IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS

SANGHYUK LEE KEITH M. ROGERS ANDREAS SEEGER

ABSTRACT. We prove a weighted norm inequality for the maximal Bochner-Riesz operator
and the associated square-function. This yields new LP(R?) bounds on classes of radial
Fourier multipliers for p > 2 4+ 4/d with d > 2, as well as space-time regularity results for
the wave and Schrédinger equations.

1. INTRODUCTION

Consider the Bochner-Riesz means of order « defined for Schwartz functions f € S(R?)

by
apim L €12 )
RS = o [ (1) Floye-9ag

where f = [y —v€)dy. In connection with questions regarding almost everywhere
summablhty, and in analogy to classical Littlewood-Paley functions for Poisson-integrals,
Stein [36] introduced a square function defined by

Gaf(x):</ ](%Raf )‘Qtdt>1/2.

One is interested in the inequality ||Gf|, < Hf||p, where A < B denotes A < C'B with

an unspecified constant independent of f. As t0,R{ f(g) = 2al¢? /3 (1 — |2/t 1f( §),

one can consider the LP problem as a question regarding the boundedness of a vector
valued singular integral operator involving Riesz means of order « — 1. It is known that
LP boundedness for 1 < p < 2 holds if and only if a > d(1/p — 1/2) + 1/2 (see [40], [21]),
however the problem is more interesting in the range p > 2 for which the condition o >
max{1/2,d(1/2—1/p)} is known to be necessary and conjectured to be also sufficient. For
d = 1 many proofs of the conjecture are known, for one of them see [41]. The conjecture

in two dimensions was proven by Carbery [3], and partial results for p > (d+1) ,d >3, are
n [8], [32]. Here we improve on the range in dimensions d > 3.

Theorem 1.1. Let d > 2 and p € | (dH) ,00). Then

a 1 1
HG fHPrSHfHPv Oé>d(§—]—?>

As in the related work by the first author [23] our main tool will be Tao’s bilinear
estimate [42] for the adjoint of the Fourier restriction operator. The square function result
implies the currently known sharp LP estimates for the maximal Bochner-Riesz operator
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obtained by Carbery [3] in two dimension and by the first author [23] in higher dimensions;
however, as pointed out in [23], somewhat weaker estimates are already enough to bound
the maximal function. More precisely, for a compact t-interval I C (0,00), the estimate
in [23] could be formulated as a variational LP(V4(I)) inequality for Riesz means of order
A > At :=d(1/2 —1/p) — 1/2, or a slightly better regularity result involving the Sobolev
space L‘ll/4+€(]).

The LP-estimate for the square function is significant for various reasons. Firstly, it
yields regularity results for wave and Schrodinger operators which will be discussed below.
Secondly, for compact I C (0,00) it implies LP(V5(I)) or LP(L? /2 (1)) results for Bochner-
Riesz means of order A > Agt. Thirdly, the LP-result for G® implies boundedness results
for maximal operators associated with more general classes of radial Fourier multipliers as
n [5], [13], and finally, an inequality by Carbery, Gasper and Trebels [6] relating radial
multipliers and G yields the following sharp LP — LP boundedness result of Hérmander-

Mikhlin type.

Corollary 1.2. Let d > 2 and p € (1, 2%:;2)] U [Z(ddﬁ),oo). Let ¢ be a nontrivial C™
function compactly supported in (0,00). Then
sip [ m( - DAY, S swpllom(t e, o >d|-— 2|
fes: | fllp<1 >0 p 2

Weighted norm inequalities. More information about G* can be obtained by consid-
ering an L? weighted norm inequality which involves a “universal” maximal operator U,
acting on the weights, and which is strong enough to imply the above LP estimates. The
operator U, is a maximal operator which is bounded on L" for ¢ < r < oo, and the LP
estimates for G in Theorem 1.1 can be deduced after an additional interpolation if we take
q < (p/2)'. An informal discussion of the definition of the weight operator is given below.

Theorem 1.3. Let d > 2 and q € (1, %) Then there is an operator U, which is bounded
on L" for q <r < oo, such that

(1> /]Rd ‘Gaf(af)‘zw(aj) dr < / |f(x)|2 %qw@:) dr, o> ;q
Moreover,

d—
(2) /Rd sup R (@) Pw(x) da 5/\f(x)y2mqw(x) dr, A> qu'

The weighted inequalities (1) and (2) are motivated by one of Stein’s problems in [38].
It was asked whether the operator defining the weight on the right hand side of (2) could
be chosen to be a Nikodym maximal operator (see also Cérdoba [9] for a related question).
This seems currently unknown. For the range g € (1, %], Christ [8] proved the weighted
inequality with the simple weight (M|w|9)Y/?, where M denotes the Hardy-Littlewood
maximal operator. In two dimensions, Carbery [4] proved a weighted inequality with an
operator Wy in place of U, such that W3 is bounded on L"(R?) for r € (2,4]. The extension
of that result with the weight operator bounded for r € (2, 0] was established by Carbery
and the third author [7].

We now give an informal description of the weight operator U, and refer to §2 for the
precise description of a closely related operator 20, (with a more technical definition) which
will be of weak type (¢, ¢q) and can be used instead of U,. The reader may then check that
Y, satisfies W, 2 W, and is still bounded on L" for » > ¢. In §2 we shall also prove a
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refinement of Theorem 1.3 which will be significant for endpoint bounds such as Theorem
1.4 below.

The weight U,w involves the sum of two maximal functions associated with tubes of
large eccentricity;

1
V,w = (M[sup 25D (MVew + [log(2 + ¢)]? sup M efll‘f;n(]%w))} 1+6> e
e>1 €

with some £ > 0. Here Pw is a standard dyadic frequency cutoff localizing @ to frequencies
of size ~ 2'. The first summand is similar to the standard Nikodym maximal function,
but much better behaved due to the small damping factor. For ¢ > 1, the function Viw is
the usual maximal function associated with the tubes (or cylinders) which are centered at
the origin with eccentricity (defined as the quotient length/width) equal to e. The second
summand involves the maximal function

leng(e) = sup (Mpfsup [  g17)(x)) "%,
fesd-1 v
where the supremum in ¥ ranges over suitable classes of L'-normalized Schwartz functions
associated with tubes of length 27'¢ and width 27!, in the direction of §. The maximal
operator My, is associated with the tubes in the direction ¢, with fixed eccentricity e. This
definition is reminiscent of the “grand maximal function” in the theory of Hardy spaces
([17]) as it involves a supremum over convolutions with kernels in a suitably normalized and
rescaled class of Schwartz functions, and a significant gain is achieved when these kernels
are convolved with functions that have a suitable cancellation property (such as Pjw).
Concerning the boundedness properties of 2, for the first summand we shall only need a
standard and non-optimal bound ||V¢|| e« = O(e*) with a > (d—2)/q, for ¢ > 2, and the
small factor ¢2~24/¢ helps to get the claimed bound. For the main term the range cannot
be improved as the maximal function involves powers |® % w|?. Here the terms with small
eccentricity (/1) contribute most, and in order to establish the proper bounds for terms

with large eccentricity one uses cancellation, namely the annular support property of EEJ

Wave and Schrédinger operators. One can apply L? bounds for variants of the Bochner-
Riesz square-function to obtain regularity results for spherical means and solutions of the
wave and Schrédinger equations. This application is suggested by a theorem of Kaneko and
Sunouchi [22] relating G* to another square function which was introduced by Stein in his
study of spherical maximal operators (cf. [37]). Define the spherical mean of order § > 0

by
I‘(ﬂ) 1 2\ s-1
AL f(z) = le(ﬁ) /y|<t tq(l - %‘) f(z —y)dy;

for smaller values of § the definition can be extended by analytic continuation. In [22] an
application of Plancherel’s theorem with respect to t is used to show that G¢ is pointwise
equivalent with a square function generated by spherical means, namely, for a > 0,

1/2

G fw) =~ ( | T2 | ),

for all Schwartz functions f. Here we shall not use this equivalence explicitly but prove
a closely related sharp LP(L?) regularity result for solutions of the wave and Schrédinger
equations with initial data in LP Sobolev spaces. In order to formulate a unifying result, for
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a € (0,00), we let Uf f denote the solution to the initial value problem 29;u+(—A,)%?u = 0
with u(-,0) = f;

(3) Ut f = exp(at(—A)*/?) f.

The case a = 2 corresponds to the Schrodinger equation and the case a = 1 to a wave
equation.

Theorem 1.4. Letd > 2, p € (2(‘{;2) ,00), a € (0,00), and let I be a compact time interval.
Then

“ [(froerea) ™, < im §=a(-5) -5

In fact this holds for initial data in the Besov space ng (which contains LE for p > 2).

One can also consider the same regularity problem in the mixed norm space LP(L%(I))
with ¢ € (2,00]. For this range the analogy between the wave and Schrédinger equation
breaks down (and some endpoint versions of the deeper ‘local smoothing’ result for the wave
equation are currently available only in four and higher dimensions, c¢f. [20]). However, for
a € (0,1) U (1,00) and d > 2, one can deduce sharp BY, — LP(L%(I)) estimates with
s=ad(1/2—1/p) —a/q, in the range p € (2+ 4/d,o0). This follows from a combination
of Theorem 1.4 and the result in Appendix A. Moreover, one can, for a limited range of
q, obtain further estimates for p > 2+ 4/(d + 1) and d > 1, essentially by interpolation
with results in [29]; in dimensions d > 2 this currently requires the restriction a > 1. These
LP(L%)-estimates are stated in §6, and a further, more substantial improvement for d = 2
will be considered in [25].

Remark. After the first version of this paper was submitted for publication, Bourgain and
Guth posted a preprint [2] containing very substantial improvements on the LP boundedness
for oscillatory integrals related to the Fourier restriction problem, with implications for
Bochner-Riesz multipliers. It would be of great interest to investigate the impact of their
methods on Stein’s square-function, weighted norm inequalities, and other issues discussed
in this paper.

This paper. In §2 we formulate a more precise weighted inequality (Theorem 2.1), and give
the definitions and boundedness properties of suitable weight operators. In §3 we prove
some L? — LP estimates for radial convolution operators and prepare for the proof of the
weighted inequalities. These are established in §4. In §5 we prove LP(L?) estimates for wave
and Schrodinger equations and in §6 we discuss some LP(L?) bounds for ¢ > 2. Appendix A
contains auxiliary results on combining inequalities for frequency localized operators.

