IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS

SANGHYUK LEE KEITH M. ROGERS ANDREAS SEEGER

ABSTRACT. We prove a weighted norm inequality for the maximal Bochner—Riesz operator
and the associated square-function. This yields new LF(R?) bounds on classes of radial
Fourier multipliers for p > 2 4+ 4/d with d > 2, as well as space-time regularity results for
the wave and Schrodinger equations.

1. INTRODUCTION

Consider the Bochner-Riesz means R f of the Fourier integral, defined for Schwartz
functions f € S(R?) by

@ _ 1 ’6‘2 iy Y z,€)
RE1@) = g [ (1 ) Fl@eoue

where f(f) =[f (y)e~"%&dy. In connection with questions regarding almost everywhere
summability, and in analogy to classical Littlewood—Paley functions for Poisson-integrals,
Stein [35] introduced a square function defined by

Gof () = (/OOO (%Rgf(x)(ztdt)l/z.

One is interested in the inequality |G*f|, < ||f|lp, where A < B denotes A < C'B with
an unspecified constant independent of f. As t@t@(g) = 202 /13 (1 — \512/152)1—1?(5),
one can consider the LP problem as a question regarding the boundedness of a vector
valued singular integral operator involving Riesz means of order o — 1. It is known that
LP boundedness for 1 < p < 2 holds if and only if a > d(1/p — 1/2) + 1/2 (see [39], [20]),
however the problem is more interesting for the range p > 2 for which the condition o >
max{1/2,d(1/2 —1/p)} is known to be necessary and conjectured to be also sufficient. For
d = 1 many proofs of the conjecture are known, see for example [40]. The conjecture in
two dimensions was proven by Carbery [2]|, and partial results for p > 2gl_+11)’ d > 3, are
in [7], [31]. Here we improve on the range in dimensions d > 3.

Theorem 1.1. Let d > 2 and p € [2(#:[2), o0). Then

1 1
|6l Ul > d(5 ).
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As in the related work by the first author [22] our main tool will be Tao’s bilinear
estimate [41] for the adjoint of the Fourier restriction operator. The new square function
result implies the currently known sharp LP estimates for the maximal Bochner—Riesz
operator obtained by Carbery [2] and the first author [22]; however, as pointed out in [22],
somewhat weaker estimates are already enough to bound the maximal function. More
precisely, for a compact t-interval I C (0, 00), the estimate in [22] could be formulated as a
variational LP(Vy(I)) inequality for Riesz means of order A\ > Aqiy := d(1/2 — 1/p) — 1/2,
or a slightly better regularity result involving the Sobolev space L‘l1 Jate (I).

The LP-estimate for the square function is significant for various reasons. Firstly, it
yields regularity results for wave and Schrodinger operators which will be discussed below.
Secondly, for compact I C (0,00) it implies LP(V5(I)) or LP(L? J24e (I)) results for Bochner—
Riesz means of order A > Aqjt. Thirdly, the LP-result for G implies boundedness results
for maximal operators associated to more general classes of radial Fourier multipliers as
n [4], [12], and finally, an inequality by Carbery, Gasper and Trebels [5] relating radial
multipliers and G yields the following sharp LP — LP boundedness result of Hérmander-
Mikhlin type.

Corollary 1.2. Let d > 2 and p € (1, 2%:42)] U [2(d;r2),oo). Let ¢ be a nontrivial C'*

function compactly supported in (0,00). Then

sup [ F (| - DA, S swpllemit gy, o> d|- - 5|
Fes:|Ifllp<1 >0 p

Weighted inequalities. More information about G® can be obtained by considering an
L? weighted inequality which involves a “universal” maximal operator 20, acting on the
weights, and which is strong enough to imply the above LP estimates. We initially formu-
late such an inequality for thin pieces of the multiplier at a time. To fix notation, let ¢ be
a Schwartz function supported in (1/2,2) with the property that

(1) 6@ <1, v=0,...,d+2.

Let 0 < § < 1/2 and define the convolution operator Sy = Sf’¢ by

2) SPFE) = o(571 (1 - D)) Fe).

Assuming (1) we shall usually drop the superscript ¢, as our estimates will be understood
to be uniform in ¢.

