Lemma 6.6] we can write, for each
integer M > 2, the family &) as a union of M sub-families 62’2, each of which
is a M-Carleson family, with M=1+ M~1(3%y~1 —1). By [79, Lemma 6.3] the
collections GE? are j-sparse families where 7 = M~ = (1 + M~1(3%y~1 — 1))~L,
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4.3. PROOF OF THE COROLLARY OF THE MAIN THEOREM 31

By choosing M large enough we can have 4 > « and then, from (@3], one has
[(Sf1, f2)] < Sd/pid(cp,q,fs,d,v C+e) Z ‘SQ‘<f1>3Q,p<f2>3Q,q/

Q€eBG.
< M3d/p(cp,q,s,dry C+e) sup Z |R|<f1>R,p<f2>R7q/

1=1,...

ye1,. 34 Res
< M3d/lﬂ(cp,q,s,d,’yc +e) A, (f1, f2)

which gives the desired y-sparse bound with [[S|lsp_(p,¢) < M34re, . C.

4.3. Proof of the corollary of the main theorem

We prove Corollary It is a consequence of Theorem [[.1] and the following
lemma, applied to T = Z?ZNI T;.

LEMMA 4.4. Let T : Sp, — L}32 and assume that

Jloc
||T||Sp7(p731;q/735) <C

Then we have for all f € Sp, and all nonnegative simple w
(4.4) /R T @) ) < €A, gy g 5 0)

Proor. By the monotone convergence theorem we may assume that w is a
compactly supported simple function. Moreover, since T : Sp, — LlBg,loc we can
approximate, in the L}32 (K) norm for every compact set K, the function T'f (for
f € Sp,) by simple Bs-valued functions. Thus given e > 0 there is h € Sp, such
that

/ Tf(x) = h(z)|p, wz)dr <
Rd

Moreover, there is a compactly supported A\ € Sp; with max,cga |[\()
(depending on h, w) such that

/\M@@M@MS6+/<MWM@M@ML
Rd

Rd

B;<1

and we also have
| [ 0la) = TH@) M) wlalda| < [ Jhta) = TS (@)], wlode < e

R4 Rd

Consequently
/ |Tf(x)|pyw(x)de < 3e +/ (Tf(x), \z)) w(x)dz.
Rd Rd

Thus in order to show (£4) it suffices to show
(45) | (TH@) Aa@)w(a)de < €, 5, (0.)

for any choice of compactly supported A € Spy such that ||l < 1. Let fo(z) =
2

w(x)A(z). Then fo € Spy with |f2(x)|p; < w(z) for all 2 € R%. By the hypothesis,
applied to f and fo = wA,

/]R (L), w(@)M @) < €AY, s (. N).
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32 4. PROOF OF THE MAIN RESULT

Since (WA)Qp,,B; < (W)Q,ps.k; We have established (B.5), and the proof is finished
by letting ¢ — 0. ([l

4.4. The inductive step

In this section we prove Claim 3] the key ingredient in the proof of Theorem
[Tl Let Qo be a dyadic cube of side length 22, Recall that f; is supported in Qg
and thus

N N
(D Tifisfo) = (Y Tif, follaqy)-

Jj=N1 Jj=N1
Hence without loss of generality we may assume that fo is supported in 3Qy.
Let M denote the Hardy—Littlewood maximal operator and let

Myf = (MIfP)HP.
By the well known weak type (1,1) inequality for M,
meas({z € RY : M,,f > \}) < 5d)fp||f||g.

Define ) = Q1 U Q) where

PV,
0 ={ze3Qo: Mpfi(z) > (12%) " (Moyph

d\1/q
Q = {z €3Q0 : My fo@) > (227 () 30,0}
We then have Q] < |Q4] + Q2] < (1 —7)|Qo]| and if we set

EQU = QO \ Qv

(4.6)

then |Eq,| > 11Qul.
We perform a Whitney decomposition of 2. It is shown in [L03] VI.1.2] that

given any 8 > v/d, one can write  as a union of disjoint dyadic Whitney cubes
W e WP c 9, with side length 2X") and L(W) € Z, so that

(8 — Vd)2XW) < dist(W, QF) < g2EM)+1

for W € WP, In [103, VL1.1] the choice of 3 = 2v/d is made; here we need to
choose § sufficiently large and 8 = 6v/d will work for us. We fix this choice and
label as W the corresponding family of Whitney cubes. We then have

(4.7) 5 diam (W) < dist(W, Q€) < 12diam(W) for all W € W.
We set for i =1, 2,
fiw = filw,
biw = (fi —avy, fi)lw
=(I=E_row))fi,w,

and

b = Z biw,

wew

g9i=filgo + Y avyfilw.
Wwew
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4.4. THE INDUCTIVE STEP 33

Then we have the Calderé6n—Zygmund decompositions f; = g; + b; (using the same
above family of Whitney cubes for f; and f3). For ¢ = 1 we add an observation,

namely that
b= Y biw.

wew
WCQo

Since f1 is supported in @Qq, this follows from the fact that
(4.8) WNQRo#0 = W CQo.

Indeed, if (.8) fails, we must have Qo € W as W and @ are dyadic. But then
|Qol < |W| < |9Q] < (1—7)|Qol, which is a contradiction.
We note from (7)) and the definition of € that

(4.9a) <f1>W7p Sdy <f1>QD,pv <f2>qu/ Sdy <f2>3Q07q/
for every W € W, as a fixed dilate of W intersects Ot Indeed,
(4.9b) (f)gp Saqy (f1)gep (f2)g.q San (f2)300,0

for every cube () which contains a W € W. Moreover, by the definition of ¢g; and
Q,

(4.10) loilles, Sav (Fgep  llo2llos, Sy (f2)30.q-

e~
B3

Since supp(f1) C Qo and supp(f2) C 3Qo we also get supp(g1) C Qo and supp(g2) C
3Qo; here we use [EJ). Since ||1g||zr1 <r |Q[Y" for r < oo, we obtain from (EI0)

that for r1, 79 < 00,

(411) lgallrr S [Qol ™ (fi)gype g2l

B1

Sd,rz,’y |Q0|1/T2 <f2>3Q0,¢Z"

ro,1
e
B3

For every dyadic cube @ € Q we have by disjointness of the W

1/r
| > |, S (X 1wz,
wcQ B wcQ

and thus

(4.12) H 3 bLW‘
wcQ

b S ([ 1)

Likewise we get for fs,

|5

1/r
TB*dI> .
LT 2
wcQ B3

([ 190

We now begin the proof of the induction step in Claim Let

No
S = SN17N2 = Z Tj.
Jj=N1

By the Calderén—Zygmund decomposition for f; we have
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Using the L‘]g;l1 — LqB2 boundedness of S (from the restricted strong type (q,q)
condition (L7h)) and ([EII) with r; = ¢ < co we get

(414) (Sg1, £2)| < ISl 1 oLl
< A@I91 Ly 1 ol
< 4.ar A@)1Q0l (1) g a0

Define, for each W € W (recalling that the side length of W is 25(W)),

Swif=Svcmlfiwl= > Tlflwl.

N1 <G<L(W)

We decompose the second term in ([@I3]) as in [89] and write
(Sby, fo) = I+ 1T+ 111,

where
(4.15a) I={ Z Sw f1, f2)
Wew
(4.15D) IT=—( Y Swavw[fillw), f2),
Wew
(4.150) 111 = < Z (S - Sw)b17w,f2>.
Wew

The first term ([£.I5a)) is handled by the induction hypothesis. In view of (.8,
each W that contributes a non-zero summand in ([£I5al) is a proper subcube of Q.
Therefore we have L(W) — N; < n — 1 and thus by the induction hypothesis,

[(Sw f1, f2)| < U — 1)Sw (filw, f2).

That is, given any € > 0 there is a y-sparse collection Gy of subcubes of W such
that

(4.16) (Swh, ) < (Un—1)+¢ > QU)o f2)s0.4-

QEG W,

Because of the y-sparsity there are measurable subsets Eg of @ with |Eg| > v|Q)|
so that the Fg with @ € G, are disjoint. We combine the various collections
G, and form the collection &, of cubes

G ={Q}uU |J Gw..

wew
WCQo

Observe that the collection &, is indeed ~y-sparse: as defined above, Eg, = Qo \ £,
and therefore |Eq,| > v|Qo|. By disjointness of the W C Qo the sets Eq, for
Q € &, are disjoint; moreover they satisfy |Eg| > v|Q|.

We consider the term I7 in (£I5D). Here we will use that the restricted strong
type (q,q) condition (L7D) implies ||SW||L‘JB;11—>L‘,§2 < A(q), and

lavw [fillwll g S v [fill WY Sq (Fr) (W[
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for g < co. Together with the disjointness of the cubes W and ([@9al), we get

(4.17) 1111 < Y ISwlavw [filw)ll g, ||f2113W||Lq
wew

Sa D (Fw AW IGNWN YT fo) gy
WwWew

St A@) Y W) g p (23000

wew

Sdar ADNQol{f1) gy p(f2)300.q -
Regarding the third term in ([@I5d) we claim that

(418) 111 Spocan (A() + Aolp.q)108(2 + 2))|Q0l (1) p(F2) 3000 -

Taking ([£I8]) for granted we obtain from ({.14), ([dI7), (£I8)) and (£I0) that there
exist constants C1(d, q,7) and Ca(p, g, ¢, d,~y) such that
‘<Sf15 f2>‘ S Cl(d7 q, ’Y)A(q)|QO‘ <f1>Q0,p<f2>3Q0,q’
+ C2(p, ¢,¢,d,7)(A(p) + Ao(p, q) log(2 + ﬁ”@o“fl)@o,ﬁfﬁmo,q'
+ > > W=D +90QIAg, a0

Wew QEGW €
WCQo

This implies
(S f1, fo)l < max{U(n = 1) + €, ¢pgean Cr Y 1QU g f2)s0.0

QGGE
<max{U(n — 1) + € ¢pge,drClBq,(f1, f2)
for all € > 0. Letting ¢ — 0 implies Claim [£3l We are now coming to the most

technical part of the proof, the estimation of the error term I77 in (fI5d) for which
we have to establish the claim ([@IJ).

ProOF OF ([{I8). We now use the Calderén—Zygmund decomposition for fo =
gs + Zwew ba,w as described above. We split I1] = Zle I11; where

(4.19a) N ={ Y Shiw,g),
Wwew

(4.19b) I = - Y (Swhiw,g2),
wew

(4.19¢) = > Z (Tib1,w, bo,w),

N1<j<N; WeWw: w'c
LW)<j L(w' )>]

(4.19d) o= > Y Z (Tbyw, ba.w).

N1<j<Ny WeWw: w'ec
L(W)<j L(W’ )<J

We use the weak type (p,p) condition (LTa) that S maps Li; to L'z, which is
isometrically embedded in L% jo As p > 1, we obtain using ([@I1]) for 7, = p’ < 0o
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1n| < ||SEY bl
wew

Sd,pﬁ HS||LJ’§IHL1§;"H Z bl,W‘
wew

g2l
P 92 L%;l
B3* 2

1 ’
Q0" (f2)30,.4'-

L%l
By ([@I2)) for » = p we obtain

[II1| Sapy AP)|Qol <f1>Q07p<f2>3Q07q"

Likewise, the weak type (p,p) condition ([L7a) implies L — L3> bounded-

ness of Sy. Using this and supp(Swbiw) C 3W, [@9a), @I0), and p > 1 we
estimate,

(I < ) 15w oL w g
wew

< A(p) Z 61w Iy, Nlg2llzss, [Taw ] o
WEW 2 32

92]13W||L1};’§1

W|1/p'

Sape AP) Y IWll/p<f1>W7p||92||L°B°§
Wwew

Say Alp) Z W) gy (f2)300.4

wew

and hence, by the disjointness of the cubes W,

(11| Sapy AP)Qol(f1) 0, »(f2)300.4

Next we estimate 1113 and first show that

(Tib1,w,bawr) #0

(4.20)
L(W) <j < L(W)

JSLW)<LW)+2<j+2

To see ([A.20) first observe that T;b w is supported on a cube Ry, centered at xw
with side length 2771 +2L0V) Hence, if (T;by w, baw) # 0, then we get from (Z.7)
and the triangle inequality

5diam(W') < dist(W’, QF) < diam(W’) + diam(Ry,) + dist(W, QF)
< diam(W’) + (271 + 2L/ + 12v/a2t W),
Hence since L(W) < j < L(W') we get 2L(W)+1 < 13. 2L0V) which gives (@20).

Also, with these specifications W C 3W" if (T;by w,bo,w+) # 0. By the single scale
(p, q) condition (L8],

(4.21) ||Tj||LP~>Lq < 2_jd(1/p_1/q)A0(p7 q).
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Hence using Holder’s inequality, (£.21]) and ([£.9a) we get

I3 < > > > (Tjb1w, Do)

N1<j<N: w'ew Wew:
JSL(W' )<J+2 L(W')—2<L(W)<j
wWc3w’

< As(p,q) Z 9—3d(1/p—1/q) Z ||b1,W||L%1||b2)W,||Lg*
2

N1<j<N: W,W’ ew: Wc3sw’
JSL(W')<j+2
L(W")—2<L(W)<j

Sy Ao ) f1) g p(f2) 300
X Z Z 2_jd(1/P—1/Q)‘W|1/P|W/|1—1/q
N1<j<N2 W,W’':Wc3w’

JSL(W')<j+2
L(W')—2<L(W)<j

§d7’y Ao(p7 q)<f1>Qo,p<f2>3Qo,q’ Z |WI|
w'ew
and thus, by disjointness of the W',

15| Say Ao (P, 0)(f1) q,p{f2) 300, | Qol-
Finally, consider the term

(4.22) = > (Tibiw,baw).
N1<j<N2 (W,W')eWxW
L(W)<j
L(W')<j

Let &’ > 0 such that
(4.23) ¢’ <min{l/p,1/¢ ¢}

and let £ be a positive integer so that

100
(4.24) < —-logy (2+ ) <L+1.

Ao(p, q)
We split
V; = (-00,§)?NZ*=V;1 UV;2UV;3
into three regions putting
Vj71 :{(Ll,Lg) EVj ]—£§L1 <j, j_ZSLQ <j},

Vio ={(L1,L2) € V;\Vj1: L1 < Lo},
Vj73 = {(LlaLQ) € Vj \Vj71 Ly > Lg}
Then I11y = Y | IV; where for i = 1,2,3,
(425) I‘/z = Z Z <ij1,W7b2,W’>-

N1<j<N: W,W’'ew
(L(W),L(W")€EVj,

Let $R; be the collection of dyadic subcubes of Qg of side length 27. To estimate
IV; we tile Qg into such cubes and write

(4.26) W= > > ( > Tibhw, Y  bawlss).

N1<j<N> RER; WCR J—E<L(W')<j
J—ASL(W)<j
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By Holder’s inequality and the single scale (p,q) condition (L&) (in the form of

@210)) we get
[IVi| < Ao(p,q) D 2779/p=1/a)

N1<j<N»
X ww, | X s,
ReR; WCR B i<W <y B3

J—E<L(W)<j

< Ao(p,q) Z Z|R\_(1“"”‘”

N1<j<N; RER;

l/p ’ 1/‘1/
(X il ) (X el )

 WCR W'C3R 2
J—¢<L(W)<j J—<L(W')<j

and using (£9al) this expression is bounded by Cy A (p, q) times

Z (10000 (2)300.4' Z |R|~(/p=1/0)

N1<j<N» ReRy
1/p 1/‘1/
<X )X w)
WCR W’'C3R
J—SL(W)<j J—LSL(W')<j
Sd,’y Z <f1>Q0,p<f2>3Qg,q/
N1<j<N:
o 1/p+1-1/q
x S |RIT 1/q>( 3 |W|) .
RER; WC3R

J—e<L(W)<j

Using p < ¢ and the disjointness of the W we see that the last expression is
dominated by a constant Cy - , 4 times

SIS DD DD DI

N1<j<N; ReR; WC3R
J—ESL(W)<j

< 3d<f1>Q0,;D<f2>3Qo,¢Z' Z Z Z |W|

N1 <j<N2 RER; WCR
J—LSL(W)<j

Sa (M) oepf2)s00e D W] > 1

wew J:N1<j< N3

L(W)<j<L(W)+¢
gd €|Q0|<f1>Qo7p<f2>3Qo,q"

Thus, using the definition of ¢ in ([£.24) we get

B
(4.27) IVi] Sdy.epq Ao(p,q) log (2 + m)|Q0|<f1>Q0,p<f2>3Qo,q/~
We now turn to the terms I'Vs, IV3 and claim that
(428) ‘I‘/Q‘ + |IV3‘ ,Sd,fy,p,q,e Ao(p7 Q)|QO|<f1>Q07p<f2>3Q07q/-
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We first note that by the single scale e-regularity conditions (L3al), (9L, and
Corollary 3.5
Cid(l_1yo_
(4.29a) IT5(1 = By jllng, g, Se B2 wl2me,

—ad(i L1y,
HLq, L <. B2 Jd(5—g)9—¢'s2
B3 "UB{

(4.29b) |7 (- Eo,y)

where £ is as in (£23).
Write, with R as in ({26,

(4.30) IVa= > > i i

N1 <j<Nz RER; s2=1 s;=max{s2,l+1}

< Z Tibi,w, Z bg,w/]lgR>.