Some notational references. For two nonnegative quantities A, B the notation A < B, or
B Z A, is used for A < CB, with some unspecified positive constant C. We also use
A =~ B to indicate that A < B and B < A. To avoid unwieldy formulas we will sometimes
shorten the notation for products involving a complex conjugate and use, given two complex

terms € and &, the expression [[j_; (€] = €1&. For convolution operators given by
Fourier multipliers a(£) we occasionally use the symbol notation a(D) f := F~t[af], where
F~! denotes the inverse Fourier transform. By P,, P, we denote dyadic frequency cutoff

operators which localize to frequencies of size ~ 2™, so that P,P, = P,, see §2 for the
precise definition.
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2. A STRONGER WEIGHTED NORM INEQUALITY

We formulate a weighted norm inequality for a square function generated by thin pieces
of the Bochner-Riesz multiplier. To fix notation, let ¢ be a Schwartz function supported in
(1/2,2) with the property that

(5) oW (@) <1, v=0,...,d+2.

Let 0 < § < 1/2 and define the convolution operator S9 = Sf by

(6) 316 = o(571 (1 D)) Fe).

Assuming (5) we shall usually drop the superscript ¢, as our estimates will be understood
to be uniform in ¢.

Theorem 2.1. Let d > 2 and q € (1, %) For 0 < § < 1/2, there are operators 2,5
defined on L1+ L*°, so that the weighted norm inequality

B x @wl‘ x —d/q x w(x) dx
@ L] str@pfu@ar < #0 [, a

holds for all w € L9+ L* and the operators W, s satisfy the following properties:
(i) The mazximal operator defined by
(8) W,w = sup 2W,sw
0<6<1/2

is of weak type (q,q) and bounded on L for ¢ < r < oo.

(ii) If q € [2, d;rQ), then the operators 2, 5 are bounded on L2, uniformly in §. Moreover

11
if ¢ € (1,2) then |Wysllzasre < [log(5)]e 2.

We shall also consider local versions of (7) with the t-integral extended over a dyadic
interval and for which the L? bounds of the corresponding weight operators are independent
of § for all ¢ € (1, %), see Theorem 4.1 below.

To deduce inequality (1) with 20, in place of U, one splits the multiplier into a part near
the origin and a part near the unit sphere. The part near the origin is dealt with by the
standard weighted norm inequality for singular integrals in [12]. One then decomposes the
part near the unit sphere into smooth multipliers supported on thin annuli of width § = 277,
applies Theorem 2.1, and sums a geometric series. The maximal inequality (2) follows from
(1) by well-known arguments in ([39, §VIL.5]) together with a weighted norm inequality
for the Hardy—Littlewood maximal function ([16]). If we take ¢ = (p/2)" then by duality
and an application of the Marcinkiewicz interpolation theorem one obtains Theorem 1.1
for p > 2+ 4/d. Interpolation with an L? inequality yields the result also for p = 2 + 4/d.
Theorem 2.1 also implies a sharp LP result for the square-functions generated by Sf which
is stated in Corollary 4.2 below.

Definition of 20, 5. We assume throughout this section that d > 2. The definition of
20, sw in (16) involves a suitably damped Nikodym maximal function and another (more
important) maximal function acting on functions with Fourier transform supported away
from the origin.

Let 0 < o < 1, let 6 be a unit vector in R? and let

R§ = {y € R : [(y.0)| < t.]y — (y,0)8] < 16}
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Then the Nikodym maximal function associated with tubes of eccentricity d, is defined by

1
9) Ms,9(x) = sup sup

— lg(z + y)|dy.
pesi-1 >0 |RY | Jry

Now we describe our second maximal operator. Let N' > d+ 3 be a large positive integer
and let S(N') be the set of all Schwartz functions v for which

(10) [l = max sup(1+ [z)V0¥ (@) < 1.

The number N will be fixed throughout the paper and constants in inequalities will depend
on N (one may want to choose N' = d + 3).
For j > 0 and § € S9! let g ; be the unique linear transformation defined by

ly;(0) =270, by j(y) =y if (6,y) =0.

Then detlp; = 27. Let S99 be the set of all ¥ for which 27427 Y(¢y ;27" ) belongs to
S(N). Typical examples of functions in S8 are L' normalized bump functions essentially
supported on a tube with direction 6, length 2/=" and width 27", We define a maximal
function which involves convolutions with W in the classes Sz’J and in our application it is
crucial that these convolutions will be acting on functions with cancellation, namely with
frequency support in annuli. Let

Mbig(x) = sup |V g(z)]
vesdI
and set, for 7 > 0,
2—ird

0.3 xTr) = .
. ) = i

For future reference note that

2kd2—j(d+1) y
, . <Ko
1+ 2k=23|(x, 0)| + 2k—3 |2 — (x,0)0|)d+3 ~ 728

We use the dyadic frequency cutoff operator P, defined by
(13) Pof(€) = x(27IENF(©)

where x € C* is nonnegative and supported in (5/8,15/8) so that Y, ., x(27%) = 1 for
all £ > 0. Set

(12) ()| S ( (x) if U ey,

. 0. 0. 1/q

(14) Wiasa(e) = (supKgihss « ML Pijol' ()
(15) W sg(x) = sup W2 g() .

kEZ
Next, fix s € (1,¢) and define the maximal operator 20, s by

d . d
(16)  Weow = Y 279G (MW jwl?) !V + 607 (MMM szw]*)/*

1<22i <51

where M is the Hardy-Littlewood maximal operator. We also recall from the statement of
Theorem 2.1 the definition Wyw = supgs<1/2 We,sw-
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Boundedness of the weight operators. In the proofs we will frequently use a dyadic

frequency cutoff P, which reproduces P, and is similarly defined. That is to say, P, f¢) =
)?(2_"|£\)f(£) where Y is supported in (1/2,2) and has the property x(s) = 1 for s €
[5/8,15/8]. Then P, P, = P,.

It is obvious that the operators Wg,a,w Wjﬁ, 9N 5 are bounded on L. For the L1

q
boundedness we state

Proposition 2.2. (i) For 1 < g < co, the operator Wgﬁ’k satisfies

sup sup ‘|Wj75,kaq§

jd—2 ‘
2/ if 2<q< o0,
5k Jlwllg<1 J

G if1<q<2

(ii) For 1 < q < oo, the operator Wg(; satisfies

sup HW;(stq <

def if 2<¢g<o0
>q> ’
lwllq<1

PG Dlog(L)]a™2  if 1<g<2

Moreover for ¢ = 1 the operator W{a maps the Hardy space H' to L' with operator norm
< 20D log(1)]2. |
(i1i) We also have the weak type (q,q) estimate
.d—2
{?q if 2<q< o0,

J <
sup H sup W&quLq,oo ~ 2j(§—1)(1 +j)%_% if 1<qg<2.

w]lg<1  0<8<1/2

The proposition implies statements (i) and (ii) of Theorem 2.1. Clearly the operators 20, 5
and 20, are bounded on L™ if ¢ < d. The L? bound for the first (main) term in (16) is
immediate from Proposition 2.2 since % — 2(% — 1) < 0 iff ¢ < 442, For the second term
in (16) we use standard non-endpoint L4 bounds for the Nikodym maximal operator (see
[9], [10], [1], [27]). Namely 9 /5 is bounded on L? with operator norm < C. (Vo) 4=
if ¢ < 2 and operator norm < C.(v/4) (¢=2)/4=¢ if ¢ > 2. The damping factor §~ 1+ is
enough to prove L? boundedness for ¢ < %. Using for example the results in [44] this
final estimate can be significantly improved but any such improvement seems currently to
have no impact on our result, as the main contribution to the weight operator comes from

the terms Wga. O

Elementary convolution estimates. The following simple and standard convolution esti-
mates will be used many times in the paper.

Lemma 2.3. (i) Let H(z) = (1 + |z|)™" and let N > d. Then there is Cqn > 0 so that
for all x € R?

(17) sup sup /th(ty)H(x —sy)dy < CynH(x).
t>1 0<s<1

(ii) Let HA(z) = | det A|H(Az). Then HA x HA(x) < CqnHA(z) for all x € R%.

(111) Let £ € N, let hy, ho be kernels with

(L+Ja) I ()] + Y 10%he(2)] < H(x)
la|=¢
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and assume that [ P(z)hi(z)dx =0 for all polynomials P of degree < { — 1. Let hi'(x) =
|det Alh;(Ax). Then fort > 1

th (t-) * hS' ()] < Canet "HA ().

Proof. Let Fy 4(z) = [t¢H(ty)H (x — sy) dy then clearly Fyo(z) < H(z) and for |z| < 1 we
have F; s(x) S 1 so that the assertion holds for |z| < 1.
If |z] > 1 then sup|gy|<|q2 H(z — sy) S H(z) and supjyy>9), H(x — sy) < H(z), so that

[ EHE)HE - sy)dy S [PHE ) HE) S H)
[syl¢[5 2|z(]

for all £ > 0.
Next, if |sy| ~ |z| then tYH (ty) ~ t?H (tz/s). Letting By s(x) = {y : |sy — x| < 2!} for
[ >0, we have |Bs(z)| < (2//s)? and we may estimate (using N > d)

/ H(z - sy)tH(ty) dy
|z|/2<|sy|<2|z]

SN NS [ty £ NN N < H)
lZO Bl,s(x)

sincet > 1, s <1 and |z| > 1.

(ii) follows immediately by a change of variable. Similarly for (iii) we may reduce to the
case where A is the identity. Then one can use Taylor’s formula and the cancellation of hq,
and (i), to estimate

11 _ -1
etnte) s o)l S [0 [ ) ) hate — s dyas

<t sup /th(ty)H(x —sy)dy <t *H(x).
0<s<1

For the kernels in (11), Lemma 2.3 yields the bound

(18) KPT s K09 (2) < CaK2 (), t>7.

Proof of Proposition 2.2. We shall use many times that HlCte’jﬂl < 1, uniformly in 0, j, ¢.
Moreover,

(19) K@) ~kP@), [9-0l<c2d, |j-jl<c, cl<i<c,

where the implicit constants in the equivalence depend only on C' and the dimension. Next,

the class Sg’j is stable under small perturbation in the sense that given A > 0 there is a
constant C, depending only on A, d and the parameter A in the definition (10), so that

(200 VeSS — CTWeSH |00l < A2 |j—j <A |n—n| <A

In what follows we let ©; be a maximal 277~ geparated subset of S¢!. Clearly
card(0;) < 27(4=1); moreover each § € S9! has distance < 277 to at least one 6 € ;.
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L%-bounds for Wg sk We replace a sup in 6 € ©; by an £¢ norm and interchange a sum-
mation and integration to estimate for any fixed j, k

0. 1/q
| (st = M0, Psal”) ™

1/
S(Z// sup Kk+]5()~sup |M Pk gz —y |dydx) !