Theorem 1.3. Let d > 2 and q € (1, di22) For 0 < § < 1/2, there are operators 2,
defined on LY+ L*°, so that the weighted norm inequality

N xzﬁwzn x 2-d/q z)[? w(x) dx
Q L] 1str@p e < #0 1pe)R w,se@) a

holds for all w € LY+ L and the weight operators satisfy:
(i) The mazximal operator defined by

4) W,w= sup 2W,sw
0<8<1/2

is of weak type (q,q) and bounded on L™ for ¢ < r < oo.
(ii) If q € [2, szrz)’ then the operators 20, s are bounded on L1, uniformly in §. Moreover

11
if ¢ € (1,2) then | W, sllra—rs S [log(%)]q 2,

~
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The precise definition of the operator 20,5 in (3) will be given in §2. We shall also
consider local versions of (3) with the t-integral extended over a dyadic interval and for
which the L? bounds of the corresponding weight operators are independent of § for all
qe (1, %)

For the square-function G* and the maximal Bochner—Riesz operator we obtain

Corollary 1.4. Let d > 2 and q € (1, dizz), and let 20, be as in (4). Then

a 2 2 i
5) | lems@ @ e s [15@F W@ s, o> 5.
Moreover,
(6) /Rd il;IO)‘Rf‘f(a:)Fw(x) dx g/\f(x)\22ﬂqw(a;) de, > d2;qq

The weighted inequalities are motivated by one of Stein’s problems in [37]. It was asked
whether the operator defining the weight on the right hand side of (3) could be chosen to
be a Nikodym maximal operator (see also Cérdoba [8] for a related question). This seems
currently unknown. For the range ¢ € (1, %], Christ [7] proved (3) with the operator

20, = (M|w|?)Y9 where M is the Hardy-Littlewood maximal operator. In two dimensions,
Carbery [3] proved (3), with a necessary loss of a power of log(1/¢), and with an operator
W3 in place of 2, such that W is bounded on L"(R?) for r € [2,4]. The extension of that
result with the operator bounded for r € [2, 00] was established by Carbery and the third
author [6].

To deduce inequality (5) one splits the multiplier into a part near the origin and a part
near the unit sphere. The part near the origin is dealt with by the standard weighted
norm inequality for singular integrals in [11]. One decomposes the part near the unit
sphere into smooth multipliers supported on thin annuli of width § = 277, applies Theorem
1.3 and sums a geometric series. The maximal inequality (6) follows from (5) by well-
known arguments in ([38, §VIL.5]) together with a weighted norm inequality for the Hardy—
Littlewood maximal function ([15]).

If we take ¢ = (p/2)" in (5) then by duality and an application of the Marcinkiewicz
interpolation theorem one obtains Theorem 1.1 for p > 2 + 4/d. Interpolation with an L2
inequality yields the result also for p = 2 4+ 4/d. Theorem 1.3 also implies a sharp result
for the square-functions generated by S? which is stated in Corollary 4.2 below.

Wave and Schrédinger operators. One can apply LP bounds for variants of the Bochner—
Riesz square-function to obtain regularity results for spherical means and solutions of the
wave and Schrodinger equations. This application is suggested by a theorem of Kaneko and
Sunouchi [21] relating G* to another square function which was introduced by Stein in his
study of spherical maximal operators (cf. [36]). Define the spherical mean of order 8 > 0

by
r(&2) 1 ly|*\ o1
AP x:72/ S(1-25) fa-ydy;
t f( ) Wd/zr(ﬂ) <t td 2 f( y) Y;
for smaller values of 3 the definition can be extended by analytic continuation. In [21] an
application of Plancherel’s theorem with respect to ¢ is used to show that G is pointwise
equivalent with a square function generated by spherical means, namely, for a > 0,

1/2

G fw)~( | T2 )| rar)
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for all Schwartz functions f. Here we shall not use this equivalence explicitly but prove
a closely related sharp LP(L?) regularity result for solutions of the wave and Schrédinger
equations with initial data in L? Sobolev spaces. In order to formulate a unifying result, for
a € (0,00), we let U f denote the solution to the initial value problem 29;u+(—A,)%?u = 0
with u(-,0) = f;

(7) Ui f = exp(ut(—A)*?) f.

The case a = 2 corresponds to the Schrodinger equation and the case a = 1 to a wave
equation.

Theorem 1.5. Letd > 2, p € (2(dj2) ,00), a € (0,00), and let I be compact time interval.
Then

® [(froerea) ), < um f=ai-5) -5

In fact we will prove a refinement of this for initial data in the Besov space BY, (which
contains L% for p > 2).

One can also consider the same regularity problem in the mixed norm space LP(L%(I))
with ¢ € (2,00]. For this range the analogy between the wave and Schrodinger equation
breaks down (and some endpoint versions of the deeper ‘local smoothing’ result for the wave
equation are currently available only in four and higher dimensions, ¢f. [19]). However, for
a € (0,1) U (1,00) and d > 2, one can deduce sharp BY, — LP(L(I)) estimates with
s =ad(1/2 —1/p) — a/q, in the range p € (24 4/d,o0). This follows from a combination
of Theorem 1.5 and the result in Appendix A. Moreover, one can, for a limited range of
q, obtain further estimates for p > 2+ 4/(d + 1) and d > 1, essentially by interpolation
with results in [28]; in dimensions d > 2 this currently requires the restriction a > 1. These
LP(L7)-estimates are stated in §6, and a further, more substantial improvement for d = 2
will be considered in [24].