WCR W'C3R
L(W)=j—s1 L(W')=j—s2

Note that for L(W) = j — s1, we have byw = (I — Eq,—;)f1,w. By Holder’s
inequality and ({:29a) we get for R € R;,

}< Z Tibiw, Z b2,W/]ISR>‘

WCR W’'C3R

L(W)=j—s1 L(W’):j752
<fra-rin T awl, | T e,
WCR B2 wic3R B3
L(W)=j—s1 L(W')=j—s2
e —(i_1 L/p ’ e
55 B2 ES1‘R| (p q)( Z ||f1’WHIZ/;;3) ( Z HbQ,W’Hiq/) .
WCR ! W’'C3R &
L(W)=j—s1 L(W')=j—s2

In the above formula for IV, we interchange the j-sum and the (s1, s2)-sums, write
j=sin+iwithi=1,...,s; and estimate (invoking ([£Ja)) again)

msy Y ey Y Y RGY
=1

s2=1 s;=max{sa,l+1 neZ RERs nti
! {o2.641) s1n+i€[N1,N2] 1"
1 N
p \? 7 \a
(X awl ) (X leawl?,)
WCR ' W'C3R B3
L(W)=sin+i—s; L(W')=s1n+i—s2

Sd,wi fj By

s2=1 s;=max{s2,0+1}

L IEED DI D T

neZ RERs n+i
s1n+i€[N1,Na]

where
. _(i_1 » -3
PR i) =R7GD( > w0 Y )
WCR W’'C3R
L(W)=sin+i—s1 L(W')=s1n+i—s2

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



40 4. PROOF OF THE MAIN RESULT

We crudely estimate, using p < ¢,
sin+i—sa

F(R,n,i)gm\*(l/pfl/q)( Z Z |W‘>1/P+1—1/q

v=sin+i—s; WC3R
L(W)=v

s1n+i—sa

< 3d(1/p=1/9) Z Z w.

v=sin+i—s1 WC3R
L(W)=v

For fixed W € W consider the set of all triples (R,n,i) such that s1n +i—s3 <
L(W) < sin+i— s2, R € Ry ny: and W C 3R, and observe that the cardinality
of this set is bounded above by 3%(s; — s + 1). Combining this with the above
estimates and summing over W € VW we obtain the bound

11Va] Sare (F1) gy p(F2)300.0 /@0l D > B2 (s — sy + 1)

s2=1 s;=max{s2,(+1}

and the double sum is bounded by

{41
Cod( S B e s 3 pe)
so=1 so=f+1

Nqu B27¢ é(€+ 1)2 <€p B27¢ 02 Se €,0,q Ao(pa Q)

by the definition of ¢ in [24]). This establishes (£.28)) for the term |IV3|.
The estimation of I'V3 is very similar. We may write

(4.31) 1Vs= Z Z i i

N1<j<N3 RER; s1=1sy=max{s;+1,0+1}

< Z bl,W]]-R7 Z T;[bQ,W’]IBRD

V‘I//Vev}\é: W'ew:
C nN=i_
L(W)=j—s1 LWh=j=s2

By Holder’s inequality and (4.29D) we get for R € R;

‘< Z bi,w, Z T;[bQ,W’]IBRD‘

IR
o _(1_1 1/17 ’ 1/11'
55 B2 ES2‘R| (p q)( Z ||b17w||ll)/% ) ( Z ||f27W/||(zq, )
WCR ! W'C3R B3
L(W)=j—s1 L(W')=j—s2

and from here on the argument is analogous to the treatment of the term IV,. O

REMARK. It is instructive to observe that the term 111 can be treated more
. . . B .
crudely if one does not aim to obtain the constant A, (p, q) log(2+ mz in (LIT).

More precisely, one simply splits (—oc, j)2NZ? into two regions fjj’g and V; 3, where
])j)g = {(Ll,LQ) : L1 < L2 < j} and f/j"g, = {(Ll,LQ) j > L1 > L2}

Then split I11; = Z?:z IV;, where IV; are as in ([£20]) but with V;; replaced by
V;,i- One then considers the sum in s; in @30) to start directly from s,, and the
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sum in sy in (@3] to start directly from s; + 1. Using the same arguments, one
obtains

‘IV2| + |H/ES‘ gd,%p,q,e B|QO|<f1>Q0,p<f2>3Qo,q/
instead of ([£2])). Note that, as the term IV; does not appear in this case (see the
bound (£27))), this yields sparse domination with the constant C in (III]) replaced
by A(p) + A(q) + Ao(p, ) + B.
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CHAPTER 5

Maximal operators, square functions
and long variations

In this section we show that Corollary yields sparse domination results for
maximal functions, ¢"-valued variants, r-variation norm operators and maximal and
variational truncations of sums of operators. An application of Theorem [[.3] also
yields necessary conditions for our sparse domination inequalities. We will formally
state necessary conditions only for maximal functions and ¢"-valued functions (The-
orem [5.J)) and leave to the reader the analogous formulations of those conditions
for r-variation norm operators (Theorem [5.2]), maximal truncations (Theorem [5.3))
and variational truncations (Theorem [5.4]).

5.1. Maximal functions and ¢"-variants

Given a family of operators {7} };ez in Opg, p,, consider the operators

6.1 571w = (L1 r@s,)”

JEZ
when 1 <7 < oo and also the maximal operator

(5.2) SeoTf(x) = sup [T; f(x)| B,
JEZ

THEOREM 5.1. Let 1 <p<g<oocandl <r <oo. Let {T;};cz be a family of
operators in Opg, g, satisfying (LE).
(i) Suppose that the inequalities

(53) ST APy, and (IS, TF], <A@

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T}
satisfy the single scale (p,q) condition (L) and single scale e-regularity

conditions (L9a)) and (LON). Let C be as in (LII)). Then for all f € Sp,

and all R-valued nonnegative measurable functions w,
(54) <S7‘Tf7 w> 5 CA;q’ (f7 w)'

(ii) In addition, assume 1 < p < ¢ < oo. If the family of operators {T}};cz
satisfies Tj : Sp, — LlB% and the strengthened support condition (14,
then the condition

loc
”STT”L%laLPvN + ||STTHL‘§11_>L11 + ?16112 ||Dﬂ2JTj||L§’31aL}132 < o0

is mecessary for the conclusion (54 to hold.

43
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44 5. MAXIMAL OPERATORS, SQUARE FUNCTIONSAND LONG VARIATIONS

ProOOF OoF THEOREM .1l We begin with the proof for 1 < r < oc.

Let 0pr = 1 and d;, = 0if § # k. Let Ny < Ny be integers, and for each
integer j € [Ny, Na|, we define the operator H; sending L%l functions to £ -valued
functions by

5T if Ny <k < N.
(5.5) Hf(x, k)= {Oak: if(x) ;fk ;S[Nl SN2].27

We note that

(5.6) (Z @) = (% yfﬂjﬂx,k)\;)”r,

Jj=N1 k=—oc0 j=N;
By (53] we have

N2
<Aw), |
H 121 ‘ L’él —Lree(ly,) j;\h ’

where we write LP>° (£, ) to denote L};™. The adjoint of H}, acting on 1. ~valued
By 2

< A(q),

LG —La(ly,)

functions g, is given by

No
x) = Z ST} gr(z)

k=N,

The assumptions on Dily;T; can be rewritten as

jlellz) ||D1121 HjHL%1 —>L‘1(£TB2) < Ao(p7 Q)

and
sup |k~ sup [|(Dilys Hj) o Ap||r, oLay) =B
|h|<1 JEL
sup |h|™®sup ||(Dily H )OAh”Lq (gr )ALP <B.
|h|<1 jez

By Corollary[[.2lapplied to the sequence {H;} ez in Opp, o, 5 We get the conclusion
B2

/ ( Z } Z H;f(z, k) ’ 2)1/rw(x)dx,§CA;)q,(f,w),

k=—c j N1
which by (G5.6]) implies

/ (Z T f(x \32) Tw(x)dx§CA;7q,(f7w).

We apply the monotone convergence theorem to let Ny — —oo and Ny — oo and
obtain the desired conclusion. This is possible since the implicit constant in the
conclusion of Corollary does not depend on By, Bs.

The proof for r = oo is essentially the same, with notional changes. Since
H;f(-,k) = 0 when k ¢ [Ny, Na], we can work with £% over the finite set Z N
[N1, N3]. Then there are no complications with the dual space, which is 6}35 over
Z N [Ny, No).

For part (ii) one uses Theorem [[3] in conjunction with (5.6) and immediately
arrives at the desired conclusion, via the monotone convergence theorem. ([l
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2. Variation norms

We now turn to the variation norms V3, = Vg (Z) defined on Bz-valued func-
tions of the integers n — a(n). Let \a|V§; = \a|L7;2 and, for 1 <r < oo,

1/r

(5.7 lalvg, = sw  la(m)ls, + ( Z a(ny41) = an) 5, )
ny<---<nnp

where the supremum is taken over all positive integers M and all finite increasing

sequences of integers ny < --- < npy. Similarly, if Ty, N, = [N1, N2] N Z we define

the Vi, (In, n,) norm on functions on I, n, in the same way, restricting ny, ..., ny

to INl,Ng-

Given a sequence T' = {T}} ez in Opp, p, we define V'T f(z) to be the Vg,
norm of the sequence j + T} f(x). The LP norm of V'T'f is just the LP(Vg )
norm of the sequence {Tj [}jez. We define Vi T'f(z) to be the V norm of the
sequence § = 17, (I)T;/(z).

The proof of the following theorem is almost identical to that of Theorem [B.11

THEOREM 5.2. Let 1 <p<g<oocandl <r <oo. Let {T;};cz be a family of
operators in Opp, g, satisfying (LG). Suppose that the inequalities

68 VT <Ay, and VTS, < A@IS Ly

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T satisfy
the single scale (p, q) condition (L8) and single scale e-regularity conditions (L9al)
and (LOD). LetC be as in (LI)). Then for all f € Sp, and all R-valued nonnegative
measurable functions w,

(5.9) V'Tf,w) SCA; (fw).

PRrROOF. In view of Theorem [B.]] it suffices to consider the case r < co. Given
N; < Ny we define H; f(z, k) as in (53), for Ny < k < N,. Note that for fixed z,
Ny <np <---<npy < Ny,

(5.10) [T, F(@)lp, + (mef )~ T f@)l5,)

:} iij(xﬂh)}Bz-i-(z_: ‘Zij(xvnrH—l ﬁ: f(z,m,)

j=Ni v=1 j=1

By (5:8)) we have

b

where V3 is interpreted to be the space V3 (In, n,) and all the constants in what
follows will be independent of N and Np. The pairing between V3 (In, n,) and
its dual is the standard one,

< A(q),
pyrag,) = )

<Aw), |
Lh, L (VE,) () Z ’

Ny

(@,b) = Y (a(n),b(n)) s, 5y

n:N1
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46 5. MAXIMAL OPERATORS, SQUARE FUNCTIONSAND LONG VARIATIONS

and we have,
N2
Bl gy = S| D2 (an) b)) s |-

\a|v§2(1N1,N2)§1 neN,
For §U) = (0j,Nys---,05,n,) we have, for j = Ny,..., N,
j 1/r i 1/p!
16D g, (1) = 27 and 169 vg (1, ayn- =277

The adjoint of Hj, acting on (V3,(In, n,))*-valued functions g = {gk}ﬁiNl, is
given by

Ny
Hrg(x) = > 6T} gi(x).
k=N,

These observations imply
IDilys Hyll g, —raqvy ) = 21/T”Dﬂ2jTj”L%1—>L‘}32a
I(Dilys Hj) o AnllLe, —ravy ) = 217 (Dily; T;) o Anllzy, —r3, 5

||(D1127HJ*) [e] Ah”Lq/((VéNQ)*)*)Lg* = 21/T ||(D112]TJ*) O Ah
1

! ’
HLq P A
B3 By

The hypothesis of Theorem [[I] are then satisfied for the sequence {H;};cz in
Opp, v - Thus, by Corollary we obtain
?7 B2

Ny
/d‘ Z ij(xa)
RE =
which by (5I0) implies

[ Vi T Fa)ta)de S CA;  (7.)

V§2w(a:)dx SCA, (fyw),

As the implicit constant in Corollary does not depend on the Banach spaces
B1, By we may apply the monotone convergence theorem and let Ny — —oco and
Ny — 00 to obtain the desired conclusion (B.9I). O

5.3. Truncations of sums

We will give a variant of Corollary in the spirit of Cotlar’s inequality on
maximal operators for truncations of singular integrals.

THEOREM 5.3. Let 1 < p < g < oo. Let {Tj}jez be a family of operators
in Opp, p, satisfying (L6), (LY), (LIa), and (LIB). Moreover, assume that the

estimates

ng
(5.11a) H s |22 Tifls |, < APy,
Nlﬁn;,ﬁ;zéNQ J=m
na
(5.11b) H s [ 22 Tifly, |, < A@IFlg
Ny <ni<np<Ng JT™
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5.3. TRUNCATIONS OF SUMS 47

hold uniformly for all (N1, Na) with N1 < Ny. Let C be as in (LII)). Then for all
f € 8p,, all R-valued nonnegative measurable functions w, and all integers N1, N
with N1 < Na,

/]Rd ( sup ’ Z ij(ac)’B2 w(x)dx < CA;q,(f, w).

ni,n2): 4=
Ni<ni<na<N; 7=

PROOF. Define U(Nl,NQ) = {(nl,ng) : N1 <ng <ng < NQ} and f%oz as the
space of all bounded Bj-valued functions on U(N1, N2). Define operators H; in
OpBl,ng’z by

Tif(z) if Ny <y <j<ny <N,
0 otherwise.

Hjf(x,n1,n2) = {

Then apply Corollary to the operators Z;Vi ~, Hj as in the proof of Theorems
EI O

We also have a variational analogue.

THEOREM 5.4. Let 1 < p < g < oo. Let {Tj}jez be a family of operators

in Opp, p, satisfying (LO), (LTa), (LTH), (LS), (LIa), and (LID). Moreover,

assume that the estimates

MNy+41

(5.12a) H sup sup (Z’ Z Tf’Bz) ’

MENN;<ny<--<npm<Nz * 5 .71

< AD)Ifl,

Lpoo

Ny41

M1 1/r
Gazo) s s (DY mal,) |, <A@y

MEN Ny Smy<--<ny <Nz N =750
- — v

hold uniformly for all (N1, No) with Ny < Ny. Let C be as in (LII)). Then for all
f € 8p,, all R-valued nonnegative measurable functions w, and all integers Ny, No
with N1 S NQ,

(5.13) /R sup sup ( |Z T o |Bz)1/rw(gp)dﬂc

d MENN1<ni<---<npy <Nz
SCAL  (fow).

Proor. Let Vi = Vg (In, n,) denote the r-variation space of Ba-valued func-
tions over the integers in [Ny, No] and for N7 < j < Na, Ny < n < Ny, define the
operators H; € Opp, vy by

>" B2

H,f(x,n) = {ij N <j<n<hNg

0 if j > n.
Note that, by definition of Hj, | Zj ~, Hif(z, -)\v§2 equals to
(5.14)
M—-1 ny41
s | S, (TS - Y nel,)”
N15n1<'-§§nM§N2 J=N v=1l j=N; j=N1
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48 5. MAXIMAL OPERATORS, SQUARE FUNCTIONSAND LONG VARIATIONS

and |H; f(z, ~)|V§2 = |T; f(x)|B,. Arguing as in Theorem [5.2] one may apply Corol-
lary [[2] to the operators Z;\E ~, Hj in Op BiV,- Note, in particular, that in view

of (5.14) the conditions ([7a) and (I7H) for SN2 ien, Hj follow from (B.I2a) a

together with the fact that itiez In Op satisty an .
h ith the f: h Tj}jez in Opp, g, £ d
This automatically yields (BI3). O

5.4. Some simplifications for maximal operators

The goal of this section is to remark that the proof of Theorem [B.] can be
simplified in the case ¢ < r < oo. Rather than deducing it from Corollary [[L.2] we
shall apply the proof method of Theorem [[.1] to the operators S, and observe that
a Calderén—Zygmund decomposition on fs is not required for the proof to work. In
particular, this allows us to remove the regularity hypothesis (.90) on the adjoints
T’7. The precise statement reads as follows.