0c0; |6—6|<2-i |0—0|<2-7
. 1/q
0,j 1|9
S ( Z HMk—ij—JQHq)
96@j

For the last inequality we have used (19) and (20).
We now need a further decomposition. Let 1y be supported in (—1, 1) so that n9(s) =1
for s € (—1/2,1/2) and let
M) = mo (/122K (€, 0)2 4 [2K(& — (£,0)0)2).

2 k 97 ‘7k
Js ’ij

For m > 0 define operators Q as follows. For m = 0 set

QYR (€)= PITE (&) = miM(©) F(©)

and, for m > 1, set

0k ko ko =~
WA = (e me) - e o) fo),
0k ik o ko n
P (&) = (7 (27™E) + g~ (27E)) F(€)
Then > 7, 0.0k phiik g the identity; moreover 0.k Py,_; =0 for m > j + 3. Using the
cancellation of Qrﬁ] kit is straightforward to derive the estimate
o(k—j)do—j

0,7, k\I/ <(C2” 2m - :
sup Q7" V()| (1 + 262 |(x, 0)| + 28— |x — (x, 0)])4+1

0.5
ves, [

from Lemma 2.3 and (12); in fact if ' > d + 3 in (10) one can also get a gain of higher
powers of 27", Now, for fixed k, j, 0

(S M gel) < (] s | X @tw« @it pa)|) "
0cO, 00, YES,’. 0<m<j+3 ?
. 1/q
(21) S X 2 (X IR Rly)
0<m<j+3 0€0;

and the desired bound follows when we establish the estimate

. 1/ cd— .
e (X [Popse) " s max@ s Gy g, 1< g <
) q

with the usual modification for ¢ = co. To prove (22) we notice that by interpolation we
only have to verify the cases ¢ = 1,2,00. The cases ¢ = oo and ¢ = 1 are immediate
since the operators Pg{j’k and Pj_; have convolution kernels with uniformly bounded L'
norms and since card(©;) < 27471, For ¢ = 2 we use Plancherel’s theorem. Write
f[P 0 kPk 9] = aj k,6,mg. Then the multiplier a; ., is supported in

{&: CTRFITE < <02V [(g,0) < o2y
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Since ©; is a 2-7~4_geparated set we see that for fixed j, k, m every & € R% is contained in
no more than Cy2™+7(4=2) of the sets supp (a; 1. g.n), which implies the bound (22).

Li%-bounds for Wg(;. We argue as above and now replace the sup in k € Z, 6 € ©; by an ¢4
norm. This yields

. , 1/q ; 1/q
(23) | (Sgp SUp Ky s + M Pe ()| Hq < <¥GZ@ M2, Psa]l2)
€0;

A combination of (21) and (22) together with the use of the reproducing Littlewood-Paley
cutoff Py_; yields

(23 miz,mf) ™
k 0cO, 1
s S (XS PR B )

0<m<j+3 k 0c0;
_ 1 .d—2 sod — 1/q
< Y 2 max2 T 2V (Y Bl
0<m<j5+43 k

and for ¢ > 2 this is < 27(@=2/4||||,.

Now consider the case ¢ < 2. By a standard linearization combined with an analytic
family argument the claimed L? estimates can be deduced from the Hardy-space estimate
and the already proven L? estimate. We omit the details of the interpolation argument (cf.
[17]). For the Hardy-space estimate we need to prove an inequality for an L?-atom, i.e. an
L? function g, supported on a ball {z : |z| < p} with ||g,|l2 < p~%? and [g,dr = 0. Tt
suffices to verify

(24) W] 5901l < 27 [log(5)]'/2.
By the Schwarz inequality we have
WY 59(x) S W3 s9()
and thus by the above L? estimates
IV 5900l 11 al<20) S P72 IV 590112 S 27271 p% 2 g, ll2 < 2721,
On the complementary set we estimate

”WiégPHL1(|x|22p) S Z HW{,(S,kg/JHLl(deQp) .
kez

From our previous bound for Wg s and the cancellation of the atom,
W] 590010 S 279 DB gl £ 277D min{1, 257 p}.
Now if ¥ € S;7. then by (12) with n =k — j, (18), and 2%§ < 1,

(2k5)d2j(d—1)
(1 + 2k6|(x, 0)| + 292K5|x — (z, 0)0)])4+1"
Thus a favorable estimate holds for 2¢p > §~1, namely
W 5190l 1 (ajz20) S 277D (286p) 1

Kb

0,5 0,5
ok+ig ¥ |W[(z) < ,Czkj-‘rjg * ngj—j () S



IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS 11

These estimates can be summed for 28 < p~! and 2¥ > §~1p~L. For the intermediate terms
we use the L! bounds and the Schwarz inequality

w .
S Wl PN ST Bl

p1<2k<(ps) 1 pT1<2k<(po) 1
< 2@V og(}) 1/2(Z\|Pk al?)"”

and by Minkowski’s integral inequality and the Littlewood-Paley inequality on H' (see e.g.
[18]) we have

~ 1/2 ~ 1/2
(25) (X 0Bsgolt) ™ < || (X 1Pemsgol?) || < Mgl S 1
k k

Now collect the estimates and (24) is proved.

The weak type estimate. We observe the pointwise estimate

suplC2kH§ ’Mk Py 9| <M9’J[sup\/\/lk’] Pyp_igl?], 10— <277,

where M?%J is the maximal operator associated with tubes of eccentricity 277, with the
long side pointing in the direction §. For each (6,7), M?%J is a rescaled version of the
Hardy—Littlewood maximal function and therefore satisfies the standard weak-type (1,1)
inequality with a bound independent of 6 and j.

We use the continuous embedding ¢9(L%>°) C LT>°(£>°) (see e.g. Lemma 2.1 in [19]) and
dominate

J 9,] g 1/q‘ q )1/q
H O<S(Sl§i/2 |Wq,5g|’ L3 (OGZ H M Sup |M Pk—J9| ]) Laoo
(26) ( Z HSUp |Mk7]]P/€ ]g‘ HL‘I> )

0cO;

and for the last inequality we have used the uniform weak-type (1,1) bounds for the A7%J
together with the identity ||F9| p1.00 = ||F||%,0 for the usual quasinorms.
We may dominate (26) by

(> M Pl 0

0€0;

which for ¢ > 2 has already been estimated by 2/(¢=2)/4||g||,. Thus the asserted estimate
follows in this range.
For 1 < g < 2 we claim that

1/ (d_
(3 llsup 122, Pl [2) 7" £ 2400+ a2,
0cO;

This follows by complex interpolation from the estimate for ¢ = 2 already proved above
and an H' — ¢*(L'(¢*°)) bound. Again it suffices to consider an L?-atom g, supported on
a ball of radius p centered at the origin and we need to check

Z Hsup|/\/l Pk 9] Hl S 271 1)(1 +j)1/2‘
0cO;
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Now on the ball of radius 2p we use an L? estimate and the trivial estimation ]MZf PUADS
M%3(f) to obtain

Z HSUP|M Pk—jgp| HLI(\x|§2p) S o Z I Sl;p |Mzijpk—j9p| B

€O, 0e0;
1/2
d/2 2

s 3 (e ) T,

0cO;

1/2 o .

<0y (Z\\Pkfjgpu%) < VD2 g,y < 20D

9€@j k

For |z| > 2p we replace the sup in k by the sum. By standard L' estimates and using the
cancellation of the atom we have

97‘ . k_ >
My Pijplly S P9l S min{2"p, 1}
and, using estimates of the kernels,

0. kE—2j \—1 . k i
HMkiij—jngquszp) S (257%)p) if 2%p > 27.

Thus 2069]- ngpg[gjgzﬂ HMZ’Z]-PkfjngpquQp) < 29(d=1) Moreover, for the intermediate
terms,
0.5 i(d— (d— ,
> D IMELPeg [ S22 Y Pl S 2P+
0€0; 2k pe[27 227 2k pe[27,221]

by the argument in (25). We combine these estimates and the L! bound is proved. ]

3. MULTIPLIERS AND THE BILINEAR ADJOINT RESTRICTION THEOREM

In this section we prove bilinear estimates for multiplier transformations, under suitable
separation conditions. The proofs rely on

Tao’s bilinear adjoint restriction theorem ([42], [24]). Let b > 1/2 and p > 2 +4/d.
There exist &, > 0, N, € N and C, depending on b, p and d, that for all functions h defined
n [—b,b]"1 and satisfying
(27) sup  max |95h(w)| <&
wE[—b,bJd~1 |a\<1No

the following holds: For all pairs of functions (Fy, Fy) with dist(supp (F}),supp (F»)) > 1/2
and F, € L2([-b,b]%71),

/\ H/ W) exp (ufe' ) -+ sl /2 + hw))as|" a) " < T] 1B

1=1,2

We will need to consider families of hypersurfaces which depend on a parameter s and
which, for fixed s, are small perturbations of the paraboloid & = [¢|?/2, where ¢ =
(&1, ...,&4—1). These lead to “elliptic” phase-functions as considered in [43], [42].

Definition. We denote by Ell(b,e, N;) the class of functions (£, s) — (&', s) defined on
[—b,b]9"! x (—1,1) which are of the form

Y&, s) =

/12
‘§2‘ — s+ h(glv 8)7
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with

29 sup max |05 ;h(w,s)| <e.

(29) P e (o)
se(—1,1) =L2

We may and shall assume in what follows that N, is large, say N, > 10d.
We now consider Fourier multipliers depending on a parameter s € (—1,1), supported
in a tubular neighborhood of (¢/,v(¢, s)).

Lemma 3.1. Letp >2+4/d, b > 1/2. There are e, No, depending on d, b, and p, so that
the following holds for all 65 < 1/2.

Let v € Ell(b,e, No). For |s| <1 and i = 1,2, let a;(-,s) be multipliers, supported on
[—b,b]9, satisfying the conditions

(30a) |ai(§,s)] <1,

(30b) ai(&s) =0 if |€a—(&, )] > do,

and

(300) (£I7§d) Gsuppal(-,s), (gagd> ESpraQ('vs) = ‘5,_5/’ >1.