This paper. In §2 we give the definitions of the weight operators and establish the bounds
which were asserted in Theorem 1.3. In §3 we prove some L? — LP estimates for radial
convolution operators and prepare for the proof of the weighted inequalities. These are
established in §4. In §5 we prove LP(L?) estimates for wave and Schrodinger equations and
in §6 we discuss some LP(L?) bounds for ¢ > 2. Appendix A contains auxiliary results on
combining inequalities for frequency localized operators.

Some notational references. To avoid unwieldy formulas we will sometimes shorten the no-
tation for products involving a complex conjugate and use, given two complex terms &; and
&5, the expression H*Z-:LQ[SZ-] = &&,. For convolution operators given by Fourier multipliers
a(€) we occasionally use the symbol notation a(D)f := F~'[af], where 71 denotes the
inverse Fourier transform. By P,, B, we denote dyadic frequency cutoff operators which
localize to frequencies of size ~ 2™, so that Pn];n = P,, see §2 for the precise definition.

2. DEFINITION AND BOUNDEDNESS OF THE WEIGHT OPERATORS

Definition of 20, s. We assume throughout this section that d > 2. The definition of
20, sw in (16) involves a suitably damped Nikodym maximal function and another (more
important) maximal function acting on functions with Fourier transform supported away
from the origin.



IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS 5

Let 0 < 6o < 1, let # be a unit vector in R? and let
R, ={y € R : [(y,0)| < t,ly — (y,0)0] < 1o}

The Nikodym maximal function associated to tubes with eccentricity d, < 1 is defined by

1
9) Ms,g(x) = sup sup-—j
fesd—1 t>0 |R507t| Rf

lg(z + y)|dy.

The definition of our second maximal operator is reminiscent of the “grand maximal
function” in the theory of Hardy spaces ([16]) as it involves the supremum over convolutions
with kernels in a suitably normalized and rescaled class of Schwartz functions; this is
necessary to exploit cancellations. We let N' > d + 3 be a large positive integer and let
S(N) be the set of all Schwartz functions v for which
(10) Il = max (1 + |2V ()] < 1.

la| <A
The number N will be fixed throughout the paper and constants in inequalities will depend
on N (one may want to choose N' = d + 3).
For j > 0 and 6 € S9! let g ; be the unique linear transformation defined by

Then detfy; = 27. Let 827 be the set of all U for which 277421 W (4 ;27" ) belongs to

S(N). Typical examples of functions in S%7 are L! normalized bump functions essentially
supported on a tube with long side in the direction of 6 and of length 2/~" and width
27", We define a maximal function which involves convolutions for ¥ in the classes Sz’]
and in our application it is crucial that these convolutions will be acting on functions with
cancellation, namely with frequency support in annuli. Let

M&Ig(x) = sup |¥xg()]

vesdi

and set, for 7 > 0,

) 9—Jd
11 K29 (z) .= :
(11) (@) (1—|—|€9_’]1.(7'x)|)d+1

For future reference note that
kdo—j(d+1) .
22 <K
1+ 2872w, 0)] + 26~ |2 — (2, 0)0])4+3 ~ 2
We use the dyadic frequency cutoff operator P, defined by

(13) Pof(&) = x(27"€) ()

where x € C* is nonnegative and supported in (5/8,15/8) so that Y, ., x(27%) = 1 for
all £ > 0. Set

(12) W@NS( (x) if Ues)?,.

. 0.5 0.5 1/q
(14) Wysso(e) = (supKGe s« [ ML Pl (a))
(15) Wg’(;g(x) := sup Wi&kg(x) .
keZ
Next, fix s € (1,¢) and define the maximal operator 20,5 by
(16)  Weew = > 27 G (MW jwl*) ' 4 5571 (M| Mo ssul*)*

1<22 <61
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where M is the Hardy-Littlewood maximal operator. We also recall from the statement of
Theorem 1.3 the definition Wyw = supgs5<1 /2 We,sw-

Boundedness. In the proofs we will frequently use a leadic frequency cutoff f’n which
reproduces P, and is similarly defined. That is to say, P, f (&) = x(27™¢ ])f(g) where X is
supported in (1/2,2) and has the property X(s) =1 for s € [5/8,15/8]. Then P,,P, = P,.