THEOREM 5.5. Let 1 <p < g <oo and ¢ <r <oo. Let {T;}jcz be a family of
operators in Opg, p, satisfying (T8). Suppose that the inequalities

(5.15) 1S Tf || < ADIF N2y, and ST, < ADIF] Ly

hold for all f € Sp,. Moreover, assume that the rescaled operators Dily; T satisfy
the single scale (p,q) condition (LY)) and single scale e-regqularity condition (L9al).
Let C be as in (LI)). Then for oll f € Sp, and all R-valued nonnegative measurable
functions w,

<STTf7 w> S CA;,q’ (f7 UJ)-

PRrROOF. We sketch the main changes with respect to the proof of Theorem [Tl
As in Theorem [I.1] it suffices to show

/ S s fa (@) fal)de < CA% (o, fo)
Rd

uniformly in Ny < Ny for all f1 € Sp, and f2 € Sg, where

Srvia (@) = ( S N5)

Jj=N1

for ¢ <r < oo and
Seo,Ny, N f(2) = sup [T f(z)|B,-
N1<j<N;
This will in turn follow from verifying the inductive step in Claim 3] for the
operators Sy n,,N,-
If r = oo, let \j(x) € By with |A\;j(z)|p; < 1 such that
T f1(2)| B, = (Tjf1,Xj) (B2, By)

and let z — j(z) be a measurable function such that

SOO,N11N2f1( )< 2‘ (ac)fl( )|B2'
Setting X; := {x : j(z) = j}, note that
No

Sfi(x) =T fr(2)|B, = Z (T f1(z), Aj(2)1x, () (B,,B3)

Jj=Ni
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5.4. SOME SIMPLIFICATIONS FOR MAXIMAL OPERATORS 49

and that the X; are disjoint measurable sets such that Zj ]lXj < 13g,- If g <
r < 00, we linearize the ¢"(By)-norm for each z. That is, there exists {a;(z)};jez €
" (B3), with ||a ()

o' (By) < 1, such that

N2
SHi(z) = Senwfil@) = D> (T f1(x), a;(x)) (5,.5)-
Jj=N1
Note that we can treat the cases 1 = oo and ¢ < r < oo together by setting
aj(x) = Aj(x)1x;(x) for all v € 3Qp and all Ny < j < Np, and a;(x) = 0 otherwise;
then {a;(z)}jez € ¢*(B3). Clearly, the operator S satisfies the bounds (L.7a),
(LTD) in view of (5I5)

We then perform a Calderén—Zygmund decomposition of f; as in ([AI3]). The
first term in ([@I3)), corresponding to g1, can be treated analogously. The second
term in (fI3)), corresponding to Y vy, b1,w can be further split as in (IH), and
I and IT can be treated analogously. One is then left with proving (£I8) for II1.
Rather than performing a Calderén—Zygmund decomposition on fs, we estimate
the term directly.

Indeed, the analysis for 171 amounts to a simplified version of the analysis of
the term I11, in ([422]). One can define ¢ as in (£.24) and split

(=00, J)NZ =V;1UV;s,

where V; 1 :={L:j—¢<L<j}and V;, ={L:L < j—{}. Note that here there
is no further need to split V; 2, since we do not make use of a Calderén-Zygmund
decomposition of fo. Write I1] = IVlb + IVQb7 where for i =1, 2,

Ivib:< Z Z ijl,W,f2>~

N1<j<N, Wew,
L(W)GVJ‘J‘,

We first focus on 1 Vf. By Holder’s inequality with respect to x and j
(5.16) IV < IVP,IVY,,
where

q 1/q
dx) ,

B>

Ve, = ( i /‘ S Thw(a)

J=N1 J—E<L(W)<j

No / / I
Ivlb,2 = ( Z /|aj(x)\q32|f2(x)|q dx)l ! )

Jj=Ni

Using that [|a; (@)l gy < laj (@)l (g =1 1< 7" < ¢, we get

’ 1/q/
(5.17) IV, < (/3Q | f2(2)]4 d:c) S1Qol" 9 (f2) 30, -
0

For the term I Vlb)17 introduce as in (£26]) the family R; of subcubes of @y of side
length 27 and use the bounded overlap of 3R to write

q >l/q

Ly, '

N
vy, S < i Z H Z Tjb1,w

j=N1 RER; WCR
J—L<SL(W)<j
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50 5. MAXIMAL OPERATORS, SQUARE FUNCTIONSAND LONG VARIATIONS

The right-hand side above can then be handled essentially as I'V; in ([@26]) after
using the single scale (p, ¢) condition (L8)) for each Tj (in the form @2I])); the only
difference is the presence of an ¢9-sum. More precisely,

b Ak —(L-1)4 » a/p\1/q
Vi S Ao (X Y RGO hwll, ) )

j=N1 RE‘.RJ WCR
J—E<L(W)<j

gdAo<p,q><f1>QO,p,Bl(§j SN R G S R

j=N1 RER; WCR
J—L<SL(W)<j

N /
Sa Ao0,0) 1)y ., ( ZN R% WZR i)
J=N1 RENR; C

JESLW)<;
S ) G pop, Qo

and combining this with (5.I7), the bound for I'V} immediately follows.
Regarding IV, write IV = 3222, | IV7(s), where IV (s) has the sum in
L(W) < j — ¢ further restricted to L(W) = j — s. For each fixed s, one can apply
Holder’s inequality with respect to = and j as in (BI6)),
IV2b(3) < IV2b,1 (S)IVQb,za

where the term [ V;2 (which is independent of s) can be treated as I Vll’,2 in (517).
For each I V;l(s) we write again

N2
q 1/q
mhEs (X Y| X e, )"
j=N1 RER; L(\E/VV)CR By
=

This term can now be treated as the term IV, in (£30) using the e-regularity
condition (ITa) to get a decay of 27" (as in ([Z29a)). The only difference with
respect to ([@30) is the presence of the ¢9-sum, which introduces no difficulty, as
shown above for I Vfﬁl. This completes the proof. O
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CHAPTER 6

Fourier multipliers

In this chapter we deduce Theorems and from a more general result
which will lead to more precise sparse domination results and also cover Hilbert
space valued versions. We are given two separable Hilbert spaces H;, s and
denote by L£(H;,Hs) the space of bounded linear operators from H; to Hy (in our
applications one of the Hilbert spaces will be usually C). Consider the translation
invariant operator 7 = 7T, mapping H;-valued functions to Hs-valued functions
given via a multiplier

TF(E) =m(€)[(©),

where m(§) € L(Hy,Hsy) for almost every €. For 1 < p < ¢ < oo we write
m € M3 4 if the inequality

I T fllae) < CllfllLesa)

holds for all H;-valued Schwartz functions, and the best constant defines the norm
in Mgc’f g¢,- We may occasionally drop the Hilbert spaces if it is understood from
the context and also write MP for MPP. Note that m € M&’f 3¢, implies by a duality

argument that m € Mq/’*p/}f*. The M.;” ;.. norm is bounded by |m| = . where
2,717 1,712 Hqp,Ho

we write L3¢ 4, for L%"(:}Clﬂz). Also note that by the Marcinkiewicz—Zygmund the-

orem [56] §2.1b] any scalar multiplier in MP:¢ extends naturally, for any separable

Hilbert space H, to a multiplier

R — L(H, H),

m® Isc € ML | with m @ Ig :
e £ (v m(&v)

and we have ||m ® Isc||psza, < C|lm|[arv.a where C' does not depend on the Hilbert
space.

6.1. The main multiplier theorem

In what follows let ¢ be a radial C* function supported in {£ € R? 1/2 < |¢] <
2} (not identically zero). Let ¥y € C*°(R?) be supported in {x € R : |z| < 1/2}
such that ¥o(x) =1 for |z| < 1/4. For ¢ > 0 define

(6.1) Uy(z) = o(272) — Uo(27 1)
which is supported in {z : 273 < |z| < 27!}, Define
6.2a Blm]| := su m(t)] % Wyl yra 204/P=1/0) (1 4 ¢ ,
©20) Bl = Ssup llom(e)]+ By, (1+0)
(6.2b) Bo[m] :=> " sup|[[gm(t-)] = el . -
>0 t>0 L2
51
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52 6. FOURIER MULTIPLIERS

THEOREM 6.1. Let 1 < p < ¢ < o0, 1/¢' =1 —1/q, and assume that m €
L2, 5¢, 18 such that Bo[m] and Blm] are finite. Then T, € Sp(p, Hu,q', H3) with
[Tnllsp., 0.3¢1,07,9¢3) Sdv.p.a Blm] + Bo[ml.

The implicit constant does not depend on m, Hy, Hs.

We note that the finiteness of B,[m] is implied by the finiteness of B[m] in the
case Hi; = Ho =C.

REMARK 6.2. The function space of all m with B,[m] + B[m] < oo exhibits
familiar properties of similarly defined function spaces in multiplier theory. For
example:

(1) The space is invariant under multiplication by a standard smooth symbol
of order 0. This fact will be used in the proof of Theorem and for the
convenience of the reader, the precise statement and proof are contained

in Appendix [C], §C.1] below.
(2) The finiteness of B[m] and B,[m] is independent of the choice of the spe-

cific functions ¢ and ¥. This observation will be convenient in the proof
of Theorem [G.Il It can be verified by standard arguments but, for com-
pleteness, the proof is provided in Appendix [C] §C.2] below.

We begin by showing how Theorem implies Theorems and Then
we review some known facts and estimates for Fourier multipliers and deduce the
proof of Theorem from our main Theorem [I1]

PROOF OF THEOREM USING THEOREM [6.1l We have to check the assump-
tions of Theorem [6.11 Assumption (24)) is equivalent with

l[om ()] * el < 27
Thus interpolating (I24) and (L23]) we get for p € (po, 2),

lgm(t)] * Uellare < 27®) where (p) =2(L — 1) /(L - 1).

Let x € C>(R?\ {0}) so that x(¢) = 1 in a neighborhood of supp(¢). Then by
Young’s convolution inequality for all p € (po,2), ¢ € [p,o0], t > 0,

Ix((dm(t)] * Uo) arra S [gmt)] = Uellar S 2750,
On the other hand we claim that
(6.3) (1 =) ([pm(t)] * We)|[area SN [[om(t-)
Indeed, integration by parts in £ in the integral

[ [ et -0@lem@no2 e (€ - o)dsdc
implies the pointwise estimate

FH = x)([om(t)] * o)) (2)] Snv 27N (1 + |2]) =Nl gm(t)]|1,

and now (6.3) follows from Young’s convolution inequality.
Fix p € (po,2). Combining the two estimates we see that condition (G.2al) holds
for a pair of exponents (p1,q1) if p1 € (po,p), @1 > p1 and

d(1/p1 —1/q1) < e(p1).

|127ZN'
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6.2. A RESULT INVOLVING LOCALIZATIONS OF FOURIER MULTIPLIERS 53

Then Theorem gives T € Sp(p1,¢}). One can then choose § = §(p) > 0 small
enough so that p; = p — ¢ and ¢} = p’ — § satisfy the above conditions. This
concludes the proof. O

PROOF OF THEOREM USING THEOREM [6.1l We need to check that B[m)]
is finite, which will follow from showing that

(6.4) sup [|[gm(t-)] * Vel arma S 27

>0
for some s > d(1/p — 1/q). Here we are in the case H; = Ho = C, so this also
implies By [m] < oo.

We decompose ¥, into slighly smaller pieces. Recall that ¥ is supported in
{x:1/4 < |z| <1} and ¥y(z) = ¥, (2! ~x). We form a partition of unity {c, : v €
T} such that ) ;6 (z) = 1 for |z| € [1/8,2], and ¢ is a C*° function supported
in a ball B(z,,r,) centered at z,,, with |z, | € [1/4,1] and radius 7, < 1072, Let
T T,

2 |z, [?

so that |u,| € [1,8] and (z,,u,) = 7/2. This implies that |Im (e*®%) — 1) > 1/2
for « € supp(s,). Define, for M as in ([23]),
V1 (z)s ()

(ez(x uy) _ 1)M’

Uy =

Uy, (z) = Uy, (z) = Uy, (2" )

and note that \Illw is smooth and Wy(z) = >, Uy, V(a:)(e"<””72l_euu> —1)™. Hence
) Uy = ZA ey, [om(t)] * Ty,

and by assumption we have for some s > d(l/p -1/q),
lgm(t:) = el ara S Z IAM, ey [om(t)][[aree S 275

This implies ([64) and now Theorem [[6] follows from Theorem |

6.2. A result involving localizations of Fourier multipliers

We recall a theorem from [98] (see also [24] for a similar result) which we will
formulate in the vector-valued version (see also [51]).
Let ¢ be as before, and fix 1 < p < co. Assume

(6.5a) sup lom ) lneg, . <@
(6.5b) sup [[¢m(t-)llge, ., < 0o,
t>0
and
(6.5¢) Z sup sup |9 (¢m(t-))(6)] e (3¢,.9¢,) < b,

laj<d+1 >0 geRd
where o € Ng. Then
(6.6) [ nsz §ao+alog(2+b/a)|%—%\_
Hp,Ho

Of course, in the special case 3; = Hy = C the L2-boundedness condition (6.5h)
with a, < a is implied by (65al) (cf. an analogous remark following Theorem [6.).
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54 6. FOURIER MULTIPLIERS

6.3. Proof of the main multiplier theorem

We give the proof of Theorem [6.]l First assume that m is compactly supported
in R? \ {0} without making any quantitative assumption on the support.

Note that by Remark we have some freedom to make a convenient choice
of the localizing function ¢, and we will denote this choice by . In what follows,
let & € C°(RY) be radial such that 6§ is supported in {z € R? : |z| < 1/2}, such
that [6(z)m(x)dz = 0 for all polynomials 7 of degree at most 10d, and such that

6(€) > 0 for 1/4 < |€] < 4. We then choose ¢ to be a radial C> function supported
in {£ e R?:1/2 < |¢] < 2} such that

D Feaere) =1
kEZ

for all £ # 0.
We then decompose T by writing

n2

m(€) =Y 027 (27 Em(¢)

k:nl
where nq,ny € Z. We then decompose
F em(25)](x) = > F M em(2*)](z)We(x)
>0
which yields

=) T =) Z T f ()

>0 >0 k=n;
where

TERF(€) = B(27%¢) [pm(2")] T (275¢).
We can write 7% f = Kf  f with
- / F U@ " ym](z — y) (2" ( — ))2°0(2"y) d.

Observe that K (z) is supported in {x € R? : |z| < 2417k} We wish to apply
Theorem [ to the operators 7¢ defined by

No L4+1—ny
Tf=Y Kixf= Y Tjf withT/f=K{, ;[
k=ny j=f+1—nz

The operators Tf satisfy the support condition ([L6]). To check the conditions (. 7al),
(L7D) we apply the above mentioned theorem from [98] (see (6.6)). We first claim
that

67 1o Y Kol S = sup [lm(t)] « Tellargs 24001

kn1

and

68 o> Khsls, . S o = sup lpm(t)] * Tlog, .,

k:nl

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



6.3. PROOF OF THE MAIN MULTIPLIER THEOREM 55

uniformly in nq, ne. We only give the proof of ([6.7)) as the the proof of (G.8]) is similar
but more straightforward. To see this we estimate, using dilation invariance,

e Z KL (5)llasg o Z o8 (2 ) [are [l lm(25) ] Do are,

k=n1 k=n1

1,Ho

Since § € S(R?) and since all moments of 1 up to order 10d vanish we get

(6.9) l98(27%s) || are < min{(27%s)104, (27K 5)7104),
Moreover,
(6.10) lpm(@* )« Tellagg, . S 2P [om(2) x Wllarge

and ([G.7) follows combining the above. To verify (GI0) we decompose
[= Z fos

where f, = flg,, and the Ry, form a grid of cubes of side length 2¢. Note that

the convolution kernel Ky := F~[pm(2"-)+W,] is supported in the ball of radius 2¢
centered at the origin. Hence, by Holder’s inequality

/
Kos g, = | Ken b, < (S kes sl )"
v Ho ) 2

< 2&1(1/,;4/:1)(2 1Ke * £, )1/p
e

v

) - 1/p
< old(1/p 1/‘1)||/Ce||M§gf,}(2 (Z ||fu||ZL)§{l)

and since (32, || ful[7, )7 = |fllLz  we get GI0).
Iy
Straightforward calculatlon using ([6.9) yields

(6.11) Z Z sup sup |0g (<pK ()] (36,,96) < be = [Imllnge . 9l(d+1)
|a|<d+1 k=mn1 t>0 geR

uniformly in nj, ny. We combine the two estimates (6.17), (€8] and (611]) and using
©8) we get
1T N g, s, S (A+0) 5=2la, + ao .
The L7 estimates are similar. For m(¢) € £(Hy,Hsz) denote by m*(§) €
L(H5, HT) its adjoint. Note that

Ilom™ ()] * el gz, .. = lllom (@) * Vel < a0

3,97 1,H T

Since ¢’ < p’ the previous calculation gives
/4 _ 0\ *
173, -, = 1T gy
S (L4 0)7 = 319807532 qup || [om () Wel o + o
t>0 H3 MY
< (140212801 sup || [om(t)] Wl ape  + ao
>0 H1,962

(1+€) — 3l ag + o
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56 6. FOURIER MULTIPLIERS
To summarize,

012 |27, + 327

To verify the single scale (p, ¢) condition (L) we next examine the Lf, — Lj

<aor+a((L+ 052l 4 (14 ola—szly,
Li—La

norms of the convolution operators Dily; Tf with convolution kernels 23dK f 1oy (2 )
We have

HDﬂzJTfHLg(I—)Lg( = ||Kz+1 (27 )||M$(f .
and
Kfﬂ J(277€) = 027 ) [pm (27T ) W (2719,
and we get
1EE 1y 277 g, < 012 DAP D Y o (279 ) e Wl pypa
Hence
(6.13) sup || Dily; T | o e S a
J

Next we turn to the e-regularity conditions (L9al) and (L.9L). By translation
invariance of the operators Té it suffices to verify (L9al). Using the above formulas

for the Fourier transform of 2JdK 1 ;(27-) we get
[[(Dily; T )OAh”L” —Li,
0 (em () ¢ BN g

< 9U41)d(1/p=1/q) H@\[ei@[wfw —1|] 0 | lom(2H1 7)) \I]ZHMP"?
3y ,9Co

Observe that for 0 < e < 1,

€ 1(2 ,h) le
217 (|6 — 1], S 2
and hence we get
(6.14) sup [h] =% sup [|(Diles T) © Anllpp, s, < 20
<1 J

In view of ([612), (6I3) and (6.I14) we can now apply Theorem [[LT] and obtain

1T Nsp.a) S sup [[igm(t)] + Uyl e

2

+ (403 ()i (14 0)2%G 3 supll[wm( N Tellargs

)

The desired conclusionthen follows from summing in ¢ > 0.
Finally, to remove the assumption of m being compactly supported we observe
that by Lemma [A 1] it suffices to prove the sparse bound

(6.15) ) FUmf)(x) fa(x)dz < C(Bo[m] + Blm)) A%, . (fi, f2)

R
for f; in the dense class So(R%, 3(;) of functions whose Fourier transform is com-
pactly supported in R?\ {0}. But for those functions we have

]:_l[mfl] = f_l[mm,mfl]a
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where
na

Mnpyng = Z 0(27k€)§0(27k§)m(£)
k=nq
with suitable ny,ns € Z (depending on f;). By invariance under multiplication by
smooth symbols (see Lemma [C.3)) we have

sup B[mn, n,]
ny,n2

S Blm]

~

and an analogous inequality involving B, [m]. We then get (6.15) for f; € So(R?, H;),
i =1,2. A second application of Lemma [A]l yields (6.I5) for all f € Lt and all

fr € L’;/C;. O
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CHAPTER 7

Sample applications

In this section we give a number of specific examples of operators to which
Theorem [[1] and its consequences can be applied. Some of the resulting sparse
bounds are well-known and others appear to be new.