Then, for all pairs of L? functions (f1, f2),

(31) H/m H ai(D, s fldsH <62 H 1fillz

1/2,=
Proof. For fixed s we introduce coordinates
§=T°(¢ 1) = (g (,5) +7)

in the Fourier integral. We then need to estimate the LP/? norm of

1/2 ; i il i . .
/ [/ / azfz] (Fs(gl l)) o€ tma(r (€ )+ ))dflldTl] ds;
1/2,219 [—b,p]2—1

here we denote by (fi/, %) the variables in the two different copies of R%. By Minkowski’s
integral inequality the LP/2 norm is dominated by

/// / ‘ H / alfi] (Fs(fi/, Ti))el(@”/véz Ytzay(Els dﬁz]

[80.80)2x [~ 1,1 =2y e

2/
) Pdsdridr?,

By the bilinear adjoint restriction theorem and the boundedness of a; this is estimated by

[ T i )

[ 5o 60]2><[—7 1 z 1,2

We apply the Schwarz inequality in the s variable. Then for fixed 7!, 72, we change variables

(€,8) = & = (&,4(¢,5) + ), using that dsy(¢',s) = 1+ O(e). Thus the last displayed



14 S.LEE K. ROGERS A. SEEGER

expression is estimated by

([ IfE s+ asa) artar

[—d0,00)2 =12 [Lppjd-1x[~1,1]

1 17illzdr*ar® < 62 T Ifille-

[—60,60]2 1=1,2 i=1,2

O

In what follows we will use the notation [[5_, ,[&i] = &1&; for products involving a
complex conjugate.

Proposition 3.2. Let g € [1, M) and b > 1/2. There are e, Ny, depending on d, b and q,

so that the following holds for all 6, < 1/2.
Let v € Ell(b,e,Ny). For|s| <1 and i = 1,2, let a;(-,s) be multipliers, supported on
[—b, b7, satisfying the conditions

(32a) 08 ai(€,s)] <61 o] <d+2,

(32b) ai(§,8) =0 if |&g—~(E,s)] > o,

and

(32¢) (€,&) € suppar(-,s), (£,&) €suppas(-,s) = [€—¢|>1.
Then

‘/Rd/l/2 H [ai(D, 5) fi(x)]w (w)dxds‘

1/2,=
> jw(z — y)|? g  \1/2
< ove? ]] /|f1 / 1+50|y|)(d+1)qdy> dx) '

i=1,2

Proof. We dyadically decompose the kernel of the convolution operators. Let pg be a C°(R)
function supported on (—1,1) and equal to one on [~1/2,1/2] and define, for z € R?,

®o(x) = po(dolal),  @;(z) = po(2770ola]) — po(2' 7 olz]), j > 1.
Then the {<I>j}°-i0 form a radial partition of unity. We thus need to bound the sum

‘/Rd /11//22 /ai(D—”ivS)fi(w)‘f’ji(ni)dni]w(x) dmds‘.
i=1,2

By symmetry considerations it suffices to consider the terms with 0 < j; < j2. The desired
estimate then follows if we can show that

3 ‘/Rd /11//22 /ai(D_”i’S)fi(f”)‘/ﬁji(ni)dni]dsw(x) da| <

/g \1/2
20—j2L q
it T (fuar([ e sy )

i=1,2

J1,J220

for 0 < j1 < jo, L < d+ 2. We shall first verify this inequality for L = 0 and then provide
the modification for 0 < L < d + 2.
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We now form a grid Q(j2) of dyadic cubes of sidelength 272551, For every Q € Q(j2) let
Q* be the double cube with same center as ). By the support properties of the kernels,
and j; < jo, we have

/ai(D — ') [fixpag-] ()85, (ni) dn =0 iz €Q, QeE(p), i=12
Thus the left hand side of (34) is equal to
1/2 : ~
CONIDY / [ IE L 0 = ot s ) st ]
QeQ 1/2,2

We use the formula m(D — n)f = Mod,;m(D)[Mod_, f] where Mod, g(z) = g(x) e“®". In
order to obtain (34) for L = 0 (which is efficient for jo = 0) we use Holder’s inequality to
estimate (35) by

~ ~ 1/2
60 [[ Bath)Ba0r \ [T [w0stod gl £1] | lwxalydn'dre.
QeQ 1/2,212 e

Now

H /11//22 a,z D S)MOd—ﬁ [XQ*fZ]} ds

q/

IA

/1/2 H H [al.(D, s)Mod_ i [XQ*fi]} Hq ds

—1/2%,21

1/2
— / H H ai(D, s)Mod_,:[xq- fi] q ds

127,212

By our assumption on ¢ we have ¢’ = p/2 for some p > 2 + 4/d and therefore we can use
Lemma 3.1 to bound the last displayed expression by

o2 T Ifixe-ll2-

i=1,2

Since the L' norms of </I\’j1 are O(1), uniformly in J,, we have

(35) S0 ) lfixe:

QEN(j2)

/2
<ZII( X Iive Blwxel,)

=12  Qe(j2)

<52 H (/ |fi(x (/|y|SC2].250_1 ‘w(JU-I-y)’qdy)l/qu)l/Q

1=1,2

which yields (34) for L = 0.

We now turn to the case L < d + 2 where we need to improve the above estimate by
a factor of C(L)2792L. We expand the convolution [as(¢ — 7, s ) i,(n)dn by a Taylor
expansion about n = 0. Since ®,, vanishes in a neighborhood of the origin the integrals

2l faxq- ll2llwxellg
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J &)]-2 (n)P(n) dn are zero for any polynomial P. Thus only the integral remainder term in
the Taylor expansion survives and we obtain

R L] _ o)1 [
a1 185,00 = [ G700 [Brlton Valals - on.s) dndo.

We repeat the above argument in which we now have to bound

///m yar'| o) | [

QeQ(42)

1/2
‘/1/2 (D —n', s)[xq fil(@)(—n2, V) Eaz(D — on?, 5)[xq- f2)(z) ds| dz do dn' dn?

in place of (35). In the estimate we may replace (—n?, V)% with (772)0‘8?, for any multiindex
a with |a] = L. As above we continue with Holder’s inequality, and this time Lemma 3.1
and the differentiability assumptions on ag yield for |o| =

1/2
/ H/ 1(D, 5)[x@-Mod_, f1]9gaz(D, s)Mod_,2[x - f2] dSH do

1/2
S o TT Ifixaelle-

i=1,2
The loss of 55 in the previous formula is (more than) mitigated by
] @B P ant dip < 27E6E, ol =
Thus the above argument yields (34) for also for 0 < L < d + 2. O

4. PROOF OF THE WEIGHTED INEQUALITY

In this section we prove inequality (7) of Theorem 2.1. We mainly focus on a local
inequality (with ¢-interval [1,2]) which for later application we formulate for slightly more
general multipliers. Instead of S we consider operators S? defined by

836 = ¢(671 (1 = E)B(e, ) F©)

where ¢ is as in (5), 8 is a nonvanishing C* function on the set of (£,¢) with 1/2 <t < 5/2
and 1/2 < |¢] < 4. Of course 5(£,t) =1 in Theorem 2.1.

Theorem 4.1. Let d > 2 and q € [1, %) Then, for 0 <6 < 1/2,

(37) //|st P (@) do 5 8% d/q/ (@) W) do

with

Ww(z) = Z 9-2(; _1)M0Wj50w( )+ i Mo M sw(z).
1<22i <51
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We now show that Theorem 4.1 (with 5 = 1) implies assertion (7) of Theorem 2.1. Let
Wiw(z) = Ww(27%-)](2%z). By (37) and rescaling we see that

// 1597 @)L ) d

:z//\szk S Pt L w(a) de

keZ i=—2

< 0% d/qZZ/ / | Peyif (2)|° Wyw(z) dx@

kEZ 1=—2

552d/q/ / | (@)[2M (sup [Ww|*)V/* () da
Rd J1 k

and the last inequality is a consequence of Coifman’s improvement of the Cérdoba—Fefferman
weighted norm inequality for singular integrals (see for example [18, p. 417]). Now
M (supy, [Wiw|®)/*(z) < W, sw, by Minkowski’s inequality (cf. (16)).

Theorem 4.1 implies the following sharp L? results, by a duality argument, the bound-
edness results of Proposition 2.2 and the Marcinkiewicz interpolation theorem.

Corollary 4.2. Letd > 2 and p € (2(d+2) o0). Then, for 0 <6 < 1/2,

H(/ SE@PE)| S oD,

Moreover if 3 =1 and S? is as in (6) then

[([" 1strr) ™) < 8 GDus,,

The remainder of this section is devoted to the proof of Theorem 4.1.

Preliminary considerations. We begin with a rescaled variant of Proposition 3.2. Such
rescaling arguments have been used in [43], [42], [23] and elsewhere. In what follows fix a
function ¢ € C*°(R?) supported in {y : |y| < 1/8} and define a convolution operator with
homogeneous multiplier by

(38) QIf = (2 (& —0)

In order to reduce estimates to Proposition 3.2 by rescaling we will need to localize all
multipliers to a narrow sector {¢ : \é—l —u| < &1} where u is a unit vector and ¢ is a small
constant.

Lemma 4.3. Given C > 1 there are small 1,2 € (0,1/8) depending on q, d and C and
the function 8 so that the following statement holds for C277 < &1 and 227§ < es.

Let 1) be supported in a ball of radius €1 contained in {§ : 1/4 < €] < 4} such that
10%Y]|oo < 1 for |a| < d+2, let 61,05 € STt be such that 27771 < |6 — 63| < C277, let
to € [1,2] and J be an interval of length 2=27=2 containing to. Then

| [ [ 5@ 0D 1) S QP 0(D) ala) § i)
22J5 1-d/q H /|fz 237(? |w|q(m))1/qu)

1=1,2

1/2
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Proof. Set 9 = &igﬁ\ and eg = (0,...,0,1). Take Ry to be a rotation satisfying Ryeq =

and let it act on functions by Ryf(y) = f(Ryy). Let A;f(y) = f(Ajy), where Ajy =
(271, ..., 2yq_1, —2%y,). Finally we set Dy, f(y) = f(toy) and, as before, the modulation
Mod,, is defined by Mod,g(z) = g(x) e*®,

For fixed 8,5 and i = 1,2, the multiplier for SYQ%71)(D) is given by

mo, (€:1) = w(©)o (671 (1= )8(6,0) )¢ (P (5 - ).