It is obvious that the operators W’ 0.0k Wq 5 M V35 are bounded on L*°. For the L1
boundedness we state

Proposition 2.1. (i) For 1 < q < oo, the operator Wg’&k satisfies

{2jq if 2<q< o

sup sup ||W wllg < 4
SRTIE~ 0G0 1< g <2

0,k JJw|lq<1

(ii) For 1 < q < oo, the operator Wgﬁ satisfies

.ﬂ )
{23 if 2<q¢< o

sup W) swlly S
o J(f_l)[log( ) /a-1/2 if 1<qg<2.

lwllg<1
Moreover for g = 1 the operator W{ s maps the Hardy space H L to L' with operator norm
< id- 1)[10g( )2,
(m) We also have the weak type (q,q) estimate
. d—2
{zﬂq if 2<q<o0

W <
o s Wl 5

Jun

2G4 )7 if l<g<2

The proposition implies statements (i) and (i1) of Theorem 1.3. Clearly the operators 20, 5
and 20, are bounded on L™ if ¢ < d. The L? bound for the first (main) term in (16) is
immediate from Proposition 2.1 since % - 2(% -1)<0iffg < %. For the second term
in (16) we use standard non-endpoint L4 bounds for the Nikodym maximal operator (see
8], [9], [1], [26]). Namely 90 s is bounded on L? with operator norm < C. (Vo) ~/a—=
if ¢ < 2 and operator norm < C.(v/9)~(¢=2)/4=¢ if ¢ > 2. The damping factor 6~ 1+ ig
enough to prove L? boundedness for ¢ < d+2. Using for example the results in [43] this
final estimate can be significantly improved but any such improvement seems currently to
have no impact on our result, as the main contribution to the weight operator comes from
the terms Wg’(;. g

Elementary convolution estimates. The following simple and standard convolution esti-
mates will be used many times in the paper.

Lemma 2.2. (i) Let H(z) = (1 + |z|)™ and let N > d. Then there is Cqn > 0 so that
for all z € RY

(17) sup sup /th(ty)H(x —sy)dy < CynH(z).
t>1 0<s<1

(ii) Let HA(z) = |det A|H(Ax). Then HA x HA(x) < CynHA(z) for all v € R%.

(iii) Let £ € N, let hq, he be kernels with

L+ ) [ha(@)] + Y [0%ha(2)| < H(x)
loo|=¢
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and assume that [ P(z)hi(z)dz =0 for all polynomials P of degree < { — 1. Let hi*(z) =
|det Alh;(Ax). Then fort > 1

th (t-) * hg' ()] < Canet "HA(2).

Proof. Let F; s(v) = [tH (ty)H (x — sy) dy then clearly Fyo(z) < H(z) and for |z| < 1 we
have F; 4(x) < < 1 so that the assertion holds for |z| < 1.
If |z] > 1 then sup|y<|qz/2 H(z — sy) < H(z) and supjgy 9, H(z — sy) < H(z), so that

[ eHE)HE - sy)dy S [HE HE) S H)
|syl¢[52l]]

for all t > 0.
Next, if [sy| ~ |z| then t?H (ty) ~ t¢H(tx/s). Letting By s(z) = {y : |sy — | < 2'} for
1 >0, we have | By 4(z)| < (2!/s)? and we may estimate (using N > d)

/ H(x — sy)t*H(ty) dy
jal/2<sy| <2a]

td N N‘x’ NZ/B 92— lNdygtd_NSN_d‘x’_NSH(x)
1>0 7 Bs(2)

sincet > 1, s <1 and |z| > 1.

(i) follows immediately by a change of variable. Similarly for (iii) we may reduce to the
case where A is the identity. Then one can use Taylor’s formula and the cancellation of A,
and (i), to estimate

1— Z 1
tehy(t-) * he(x)] ,S/ ((Eis/‘tdhl ty){y, V) ho(x — sy |dyds
0

<t sup /t H(ty)H(z — sy)dy <t *H(z).
0<s<1

For the kernels in (11), Lemma 2.2 yields the bound

(18) KP3 s K09 (1) < CaK09 (z), t>7.

Proof of Proposition 2.1. We shall use many times that HICf’jH;l < 1, uniformly in 6, 5, ¢.
Moreover,

(19) K@) ~k@), [9-dl<c2d, |j-jl<c, cl<yi<c,

where the 1mphclt constants in the equivalence depend only on C and the dimension. Next,
the class S5 is stable under small perturbation in the sense that given A > 0 there is a
constant C, depending only on A, d and the parameter A in the definition (10), so that

(20) UeSh — 0—1\1fes,§’3 if 0 —0] <A279, |j —j| <A, |n—n| <A

In what follows we let ©; be a maximal 2-7~4_geparated subset of S%!. Clearly
card(0;) < 27(4=1); moreover each § € S%! has distance < 277 to at least one € 6.
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Li-bounds for Wg sk We replace a sup in § € ©; by an ¢? norm and interchange a sum-
mation and integration to estimate for any fixed j, k

; 1/q
97
[ttt

1/
S0 // swp Kiis(y) swp MU Pejgla —y)|"dyda)

0€0); |6—-6]<2- |6—6]<2-
1/q
< (3 1ML Be o)
96@

For the last inequality we have used (19) and (20).
We now need a further decomposition. Let 79 be supported in (—1,1) so that ny(s) =1
for s € (—1/2,1/2) and let
(&) = mo (11227 H(&, )2 4[24 (¢ — (£.0)0)]).