7.1. Operators generated by compactly supported distributions

In what follows let o be a distribution which is compactly supported and let
oy = Dil; ;0 denote the t-dilate t~4o(t7!) given by

(o1, ) = (o, f(t))-

Without loss of generality we may assume that the support of ¢ is contained in
{z : |x| < 1}, otherwise argue with a rescaling.
Let

(7.1) Aif(z) = f*o(z)

which is well defined on Schwartz functions as a continous function of (z,t). Many
interesting operators in harmonic analysis are generated by dilations of such a single
compactly supported distribution (often a measure) and we shall be interested in
the corresponding maximal and variational operators. The domain of the dilation
parameter ¢ will be either (0,00) or [1,2] or a more general subset E of (0, 00).

7.1.1. Maximal functions. We are interested in sparse domination results
for the maximal functions, as defined in (LI5]),

M f(x) = sup |A¢ f ()]
teE

where E C (0, 00).

If we assume that f is a Schwartz function then MY, is well defined as a mea-
surable function, but for general L? functions the measurability of Mg, is a priori
not clear unless we assume that E is countable. In our statements we will restrict
ourselves to a priori estimates, but note that in many applications the proof of
LP bounds shows also a priori estimates for the function ¢ — o * f(z) in suitable
subspaces of C(R), for almost all z € R?. This observation then ensures the mea-
surability of the maximal functions for f in the relevant LP classes. In the general
case, let I , = [k27", (k 4+ 1)27™) and pick, for each (k,n) such that E NI, # 0,
a representative ty , € E NIy, and let E consist of these picked ¢ . Then Eis
countable and we have Mg, f(x) = MZ f(x) for all z € R? and all Schwartz functions
f- Thus one can assume that F is countable without loss of generality.

We shall now discuss sparse domination inequalities for the operator M7,. Re-
call the local variants M , with the rescaled sets E; C [1,2] as in (L.IG). In what
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follows recall that

ASq’(fvw) = Z QU ) epw)Q.e

Qe6

with A/ (f,w) the supremum of all AE o (f;w) over all y-sparse families &.

PROPOSITION 7.1.
(i) Let1 <p < q<oo. Let o be a compactly supported distribution such that

(7.2) [ME N Lr—srroe + [[ME| Lar—pa < 00,
(7.3) sup [| Mg, || zos 10 < oo,
JEZ

and assume that there is an € > 0 so that for all X > 2,

(7.4) Mg, fllg < CAN oy f € Eann(A)-

Then for all f € LP and all simple non-negative functions w, we have the
sparse domination inequality

(7.5) (MEf,w) S Ay g (f, ).

(i) Conwversely, if o has compact support in R\ {0} then the sparse bound
[@3) for p < q implies that conditions (T2) and (3]) hold.

PRroOOF. We will apply Theorem Bl with » = oo, By = £*°(E’), where E’ is a
finite subset of F, and

oux f(x) ifte B/ N[27,29H)
0 otherwise.

(7.6) T, f(a,t) = {

Note that

(7.72) SeoTf(x) = sup T3 f(2)|B, = Mg f(2),
J

and, with E} = 277E'N[1,2],
(7.7b) Dily, T3 £ ()| 5, = M, f(2),  j €.

As o is supported in {z : || < 1}, the operators T} satisfy the support condition
(T8). Moreover, ([[2)) and (7al) guarantee ([B.3]) with r = oo, and similarly (Z3)
and (Z.7D) guarantee the single scale (p, q) condition ([L§). It remains to verify the
single scale e—regularity conditions (L)) for the operators T;. But this follows from
[T4) and (3] via Lemma [3.6] and the fact that for translation-invariant operators
Tj, the conditions (I9a) and (L.9L) are equivalent (alternatively, one can apply
Theorem for maximal functions). All hypotheses in the first part of Theorem
Bl are then satisfied and we thus obtain a sparse bound for the maximal operator
M¢,. An application of the monotone convergence theorem then yields the desired
sparse bound for Mg and concludes the proof of part (i).

For part (ii) note that the assumption that o is supported away from the origin
corresponds to the strengthened support condition (LI4). Thus we can deduce part
(ii) directly from part (ii) of Theorem Bl O
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ProoF oF THEOREM [[L4l Because of the LP — L7 condition on the operators
MF, in (LT and the e-regularity assumption (LIS, it follows by interpolation
that the condition (4] is satisfied for all (1/p,1/q) in the interior of L(o, E).
Thus Proposition [1] establishes the sufficiency of the conditions, that is, (L20).
The converse follows immediately from part (ii) of Proposition [Tl |

Prototypical examples for Proposition [[.]] are the spherical maximal functions
where o is the surface measure on the sphere (for LP bounds see the classical
results by Stein [105] and Bourgain [19], and for L? — L? bounds see [95.[96]).
The proposition covers the results by Lacey [66] for the lacunary and full spherical
maximal functions and also the extension to spherical maximal operators with
suitable assumptions about various fractal dimensions of E, see [3,[93,[101]. In
this context we note that in [5L[45], Lacey’s approach was used to establish sparse
domination results for two versions of lacunary spherical maximal functions on the
Heisenberg group, defined via the automorphic dilations, and essentially optimal
results for the problem considered in [5] can be obtained by combining the sparse
technique developed in that paper with recent L? — L9 bounds in [94].

One can also cover more singular measures with Fourier conditions (as in [39],
[40]) and this leads to questions about the precise range of LP improving estimates
for the local variants of the maximal functions. As an example consider a curve
s + v(s) in R? with nonvanishing curvature and torsion, and the measures y; given
by

(f. ) = / F(t(5))x(s)ds

with compactly supported x. A result in [92], applied in combination with decou-
pling results in [20,111] yields that the maximal operators Mg are bounded on
LP(R3) for p > 4. The optimal result for p > 3 was recently obtained in [12] and,
independently, in [62]. Moreover, the analysis in these papers yield, for the local
analogues of these maximal functions (i.e. F = [1,2]), certain LP — L% bounds
for some ¢ > p. It would be very interesting to find precise ranges of LP — L1
boundedness of Mg depending on E, and corresponding sparse bounds for related
global maximal functions. Similar questions can be considered in higher dimensions
but the optimal bounds are currently unknown (for partial results see [13], [63]).

7.1.2. Variational operators. Given 1 < r < oo and a set E C (0,00) we
define the r-variation seminorm | - |,»(gy and the r-variation norm | - |y gy of a
function a : E — C by

M-1 - 1/r
lalyr(g) = sup  sup ( la(tit1) — a(t;)] )

MeNt <---<tn i—1
t,e & =

M-1 1/r
lalv-my = sup  sup {la(t)]+ (D laltisn) —a@)") "}
]\/IENt1<tt'€'EtM i=1

Define the r-variation operators vy A, V5 A for the family of operators of convolution
with oy by taking the r-variation norm in ¢,

(7.8) veAf (@) = {oux f(@)} ), VeAS(2) = Howx f(2)}Hvrm)-

This that the above definition of variation is analogous to the definition in (5.7)
where we considered the r-variation for functions integers. The results in Chapter
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mostly apply to the situation where the current E is a subset of {27 : j € Z}. For
general sets E C (0,00), we will deduce results directly from Corollary and
Theorem [L3]

As before we may assume that E is countable (as this does not affect priori
estimates). Let E; C [1,2] be the rescaled sets as in (L.I6).

PROPOSITION 7.2.
(i) Let1 <p < q< 0. Let o be a compactly supported distribution such that

(79) ||V%AHLP*>LP,OO + ||'\7TEA||Lq,1*>Lq < 00,
(7.10) sup ||V, AllLr— s < 00
JEZL

and assume that there is an € > 0 so that for all A > 2,
(7.11) Ve, fllg < CAE[fllp, f € Eann(N)-

Then for all f € L? and all simple nonnegative functions w, we have the
sparse domination inequality

(7.12) (Vif,w) S ALy (f,w).

(ii) Conversely, if o has compact support in R%\ {0} then the sparse bound
[C12) for p < q implies that conditions ([[3)) and [IQ) hold.

PROOF. We are aiming to apply Corollary [2 with By = V" (E’) for any finite
E' C E. With T} f(z,t) as in (T6) and E'(Nq, N2) = E' N [2V12N241] e get

No
(7.13a) > 1)

Jj=N1

vr = V%’(Nl,Nz)Af(x)
El

and
(713b) |Dilngjf(x)|V£/ = /ngjE/m[172]Af(l‘).

We need to check the assumptions of Corollary [[.2] (i.e. the assumptions of Theorem

[LT). Conditions (L7a)), (L7D) hold by (Z9) and (7.I3al), condition (L8] holds by
(TI0) and (ZI3L) and condition (L9al) follows from (ZI0), (7Z.II)), and Lemma

Condition (I.9a) is equivalent with (L9D) in the current translation invariant
setting.

For the necessity, observe that the assumption that o is supported away from
the origin which corresponds to the strengthened support condition in Theorem
A sparse bound for VA implies via (.I3a) a sparse bound for Zjvzz ~, Tj for
any pair of integers N1 < Na. We apply Theorem [[.3] and obtain via ([{.I3al) and

(CI3h) that

IV vy Ny Allr s e + [V vy Ny All Laa spa < C,

sup HV;JE/Q[LQ]AHLP—MG <C,
N1<j<N»

with the constant C independent of Ni, No and the particular finite subset E’
of E. Applications of the monotone convergence theorem then yield the asserted
necessary conditions for Vi, A, that is, (C.9) and (Z.I0]). O
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Proposition [Z.2] can be applied to obtain a sparse domination inequality for the
r-variation operator associated with the spherical means in R¢. For the necessary
global LP — LP bounds see [69] and for L? — L? bounds for the local variation
operators we refer to the recent paper [14]. This addresses a question posed in [66]
and [1].

REMARK 7.3. In verifying LP — LP>® and L%! — L7 assumptions for the vari-

ation operators it is (as shown in [58l59]) often advantageous to write VLA f(z) <
Vd’“yadAf(x) + V}§7ShAf(x) where

VJyadAf(l’) = VQ(Z)Af(x)

is the standard variation norm over 2(%) := {27 : j € Z}, labeled the dyadic or long
variation operator and where

1/r
VeaAS @) = (D Whngw o Af@))
jez
is the so-called short variation operator which uses only variation seminorms over
F within dyadic intervals. The LP-boundedness of the long variation operators is
usually reduced to Lepingle’s theorem [73] (which requires r > 2) while the short
variation operator is often estimated using a Sobolev embedding inequality (see
[58], [69]). We note that it is possible to prove results analogous to Proposition
for the long variation operator and the short variation operators individually
as direct consequences of Theorems and [5.1] respectively; the details are left to
the reader.

7.1.3. Lacunary maximal functions for convolutions associated with
the wave equation. In this section we consider a maximal function generated
by convolutions with dilates of a tempered distribution, which is not compactly
supported (but still concentrated on a compact set). This class is associated with
LP regularity results for solutions of the wave equation. For both simplicity and
definiteness of results we shall only consider a lacunary version, but the argument
to deduce the sparse bound extends to other sets of dilations and also to variational
variants (for which Lemma would be useful to treat nonlocal error terms).

For 8 > 0 define
cos¢]

mgp(§) = (ENGREE

and let
M f(z) = sup img (28 D) f(z)].

It was shown by Peral in [90] and Miyachi in [87] that mg(D) is bounded on L? for
B>(d—-1)]1/p—1/2|,1 < p < co. LP — L results for mg go back to [211[83][108];
it is known that mg(D) : LP — L7 is bounded if either

W) 1<p<2,p<qg<p,B2d-1)(; -3+ g o

(W) 1< p<oo, max{p,p'} < qg< oo, > (d—l)(%—%)—k%—%.

Note that (W') follows from (W) by duality. Moreover it can be shown that
/\/116aC is bounded on LP for 8 > (d — 1)|1/p — 1/2] via a single scale analysis, and
either Littlewood—Paley theory for p > 2 or the result stated in Section for
1<p<2

We have the following sparse bound for ./\/lﬁtC in the non-endpoint case.
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PROPOSITION 7.4. Suppose 1 < p < q < oo and that one of the following two
conditions holds.

(Wo) 1<p<2,p<q<p,B>d-1)(;—3)+;—
(W) 1< p<oo, max{p,p'} <qg< oo, B> (d —1)(%

Then ./\/lldc € Sp(p,q).

PROOF. Let K = F~![mg(2-)] so that the singular support of K is {x : |z| =
1/2}. Let Koo = Kxnge = F~{mgie], with 7, defined as in (39), and split Ky o* f =
Acf + Ref where the convolution kernel Ry of Ry is supported in {z : || > 1}.
The maximal function associated to Ry is dominated by 27V times the Hardy—
Littlewood maximal function of f, similarly the maximal functions associated to Ay
are controlled by the Hardy—Littlewood maximal function for small ¢ and therefore
satisfy a (p, ¢’) sparse bound by Section[A2l We use the notation Ay, Ry for the
convolution kernels of A, and Ry. Set Ky = 2_dez,0(2_k-), and similarly define
the kernels Ay, and Ry .

By the LP — LP result for mg(D) together with the multiplier result mentioned
in §6.2 one can easily derive for £ > 0 and any € > 0

|( e s 52) ) s 2vtitieeoyy,

kEZ

for all 1 < p < oo which of course implies

HSUP|KZk*f||| S 2=

We also have the single scale results
_lypl_1y
(7.14) 2| Keo * fllg S 2°DGTRTTD| 1,
ifl<p<2,p<q<yp,and
1) (-lyyl_1
(7.15) 28| Koo+ fllg S 20 DG=DF 52| 7|,

ifl<p<2,p<g<oocor2<p<oo,p<gqg<oo.

By the above mentioned bounds for the operator Ry and the lacunary maximal
operator generated by it we can replace Ky ;, and Ky o by Ae and Ay o, respectively.

Note that the exponents for LP-boundedness and for L? boundedness, i.e.
(d-=111/p—1/2|, (d = 1)|1/q — 1/2| are not larger than the exponents in the
displayed inequalities (I4)) and (TIH) in their respective ranges. An application
of Proposition [.1] gives the desired sparse results for the maximal function gener-
ated by the Ay and then also for the maximal function generated by convolution
with Ky ;. Summing in £ we can complete the proof of the proposition. O

REMARK. The multiplier mg can be replaced by other variants such as

_ sin ¢ 1 _ Jp-172((€])
") = T e ™20 = Tgean

7.2. General classes of multipliers

It is well known that the classical Mikhlin—-Hérmander multiplier theorem [53]
103] can be interpolated with the L?-estimate for multiplier transformations m(D)
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with bounded multipliers [811[82]. In particular one gets for 1 < p < 2,
(7.16) lmllaer S sug lom(t-)||lpr, 1/r=1/p—1/2, a>d/r,
>

where ||g||zr = [|(1+ |D|*)*/?g|, and ¢ is a nontrivial radial function supported
with compact support away from the origin.
We give a sparse bound for this class of multipliers.

PROPOSITION 7.5. Let 1 <p <2, 1/r=1/p—1/2 and let m satisfy
(7.17) sup ||¢gm(t-)||L: < A.
>0

Suppose one of the following holds:
(i) 1<p<q¢<2,anda>dl/p—1/2).
(i) 2<g< oo and a>d(1/p—1/q).
Then
”m(D)HSpw(p,q’) Seoraany A
PRrROOF. We deduce this result from Theorem Observe the inequality

lgllazez < llgller,  1/r=1/p—1/2,

valid for 1 < p < 2 which follows by interpolation from the standard cases p = 1
and p = 2. In view of the embedding By, < L" (see [110] for the definition and
properties of Besov spaces) we get, for 1 < p <2,

(7.18) Igllaee> S llgllpo,,  1/r=1/p—1/2.