Let Zg(n) = toRy(eq+ A_jn) and t(s) = to(1 +27%s). A rescaled multiplier depending on
the parameter s = 2% (t5 't — 1) € [~1/2,1/2] is defined by

Moy, (1, s) == me,(Eo(n),t(s))
= ¢( (1- %)5(%@),“3))) C(27 Ry [0 — Ry 0,]) 6 (S (m))

Now compute

leatAjnl® _ 1s (3(1 +27%71s) 4+ g — |n/|?/2 — n§2‘2j‘1)
(1+27%s)2 (1+2 %s)?
[

2 )+2_4J7”J(777 )a

where r; is a quadratic polynomial in 7 with coefficients uniformly bounded in s, j. More-
over the supports of the functions ¢ (2jR19 [‘Z%H - Ry Ly, ]) = 1,2, are uniformly
separated and these functions have derivatives with bounds uniform in j.

Now let b = 10dC, and set M = 1+ 37, o maxjg<p max|s<; |057;(n, )|, for the er-
ror terms r; in (39). Let € be as in Proposition 3.2, and choose € small compared to

(2d)~(e/M)Y/2. By the assumed separation property we have

SOQM (D) f1 SIQU2 (D) f, =0, 277 > dey.

For the relevant complementary range we have 272 M < ¢ so that the functions (7', s)
I'|?/2 — s + 272" r;(n/, s) belong to Ell(b,e, N5). Since § is smooth and satisfies an
inequality 2eo < |B(&,t)] < (262)7! for 1/4 < |€] < 4, the formula (39) allows us to apply
Proposition 3.2 with a;(D,s) = My, (D, s)(1 + 2% s)"1/2 and 6, = (2e2)~162% < 1/2.

We obtain

]/Rd/W 1 (Mo (D, )i dr 20

/2,212

1—
) /’2
(39) — 91-% (s + g —

1/2
< (2%6)? / £ ()2 (2% 8) =Y V0 5w )dm) :
1=1,2

where

dglw( —y)|r \1/a
Vsw(e) = (/ (1 +5O\yy)<d+1>qdy> '
Now, with ¢ = to(1 4+ 27%s), we have my, (¢,t) = My, (A;(Ry 'ty ¢ — eq), s), so that

S)Q% (D) fi(x) = Dyy Ry "Mode, A—;My,(D, s)gi(x) with g; = A;Mod_c,RyD;,' ;.
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This leads to
6 )0i,J
‘//]Tzrl[QSQ Jw fZ( )] ()

ds
= 92 27 D lM . Mo (D i _ds
‘//1/2 || o Ry Mod,, A_; My, (D, s)g (x)]1+2_233 w(x)dx‘

1=1,2

1/2
<27 2j 22](5 /‘f 223(5 d/thO glAj[ij(;(AjRgD{)lw)]((L') dx)
1=1,2

L 1/2
< 200520 T ([ 1) PO, 5+ wlt()1de)

i=1,2

The assertion now follows from ICQHO(S(:U) ~ Kg;g (z) since to € [1,2] and |9 — 6;| < 277 for

i=1,2. O

A version of the following lemma is originally due to Carleson (unpublished); slightly
different forms can be found in [11], [30] and [34]. For the sake of completeness we include
the proof.

Lemma 4.4. Let A be an invertible linear transformation and A® its transpose. Suppose
that {my}ren have disjoint supports. Then for s > 0 and almost every x € R?

- ¢ T 2) 2 det(A™1) 1/2
(zk:‘]: Hma(A ) fl(@)] ) SCSI;pHmkHLg(/lef(x—y)\zdy) :

Proof. We can assume that my = 0 for all but finitely many k. Since F~1[my(A?- )fA] (x) =

F i mpf(A )](A 1) we can reduce to the case where A is the identity transformation.
Also, using an analytic interpolation argument, we may assume that s € NU {0}.

Let g = F'fmy). Then 3, |F [y f](z)|* = SUD|lall 0 50, <1 | 2ok 0k Gk * (2 )|%. Now,
for each fixed a € ¢?(Z%), we apply the Schwarz inequality in the convolution integral and
then Plancherel’s theorem to obtain

IiC 112
L3 / 1+ !y\ ) '

‘Zakgk*f <Hzakzmk
25 2 [Zarm,
? lal<s &k

Thus, we are done as for s € NU {0},
by the disjointness of the supports. O

2
, S llallz Sup 172

|2 e
k

Some reductions. We remark that it suffices to prove Theorem 4.1 only for very small
values of ¢, as by straightforward estimation

//|st @PF wla)ds 57 [ |7()? Mu() do

for a suitable power C' > 0, and clearly Mw < 9N VEW- In particular we may assume that
0 is small compared to the constant €9 in Lemma 4.3.
We may replace S? by

(40) TP = (D)S;
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where 1 is as in Lemma 4.3 (smooth and supported in a ball of radius 7). In view of the
invariance properties of the weight operators one can use a partition of unity to deduce the
weighted inequality (37) from the corresponding result for 77.

We now prepare for an application of Lemma 4.3 and decompose on the frequency side
the product Fy Fy for suitable F; (initially F; = T, té fi). We let x, to be a radial C2° function
Xo(w) = 1 for |w| < 25 and so that supp . is contained in {w : |w| < 2%+ 1}, moreover set,

X1(w) = Xo(w) = Xo(2w).

We also let jo, = jo(d) denote the integer with

\/ 5/82 < 27 Jo < 2\/5/62

where g5 € (0,1) is as in Lemma 4.3.
Define bilinear forms for pairs of Schwartz functions by

BoIF (o) = o [ [ @€~ MROFa(-n) 1 aan
(41)
BIIF l(o) = G [ [ @6 — i) R©Fa(—) 12 g,
Then one easily verifies the decomposmon
P Fy = B[, Fy) + ) B[, F.
7<Jjo
Later, in cases where the supports of the Fourier transforms of F} and F5 are separated we

wish to dispense with the frequency cutoff ®;(£ —n) and replace B, or B; by a product.

This will be accomplished by using the identities
42) (2) "B [F1, P (1) =2 %27 )« (AR (o),
2m) BI[Fy, Po)(x) = 2779%1(277 ) % [F By ()

which follow from the Fourier inversion formula (and the assumption that x. is radial).
The desired weighted norm inequality (37) follows from the following two propositions,
applied for fi = fo = f. The proof of the first one is rather straightforward.

Proposition 4.5.

[ w55 T ( [ o [ T ane)”

i=1,2

More substantial (and relying on §3) is
Proposition 4.6. Let g € [1, %) Then, for j < jo,
2 s sy A
[ | B TERN ) T wi) dr]
2-99-2j(4-1) )2 1/2
<6 Ta27 H max [ |fi(z H*Wjéow()d:c> :

<
i=1,2 vI<8

where Hj(x) = 2774(1 4 279|z|)~4 1
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We now introduce some basic decompositions. As in the definition (38) let ¢ € C°(R?)
be supported in {y : |y| < 1/8}, now with the additional assumption that ((y) = 1 for

lyl <1/9. Let ¢ € C>(R?) be supported in {y : |y| < 1/7} so that ((y) = 1 for |y| < 1/8;
hence (( = (. Let ¢ be a smooth function supported in [—9/8,9/8] and equal to 1 on
[—7/8,7/8] such that

D> p(-—n)=1

nel

We let ©; be a maximal 2~ 4_geparated set of S¢! and define for n € Z, | € Z, operators
via the Fourier transform by

A (2 (f—0) . -
F %J - €] _ 29el — n ’
Q%7 £)(€) Seo, G - oy P2 IEl = m(©)
FIRMF1(€) = {2 (5 — 0)e (27| — D F(©);

moreover, with Q%7 as in (38) set

Q" =% QMQy

so that
T%(sf — Z ng@,jf — Z ZZTtéQe’ij{j-Ple’jf,

0€0); 0€O; neZ I
for both cases j < j, and j = j,.

Note that the multipliers for Q%7 and Q%7 are contained in a sector of width ¢277
around 6. The multiplier for b7 i contained in a c277 ball centered around = with
|Z] = 279n + O(277). The multiplier for Ple’J is contained in a plate with (d — 1) sides of
length O(277) and a short side of length O(27%/), the long sides being perpendicular to 6 .
Note that for 27%m € [1,2]

(43) TPQMQLI P/ #0 for some t € [(m — 1)27, (m +1)27%],
— Im—1 <1, [27¥-27n| $277.

We also notice that, from the localization and separation properties of the cutoff functions
Xo(27°(§ —n)) and x1(27(§ —n)) in (41),
Bo(T; Q9. T Q"1g) # 0 = dist(0,0') < C27%,

(44) S — . .
BiTPQ% g, TPQig) #0 — 27713 < dist(9,0') < 27976,

Proof of Proposition 4.5. We first observe by a straightforward integration by parts
that for ¢ € [1,2] the convolution kernel associated with T2Q%° is dominated by

d+1
2

o 0.j 0.j
C <Ko ~ Ko7 ().
ol 0+ 0P — G gy ~ 2 ) =Rl
On the right hand side we may also replace # by any 0 with |0 — §| < 27J°. For more
compact notation we write

K0e (z) == K292 ().

- 2—Jo
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Now for |f; — 02| < 277° and each ¢ € [1,2], we have

| / [T Q" gt ds] 5 [ [ [T 05 b)) 2] ool

1=1,2 1=1,2

1/2 1/2
I ([ ko slgP@lu@lin) ™ < TT ([ lawP o« ulw)dy)
1,2

2,2 1=

(45)

here we used ||[K%7°||; = O(1) and applied the Schwarz inequality twice.
By Lemma 4.4

(46) Z [P f()]P S KO | P ().