9 k 97 ‘71{:
Js ’ij

For m > 0 define operators Q as follows. For m = 0 set

QU (¢) = PIIF p(e) = () F(¢)

and, for m > 1, set

WEHE) = (e — gt e ) Flo),

PR = (@m0 + 2 1) F©).

Then Y, 0.3k pOik is the identity; moreover 0.3k Py,_; =0 for m > j + 3. Using the
09k it is straightforward to derive the estimate
o(k—j)do—j

(14262, )] + 28 |2 — (x, 0)0]) 4+

cancellation of Q;

sup QU (a)| < 027"
vesy

from Lemma 2.2 and (12); in fact if ' > d + 3 in (10) one can also get a gain of higher
powers of 27, Now, for fixed k, j, 0

. 1/q . . 1/
(S 1M, solly) " S (S s | X @ituy s ritpsg||)
0cO, 9o, WESLT 0<m<j+3 a

21 < g—2m Poikp, g7}

e < Y en(X PRl

0§m§j+3 66®j

and the desired bound follows When we establish the estimate

(22) (Z\\Pﬁj’kpk—jguq) S max{2/ 7, 2T 2 gl 1< g < oo,
) q

with the usual modification for ¢ = oo. To prove (22) we notice that by interpolation we
only have to verify the cases q = 1,2,00. The cases ¢ = oo and ¢ = 1 are immediate
since the operators P, 0.k
norms and since card(0;) < 27(@=1. For ¢ = 2 we use Plancherel’s theorem. Write

and Pj,_; have convolution kernels with uniformly bounded !

.7-"[P > kPk ;9] = @ k.0,mg. Then the multiplier a; j g, is supported in
{&: CTRFIT < < 02V [(g,0)] < C2F ATy



IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS 9

Since O is a 2-7~d_geparated set we see that for fixed j, k,m every & € R? is contained in
no more than C42™+7(4=2) of the sets supp (a; 1 g.m), which implies the bound (22).

Li-bounds for W] We argue as above and now replace the sup in k € Z, § € ©; by an ¢4
norm. This ylelds

@ (s« i Pesol) | £ (30 3 14482, pecsall)
0€0;

A combination of (21) and (22) together with the use of the reproducing Littlewood-Paley
cutoff P,_; yields

(3 3 a2, mecse[)) ™
k 0cO, 4
Y 2—2m(z 3 |ypgij,kp,€_j13k_jw|]g)l/q

0<m<j+3 k 0€0;

—m(2—1 jd=2  ed_ ~ 1/q
S Y 2 ma(@ 203 Bsu|)
0<m<j+3 k

and for ¢ > 2 this is < 27(@=2)/4||4]|,.

Now consider the case ¢ < 2. By a standard linearization combined with an analytic
family argument the claimed L? estimates can be deduced from the Hardy-space estimate
and the already proven L? estimate. We omit the details of the interpolation argument.
For the Hardy-space estimate we need to prove an inequality for an L?-atom, i.e. an L?
function g, supported on a ball {z : |z| < p} with ||g,]l2 < p~%? and [ g, dz = 0. Tt suffices
to verify

. g
(24) V] 590011 S 277D [log (5)]"/2.
By the Schwarz inequality we have
W{ 59(x) S Wz s9(2)
and thus by the above L? estimates
. . cod (4 _

IV 590ll 11 (ei<2p) S P72V 5g0ll2 S 27271 %2 g, 15 S 200270,

On the complementary set we estimate

IV 590l p2 a2y S D IWE 51901111 10l 520) -
kel

From our previous bound for Wi Sk and the cancellation of the atom,
IV 90l S 27D 5901 S 277D min{1, 25 p}.
Now if ¥ € S, then by (12) with n =k — j, (18), and 2%§ < 1,
(2k§)doi(d-1)
2k+is " ,CQECJ (@) 3 (1 + 286|(z, 0)| + 272%6|z — (x,0)0])+1"

Thus a favorable estimate holds for 2¥p > §~1, namely

HW{,cS,kngL1(|z|z2p) < 27(d=1) (2kgp) 71

6,7
,C2k+J5

# ||(z) S Ky
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These estimates can be summed for 2F < ,0_1 and 28 > 61 ,0_1. For the intermediate terms
we use the L' bounds and the Schwarz inequality

Z ”kagp”l < 2d(d=1) Z Hﬁk—jgp”l

pmE<2k<(ps) =t pmE<2k<(ps) 1
e
S 2 D log(}) 1/2(2 1Pisanl?)”.
and by Minkowski’s integral inequality and the Littlewood-Paley theorem on H' we have

~ 1/2 ~ 1/2
(25) (Y 1Pial?) < || (X 1Pemignl?) |, < ollen S 1.
k k

Now collect the estimates and (24) is proved.