Interpolating Bernstein’s theorem B;l,/l2 o Il (which follows from the Cauchy—

Schwarz inequality and Plancherel’s theorem) with the embedding BgO’I — L,
we also have for 1 < p < 2,

(7.19) lollass S lgllgerrs  Lr=1/p—1/2
A further interpolation of (TI8)) and ([CI9)) yields for 1 <p < ¢ < 2
lgllazea Sl acz-3y»  Yr=1/p—1/2.
1

Finally, we have for M > s, the well-known inequality
18 gl 5 < 1Rl e

which we shall use for § = d(1/q — 1/2) and which can be deduced from standard
L'-convolution inequalities.

Now let r = 2p/(2 — p), i.e. 1/r =1/p — 1/2. Applying the above inequalities
to g = ¢m(t-) we get for M > s,

sup [ *[| AR [¢m(t)][[area S lSmE)] acx g
|h|<1 B

Now since o > d(1/p — 1/2) we can find s > d(1/p — 1/q) such that
a>d(l/g—1/2)+s>d(1/p—1/2).
Thus if a is as in the display, then L, — Bi(/97 /2%
Theorem yields the sparse bound stated in part (i).
For part (ii) let 2 < g< oo and observe that

1

and an application of

(7.20) lgllarea Sk llgllaree  if supp(g) € K, K compact.
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To see this take a Schwartz function v whose Fourier transform equals 1 on K and
observe that by Young’s inequality convolution with v maps L? into L9. We see
from (Z20) and (I])) that for such compactly supported g and M > s,

B2 gllares S RIT1AY gllso, < Nlgllss -

1

This we use for g = ¢m(t-) and o >s > d(1/p —1/q). Then part (ii) follows by the
embedding Lf, < B;; and an application of Theorem O

REMARK 7.6. The assumption p < 2 is not a significant restriction. Indeed
observe that by definition of the sparse operator classes we have T € Sp(p1, p2)
if and only if 7* € Sp(p2,p1). For multiplier transformations we have m(D)* =
m(—D) and m(—D) f(—z) = m(D)[f(—)](z) which implies that m(D) € Sp(p1, p2)
if and only if m(D) € Sp(pz2,p1).

We can draw two conclusions from this duality argument. First, the range
1 <p <2, ¢g>p in Proposition could be deduced from the result in the
range 1 < p < 2,2 < ¢ < p’. Second, the result in Proposition also implies a
result in the range 2 < p < ¢ < oo. Namely, in this case, if 1/r = 1/2 — 1/q and
a>d(1/2 —1/q) then one gets m(D) € Sp(p,q’) under the assumption (TI7]).

7.2.1. Miyachi classes and subdyadic Hérmander conditions. We now
discuss some consequences for multiplier classes considered by Miyachi [88] and
their corresponding versions under a subdyadic Hérmander-type formulation [10].
Given a > 0,b € R, let Miy(a, b) denote the class of smooth functions m : R — C
supported on {£ : |¢] > 1} and satisfying the differential inequalities

(7.21) [0'm(€)| <, [¢|7PHeD

for all |¢] > 1 and all multiindices ¢ € N& satisfying |¢| < |d/2] + 1. The oscillatory
multipliers mg defined below in (Z.20) are considered model cases, at least in
regards to the LP — LP boundedness properties. It is known that multipliers in
Miy(a, b) belong to MP? whenever b > ad|l/p—1/2| and 1 < p < oo, see [43.[88]. It
has also been observed that these endpoint results are special cases of Hérmander-
type multiplier theorems involving certain endpoint Besov spaces, see [4.99]. Sparse
bounds for multipliers in Miy(a, b) in the non-endpoint range b > ad|1/p—1/2| were
obtained by Cladek and the first author in [11] via a single scale analysis, under the
additional assumption that (ZZI)) hold for all multiindices + € Nd. We note that
in the range 0 < a < 1 they also extended these results to larger closely related
classes of pseudo-differential operators, cf. [11L[41].

The subdyadic Hérmander-type classes, also extending the class Miy(a,b) are
obtained by replacing the pointwise condition (ZZI]) by

1 1/2
(7.22) sup dist(B,0) 1=l (—/ |DLm(§)\2d§) < oo
B 1Bl /5

for all . € Ng with [¢| < |d/2] + 1. Here the supremum is taken over all euclidean
balls B in R? with dist(B,0) > 1 such that 7(B) ~ dist(B,0)!~¢, where r(B)
denotes the radius of B. This class was considered in [10] which contains sharp
weighted inequalities of Fefferman—Stein type that can be used to recover the sharp
L? estimates. In [11] §3] the question was raised whether the results on sparse
bounds for multiplier transformations in the Miyachi class can be extended to mul-
tipliers satisfying a subdyadic condition above, in the sense that it is sufficient to
assume that (Z21)) or (T22) hold for all |¢| < [d/2] + 1 rather than for all . € N{.
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We shall see that this is the case, and that such and more general multi-scale re-
sults can be obtained from Proposition The following simple observation will
be helpful; note that condition (T222)) (and therefore (Z21])) implies [(23]).

LEMMA 7.7. Leta > 0, 2 <r < 00, b > ad/r. Suppose my, are supported in
{&:|¢] > 1} and suppose that there is a constant C' such that

r 1/r
(7.23) sup #4211 (11 /MK% le/*ormi (o)) de) " < ©

t>1

for all multiindices v with o] < |d/r| + 1 and for all k € Z. Then the family {my}
satisfies condition

(7.24) sup sup t* || ¢my(t-)|| L < 0o
k€EZ t>0

for some o > d/r.
PROOF. A change of variable shows that the condition (T23)) is equivalent to
0" Tgm (s, < 5210

for all multiindices ¢« with o] < |d/r] + 1. Pick o € (d/r,|d/r] + 1) such that
aa < b. Then the condition implies

b—ax

sup [y (s)|| Ly s < oo,
S

which implies ({24 in view of the assumption on the supports since a > d/r. O

We shall now formulate a result for families of multipliers satisfying condition
[C24). For simplicity of our statements, we consider only the case p < 2 and argue
by duality for p > 2 (see Remark [T.0]).

PROPOSITION 7.8. Letl <p<2,7 = 22_—pp (i.e. L= %— %), and let, for k € Z,

r

my, be supported in {& :|§| > 1}. Let a,b > 0 such that b > ad(% — 3) and suppose
that either

(i) 1<p§q§2andb>ad(%—%), or
(ii) 2 <g< andb>ad(%—%).

Let o > d(% — 1) and assume supj,cz sup,~ o t°7 || ¢pmy(t-)|

Then m =3y, ., my(2*:) € M, and m(D) € Sp(p,q')

L&<OO.

Proor. We split, by a dyadic decomposition my(§) = Y07, my ,(§) where
My, 18 supported in an annulus {¢ : [¢] = 27}, for all k € Z; in fact we can set
Mg (&) = M ()Nn(€) with 7, as in BI0). Observe that myny = 0 by the support
properties of my, and 7jo. Now form m™(&) = >, c; Mk (27¢). We wish to apply
Proposition to m™, for every n > 0.

Fix any ¢ > 0 and use the assumption to compute

om™ ()] r < Z g n(258) | o S 27 (bma),
kEZ:
12" <2kt<Cy2m

By (ZI0) we obtain ||m™||ay» < 27™(*=%) and similarly, by Proposition we
obtain ||m”(D)||Sp7(p7q/) < 27n(b=a@)  The desired bounds follow by summing in n
as o < b/a. O
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As a consequence we can obtain a sparse bound for the lacunary maximal
function supy |m(2¥ D) f| and indeed a square function that dominates it.

COROLLARY 7.9. Let p,7,q,a,b as in Proposition [[8. Let m be supported in
{€ : €] = 1} satisfying sup;o t*=*|[¢m(t-)||r < oo. Then we have the (p,q’)-

sparse bound
1/2
/ (D Im@*D) @) ww)de S Ap g (o).

keZ

PRrOOF. Consider the multiplier m,(§) = >, c; mk(v)m(27¢) where (ry)ren
denotes the sequence of Rademacher functions defined on the unit interval. Then
by Proposition [[.8 applied to my (&) = ri(v)m(§) we obtain

(7.25) | [ D@ )| S 85,1 1),

with the implicit constant independent of v. Let u,(z) = % so that wu, is

unimodular, and we also get by (25 with fo = wu,

[ imo D) fl@yds = [ mo(D)f@)wle)u @)z
Rd R4

S A;,q' (f, upw)

= A;,q’ (fa w)'

Integrating in v and using Fubini’s theorem and Khinchine’s inequality, one obtains

S ey

kez
//|mv z)| w(x) dz dv
Rd

SA . (fw)
and the proof is complete. O

REMARK. Similar results can be obtained for versions of the previous multiplier
classes if a < 0 and m is supported in {£ : |{] < 1}. We omit the statements.

7.2.2. Multiscale variants of oscillatory multipliers. Givena > 0,a # 1,
b € R, consider the oscillatory Fourier multipliers

(7.26) Map(€) = Xoo (§) I,

where Yoo € C(R?) is such that x(&) = 0 for |¢] < 1 and xoo(€) = 1 for |¢] > 2.
As already mentioned the operators m, (D) are sometimes considered model cases
of the class Miy(a, b), known to be bounded on L? if and only if b > ad|1/p — 1/2|
and 1 < p < oo; see [104], [43], [88]. This result is sharp when a # 1; the case
a = 1 forms an exceptional case corresponding to the wave multipliers considered
previously in this chapter, in §7.1.3} we exclude it in this section.

Given a sequence (ci)kez with |cx| < 1 we form the multiscale variant

(7.27) m(&) = cxmap(27¢)
kEZ

which is bounded on L? for b > ad|l/p — 1/2|. Proposition [[.8 shows that for
1 < p <2 we have m(D) € Sp(p, 2) for ¢ < 2, but in order to get a Sp(p, ¢’) bound
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FIGURE 7.1. Sparse bounds for a general multiplier in Miy(a,b)
(left) and for the oscillatory multipliers m, p (right) for given a,b >
0. The condition (ii) in Proposition [.§ can be relaxed for the
specific m, , (Proposition [10).

for ¢ > 2 we had to impose the more restrictive condition b > ad(1/p — 1/q). We
show that this estimate can be improved, in particular an additional restriction is
not necessary for ¢ < p’ and in this range we can upgrade the Sp(p,2) bound to an
Sp(p, p) bound for the multipliers in (T27)) (see Figure [[]).

This improvement relies on special features of the multipliers m,; which are
not shared by a general multiplier in the class Miy(a,b). Unlike in the proof of
Proposition [7.8 we can no longer rely on analyzing the problem on the multiplier
side. Instead we have to analyze Schwartz kernels and employ stationary phase
estimates, taking advantage of the fact that the Hessian of the phase function
& — |€]® is nondegenerate when a # 1, a > 0. Incidentally, this also reveals that
the m,p satisfy better LP — L7 mapping properties than a general multiplier in
Miy(a,b) when 1 < p < 2,2 < g < p'. Tt is therefore more natural to base the proof
directly on Theorem rather than on the formulation in Theorem

PROPOSITION 7.10. Let 1 < p <2, a€ (0,00)\ {1}, and m as in (C2Z0), with
supy, |ex] < 1. Let b > ad(1l/p —1/2). Then m(D) € Sp(p,p).

PRrROOF. We decompose as in the proof of Proposition [[.8 Recall that 779 is
supported in {|{| < 1} and mgy in {|¢] > 1}, hence foymq, = 0, and we can write
m =3 ", m" where

m™M(&) =Y ckma (2567 (259).
kez
We shall show that

(7‘28) Hmn(D)”Sp.y(p,p) S 2_n5(p)

~

with e(p) > 0 and then sum in n.
To verify the claim (Z28)) we use Theorem [6.1l For this we have to analyze, for
radial ¢ € C2° supported in {€ : 1/2 < [£| < 2}, the expression

gm™(t)] % el g < > @m0, (258 )73 (250)] 5 el |y

kEZ
on—3<okicontl
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and show that for some € > 0

(7.29) D sup || [pm (t)] W[ gy 0 240/ PPIRE) < 9mmem),
=0 >0

To this end, fix k,t with 273 < 2kt < 27+ and analyze the Fourier inverse of
dma p(2Ft)0, (25, ie.
Kp(z) = (2m) 71 / B(E)TTn (2F1€) xo0 (24) (288 |€]) PO TR EN" g

The phase function (z, &) + (2F¢)*|¢|* becomes stationary on the support of ¢ only
when |z| ~ (2F1)® ~ 2" and the Hessian of |¢|® is nondegenerate there. Thus by
integration by parts we see that there are constants ¢; < 1, C7 > 1 such that

C 2—n(b+N) f < ¢q2na
o) < {207 forlrl< e
Cn27|z|~ for |x| > C12™°
and by the method of stationary phase
K ()] S 27nbad/2) - for 270 < 2| < 1270

This implies for 273 < 2kt < 27*! and suitable C, independently of k, ¢,

(7.30)  [|[¢m™(25¢-)] % W[ pr1.o
< 9~ n(btad/2) for [¢ —na| < C
min{Cn2-"+N) On2-02- N for | — na| > C.
We also have the M??2 bound
(7.31)  [|[om" (2°6)] W0

< 2—nb for ¢ —na| < C
min{Cn2-"+N=4) Oy 202~ (N=d)Y  for |¢ — na| > C.

Interpolating (Z30) and ([Z31]) we get
g~ n(btad(1/p=1/2)) for |{ —na| < C

n(oky. T S
[[gm™ (2% )] * Wellppowr S {z—nb()N min{2~ "N 2Nl for | — na| > C.

Only the five terms with 2773 < 2kt < 27+1 make a contribution. We sum those
terms, then take a supremum in ¢ (observing that the displayed bound above is
independent of t) and then sum in ¢ > 0. We obtain

~ Lo
> sup |[gm (1)) 5 By, 279G
>0 t>0

<, g n(btad(5—3))gna(d(G—3+e) < g-n(b-ad(G—4—c))
Since we assume b > ad(1/p—1/2) this leads to (Z29) and then to the claim
via Theorem [6.11 (DEDD

Given Proposition [[. 10l we can now derive an improved sparse bound for a
lacunary maximal function and a corresponding square function associated with
the multipliers m,_p; thus for these examples we improve on Corollary
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COROLLARY 7.11. Let 1 <p<2,a>0,b>ad(l/p—1/2). Then
k 2 1/2 *
[ (Z masD)f@P) " wla)de 5 43, ().
R M ez,

PRrROOF. Choose ¢ = +1 in ((26). Then Proposition [TI0 together with a
randomization argument exactly as in the proof of Corollary [[.9yields the assertion.
|

7.3. Prototypical versions of singular Radon transforms

Let o be a bounded Borel measure supported in {x : |z| < 1} and satisfying

(7.32) /da =0 and sup(1+[¢))°F(€)| < oo for some b > 0.
geRd

Let {a;};jez satisfy
(7.33) laj] < 1
and define

N2
SNuN2 £ (7)) = Z a;277%0(279) * f(x)

j=Ni
and
(7.34) Sf(x)= lim SNuN2f(g).
NQ*}OO
Ni——o0

This is the “prototypical” singular Radon transform considered by R. Oberlin [89],
see also Duoandikoetxea and Rubio de Francia [39]. It is easy to see using the
cancellation of the kernel that the limit exists pointwise for C'g® functions.

In addition, we assume that ¢ is LP9 improving, i.e.

(7.35) llo fllg < Allfllpo

for some g with pg < ¢ < co. The following result is due to R. Oberlin.

PROPOSITION 7.12 ([89]). Let o be as in (T32)), and {a;}jez, S be as in (33,
@34). Let 1 < pyg < p < q < oo and assume that [L38) holds. Then S satisfies
the (p,q’)-sparse bound

|<Sf7 o"Y>| 5 A;,q’ (f7w)'

The same sparse bound holds for the operators Sy, n,, uniformly in Ny, Na.

We emphasize that Oberlin also proved certain endpoint estimates for p = py,
working with local Orlicz norms in the definition of sparse forms.

One can extend Proposition to cover associated maximal truncation and
variational truncation operators defined by

b

Ny
S.f@) = swp | 3 02790277 ()

Ni<Na | SR

VISf(zx) = sup sup ( | Z ajg—jda(Q—j.) *f(q;)‘r)

MeNn;<---<np
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PROPOSITION 7.13. Let 1 < py < p < ¢ < 00, r > 2 and o, {a;} be as in
[T32), (C33), (C35). Then S, and VIS satisfy the sparse bounds

[(Sefsw)| +[(ViST w)| S Ap o (f5w).

PrROOF. We apply Theorems [£.3] and 54l To verify the assumptions (G.11al),
(E11D) see [39] Theorem E]. To verify assumptions (E12al), (5.12D) see [59] Theo—

rem 1.2]. Interpolation arguments using the Fourier decay assumption in (.32]), an
Lemma [B:6] can be used to establish the additional Holder condition in (T9). D

The setup above is also similar in spirit to the theorems on truncations of rough
singular integrals with bounded kernels [37]. We have been deliberately short in
our presentation as the results in this section are essentially known. For a more
detailed exposition the reader may consult §7.4] below in this chapter, in which a
singular Radon transform built on spherical integrals is considered, and also other
versions of maximal functions associated to singular Radon transforms.