Now let I35 = [2720°m, 27 % (m+1)]. It will be implicit in all m-summations that Ij; C [1,2].
In what follows 21" Wlll be an index set consisting of (I1,l2,n1,n2) with |l; — m| < 1,
|272e]; — 2 JOn|<2 Jo for i = 1,2. Then

> [ Mm@ e wl

91,9269 1=1,2
101 6| <C270
dt
- Y 2 X [Imet el st as
01,02€0; T (1112,n1,m0) 7 i=1,2
|61 —62| <C2- 70 €2Ajs

SE D YD D DI | (AL A O S PO I

01,02€0;, m (ly,la,n1,n2) 1=1,2
m

‘91—92‘§C2ij° eQ[jo

here we have applied (45) and carried out the ¢ integration. We now notice that [n;—ns| < 1,
|y — o] S 1 for (I1,l2,n1,n9) € A7 and that for fixed (l1,12,n1,n9) there are only O(1)
integers m for which (I1,l2,n1,n2) € 7. Hence, by various applications of the Schwarz
inequality and then by (46) the last displayed quantity is controlled by

LS S8 [ e sl e s ulw ar)

i=1,2 969]0 l;

e 2 I (XX / Q) PR K5 ol ) )

’L12 96@ g

where, by Lemma 2.3, we may replace K%J° fleei’j" with JCOide
By Lemma 4.4 we have, with H;_ (z) = 277°4(1 + 277 |g|)~4~!

oD lowEfP S Hy x| fP(x)
96@]'0 n
so that we may estimate the term (47) by

(48) 272 T] ([ 16 H. «suplic’s «ul)(a) o) .
1,2

=
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Now by the definition of B, (42) and translation invariance

Bo[T7 1, T (@) = D B[} QM f1, TP Q% fo(x)
01,02€0,
‘91792|§C2_j°
— —Jod> —Jo 3 )0isjo .
- X o / 2705 (2 0oh) [ 117 Q"o (o) dh
91,9269]'0 7,21,2
|61 —02|<C27 o

where 7, f(x) = f(x — h). We combine this identity with the previous estimate and the
obvious inequality [277°¢,(27%°-)| < H;, to obtain

‘//lz%o[thsfl,JM](x)‘i’fw(I)dgc‘
S /Ho(h))//j Z H*[TéQ@i,joq—hfi](fL’)%w(z)dx‘dh

01,02€0;, 1=1,2
|91—92|S02_j°

S [z T ([ 15— 0P Hy s supl? « Jul)(o) o) an.
i=1,2 o

Clearly supg[K07e % |w|] < M /5(w]. By the Schwarz inequality and a subsequent change of
variable the last displayed quantity is bounded by

1/2
s T1 (X [IH@P Hyx . s lul(a)da)
=12 6,€0;,
Since Hj, * Hj, (z) < 6%2(1 + §*/2|z[)~%, by Lemma 2.3, this concludes the proof of the

proposition. O

Proof of Proposition 4.6. We fix j < j, so that 221§ < 1/2. We define that 6 ~ @' if
0 €0;,0 c0;and 27713 < |0 — ¢'| <27776; this is the relevant range in (44).
Below we shall prove the estimate

aw | [ [ 2 TT TP Q% i S wiw) da]

1=1,2
A ) . 1/2
S0 00 T (3 100 e POty + wlo(2) 1)

i=1,2  n
for any 61,02 with 6, ~ 0. We first show why (49) implies the asserted estimate.
It is crucial to observe that for #; ~ 62 and any g1, gs the Fourier transform of the
product Tt‘sthj g1 TEQGM g is supported in

{€:277%2 < el <2770, (g, 0)| < 27VF )

here ¥ = @iig; Let 79 € C2°(R) be even and supported in [—213,213] so that ny(s) = 1

for |s| < 2!2 and let n; € C°(R) be supported in [2,128] so that n;(s) = 1 for s € [4, 64].
Consider the even Schwartz function ¥ = W/91.%2 defined by

W30102 (€) = 10(2% (€, 9))m1 (27€ ).
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Note that there is a constant C' (independent of j, 6, 63) so that
—1 '79 ,9 91’]
C— btz ¢ Sj,,,

forv=0,...,8,t=1,2.
From these considerations it follows that

/H (17 Q% fi)(a)w(x) da = Z/H (17 Q% £i]() w3024 P, _juo(w) da

i=1,2 lvj<8” i=1,2

and therefore, for any 601,02 with 6; ~ 03, (49) can be changed to

(50) ‘// H (75 Q) dm‘< H Z/@ez,jfl P u(z)d )1/2’

where . )
qu”gw(x) =270 WY Z ICgfé* sup |V % P,_jw|%(z ))l/q.
lv|<8 ves)?,

By the definition of B; we have

B TP fol(x) = > BITP QM f1, T Q2 fo) ()
f1~02

=Y @n) / 2315, (279 h) T (17 Q% fi)(x)dh
01~02 h i=1,2

Therefore (50) yields

‘//253‘[1}%1,1%](9;)‘“10(@@‘

112 66@ n

Z Z/‘Qaz,gfz )[2H; [s%pygﬁ,gw}(x) dx)m’

212 0;,€0; n

N

AN

97] ~ ]Cevj v

2§ 9§ and therefore

by the Schwarz inequality. Now, for |v| < 8, observe K
Sup U;’g () < 502 72](771)W]50w(x)

Moreover, by Lemma 4.4,

SN QY ()] S Hj < | £ () -

96@]' n

Hence, using the Schwarz inequality again, we get

’//123j[7}5f1,7}5]”2](x)6?w(x)d$‘

‘ 1/2
562_§2_2J(%_1)m3}§ /|fz )PHj Hj W lw( )dx)/

and since H; x H; < H; we obtain the asserted estimate.
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Proof of (49). We argue as in the proof of Proposition 4.5 and rely on Lemma 4.3. We let
I}, = [27%m, 272 (m + 1)] if this interval is a subset of [1,2] (otherwise I}, = ). Define
the index sets 27" as in the proof of Proposition 4.5 (with j instead of j,).

Then the right hand side of (49) is equal to

> Y [ Tmemehin swi§ e i
m (I1,l2,n1,n2) €A I j=1,2
and, by Lemma 4.3, this is estimated by

DD SR T ([ 1007t i) (i « i) o)
i=1,2

|ll m‘<1 "I’Ll n2|<1

lla—m|<1
_d__gicd 1/2
< @i [T (S [ 1 s 0« i)V )
1=1,2 ng I;
5 52_§2 q Z/‘Q&,]fl ’ ]C 27] ( 2;,(? ’w|q($))1/qd$>l/2;
1=1,2 n;

here we have used the Schwarz inequality and the bound

Z 1P g(@) S K57 % |l ()

which is a consequence of Lemma 4.4. We also have
1 1 1
[wl?(@)) " < (K5 Ko+ ol (@) 7 S (K55 + hwl(2)) s

2-3 " Moig
where the first estimate follows from Hélder’s inequality and the second from (18) and
the assumption 276 < 277. This completes the proof of (49) and thus the proposition is
established. 0

07j
Koz * (’sz

5. LP(L?) ESTIMATES FOR SOLUTIONS OF SCHRODINGER AND WAVE EQUATIONS

Proposition 5.1. Letd > 2 and p € ( (d+2),oo}, ord=1 and p =00, and let a € (0,0).

Let I denote a compact interval of time. Then for k > 1,

1/2 1 1 1
6V |(flwensra) | s 200 e, Aw) =d(5- ) - 5
I p P 2
Proof of Theorem 1.4. The result is an immediate consequence of Proposition 5.1 and the
case ¢ =2, r =1, v = p of Proposition A.3. O

Proof of Proposition 5.1. We may assume that 2% is large. Let ¢ be an even real-valued
function so that ¢(t) > ¢ > 0 for t € I and supp¢ C [—1/4,1/4]. Tt suffices to estimate
the LP(RY, L2(R)) norm of ¢(t)Uf Py f(x). For fixed x the L?(R) norm of this expression is
equal to

2771)1/2 /‘/ﬁb exp( ZtT)UtaPkf(x)dt)sz)l/Z

9(k+3)a

= ([, 0 = )Rl o)
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By a finite splitting we may replace the integral over [2(F=3)e 2(k+3)a] by an integral over
((2FT)e, (2M1T)) with T =~ 1. After changing variables 7 = (2¥Tr)® it suffices to show
that

[([ 17000 1 @rree - 071 ar) ) s 200-24,,
or, after scaling and setting § = (2F7")~¢
& ([ et e 0f)fan) | s s,
1 p

But as ¢ is even, ¢(671([¢|* — %)) = ¢(071B(¢,7) (1 — [¢%/r?)) where B(&,7) = r? =gz is
smooth for £ away from the origin, and nonvanishing. Thus Corollary 4.2 may be applied
and we get the LP inequality (52) for d > 2 and p > 2 4+ 4/d.

The case d = 1, p = oo is more straightforward; the estimate

2 ~ /
63 (e =t DF@ ) S 6
for T' = 1 follows from

ST F @M 10 = (L s+ o) xa(T] - DF] @) S IR, 0<o <6,

0<n<§—!

and integration in . The last displayed inequality however is a consequence of Lemma 4.4.
O

We finish by stating a global variant of the one-dimensional square function estimate
which does not use Sobolev spaces and which we will not use elsewhere in the paper.

Proposition 5.2. Letd =1, p € [2,00), a € (0,00), and let I be a compact interval. Then

I( /, |Uff\2dt)1/2HLp(R) S Flzow)-

Moreover

[(frozseat) ™| om < 191

Given the reduction in the localized case, in the proof of Proposition 5.1, the LP(L?)
estimates can be deduced from a regularized version of Rubio de Francia’s square func-
tion estimate [31] associated with arbitrary disjoint collection of intervals. The L*-BMO
estimate can be obtained from Sjélin’s proof [35] of that estimate. We omit the details.

6. AN LP(L?) ESTIMATE

We state the LP(LY) estimates alluded to in the introduction. We work with the norm

fulloqaray = | [ o) ™|

in LP(R%; L9(I)), with the usual modification lull o (noo(ry) = | supier [u( -, t)|llp if ¢ = o0

Lr(R4)

Theorem 6.1. Let a € (1,00) and let I be a compact interval of time. Then

a S 1 1 1
(54) HU fHLP(Lq(])) Sl e, Pl d<§ — Z;> _ 6

holds true in each of the following three cases:
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(i)d:1,4<p<oo,%<q§oo.

.. 2(d+3) 2(d+2) 2
(”) d Z 27 d+1 < p S d Y (d—‘,—l)p—pQ(d—i-Q) < q S 0.

(iii) d > 2, 22 < p < 00, 2 < ¢ < 0.

Remark. The statements (i) and (iii) also hold for 0 < a < 1.