The weak type estimate. We observe the pointwise estimate

S‘éplcgk{m |Mk Pi- jalt < M% [SUP‘Mk’]ng igl’], 10 —-ol <27,

where M%7 is the maximal operator associated to tubes of eccentricity 277, with the long
side pointing in the direction #. For each (6,j), M%7 is a rescaled version of the Hardy—
Littlewood maximal function and therefore satisfies the standard weak-type (1,1) inequality
with a bound independent of 8 and j.

We use the continuous embedding ¢4(L%>°) C L?°°(£>°) (see e.g. Lemma 2.1 in [18]) and
dominate

|, 2om Wil 5 (32 05 ol s, )™
(26) S (X sk, sl 1)

0cO;

and for the last inequality we have used the uniform weak-type (1,1) bounds for the M%7
together with the identity ||[F?| ;1.0 = ||F||94. for the usual quasinorms.
We may dominate (26) by

1/
(> ZHW Pejol?)

0€0;

which for ¢ > 2 has already been estimated by 27(@=2)/q|| gllg- Thus the asserted estimate
follows in this range.
For 1 < ¢ < 2 we claim that

(X llsup M, P jol N 2G4 g
0cO;

This follows by complex interpolation from the estimate for ¢ = 2 already proved above
and an H' — ¢*(L'(¢*°)) bound. Again it suffices to consider an L?-atom g, supported on
a ball of radius p centered at the origin and we need to check

Z H Sup |M 'Pk—j9p| Hl S 2j(d_1)(1 +j)1/2‘
0€O);
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Now on the ball of radius 2p we use an L? estimate and the trivial estimation ’MZZ if | <
M%3(f) to obtain

Z H8111p|Mk ]Pk 9| HL1 (zl<2p) S < pil2 Z HSUP|Mk ]Pk 9| H2

0€0; 0€0;
1/2
< 3 (S > I
0cO;
1/2 o
Sﬂd/QZ(ZHPk_jng%) < PN g,y < 20D
0cO; k

For |z| > 2p we replace the sup in k by the sum. By standard L' estimates and using the
cancellation of the atom we have

07' . 9
HMkiij—jngl S ”Pk—jng1 S mln{2k Tp, 1}
and, using estimates of the kernels,

0 k=2 \=1 s ok j
HMkiij‘—ngHLI('m'ZQp) S (27%p) if 2%p>27.

Thus 29693_ 22%%[2]-722“ HMZ’EJ-P;.C_jngLl(MZ%) < 29(d=1) ‘Moreover, for the intermediate
terms,

Yo > IMI Pl 29V YT 1P—gl S 2P+ Y2,
0€0; 2k pe[27,2%7] 2k pe (27,224

by the argument in (25). We combine these estimates and the L! bound is proved. O

3. MULTIPLIERS AND THE BILINEAR ADJOINT RESTRICTION THEOREM

In this section we prove bilinear estimates for multiplier transformations, under suitable
separation conditions. The proofs rely on

Tao’s bilinear adjoint restriction theorem ([41], [23]). Let b > 1/2 and p > 2+ 4/d.
There exist &, > 0, N, € N and C, depending on b, p and d, that for all functions h defined
on Iy = [~b,b]%"" and satisfying

27 sup max |05 h <&

& we[—b,b]d~ 1|a<1No| )

the following holds: For all pairs of functions (Fy, Fy) with dist(supp (F}),supp (Fz)) > 1/2
and F; € L2([-b,b]971),

(28) /‘ / w)exp (2 <x',w>+md(|w|2/2+h(w)))dw‘ )2/p C H HFZHH

1=1,2 i=1,2
We will need to consider families of hypersurfaces which depend on a parameter s and
which, for fixed s, are small perturbations of the paraboloids &; = [¢/|?/2, where ¢ =
(&1,...,&4—-1)- These lead to “elliptic” phase-functions as considered in [42], [41].

Definition. We denote by Ell(b, e, N,) the class of functions (£, s) — (&', s) defined on
[—b,b] x (—1,1) which are of the form

v, s) =

12
‘52‘ — s+ h(£,7 8)7
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with

29 sup max |05 ;h(w,s)| <e.

(29) P 105 )
se(—1,1) =L2

We may and shall assume in what follows that N, is large, say N, > 10d.
We now consider Fourier multipliers depending on a parameter s € (—1, 1), supported
in a tubular neighborhood of (¢/,v(¢’, s)).

Lemma 3.1. Let p>2+4/d, b > 1/2. There are ¢, N, depending on d, b, and p, so that
the following holds for all 65 < 1/2.

Let v € Ell(b,e, No). For |s| < 1 and i = 1,2, let (§,s) — a;(&,s) be supported on
(=b,b)4"1 x (—1,1) and satisfy the conditions

(308“) |ai(£73)| é 17

(30Db) ai(§,8) =0 if |&a—(E,5)] >0,

and

(30c) (€,€2) €suppay(+,s), (£,&) €suppaz(-,s) = |&—¢|>1.