7.3.1. An approach via Fourier multipliers. In order to understand the
scope of our multiplier theorems, it is instructive to deduce the sparse bounds for
the prototypical singular Radon transform S in Proposition [[.12] from Theorem [G.1]
(or Theorem [LH)). Since o is a finite Borel measure we have ||¢5(27¢-)||pra.0 = O(1)
for 1 < q < co. By (Z.32) and interpolation with L? — L? bounds we have for
some go(q) >0

(7.36) 167 (27¢-) || ara-a < Cyminf (27¢)50(@ (27¢) 0@} 1 < ¢ < o0,

using either cancellation or decay, and by Young’s inequality we get the same bound
for ||¢5(27t-)|| are.e when 1 < p < ¢, 1 < ¢ < co. This takes care of the term ¢ = 0 in
the condition (6.2a]). To verify the remaining hypothesis of Theorem it suffices
to check that for ¢ > 0 the condition

(7.37) Supz [¢5 (278)] # Wy|[pgp.a S 27 /P10 4E)
>0 JEL

is satisfied, as the condition (6.2D)) trivially follows by the assumption (7.32]).
Since & is smooth we have for 27t < 1

1[65(274)] * Uyl arre S Cn27N, 22 <1,

for 1 <r < s < 0o and therefore by interpolation with (Z36) and taking geometric
means we see that there is an €;(r, s) such that €1 (r,s) >0if 1 <r < s < 0o and

(7.38) (65 (27)] % Wyl pgre < Cn27t4270) (9 274 < 1.

The contributions for 27¢ > 1 are more interesting. Since ¢ is supported in
{z : |x| < 1} we have the kernel estimate

F e (27t)](2) Swv |27 for |af > 27+t
and hence
(7.39) [¢7(27¢)] % Wyl arpa S 27 for 26 > 274 > 1.
For 2¢ < 274t we do a rescaling argument to estimate

1(65(278)] # Wellamon S 18(208) | agro.a = (278) =PV D |5 gpo.0
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and by assumption g € MPo-4. Interpolating with the M %9 estimate in (.30) we
get for po <p <g¢q

(7.40) 1[65(27)] % Wyl agra < (208) =4/ P=1/0)=cp:0) o 27444 > 9f

~

Combining ([Z3])), (C39) and (40) and summing in j we get (L31) for a suitable
e=¢(p,q) > 0.

7.4. Densities on spheres: Maximal singular integrals

As discussed in §7.3] the Corollary covers classes of singular Radon trans-
forms and also associated maximal operators for truncations. Here we will consider
a natural singular integral variant of the spherical maximal function, and obtain a
sparse domination inequality analogous to the one for spherical maximal functions
with specific dilation sets in [3l[93]. Let o be the surface measure on the unit sphere
{z:|z| =1} in R? for d > 2 and pu = yo with a choice of smooth x such that

/du:O.

For every t € [1,2] we consider, for fixed ¢ € [1, 2], the prototypical singular Radon
transform as in the previous section

Ny
(7.41) SN =N gk f Sif= lim SN
; Nz —oc0,
Jj=N1 Ni——o0

and then form, for F C [1, 2], the maximal function
(7.42) Spf(x) = sup[S.f(x)|.
teE

For 0 < 3 < a < 1 define R(B,a) C [0,1]? as the union of the interior of the
convex hull of the points

Ql = (0,0), Q2,,3 = (%7 %)a

_ (_d=p 1 _ (_d(d=1) d—1
Qs = (7555 7571)  @ie = (Frzast & oa—T)

with the open segment connecting ¢ and Q2 g.

Q=

Q2,8

) Q3.
Q4,o¢

@1

S|

FIGURE 7.2. The region R(8,a) with 8 =0.75, « = 0.9, d = 3.
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For E C [1,2] denote by dimy E the upper Minkowski dimension of E and by
dimga E the quasi-Assouad dimension of E (see [93)] for definitions and background,
and for a discussion of classes of sets E for which the single-scaled L? — L7 results
described above are sharp).

PROPOSITION 7.14. Let d > 2, E C [1,2] and (1/p,1/q) € R(B, o) with § =
dimy B, a = dimga E. Then there is the (p,q')-sparse domination inequality

(Sef.w)| < OA) g (f.w).

The two-dimensional version of our operator models a maximal operator as-
sociated to a family of Hilbert transforms on curves considered in [49,[50] where
nonisotropic dilations are used (see also the previous papers [48,[86] for related
problems). In this nonisotropic case one could also consider more general situa-
tions, i.e. when E is not a subset of [1,2] (see also the prior work [86] on maximal
functions) but this involves multi-parameter structures for which sparse domination
result are difficult and in some cases are proved to not hold [7].

Proor or ProrosITION [14l Using the density Lemma [A.] we may assume
that f € C2°. It is then easy to see that for any bounded set U € R"™ we have
toiy * f(x) = 0 for all x € U, t € [1,2] and sufficiently large j. Moreover using
the cancellation of y and the smoothness of f we see that jug;, * f(x) = O(27) as
j — —oo. Thus we see that for f € C2° the function S, f is well defined and

lim  sup [S,f— 8™ f| =0,

Ny—o0, 1.2
Nlﬁ)foote[ ’ ]

where the limit is uniform on compact sets. It is therefore sufficient to prove a
sparse bound for the maximal function sup,cp |SNNz £ which is uniform in N,
N5. In what follows we will drop the superscript in StN 12 byt assume that we still
working with a truncated sum depending on Ny, Ns.

To verify conditions (L8], () in Corollary [L2 we first note that for (£, 1) €

r’q
R(B, «) there is e(p, g) > 0 such that for A > 2

(7.43) l fgIE) e * leq N )‘_qu)nf”pa f € Eann(N).

This is coupled with an elementary LP — L7 estimate with constant O(1) estimate
for functions with frequency support near the origin to yield (I9a)) via Lemma 3.6}
this also settles (.9al) by translation invariance. For inequality (C43]) we may refer
to [93] Cor. 2.2].

It remains to verify ([7al) and (L.7D) which follow by verifying the L? bound-
edness of Sg for (%, %) on the open interval (Q1Q2,3). To accomplish this we make
a further decomposition on the frequency side. Let 7, be as in (39]), (BI0), and set
Nej = 2799e(277+), so that 7o ; is supported where |¢| < 277 and 7 ; is supported
where |¢| & 2¢77. Setting

N3
Stf(@) = sup| D o w ey + f(2)],
teb | T

it then suffices to show

(7.44) 18511y <p 271 £1l,
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with d(p) > 0 for (%, %) € (Q1Q2,3). The estimate for £ = 0 reduces to standard
singular integral theory; this uses the cancellation of . Thus from now on we
assume ¢ > 0.

We shall first discuss the case when either d > 3 or d = 2, < 1 where we use

arguments as in [L0T]. Because of |fi(¢)| < min{|¢], |€]~ (4172} we get

N3
Sup ’ D (75 (€)| S 27D,
geRd ' N,

which implies an L? boundedness result for the operators Sf with constant
0(272((171)/2)’

uniformly in ¢ € [1, 2].
We also have the LP boundedness result

N2
| 3 e o] Sl 1<p<
j=N1

which is a consequence of results on isotropic singular Radon transforms as, say, in
[39]. By interpolation we get for all € > 0

N3
d—1 _pd—1
|3 bawmes o 1] S Cop2 01 min@ 5 25 . 1<p<oa
j=N1 P
The same estimate with 119;,%1,,; replaced by 27¢2794[L /i, 5n,](277+) also holds. We

cover the set E with O(2¢(5+9)) intervals of length 2~ and argue as in [T01], p.119]
to obtain

B . _pd=l __pd=1
185 £llp Se 2°F = min(2745, 2755 )| £,
This gives ([44), provided that d >3 or d =2, § < 1.

For the case d = 2, 8 = 1, we need to show LP boundedness for p > 2. By a
Sobolev embedding argument this follows from the inequality

(7.45)

2. Na 2 No
P 1/p B 0 P 1/p
(L3 meenm e sffa) ™ 2 ([ 57 3 v ] )
1 = P 1 1ot & p
Jj=N1 Jj=N1

S 27t g,

where a(p) > 0 for 2 < p < co. By Littlewood—Paley theory we see that the bound
for the first term in (Z45) reduces to

2 No
(7.46) (/1 H( Z |thois * Mo *fj|2)1/2
J=N1

for 2 < p < co. (C40) is established by a local smoothing argument as in [49] (see
in particular an isotropic version of Corollary 3.6 of that paper). We thus have
established the bound for the first term in (C45]), and the argument for the second
term is analogous. Finally from (7.45]) we obtain (Z.44)) by another application of
Littlewood—Paley theory (applying the inequality to functions f; with ]/”; supported
where |¢] = 2¢77). O

p

1/ o ta 1/2
)" s (S i),
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7.5. On radial Fourier multipliers

We consider radial Fourier multipliers on R? with d > 2, of the form m(&) =
h(|€]) where h satisfies the condition sup,.q [|Bh(t)||z2 < oo for suitable a; here
L2 is the usual Sobolev space on the real line and 3 is any nontrivial C° function
with compact support in (0,00). By duality we only need to consider the range
p<2

The inequality

(7.47) ||h<|-|>|\Mp,qssuptd<%*%>||ﬁh<t->||@, a>d(1/q—1/2)

is known to hold for 1<p< 2(d+1)

d+3
for 2(dd:31) <p< d +1 and p<g< d 1 d—1,/ Indeed, as a straightforward consequence
of the Stein—Tomas restriction theorem and Littlewood—Paley theory one gets for
2(d+1)
473 4=
multipliers in MP-2; namely

p < g < 2 and one may conjecture that it holds

the endpoint p = 2, a = 0, a complete characterization of radial Fourier

2t
11 ds\1/2
I Dllssra ~sup =D ([ hPS) "
t
see e.g. [46]. The case p = ¢ = ;75 has been settled only in two dimensions in
[22][25], but remains open in three and higher dimensions. Note that as a special

case one has the Bochner-Riesz conjecture when h(s) = (1 — s?)}. For partial

LP — LP results in higher dimensions (via the connection [25] with Stein’s square

function) we refer to [27,69.[70,97], ¢f. §7.6.21
We formulate sparse bounds for the multipliers satisfying (47); in fact our

hypotheses will involve the single scale variant

(7.48) lg(l- Dllagra < C(@)lgllrz, o> d(1/q —1/2), supp(g) C [1/2,2].
Typically, the assumption ([Z48]) will be applied to g of the form Sh(t-).
Theorem leads to the following result.
PRrROPOSITION 7.15. Let 1 < p < q < 2 and let T}, be the convolution operator
with multiplier h(| - |). Then
(i) Assume (C48) holds for a specific exponent pair (p,q) with 1 < p <
p < ¢ <min{4 +1p 2}, and all o > d(1/q — 1/2). Then

(49 [Tlss, g < Cosup [BA(E) sz b>d(1/p=1/2).

d+1 ’

(ii) In particular, (T49) holds true for 1 < p < (d+1), p<gqg<2

PROOF. We need to verify the assumptions of Theorem This amounts
to veryfing the finiteness of the condition (6.2a). Setting g = Sh(t-) and fixing
b > d(1/p — 1/2) this follows from proving that for £ > 1 we have

(7.50) lg( - 1) * Wellara S 27575 =O)g

for some ¢(b) > 0.

Let v be supported in {s € R : |s| < 1/2} such that [vo(s)ds = 1. For n > 1
let v,(s) = vo(2"s) — vo(2"1s), and define g,(s) = g * v,(s). By assumption
(C48), we have ||gn(] - [)llarra S llgnllzz for any a > d(1/q —1/2) and hence also

(7.51) gl 1) * Cellarea S llgn(l - Dllarea S lgnllzz S 27" lgllzz-
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For our fixed choice of b > d(1/p—1/2), we choose by < b such that d(1/p—1/2) <
by < b, so that (ZEI]) holds for the choice o = by — d(1/p —1/q) > d(1/q — 1/2).
We let € = (b—by)(2d)~! and use (Z51) for n > £(1 +¢€)~t. Since

b_bl_Ed(%_%) b—by
= < = b 0
1+e¢ ~ 1+4e¢ e(b) >

d(l -

p

) +b—b 1
1+4+e€ p

| =
~—

we get

d

__t i__ _y(d_4d
37 gall- ) # Uellagma S 27 FRGTEH0) g, < o GO g

/4
n>

For n < £/(1+ €) we observe that any derivative of order k of g, (|-|) is O(2*"(|g||1)
and an N-fold integration by parts gives |F~[g,(|-])](z)] < Cn2"=ON for x| ~ 2¢,
for all N € N. We use this with N := 10d¥. By Young’s inequality

Z IF gn(l- 1) * Uel|armn S Cne24=4G=30 2 MEEN) < ()28

(G ey 1+51

and (ZR0) is verified. O

As an example in the above class of multiplier transformations we consider a
multi-scale version of Bochner—Riesz operators. The Bochner—Riesz means of the
Fourier integral are defined by

(7.52) SM € = (1— /)2 Fle)

and are conjectured to be bounded from LP — L9 if A\ > d(1/q¢ —1/2) — 1/2 and
1 <p < g < min{ g_&p’ 2}, with operator norm O(t*(1/P=1/9)), One may reduce
to t = 1 by scaling, and if hy(s) = (1 — s*)} then hy € L2 for A > v+ 1/2.
Therefore, Proposition immediate leads to sparse bounds for operators such
as Z;’;foo :I:(Sg‘k — Sg‘kﬂ), with uniform bounds in the choice of the sequence of
signs. After a standard averaging argument using Rademacher functions this im-
plies sparse bounds for lacunary square functions; indeed the vector-valued version

of Theorem leads to sparse domination for the lacunary square-function

(15 - shnrP)”

keZ

and consequently to sparse bounds for lacunary Bochner—Riesz maximal functions
My f = supyez | Sy f|. These results can be viewed as a natural multi-scale gener-
alization of the sparse domination results for Bochner—Riesz means in [16/68]. In
this context, we remark that there are sharper endpoint sparse domination result
for Bochner—Riesz means [61] which yield back some of the known weak type (p, p)
endpoint bounds for

A=d(1/p—1/2) —1/2.

However, currently there are no satisfactory sparse bound for analogous endpoint
situations which involve multiple frequency scales. We hope to return to this ques-
tion in the future.
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7.6. Stein’s square function

In [102] Stein introduced the square function defined via Bochner—Riesz means

by,
G f(x) = (/OOO (2SI, )"

—eo [ 1820 - P )

in order to establish pointwise convergence and strong summability results. Another
important connection was established in [25], namely that an LP-boundedness result
for G* implies that the condition sup,q [|8h(t)|[zz < oo is sufficient for A(| - |) €
M,. Moreover, G“ also controls maximal operators associated to radial Fourier
multipliers [23].

The expression G f(x) is almost everywhere equivalent to many alternative
square functions, which can be obtained via versions of Plancherel’s theorem with
respect to the t-variable; see the paper by Kaneko and Sunouchi [60]. We dis-
tinguish the cases 1 < p < 2, in which by a result of Sunouchi [109] we have L?P
boundedness for a > d(1/p—1/2)+1/2, and the more subtle case 2 < p < 0o, where
LP(R?) boundedness for d > 2 is conjectured for p > 2% and « > d(1/2 — 1/p),
and known if d = 2 [22]. LP boundedness in the latter problem is closely related to
the multiplier problem discussed in §7.5} see [271[69.[70197] for partial results and
[711[72] for certain endpoint and weighted bounds.

We recall some basic decompositions of the Bochner-Riesz means. One splits

Q=T = A= gP)g =D 27 D, (),

n>0
where u(0) = 0, the u,, are smooth, and for n > 1 we have
supp(u,) C (1 —27"H 1 -277 1)
and | £ u,,(s)| < C;2™ for j € No. Let Ky, = F [un (| -|)], Kns = s*K,(s-) and

Gut@) = ([ 1K 1P 2) "

so that

2) S 27eNG, f ().
n=0

We shall rely on the standard pointwise estimates obtained by stationary phase
calculations,

(7.53) K (@) Sn (142~ (14 27"a]) Y

7.6.1. The case 1 < p < 2. A pointwise sparse domination result for o >
(d+1)/2 was proved by Carro and Domingo-Salazar [26]. For 1/2 < a < (d+1)/2
we have LP boundedness (p < 2) only in the restricted range 2@_3% <p <2
by Sunouchi’s result, which is sharp. Thus in this range we are seeking sparse
domination results for the forms (G f1, f2). Theorem yields the following.
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7.6. STEIN’S SQUARE FUNCTION 79

PROPOSITION 7.16. Let d > 2, £ < a < %L Then for
have the (p, p)-sparse domination inequality

(G W) < OAp(frw).