Proof. The stated results for p < g < oo are in [29]. Consider the inequality

(55) sup2 757 [Ue [P S I Fls

el Lp(La(I)) ~
which holds for 2(d+3)/(d+1) <p<g<oo,d>2and4d<p<g<oo,d=1,by[29]. It
holds for g =2 if p=00,d=1and 2+4/d < p < o0 if d > 2, by Theorem 1.4. By complex

interpolation (55) also holds for d > 2, 25?_?) <p< Z(d%jm and % < % — dp# which is

equivalent with W% < q < 0. Moreover for d = 1 complex interpolation shows
that (55) holds for % <1- % (i.e. 1)2%’2 < ¢ < o). Finally we may combine the dyadic
pieces by using Proposition A.3 in the appendix. O

Remark. For a = 2, we obtain further improvements in [25], in particular in two dimensions
an LP(L*) bound for p > 16/5.

APPENDIX A. COMBINING FREQUENCY LOCALIZED PIECES

We state a variant of results by Fefferman and Stein [17] and Miyachi [26] which is
motivated by its application to prove Theorems 1.4 and 6.1. The approach extends and
somewhat simplifies the one in [29] (see also [33], [28] for related results). For later applica-
tions in [25] we formulate the results in slightly more generality than needed in this paper
(in particular here we just need the case p = v in Theorem A.1.

Let B be a Banach space with norm | - |3; in our application B = L9(I) for a com-
pact interval I. We consider convolution operators T, with £ € N, mapping Ll(]Rd) into
LY(R?,B), a space of B-valued functions. We define T}, by

Tyf(z) = hy * f(z) = / hi(z — ) f(y) dy.

where for each k we make, for simplicity, the a-priori assumption that hj € L'(R?, B) but
we do not assume a bound on these L! norms. We shall be interested in situations where,
for some a > 0, the part of the kernel hj, supported in |z| > C12%(=1) can be neglected. In
particular, this is true of U2 as defined in (3).

In what follows let p, € C*(R?) be such that

ok ()| + 27V pi ()| < 2%,

(56) Lk
supp p C {z : o] <277}

We define Ry, on B-valued functions g by

(57) Rug(x) = pr  g(x) = / o (W)g(z — ) dy.

In applications the operators Ry often arise from dyadic frequency decompositions, however
no cancellation condition on pj is needed in the following result.
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Theorem A.l. Let vg € (1,00), vo < po, 1/vg —1/pp = 1/v1 and a € (0,00). With T},
and Ry defined as above, let

(58) A= sup 250 Ty | oo o )
k>0
and, for 1/uvy +1/v) =1,
1/}
(59) B := sup 2kad/ro (/ [P () |5 dm) '
k>0 |2|>Cy 2k (a—1)

for some fized constant C1 = 1. Then for all p € (po,00) and r > 0, there exists C' =
C(po,p,?”, 007017d) SO that

(60)
1 B 1-po/ o1 1 1 1
| (o 2trmireeily) || <ca(i+2) (X AE) T, S = -
k>0 P k>0 vop Vo  Po
Moreover,
(61) | (S imemsts) || <c(a+B)sw i,
o BMO k>0

Before we begin with the proof we state a preliminary lemma.

Lemma A.2. Define
@) =2 [ T )ndy

|z—y|<2F
and, with the notation as in (58) and (59), let

(62) A(p) = Cf(l/po_l/p)A L Apo/pgl=po/p

Then, for pg < p < oo,
- 1 1 1 1
ITaf oy S 2P A@)flle ———=———.
v p Yo Do

Proof. We interpolate between p = py and p = oo. Since A(py) = A the inequality is
immediate for p = pp from assumption (58).

To prove the inequality for p = oo we choose a grid QF of cubes Q of sidelength ok(a—1)
so that the cubes in QF have disjoint interior and ZQGQ’; xo = 1 almost everywhere. For

each Q € D.]; let @* be the cube with same center as Q and sidelength 1OdC’12k(a_1). It
then suffices to show that for each cube O € Q'j

(63) Xo(@)|Tuf(@)s S (CF™ A+ B) || fllos

for every . Given Q we split f = bg + go where bg = fxo- and go = fxga\g+- For bo
we apply Holder’s inequality and use assumption (58), so that

[ Trbo(@)|s S 28/™ ||| Thbola]|,, S 25470 A2~ Fed/mo g,
< Agkd/pog—hedfpo| g /vo=1 vy ) < O(d)OY T A £l

since |Q*| ~ C(2k(a—1)d,
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For go we note that when z € Q, w ¢ Q* and |z — 2| < 27%, then |z — w| > Oy 21,
so we can use (59) to estimate

Tago ()]s < 2 /

lo—z|<2—k
S Bllflles
Combining the two estimates, we get (63). O

/ (= — w)]s|f (w)] dw d
|z—w|>Cy2k(a=1)

Proof of Theorem A.1. We may assume r < 1 and that the summation in k is extended
over a finite set. We proceed as in [28] and, by the Fefferman-Stein theorem [17] on the
#-maximal operator and the inequality | |ulf — |v|z| < |u — v| we get

H (; \Qkad/kakak’%) v Hp

< H sup Z2kadr/p>[ }[ |ReTh fr(y) — BTk fr(2)]5 dZdy‘
QaeQ e Jo

LP/T dz)

Let x — Q(x) depend measurably on z, so that for each x the cube Q(z) is centered at x
and has sidelength in [26(®), 2L()+1) 1t suffices to estimate the LP norm of

1/r
Sttt A RTifly) - BTl dedy)
A Q(z) JQ(z)
We let F' = {fx}r>0 and estimate the displayed expression by Z?:1 S, F(x) where

1/r
61 F(z) = ( Qkadr/p)[ )[ |Re Ty fr(y) — RiTh fr(2) | d= dy) ,
k+L(z (z)

1/r
S () = Z 2olo | IRl dy)
ket L(z)>0 Q(z)
k(a—1)<L(z)

1/r
S3F(z) = ( > Qkadr/p)( | R T fro(y) |5 dy) -
ket L(z)>0 Q(x)

k(a—1)>L(x)

Set || Fllenvy = (g 1fxll) /7 for p < o0 and [|F||ge(or) = supy, || fillo, - For p > po we will
bound the LP norms of &;F by CA(p)||F||gw(rv). In the proofs we shall use the notation

wi(x) = dex{‘x|§\/32—k+3}(x)'
L? bound for &1(F). Using the estimate (56) for Vpy we see that for y, z € Q(z)
|RiTio fr(y) — RuTifro(z)]|s S 200tk /wk(fv — )| Ty fro(u) | 3du..
Using the embedding ¢P/" < (> we estimate

Sur@) Ssu | 30 2 [ane - )T fu(0) ]
k+L<0

(Z > 2k+L/Wk x — )2, fi (u )’Bdu} )

0<k<—-L
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and therefore, with the change of summation variable n = —L — k and Minkowski’s in-
equality
1/r
IS1F ], = (S]],
1/
<Y n( Z H2 (L+n)d / o-(Lmad/pi | g dyH ) b
n>0 L>—n ly|<C2t4n

By Lemma A.2 this can be estimated by
Ap) Y2 (X fneallt) S AN Floso
n>0 L>—n
LP bound for Go(F). The LP bound for G F follows by interpolating the inequalities
(64) 162 F [lpy < AHdFHEPO(L“O)a
|82F oo < (C17° A+ B) | Flle () -

For the LP° bound, we sum a geometric series, using p > po, to estimate

1/r T
f E : 2kadr/P| Ry T, fr(y )|93dy> < (M[sup 2k“dr/p0|Rkafk|%](x))l/
k+L(z)>0 w0
k(a—1)<L(z)

and by the LP°/" boundedness of the Hardy-Littlewood operator we get

162F Iy S || SUPQk“dT/p°|Rkafk|BH =l 2ug2kad/po|Rkafk|BHpo
>

po/T

IS (Z H2kad/p0‘Rkafk"B’ §3> 1/po < (Z HQkad/p0|kak|$‘ ZE)l/po
k>0

k>0
S AllF|lero(zv0) 5

For the L> bound, we fix 7, Q@ = Q(x), L = L(x) and let yq = yg() be the center of Q.
By Holder’s inequality and (56),

62F(35) SJ ( 2kadr/p X /wk —Z ‘kak ‘ dz dy]r>l/r.

k+L>0
k(a—1)<L

Let Q* be the 012!°d dilate of Q with respect to yg. We may estimate the last displayed
expression by £ 4 £far where

r 1/r
Enear = ( 2’“‘“”/]" }[/wk = 2)| Tl fexa+](2)] 5 dZdy} ) ’
k+L>0
k(a—1)<L
r\ 1/r
er—( 3 2’““01’”/?[)[ /wk(y—z)|Tk[kaRd\Q*](Z)\g azdy| )"
k+L>0 Q
k(a—1)<L
and it suffices to check that
(65) gnear S Cf/poA”FHZ"O(LUl)’
(66) E™ S B Fllgso(11) -
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To prove (65) we apply Holder’s inequality, use pg < p and assumption (58):

near adr Cd r/poy 1/7
s (22 (1 [ el e) ™)

g Cil/PO Slép 2kad/p0|Q*‘71/p0 HTk[kaQ*]

L0 (B)

V0 v1

< ACY™ sup |Q* |7V fixa- ||, S ACTP sup [Q* |7V QY o= | frxg-
k k

S ACYP||F|gseony

To prove (66) we use assumption (59). Note that if y € Q, |y — 2| < Vd27**3 (and
k(a—1) < L), w € R*\ Q*, then |z — w| > €12~ D, Thus

]Q/Wk(y - Z)|Tk[fk’X]Rd\Q*](Z)‘3 dz dy

< )[ / oy — 2) / (= — w) ) i (w) | d= dy
Q |z—w|>Cy 2k(a—1)

< 27k94/P0 B| || goo (on)
and (66) follows.

LP bound for &3(F). Let By be the ball of radius 10d2% centered at the origin. We may
estimate

1/r
163(F)|, < HSUP XBe [ > QkGdT/lekam%} H
? L |BLl k+L>0 p/r
k(a—1)>L

sup XBr [Q(H*L)“d”p|Rn7LTn—Lfn*L|%}

(X
n>0 L<(1—a—1)n|BL‘

)

by Minkowski’s inequality. By Holder’s inequality on each ball By, we see that the last
expression is dominated by

1/
(Z H sup XBy, % 2(”*L)ad/p|Rn—LTn—Lfn—L|B T‘) 7"
n>0 L<(l—a=Y)n |BL| p
Now for n > 0 we have xp, * wn—r(7) S xB,,,(z). Thus we get
- 1/r
s, < (D I18s.F1)
n>0

where

G3nF(z)= sup 2 Ldyp,  x20"Dadlei o f s

L<(l—a=1)n
It thus suffices to prove
Cnd(L -1

(67) 185 Fllp S 27502 AD) 1 Flln vy -

We shall use an analytic interpolation argument and for this it is necessary to linearize
the operator. For any bounded linear functional A € B* we denote by (v, A) the action of
Aonv € B. Let (z,y) = ur(z,y) be any measurable function with values in B*, so that
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llur|loo < 1. After replacing a sup in L by an ¢P norm and interchanging an integral and a
summation it then suffices to bound

Z HQ(n_L)ad/p2_Ld / XBri1 (y)<Tn—Lfn—L( c—=y),ur(- 7y)>dyHZ> v

L<(l—a=1)n

by the right hand side of (67), with a constant uniform in the choices of the uy. In what
follows we fix such a choice.
Define an analytic family

Gi o F (x) = 20— L)ad(1=2)/pog—Ld / X811 W Tt far(x — y), ur (2, y) )dy.