Then, for all pairs of L? functions (f1, f2),

1/2
(31) I/..1 [T o sias], , < TT 1l
Proof. For fixed s we introduce coordinates

=T )= (7 8) +7)

in the Fourier integral. We then need to estimate the LP/2 norm of

1/2 ' .
/ [ / / [ FT (€ e €€t gei dﬂds
12 =15 [—b,b]d

here we denote by (ﬁi,, 7%) the variables in the two different copies of R%. By Minkowski’s
integral inequality the LP/2 norm is dominated by

/// /‘ H / [a; 3] (D3 (€7, 79)erl(a € +aar(es d§]

[~60,00]2x[~1,1 =12 pja-t

2/
) Pdsdridr?,

By the bilinear adjoint restriction theorem and the boundedness of a; this is estimated by

/// IT ( / bﬁb]dfl\ﬁ'(Fs( ' r \ds“)  ds drdr?.

1=1,2

[—00,00]2 X[—§,§

We apply the Schwarz inequality in the s variable. Then for fixed 7!, 72, we change variables

(€',8) — € = (¢,4(¢,5) + 7°), using that dsv(¢',s) = 1+ O(g). Thus the last displayed
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expression is estimated by

// I1 ( / 7€ (€ s) + 7 |dsd§> drtar?

[—60.60]2 1= 12 [—b,b]d—1x[~1,1]

I 1fillzdrtar® < 62 T Ifille-

[—60,80]2 1=1,2 1=1,2

0

In what follows we will use the notation H*i:m[&-] = &,& for products involving a
complex conjugate.

Proposition 3.2. Let g € [1, M) and b > 1/2. There are e, N, depending on d, b and q,
so that the following holds for all §, < 1/2.

Let v € Ell(b,e,N,), 0o < 1/2 and, for |s| < 1, i = 1,2, let a;(-,s) be multipliers
supported in (—b,b)" "t x (—1,1) and satisfy the conditions

(32a) 02ai(€, )| <651, Jal <d+2,

(32b) ai(§,8) =0 if |&g—~(E,8)] = o,

and

(32¢) (€,€4) €suppai(-,s), (€,&) €suppas(-,s) = |¢ —€|>1.
Then

‘/Rd/m H [ai(D, s) fi(x)]w (Jf)dxds‘

1/2 =
1] we —y)[? Va2
= w0 /’f’ / 1+50\yy)<d+1>qdy> dz) "

i=1,2

Proof. We dyadically decompose the kernel of the convolution operators. Let pg be a C°(R)
function supported on (—1,1) and equal to one on [~1/2,1/2] and define, for € R?,

®o() = po(dolzl),  @j(x) = po(27700lz]) — po(2'holal), j = 1.
Then the {tIDj}‘?iO form a radial partition of unity. We thus need to bound the sum

‘/Rd /11//22 /ai(D_nivs)fi($)i\)ji(77i)d?]i]’w($) dxds‘.
=12

By symmetry considerations it suffices to consider the terms with 0 < j; < jo. The desired
estimate then follows if we can show that

(34) ‘/Rd /11//22 /ai(D —ni,s)fi(a:)cﬁji(ni) dni] dsw(z) dw‘ <

/g  \1/2
20—j2L q
izt T (fuaer([ e sppa) )

1=1,2

J1,J220

for 0 < j1 < jo, L < d+ 2. We shall first verify this inequality for L = 0 and then provide
the modification for L = d + 2.
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We now form a grid Q(j2) of dyadic cubes of sidelength 272551, For every Q € Q(jo) let
Q" be the double cube with same center as ). By the support properties of the kernels,
and j; < jo, we have

/ai(D - ni73)[fiXRd\Q*]( )(/IS (772) dn; =0, ifre@, Q¢ Q(]2)7 =12

Thus the left hand side of (34) is equal to

Gs) | X / [ " [ [ @D~ s) g £ ). ) i s ()

QeQ 12212

We use the formula m(D — n)f = Mod,m(D)[Mod_, f] where Mod,g(z) = g(z)e"®". In
order to obtain (34) for L = 0 (which is efficient for jo = 0) we use Holder’s inequality to
estimate (35) by

1/2
(0 [[ Bt ( [T [estDeomod_ybo-fil] | lwoxelydn'are.
QGQ( 1/2,29 2 g
Now
1/2
H/ a, (D, s)Mod_,;i [XQ*f,]} ds y
1/2 .=

L I ]

—1/27%,212

1/2
= /_1/2 HZLL a;i(D, s)Mod_,;: [xq fi] q ds

By our assumption on ¢ we have ¢’ = p/2 for some p > 2 + 4/d and therefore we can use
Lemma 3.1 to bound the last displayed expression by

&2 H [ fixqrll2 -

i=1,2

Since the L' norms of EI;jl are O(1), uniformly in J,, we have

(35) £ 02 Y Ilfixer [wxallg
QEN(j2)
9 9 1/2
SETL (Y e Blwxell)

=12 QeN(j2)

% H </ IAle </y|S02j2601 (@ +y)|qdy)1/qu)l/2

1=1,2

which yields (34) for L = 0.