PROOF. The operators G,, are defined through smooth kernels and therefore
the result in [26] yields pointwise sparse bounds, with norms depending on n. This
settles the case of small values of n. For large values of n, given € > 0 we have to
show

2a+2d T <p<2we

(7.54) (G fow)] S 276737579 A (f,w)

since in the assumed range of p we have o — 1 > d/p — d/2 — 1/2 and therefore we
can sum in n to obtain the result for G*. Let H be the Hilbert space L?(R™, %)
By the linearization argument in Section B3] the inequality (T54) follows, for a
scalar function f; and an H-valued function fo = {f2 s}, from

d_d_1
}//Kns*fl ) fo,s(w)— d$‘< (=5 =5+ AJ ey ae- (f1s f2).
By Theorem this follows from

(7.55) sup [|[8(] - e (t] - D] # Be| e 25750 < 208349
t>0 C,3*

for some €; > 0. To verify (ZEE) we argue by interpolation and reduce to the cases
p=2and p =1. It will be helpful to observe that for 1/8 < t/s < 8 we can replace
the kernel K, on the left hand side of the inequality in (Z53) by F 1 [B(]-|)un(]-])].
Thus

@56) ([ 177100 Dualtl- N@PL) " S (14 Ja) = @ 27~

Here we used that given ¢ the integrand is zero unless s € [t/2,2t]. Hence for any
€2 > 0 (which we choose < min{e, €1}) we get

(7.57) sup [[8(] - [un (t] - )] # Ve[| o S 27 i L> (14 e).
> =

If p = 2 we have also have, for £ < n(1+ e2),
~ 1/2
(7.58) (|18 Dun(tl- D] el 2 2 S 2 sup ([ 1B(I€Dun(Llg) 2L
C,¢* ¢
< 2&12—n/2 < 2%61(1-’1‘62)2—%/2.
Furthermore, for p =1 and ¢ < n(1 4 €;) we use (T56) to see that

(7.59) H[g(| un (] - )] * \Ife|| 2£(d+el)

S 2Z(d+61) —n(d+1)/2 S 21’L(1+€2)(d+61)—n(d+1)/2 S 2n(d—1)/2+5'

Combining (Z58), (C59) with (C57) we obtain the cases of (53] for p = 1 and

p =2 and ([Z55) in the full range 1 < p < 2 follows by interpolation. O
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7.6.2. The case 2 < p < co. The reduction to sparse bounds will be similar
as in the case p < 2, but the input information is more subtle. Instead of the
pointwise bounds ((C53]) we now use that

® 245"/ n(¢—24-1)
(7.60) ([ 1nsws22) 7 s 2840050,

for2 <r<p, p> %, which was proved using the Stein—Tomas restriction

theorem [271[711/97]. We then obtain a satisfactory result for o > #‘ll.

PROPOSITION 7.17. Let d > 2, ﬁ <a< g, Then for df‘éa < p < oo we have

the (2,p)-sparse domination inequality
(G f,w)| < CAZ ,(f,w).
PrOOF. Note that in the given p-range, p > % when o > diﬂ. We use
the notation in the proof of the preceding proposition. By linearization (see the
argument in Section [4.3)) it suffices to prove

d

ds 4 _d_ .
[ [ Ko @) o) Tta] 50 28 G (5 1)
and by Theorem [6.1] this follows, given ¢ > 0, from
(@61) [[IBA1 - un (el D] # e o, 2 T5H) < oGRS
C,H*

for some €; > 0, uniformly in ¢t > 0. For £ < n(1+ €3) the left hand side is bounded
by a constant times

(7.62) 2GS D [8(1 - Dua(t] - )
Using ([Z.60) for r = 2 we get
S A ds ) —n
[(f 17180 Duattl - DARE) | s 27051
¢/8 P
and thus the expression in ([Z52) is O(2"+e2)(E=5+<)=") Finally, we choose

€1,€3 < ¢ and combine this with the error estimates (Z57]). This completes the
verification of (T.61]). O

M2P

C,H*
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APPENDIX A

Facts about sparse domination

For completeness, we collect a number of auxiliary results, some of them well-
known, about sparse domination.

A.1. Replacing simple functions

It is often convenient to replace the spaces Sg, and Sp; in the definition of the
Spw (p1, B1, p2, B3) norms by other suitable test function classes such as the spaces
of compactly supported C'*° functions or Schwartz functions. This is justified by
the following Lemma.

LEMMA A.1. Suppose 1 < p1 < ph and py < p < py and let T € Sp. (p1,p2)-

Let V1 be a dense subspace of L%l and Vo be a dense subspace of Lg;. Then

(T'f1, f2)l
(A1) ||T|s Br.pa. B3 :sup{ *
Py (P1,B1.p2, B3) p1,B1,p2,B5 (fl’ f2)

FREVi, fi £ 0= 1,2}

Proor. We first assume that V; = L%l and Vy = L’;;. In what follows we
omit the reference to By, B;. The right-hand side of (A.I) dominates [|T'lsp_(p, )
defined in (H). In order to verify the reverse inequality we have to show that given
€ >0 and given f1 € LP, f5 € L*" we have the inequality

(A.2) KT frs f2)| < (1T sp, (p1,p2) + €) Ay po (J15 S2)-

This is clear if one of the f; is zero almost everywhere. We may thus assume
that || fill, > O, ||f2]l, > 0. For any €1 > 0 choose g1 € Sp,, g2 € Sp; so that

v = a1l < €1, [[fo = g2llpr < €1, and also [|gifl, < 2[|fillp 5 lg2llp < 2[[f2]lp and

estimate, using the definition of [|T[sp_(p,,ps)>

(T fr, )l < KT[fr = gl )|+ KT fa, f2 = g2)| + [(T'g1, 92)|
< T lp—p (1 f1 = grllpll follpr + [ 2llpll f2 = g2llp)
+ ”T”Spv(m,pz)A;l,pg (91,92)
ST lp—p (el follp + I fillper) + 1T Nsp, prpa) Mgy s (91 92)-
Moreover, for p; < p < ph, one has using (ii) in Lemma A.2. that
Ay o, (915,92) S A (91— f1,92) + Ay, L, (f1.92 — fa) + A, L, (f1, f2)
< Ci(p,pr,2) (191 — fillpllgzlly + [ f11lpllg2 = f2llp)
+ Ay, b, (f1, f2)
< Ci(p, p1,p2) 2l fallprer + [ f1llper) + Ay, p, (f1 f2)

and thus
|<Tf1’ f2>| < ||T||Sp,y(p1,p2) A;;l,pg (f17 f2) + 87

81
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82 A. FACTS ABOUT SPARSE DOMINATION

with & < C(f1, f2,p,p1,p2, T)e1. Choosing a suitable €; depending on € we obtain
the assertion (A22), for the case V; = LP, Vo = LP.
In the general case we replace the couple of pairs (Sg,,Sp;) and (L?, L”l) by

the couple of pairs (V1,Vs) and (LP,LP/) and see that a repetition of the above
arguments settles this case as well. (Il

A.2. The Hardy-Littlewood maximal function

It is a well-known fact that the Hardy—Littlewood maximal operator, denoted
by M, satisfies a sparse domination inequality. We have not been able to identify
the original reference for this fact and refer to Lerner’s expository lecture [74]
instead. This constitutes a first nontrivial example for sparse domination and we
include a standard proof for completeness.

LEMMA A.2. Let f € L} (RY). Then there exist y-sparse families &;(f),
i=1,...,3% such that

Sd
Mf@) <27 1=9">0 >0 (foalel).

=1 Qe&;(f)

PROOF. Let ® be a dyadic lattice and let M® denote the dyadic maximal
function associated to D, that is, M® f(x) := sup sz <f)Q Let
QeD

(A.3) a=241—-~)"1
For each k € Z, define the sets
Q= {z e RY: M® f(z) > "}

Let Q(k) = {ch}J be the collection of maximal dyadic cubes with the property
(flg> a®. If par(Q) denotes the parent cube of @ then <f>par(Q£) < a* and hence
we have

(A.4) a® < (Fgi < ak2?

for all j. Observe that ch C Q and Qi C UjQi. Moreover, the cubes in Q(k) are
disjoint, and hence €2, is the disjoint union of the cubes in Q(k). _
Define the sets Ej := Q7 \Qx+1, and note that the family of sets {E}}x ; is

pairwise disjoint and |E,jc| > (1-— %)|Qf€|, for the last claim, note that
QL N Q| = Z Q)N Qi1
i
= Z |Q§c+l|
i:Q?H—lCQi

1
< Z W/QL |f|

i:Q},,CQ] 1

1
SW/Qjﬂ

k

2¢ .

IN
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A.3. OPERATORS ASSOCIATED WITH DILATES OF SCHWARTZ FUNCTIONS 83

using the disjointness Qf the cubes Qi and (A) for Q}%_H and Qi By our choice
(A3) we see that |E]| > ~|Q7| and thus &(f) := {Q7.}x,; is a y-sparse family.
Moreover,

ZMQ ]le\Qk+1( )

kEZ

<Y ¥ d ()

kEZ Qk

by (A4). Finally, the result for the maximal function M follows from the 39-
trick (see [79, Remark 3.2]), which ensures that there exist 3¢ dyadic lattices D;,
i=1,...,3%such that

3
) < ZMDif(;v). 0

REMARK. If f has values in a Banach space B, the same argument applies to
f = M(|f|B)- However, there are more interesting vector-valued extensions such as
in the Fefferman—Stein theorem [42], and corresponding general sparse domination
results with additional hypotheses on the Banach space are discussed in a paper by
Hénninen and Lorist [52].

A.3. Operators associated with dilates of Schwartz functions

It is convenient in many applications to observe that maximal functions and
variation operators generated by convolution operators with Schwarz functions sat-
isfy sparse bounds. We choose to deduce the variational statements as a conse-
quence of our Theorems in Chapter [l but it could also be based e.g. on [37]. For
the definition of the dyadic and short variation operators we refer to Remark [.3}
here V} is understood with E = (0, 00).

LEMMA A.3. Let K € C*(R%) be a convolution kernel satisfying, for all multi-
indices a € N3 with Y, |a;| < 2,

0K ()] < (1+ |z)~*

Let Ki(z) =t 4K (t7x) and let K;f = K; * f(x). Then for 1 <p < q< o0

[(sup [Kefl, w)| S Ap o ()

>0
|(Viyad K S w)| S A o (frw), 2 <7 < oo,
VK f,w) S A, (fiw), 2 <7 < oo
PROOF. Since sup, |K; * f| is pointwise dominated by the Hardy-Littlewood

maximal function the sparse bound for (sup,.  |K;f],w) can be directly deduced
from the sparse bound for the Hardy-Littlewood maximal function M in §A2l

For the variation norm inequalities we decompose K = >°°° (K™ where K"
denotes convolution with K™ := KV, (here ¥, is supported where |z| & 2™ when
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84 A. FACTS ABOUT SPARSE DOMINATION

n > 0, see (6.0))). We can form the long and short variation operators with respect
to the family of operators {K}'};~o where K} denotes convolution with K}* :=
t=4K™(t~1.). Using the pointwise bound on VK and results in [58] or [59] we have

HVdTyad]Cnf“P SP 2_n||f||11ﬂ 1 < p S OO, r> 2;
VK" fllp Sp 27" fllpy 1 <p<oo, 7>2.

The kernel K[ is supported in {z : |z| < 277!t} and from our assumptions it is
easy to see that the rescaled estimate

Vit o (2K 27) % [, S 27"l 1<p<g<oo, 1<r <00,
holds. Moreover, using the bound for VK and V2K we also get
Vi (274K (27) % An Y|, < 2" D 7| £

for1 <p<g<oo, 1<r < oo Applications of Theorem and Theorem [B.1]
(for ¢"-sums and with the choice of By a subspace of V|1 o of large finite dimension)
together with the monotone convergence theorem yield

(ViaaK" fw)| S 277A% L (frw), 7> 2,
(VEK™ fw)| S 270D L (fw), r> 2.

The proof is completed by summation in n. ([l
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APPENDIX B

Sparse domination: Cases where p =1 or ¢ = o0

Here we describe analogues of our main result Theorem [T which cover cases
where p = 1 or ¢ = o0; we refer to Remark (iv) following the statement of Theorem
[Tl for an explanation of why these cases need to be treated separately. We formu-
late three different results, one for p = 1, ¢ < oo, one for ¢ = 0o, p > 1, and one for
p =1, ¢ = co. This allows us to recover the classical case of Calderéon—Zygmund
operators, although we do not claim universality of sparse-domination results here:
for example, we do not recover the sparse domination for Carleson-type operators
from [8][9L38], neither the works for p = 1 by Conde-Alonso, Culiuc, Di Plinio and
Ou [29] and by Lerner [78] which also treat results on rough singular integrals,
nor the works for ¢ = oo which can often be upgraded to stronger pointwise sparse
domination results of the type (LI (see in particular [77], [80], [85]).

We will sketch the proofs of our results, indicating only what modifications need
to be made compared to the proof of Theorem [[LTI Theorems [B.1] and [B.3]
below have applications to maximal operators, square functions and long variation
operators (as formulated in Chapter [l similar to those of Theorem [[Il We leave
the details to the interested reader.

B.1. The case p=1,¢ < o©

If p = 1, one can drop the condition of weak type (1, 1). Our variant of Theorem
[Tl is then as follows.

THEOREM B.1. Let 1 < ¢ < oo. Let {Tj}jez be a family of operators in
Opg, B, such that

o the support condition (L6l holds,
o the restricted strong type (q,q) condition (LTH) holds,
o the single scale (1,q) condition ([L8)) holds,
o the single scale e-reqularity conditions ([.9a), (I.9B) hold with p = 1.
Define
B
C = A(q) + Ao(l, q) log (2 + m)

Then, for all integers Ny, No with Ny < Na,
Ny

H > T
Jj=N1

ProOOF. We argue as in the proof of Theorem [[LI| with the decomposition
(AI3) and the bound [@I4). The terms ([@I5al), (£.I5D) are handled exactly as in
the proof of Theorem [[J] Consider the splitting of IIT as in ([£I9). The terms
(@19d) and ([419d) are estimated as in the proof of Theorem [l We are thus only

< C
q,€,7,d &+
Sp,(1,B1,q',B3)

85

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



86 B. SPARSE DOMINATION: CASES WHERE p=1 OR q =

left with estimating the term

L+ 1= Y > (Tihiw,g)-

N1<j<N2 WeWw
L(W)<j

The argument in the proof of Theorem [[.1] does no longer work; recall that for
p > 1 these terms were bounded immediately via the weak type (p,p) condition

(L7a) and the duality of L’g;ff and L%lél. Instead, here we will bound I11; + I11,

using (L8) and the regularity condition ([L9al), close in spirit to the bounds of the
terms IV and IV; (defined in (@28)) in the proof of Theorem 1]
We let 0 < &’ < min{1/¢’,e} and £ > 0 be as in [@24)), that is,

B
As(1,q)

Let R, be the collection of dyadic subcubes of Qg of side length 27. We tile Qo into
such cubes and write

) < 2@4—1.

ITL + 11T =Y 111,
S

(B.1) I, = Z Z( Z Tibyw, g2l3R)-

N1<j<N2 RER; WCR
L(W)=j—s

We first note
_i _1
(B'2a) ||TJHL}91 —>L%2 S Ao(laq)Z dd@ q)’

—id(1—1) s
(B.2b) I3 (L= By, g, Se B2/ 0275,

where (B2a]) follows from the single scale (1,¢q) condition (L) and (B.2h)) follows
from the single scale e-regularity condition (I.9al) and Corollary

For L(W) = j —s, we have by,w = (I —E,_;) fi,w. Let R € R,. By (B:2a) we
get

‘< Z ijl,Wa92113R>’

WCR
L(W)=j—s

SHTJ Z bl,WHL%ZHQQ]bRHLg;

WCR
L(W)=j—s

j— _l !’
AR bl IR o)y,

WCR
LW)=j—s

(B.3a) SALa) D WK g (F2)sgea

WCR
L(W)=j—s
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and by (B.2D),
‘< Z ijl,Wa92]13R>‘

WCR
L(W)=j—s
<|ma-re 30 sl lostanly,
WCR Ly, B3
L(W)=j—s
o _(1—1 !
Se B2 R0 Y ||fl,W||L}31|R|1/q {f2)300.0
WCR
L(W)=j—s
(B.3h) SB2E Y W) g (f2)s0.q
WCR
L(W)=j—s

Note that in obtaining the above bounds we have used ({9al) and (@I0).

In the above definition (B]) for 111, we write j = sn+i withi=1,...,s so
that

|IT1,| S min{Ao(1,q), B2~}
S

> > > Wi folags

i=1 nezZ RERsnti C
sn+i€[N1,Ns] L(W)=sn+i—s

Now interchange the order of summation; here consider for fixed W € W the set
of all triples (R,n,4) such that L(W) = s(n — 1) + 4, R € Ry and W C 3R,
and observe that the cardinality of this set is 1. Combining this with the above
estimates and summing over the disjoint cubes W € W we obtain the bound

[IITy + ITD| Same (1) (f2)sne D WD min{A.(1,q), B2~}
Wwew s=1

B
< Ao(1,q)log (2 + m)|QO|<f1>Q0,1<f2>3Qg,q/’
as desired. O

In the spirit of Chapter 2] it is possible to deduce that the sparse bound in
Theorem [BJ] implies that the multi-scale sums Zj\g ~, Tj are of weak-type (1,1).
The proof of this fact is slightly different than the one given in Chapter 2lfor p > 1,
as it cannot rely on the duality between LP> and LP”'!. We refer to the reader to
[29] Appendix B] for details.