We then show that for pg < p < oo

@) (3 19 FIE)"T 2D AG | F e
L<(l—a=1)n
(1= Re(2)) (-, 1) + Re (2) () —) = (&, 1)

vy P vl 00 U P

and the required LP estimate follows if we let z = (1—pg/p). By Stein’s theorem on analytic
families of operators it suffices to show (68) for Re (z) =0, p = po and Re (z) =1, p = oc.
First, for p = pg, z = vy we bound

/ /
(X o r) " s (0E 2T )

L<(1—a=1)n L<(l—a=1)n
1/
N A( Z [ fn—L] ZE) " S Al Fgro(Lvo)
L<n

which is (68) for Re(z) = 0.
Now let p = oo, Re(z) = 1. The required bound for Q}jﬁfv follows if we can show that
for any fixed zg and fixed L < (1 —a~)n

(69) 27y | T fai|g(@0) S 2770 (CP At B)||F g 1) -

Let Q* be a cube of sidelength 20dC;2("~L)(@=1) centered at zg; recall the inequality
(n — L)(a — 1) > L. We dominate the left hand side of (69) by C (£ + £far)  where

gylllear — /Q_LdXBL+1 (:L‘O — Z)‘Tn—L[fn—LXQ*](Z)’B dZ,

&iar = /2LdXBL+1 (x[) - Z) ‘TnfL[fn*LXRd\Q*](Z) }B i

By Holder’s inequality

1/
5;L1ear 5 (Q_Ld/‘Tn—L[fTL—LXQ*](Z)‘%O dz) Po

< Ag-(n=Dad/pog=Ldfp| g 5o

vo
and since || fo—rX0*||v < Cf/pOQ("fL)(afl)d/poan—LHvl this yields

guear < CY/P A2~ /PO|| F|goo oy -
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Next observe that if x9 — z € Bryq and y € R4 \ Q* then |z —y| > C'12(”_L)(“_1) and
thus

ghr < [ a7ty (wg—2) hn—1.(2 = y)|3|fu-(y)| dy dz
L+1 |z—y|>Cy2(n—L)(a—1)

S 2R B f
Since by assumption aL < (a — 1)n we get
gl < BoTPO|| F||poo (o1 -

The estimates for €2 and £f2" yield (69). This finishes the estimation of &3, (F) and
thus concludes the proof of the theorem.
[l

Applications. We show how for the semigroups U one can use Theorem A.l to prove
global estimates from frequency localized versions.
Let ¢ € C*°(R) be supported in (1/4,4) and not identically zero. Define s¢; = sqer by

(70) see(vipr) i=d(y =) +a

which, for a large range of parameters, turns out to be a critical for LY — LP(R?; L4(I))
estimates; in particular s¢(p;p,q) = a(g —d_ f) Let

(71) Lo(vip,q) == sup Ree || (R 1|D|)HLUHLP(RC‘;LQ[*I/ZUZ])'

Clearly this definition depends on ¢, however the finiteness of I'y(v; p, q) is independent of
the particular ¢ used.

Proposition A.3. Let vy, po,qo € [1,00], p € (po,0), ¢ > qo, 7 € (0,00), vo < po, and
let T be a compact interval. Suppose that T',(vo; po,qo) is finite and let s¢r be as in (70).
Assume that 1/vg — 1/pg = 1/v —1/p. Then:

(i)
H (S ([invescopa)™)"| s (S 2imme) ™ s =satvina)
) Lp Rd) ) cr ) ) )
k>0 k>0
and
1/q
(l q _ .
(73) |(froescnma) ™| o S Wl m. 5= salvima).
(ii} If 1/U0 — 1/p() = 1/U1 then
o | (S ( fimescora)™)” D2 PS5 = sl o0,)
k BMO(Rd) p kJ llvg = Scr(V1, yq) -
(iii) Ift — w(t) is smooth and compactly supported then
(75) | U || oy S WFllBe,, meys 5= ser(vip,q).
If f € By, (RY) with s = sex(v;p, 00) then the function t — Uf(x,t) is continuous locally
n B‘ll/qr( ), for almost every x € R, and we have the mazimal inequality

(76) | sup Tt o ey S W lBy, ey, s =al§ =) +d(; — ).
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We note that the constants implicit in (72) and (75) depend on p, q, qo, I, a,d, w@.
For the proof of Proposition A.3 we need a standard imbedding result.

Lemma A.4. Let v,p € [1,00] and 1 < gy < q¢ < 0o. Then
La(vip, @) S Talvip, qo)-
Proof. Let h be in C!(—1/2,1/2). By the fundamental theorem of calculus,

1/2
Ih(£)]% < |A(r)]® + go / )

for all t,7 € (—1/2,1/2). Integrating in 7 € (—1/2,1/2) and applying Hélder’s inequality
yields

sup  [A()]|™ < [[2]|% 4 qol| A lIE A llg
—1/2<t<1/2

where the LY norms are on (—1/2,1/2). Now, as |||z < ||h||% ©[|h]|E, we have

1,1 1 1

lI +(I
Iy < 29 (llay + 40 Il ™ 113 ).

Setting Upf(x,t) := U[o(R™YD|)f](z,t), for fixed z we apply the displayed inequality
with A(t) = Urf(x,t), then integrate and apply Hélder’s inequality in z to get

1 L_;'_

1
Ul < 25 (Sl + a0 IefI S
Now by definition 8;U® = 1(—A)*/2U*, so that

et fll o (no0) + B~ N|OURf|| o(190) S Ta(v;p qo) RE=PD £,

and substituting these bounds into the displayed inequality implies the assertion. Il

1 1

HatuRfHLp 90 )

1
q
L0

Proof of Proposition A.3. We can reduce to the situation where I = [-1/2,1/2] or w €
C*((-1/2,1/2)), by a change of variables argument. By Lemma A.4 we may assume

q0 = ¢-

To prove (72) we apply Theorem A.1. Let p be a radial C°°(R?)-function which is
compactly supported in the ball of radius 1/2 centered at 0, with the property that p is
positive on supp x(| - |). Denote by Ry the operator of convolution with 2%¢p(2¥.). Let
Ly = ¢(27%|D|) where ¢ is chosen so that o(|-|)p = 1 on supp. x(|-]). Thus RkLkPk = P.

Now let B = LI[~1/2,1/2] and let Tpf(z,t) = 2" VU a)o~hala=0p, pap(a p).
Then the hypothesis that I',(vo; po, go) is finite implies

A = sup 25980 Ty || oo, oo () < 00
k>0

For fixed ¢ let hf be the convolution kernel for T} (at fixed time ¢); it can be written as
B () = 20 a)d(55—50) fka(%*%)zkd(%r)f / o([¢]) e @2 e g

An N-fold integration by parts yields

k:(a 1)d(a—%)2ka |ht( )‘ < CNQk(di)‘er’ ‘$| > 2((171)k+47 te [07 1]’
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and thus condition (59) is satisfied with C; = 2°. Thus, by Theorem A.1 we obtain the
inequality

() | (¥ W Tifellagsonsm) || 5 (S ha) ™
k>0

k>0
Notice that, in view of 1/vg — 1/pg = 1/v —1/p,
2kad/ka — kascr(v;nq)LkU_

Thus if we apply (77) with f, = 2k P, £ then (72) follows. The assertion (74) is
obtained in the same way.

We now need to show how to obtain (73) from (72). The right hand side in (72) is just
the B{ -norm of f. We also have for 1 < ¢,p < oo

@ | fiocora) ] < ([ [(Simecor) ),
0

k>

which we apply for G(x,t) = U f(x,t). For p = ¢ this is just a consequence of the standard
Littlewood-Paley inequality (after interchanging the x and the ¢ integral). By Calderén-
Zygmund theory the estimate also holds for 1 < p < ¢ (and is obtained by interpolation with
a weak-type (1,1) estimate for L9(¢?)-valued functions). If we dualize a similar reasoning
yields the case ¢ > p. Inequalities (72), (78) easily imply (73).

Now consider a standard inhomogeneous Littlewood-Paley decomposition {Py}32, on
LP(R?) so that Py, = Py for k > 0 and where Py localizes to frequencies with |¢| < 2. For
the estimation of PyU® standard multiplier arguments apply. We also need to consider a
similar inhomogeneous Littlewood-Paley decomposition in the ¢ variable, which we denote
by {£;}529. Then inequality (75) can be rewritten as

ST 1/p
o) < (;Qk( + v)pHpkapv(Rd)> ‘

We claim that there is a constant M for which

(79) H(gQj”r\\ﬁﬂwU“f]H’L«R))W’

(80)  ||£[@wUPrg < Oy min{27/N 27%N1 g, whenever |ka — j| > M,

] HLP(Lq)
so that for the essential terms k and j are coupled via |ka — j| < M. This would mean
that a ¢ derivative of order a could be traded with an x derivative of order ac, so that (79)
would follow from (77). Thus it remains to prove (80). Note that for & > 0, j > 0, the
convolution kernel of g — L;[wU%Pyg](-,t) can be written as

e [ =@ D@ e ) dsf 0 arag

and similar formulas hold if either £ = 0 or j = 0. One checks that if |ka — j| > 1 then
for £ and 7 in the support of the indicated cutoff functions the inequality ||{|* — 7| >
cmax{|¢|%, ||} holds. We perform N + d 4 1 integration by parts in s. For ¢ large, we
follow this by integrations by parts in 7. This easily yields (80).

The final assertions of the proposition are a consequence of the fact that for r < 1 the

space BY /a ,(R) is imbedded in the space of bounded continuous functions. O
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