B.2. The case p>1, g =00

If ¢ = oo one can drop the restricted strong type (q,q) condition (LZhH). Our
variant of Theorem [Tl is then as follows.

THEOREM B.2. Let 1 < p < oo. Let {T;};ez be a family of operators in
Opg, . B, such that
o the support condition (L8l holds,
o the weak type (p,p) condition (LTa) holds,
o the single scale (p,0) condition (L) holds,
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88 B. SPARSE DOMINATION: CASES WHERE p=1 OR q =

o the single scale e-reqularity conditions (L9al), (LAL) hold with q = oo
Define
C = A(p) + As(p,00) log (2 + 52=5)-
Then, for all integers Ny, No with N3 < No,

Ny
| X7
Jj=N1

Npa Ysd C

Sp., (p,B1,1,B3)

PRrROOF. Again we argue as in the proof of Theorem [[.Jland describe the main
induction step. Using the previous notations we now decompose
(B.4) (Sfi, foy =T+1I+ I+ 1V

where

I= > (Swh, fo)

wew
1= ((S — Z Sw)f1,92)
wew
= ((S— > Sw)gba)
wew
=((S= ) Sw)by,b).
wew

Note that the numbering here is slightly different from the one in the proof of
Theorem [[LTJ1 We deal with the term I using the induction hypothesis as in the
proof of Theorem [[.T] and, using the argument therein, it suffices to show that the
terms II, III and IV are bounded by ¢C|Qol{f1)g, ,(f2)30,.1-

We first consider II = II; — II; where

I = (Sfi,g2), =Y (Swfi,g2)-
w
Here we use the weak type (p,p) assumption (L7a) for p > 1 and [@II) for ro =
p’ < oo to get

(Sf1,92) < |Sfillpees

B**

(P)||f1“p<f2>3Qoy1|Q0‘1 1/p
A)IQol( 1), 00 (203001

192130l »

and

> Swhig) <D ISwlfilwllpes

B
wew w

SAp) Y ||f1]lW||p<f2>3Q01|W|l He
wew

p) Y W) goplf2) a0

wew
and hence, by the disjointness of the cubes W € W,

(B.5) I < 1L | + | S A(P)|Qol(f1),.q, (f2)300.1-

|92||

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



B.2. THE CASE p > 1, g = o 89

The last term IV corresponds exactly to the sum I1Is5 + 111, in the proof of
Theorem [[T] defined in (#I9d), (#I9d), and it is therefore treated in the same
way; here the weak type and restricted strong type assumptions are not used. In
particular, we obtain

B
(B.6) V| < Ao(p, 00) log (2 + m)|@0|<f1>pgo (f2)300.1-

It remains to bound the term III. By the definition of g; and Sy we have

L(W)
S Swar= > Y Tilavw[fillw] = Z > Tilavw [fillw]
Wew WeW j=N, i=Ni Wew

JSL(W)
and thus we may split III = III; + III; where
I, = <5[91]190] ba)

I, = Z > (Tilavw [fi]Tw].ba) -

j=N1 Wew
L(W)<j

Let R, be the collection of dyadic subcubes of @ of side length 27. We tile @ into
such cubes and write

Il = Z > (Tilgloongl,ba) = Z > (Tilgiloenrl, >, bawlsg).
j=N; RER; j=N1 RER; W’'ew

Next, note that in order to have (T[g11gen gl D 1 eyy b2,w 13r) # 0 we must have
that Q° N R # 0 and W/ N3R # 0. As W’ € W, the above implies

5diam (W) < dist(W’, Q%) < 3diam(R)
and therefore L(W') < j. Thus,

(B.7) 1111_2 S (Tilglgongl, Y. bawlsg).

j=N1 RER; w'ew
L(W")<j

We next decompose IIly = III5 ; 4 Il 2, where

N2
(B.8a) My =Y ([ > avwlAllw], > baw)
j=N Wew W’ew
L(W)<j L(W")>j
(B.8b) Iy, == Z S (Tilavw[Allw], D bawr)
Jj=N1 WEW‘ W’'ew
L(W)<j L(W')<j

The term IIl;; can be treated as in the estimation of the term II/3 in the
proof of Theorem [[.T] defined in (@.19d), as cancellation does not play a role in this
argument. The geometry expressed in ([@20) is crucial, i.e. we have likewise

(Tilavw filw], bawr) # 0 ‘ , ‘
(B.9) LOW) < § < L(W) = J<LW)<LW)+2<j+2
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90 B. SPARSE DOMINATION: CASES WHERE p =1 OR ¢ = oo
This implies

My < > Z > (Tilavw [f1]1w], bo,w) |
N1 <j<N» Wew:
J<L(W )<J+2 L(W')—2<L(W)<j
Wc3w'
< As(pooo) Y 270 > lavw [fillw Ly, 1bowllzy,
N1<j<N» W,W eW: Wcaw' 2
JSL(W')<j+2
L(W")—2<L(W)<j

S Ao (p,00)(f1) gy p (23001

% Z Z 2—jd/p‘W|1/p|W/‘

Ni<j<N2  W,W': WC3W'
JSLW)<j+2
L(W')—2<L(W)<j

S Aop,00) (1) gy p(f2)3000 D WS As(p,20)|Qol(f1) 0y »(F2) 300 1

w’'ew

The terms III; and Il » can be treated in a similar way as in the estimation
of the terms IV, IV (defined in (Z20))) in the proof of Theorem [Tl Let 0 < &’ <
min{1/p,e} and £ > 0 be as in (£24). Then we split

I = I1F + 1™, Iy, = IIIY, + 11157

where
0
T = Z Z Z il ool Z bo,w13R)
j=N1 RER; s=1 (
L :j s
N2 o0
5" = Z Z Z (911gonp, T} | Z bo,w13r])
j=N1 RER; s=(+1 L(%:)ew
—j—s
and

N2 ¢
Ileg,z: Z Z Z( Z Tilavw [fillw], Z bo,w13R),

j=Ni RER; s=1 WCR W’'ew

L(W)<j L(W")=j—
N2 (o)
155 = Z Z Z( Z avw [f1]Lw, T; Z bo,w13R)).
J=Ni RER; s=(+1 WCR Wew
Lwy<i LW')=j—s

Observe that the terms ITIT™, 1115 involve very small cubes W’ for which the can-

cellation of by 1 can be most effectively used. The terms IIIllg , 11112%2 involve larger
cubes; for these terms it is more effective to use the single scale (p,q) conditions
(3.

We note that the terms ITI{# and HIlf2 behave very similarly, and also the terms
HIT™ and I115%
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Indeed, if hpg, ER denote either of the first functions on the bilinear form,

hr(@) = g(@)lgeng,  hr(@)= Y avwlfillw(e),

WCR
L(W)<j

then it follows from the definition of Of and the disjointness of the W € W that
hr, hr share the relevant property

Ihalzy, . allsy, < RY (g, 1<7 <00,

which we will use with r = p.
By the above considerations, the hypothesis (I.8) and ([4.9a]) we have

e = Z > ZThR, > bawilsg)

j=N1 RER; s=1 wW’'ew
L(W')=j—s2
¢ N,
S Y A o2 bl |30 b an|
s=1j=N; RER; W’'ew B3

L(W")=j—s

Ao(p,0)(f1) g, p Z >y ||52,W'||L}5§

j=N1 RER; W’'C3R
L(W")=j—

¢ No
S A0, 0) (M) pfsoen D D D W]

s=lj=N1 W'ew

LW )=j—
S CAs(p, 00)|Qol <f1>Q07p<f2>3Q071

Ma\

w
Il
—

and hence, by the definition of ¢,

T 5 A . 00) 0B(2 + I Qull ) )

Similarly we show (after replacing hr with hp in the above calculation)

M1, S Ao(p, 00) log(2 + )Qol{f1)q,p(f2)300.1-

Ao (p,0)

For the estimation of III}™, III3" we use the e-regularity property (L9B) and
Corollary to get

<_ B2 Id/pg—es,

(B.10) 175 = Bl oy S
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Moreover we use the formula by ' = (I — Es_;) fow, valid for L(W') = j — s.
Thus, via Holder’s inequality

i Z Z<hR’T;[ Z bo.w 13r])

j=N1 RG%J' s={+1 wW'ew
LW )=j—s
Z - nlog 1750 = Baly Y hwile|
j=N1 s=(+1 W'ew B3
L(W")=j—s
Ny s}
SY X X IR, B2 S et
j=N; RER; s=L+1 W'ew B3
LW )=j—s5
Nz o0
S22 BT R 2 X IRwly,
j=Ni s=0+1 Rij W/g3R
LW )=j—s
N2 (o]
S>> B flouflsau 2o > W
j=Ni s=0+1 ReER; W'C3R
LW )=j—
We sum in W’ and then use 2, | B —€'s < A, (p,00) to obtain
I S Ao (p, 00)|Qo|<f1>QO,p<f2>3Qo,1~
In exactly the same way (replacing hr by h Rr) we obtain
IHI55] S Ao(p, 00)[Qol(f1) gy p (f2) 30,1
This concludes the proof. ([l

B.3. The case p=1 and ¢ = o0

In this case we can get rid of both the weak (p,p) and restricted strong type
(¢,q) hypotheses, but we shall still assume either a weak-type estimate (r,r) or
restricted strong type (r,r) for some 1 < r < 0.

THEOREM B.3. Let {T}}jcz be a family of operators in Opp, g, such that
o the support condition (L8] holds,
o there exists v € (1,00) so that either the weak type (r,r) condition (L)
holds or the restricted strong type (r,r) condition (TR holds,
o the single scale (1,00) condition (L) holds,
o the single scale e-reqularity conditions (L9al), (LID) hold with p =1 and
g =00
Define
— B
C = A(T) + 140(17 OO) IOg (2 + m)
Then, for all integers Ny, No with N7 < Na,

|3

< C
re,y,d L
Sp.,(1,B1,1,B3) ~
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B.3. THE CASE p=1 AND ¢ = oo 93

SKETCH OF PROOF. We use the terminology in the proofs of Theorems [B.]
and An examination of the proofs reveals that it only remains to establish the
inequality

(B.11) (S = > Swgr g2)l S AMIQol(f1) gy (f2)ag0.1-

wew

either under the restricted strong type (r,7) assumption (L7h), or under the weak
type (r,r) assumption ([T7a)). Here we will strongly use ([@I0) for both ¢g; and gs.
We first verify (BI1) assuming (L7H). By Holder’s inequality,

[(S91,92)| < 1S9l Mlgall
B2

< AW lal 5 1Q0l" g2z,
S AM)Qol(f1) gy p(f2)300 .1
Moreover for each W e W

[(Swg1,92)] = [{(Swlgilw], g213w)|
< [1Sw g1 1w]|

o, lg2Lsw sy

S A gl Wit lg2Lsw s,
S A(T)|W|<f1>Q0,p<f2>3Q0,1’

and by summing over the disjoint cubes W € W we obtain
> [(Swar, g2)| S AM)Qol{f1) gy 0 (F2)300.1-
wew

Combining the two bounds yields (B:I1) (under the assumption (L.7h).
We now verify (BI1)) assuming (L7al). First, by Holder’s inequality for Lorentz
spaces,

[(Sg1,92)1 5 1Sgll > llgzl o
2

S AW)llgillzy, 1Qol " g2z,
S 1Qol{f1) gy p{f2)300,1-
Similarly, for all W € W,

[(Sw a1, 92)| S IWI(f1) g, p(f2)300.1
and then after summation

S [(Swar.02)] S 1Qol (1) gy pFo)sgn-

wew
This yields (BI1]) (under the assumption (L7al)). O
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APPENDIX C

Facts about fourier multipliers

For completeness, we provide proofs of the facts stated in the remark after the
definition of the B[m|. The proofs will be given for scalar multipliers but they carry
over to the setting with £(%Hj, Hs)-valued multipliers. We start with the following
simple observations.

LeEMMA C.1. Let ¥ € C°(R?) be supported in {x € R? : 1/2 < |z| < 2}. Let
® € CX(R?) be supported in {x € R : |x| < 2}. Let N > d and k be such that

sup (1 + |z[)¥|r(z)| < 1.
r€R4

Then the following hold.
(i) Let 1 < p < R/8. Then

H[ m*Rd R))] *P HMPq NRd NHm*Rd\I] .)HMP,Q'
(ii)) Let 1 <p< R/8. Then
[ = (o) * RG0S RO s 92801,

PROOF. Let K =F"1[m] and set ||K||cy(p,q) = ||K||Mp,q. The expression in (i)
is equal to

H@(pfl')/'f(y)K('—yVI’(R*l('_y))dy cv(pa)’

Observe that by the support properties of ®, ¥ the integral in y is extended over
R/2 —2p < |y| < 2R+ 2p, hence |y| € (R/4,4R). Thus the displayed quantity is
bounded by

/ RIEC = TR~ 9)lentpag dy
R/4<|y|<AR

< / k()| dy [fm * REG(R) | ago
R/4<|y|<4R

and the desired bound follows from the hypothesis on x. Part (ii) is proved in the
same way. O

LEMMA C.2. Let ¥,,, n >0, be as in Ch.6], 6.1l Let N > d and let x be such
that ||0g'x|[1 < A for all o € No such that |a| < N. Let h € LY (R?) be supported in

{¢€RT:1/2<|¢| <2}. Then
1(hx) * el ara S AD " Crva(n, O)||hx U [ agoea

n=0

95
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96 C. FACTS ABOUT FOURIER MULTIPLIERS

for any £ >0, where

1 ift—5<n<l+5,
(C.1) Cny(n,0) =< 27Nt 4jf0<n< (-5,
27nN1 - f 45 < n.

PRrOOF. We write (hy) * ¥y = S ol(h* U,.)x] * Uy. The result then follows
by noting that |F~1[x](z)| < (1 + |z|)~® and an application of Lemma O

C.1. Multiplication by smooth symbols

The above observations can be applied to show that the space defined by the
finiteness of B[m] in ([6.2a)) is invariant under multiplication with multipliers satisfy-
ing a standard symbol of order 0 assumption. There is of course also a corresponding
similar and immediate statement for B,[m)].

LEMMA C.3. Let a € C*(RY). Then
Blam] S B[m] Y sup [¢[1*|0%a(¢)],

o] <2d+1 EERY

where o € Ny. Consequently, if [0%a(€)] <o (14 |€))711 for all € € R? and all
a € N&, we have Blam] < B[m).

PROOF. Let ¢ € C=(R?) be supported in{¢€ R?:1/4 < |¢] < 4} and such
that ¢(&) =1 for 1/2 < |¢] < 2. Let a®(§) = ¢(€)a(t€). We may write

oo
~ ~

[pa(t-)m(t)] = U, = Z [([em(t)] * Wy, )a] * Wy

n=0
Observe 1 <o411 |0%at(€)] < 1, uniformly in ¢. By Lemmal[C2l with N; = 2d+1,

> (1 + 02 =YD [ga(t-ym(t)] = Ty aroa
=0

<SSO Ca(n (1 + 0248 =1D [ (t)] + By g

=0 n=0
< S @+ m)2r D (o (t)] 5 T 1100
n=0
where in the last line we used that

1+7¢
3 b, 0.0 .
n

C.2. Independence of ¢, ¥ in the finiteness of 5[m]

The previous argument in Lemma [C.3] can also be used to show that the space
defined by the finiteness of B[m], Bo.[m] is independent of the specific choices of
¢, ¥ in Section We only give the argument for B[m] and a similar reasoning
applies to Bo[m)].
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C.2. INDEPENDENCE OF ¢, ¥ IN THE FINITENESS OF B[m] 97

LEMMA C.4. Denote the left hand side of ([62a) by Blm, ¢, ¥]. Given two
choices of (¢, ) and (¢, V) with the specifications in the first paragraph of Sec-
tion [61], there is a constant C' = C(¢p, W) > 1 such that

C7'B[m, ¢, ¥] < Blm, ¢, ¥] < CB[m, ¢, V].
PROOF. We show the second inequality. Note that [ |q§(s§)\2% >c¢> 0 for
& # 0. Let 5% be defined by
— b 3_1
ﬁs(é‘) — oo¢( E_)ib(él —.
Jo 18los™1E)PZ

We then have, in view of the support conditions on ¢ and %,

4
- — d
3&) = [ B (st)p(se)=
1/4 o
and hence
B ~ 4 = d
@)+ Bl < [ (B0 ImE ) ], 2
1/4 s
4 g =
= [ S FoCmits ] s )y
1/4 5

S if 1B (B0 mlts )] % Ba)) 55~ (5™ |y 2
Nn—O 1/4 " Mvr-a s

By Lemma [C.2] this is dominated by

4 ~ s
Cvatm0) [ [60mits™ Bl T

where Cy_g4(n, ) is as in (CJ)). It is now easy to see that for N > 2d + 1

ZQEd(i*i)(l + f)”q;m(t) * \igHMpyq
>0
4
1 1 - d
S [ 3 Oatm 02D O Om s B, T
1/4

£>0 n>0

1

Ssup > 26D |[g( ()] U] e
T n=0

This establishes the inequality B[m, o, \Tl]~§ CB[m, p,¥] and the converse follows
by interchanging the roles of (¢, ¥) and (¢, ¥). O
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