We now turn to the case jo > 0 where we need to improve the above estimate by a factor
of C(L)2772L for L < d+ 2. We expand the convolution [ as(¢ —n,s)®j,(n)dn by a Taylor
expansion about 7 = 0. Since ®;, vanishes in a neighborhood of the origin the integrals
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i (TJJ-Z (n)P(n)dn are zero for any polynomial P. Thus only the integral remainder term in
the Taylor expansion survives and we obtain

R (] )1 /.
aal15) 28506 = [ V2T [@00-n. Ve als - on.s)indo.

We repeat the above argument in which we now have to bound

///!@ﬁ ) dn' |85, (r2) dn® Z/m

QeQ(j

1/2
(/1/2 (D =1, 8)[xg-hl(@){(—n2, V)Faa(D — o1, 5)[xq- fol () ds| da do dn'* dn?

in place of (35). In the estimate we may replace (—n?, V)* with (772)0‘8?, for any multiindex
a with |a| = L. As above we continue with Holder’s inequality, and this time Lemma 3.1
and the differentiability assumptions on as yield for |o| =

1/2
/ H/1/2 (D, s XQ*MOd_,ﬂfl]((? az(D, S)Mod_m] [XQ fg ds” do < (52 L H ”szQ*”2'
1=1,2

The loss of 65% in the previous formula is (more than) mitigated by

/ 1B, (1) (2B, () d! di® < 256, o] =

Thus the above argument yields (34) for jo > 0. d

4. PROOF OF THE WEIGHTED INEQUALITY

In this section we prove inequality (3) of Theorem 1.3. We mainly focus on a local
inequality (with ¢-interval [1,2]) which for later application we formulate for slightly more
general multipliers. Instead of S we consider operators S defined by

S2F(€) = (57 (1 - ¥)B(e. 1) Fle)

where ¢ is as in (1), § is a nonvanishing C* function on the set of (£,¢) with 1/2 <t < 5/2
and 1/2 < |¢] < 4. Of course 3(£,t) =1 in Theorem 1.3.

Theorem 4.1. Let d > 2 and q € [1, %) Then, for 0 < 4§ < 1/2,

e az2ﬁwx T 2-d/q z)|? Ww(z) dx
(37 L[ st r@pS w@yde s 8 | (@) wala)a

with

Wuw(x) = Z _2](__1)MOW]60U)( )+ 55 Mo M zw(x).
1<22i <51
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We now show that Theorem 4.1 (with § = 1) implies assertion (3) of Theorem 1.3. Let
Wiw(x) = Ww(27%-)](2%z). By (37) and rescaling we see that

L] 1str@PS uie ds

—2//@ S Pef(o) L () do

kEZ i=—2

<52 d/qz Z/ / |Pk+lf ‘ Wiw(x dZE@

keZ i=—2
Sﬁ%m//ﬂﬂm%m@mmﬂwwww
Rd J1 k

and the last inequality is a consequence of Coifman’s improvement of the Cérdoba—Fefferman
weighted norm inequality for singular integrals (see for example [17, p. 417]). Now
M (supy, [Wiw|*)Y* (z) < 2, sw, by Minkowski’s inequality (cf. (16)).

By a duality argument (using the boundedness results of Proposition 2.1 and the Marcinkiewicz
interpolation theorem) Theorem 4.1 implies the following sharp LP results.

Corollary 4.2. Let d > 2 and p € (=5~ (d+2) oo). Then, for 0 < § < 1/2,
t _q(l_1
([ 1sts@P®)™| s s-*t-dun,,

Moreover if B=1 and S is as in (2) then

[([" 1str@p) ™) s 8 4Disl,,

The remainder of this section is devoted to the proof of Theorem 4.1.

Preliminary considerations. We begin with a rescaled variant of Proposition 3.2. Such
rescaling arguments have been used in [42], [41], [22] and elsewhere. In what follows fix a
function ¢ € C*°(R?) supported in {y : |y| < 1/8} and define a convolution operator with
homogeneous multiplier by

(38) QU f=¢(2 (g -9
In order to reduce estimates to Proposition 3.2 by rescaling we will need to localize all

multipliers to a narrow sector {¢ : |% —u| < &1} where u is a unit vector and £; is a small
constant.

Lemma 4.3. Given C > 1 there are small £1,e9 € (0,1/8) depending on q, d and C and
the function 3 so that the following statement holds for C277 < &1 and 246 < 5.

Let 1) be supported in a ball of radius €1 contained in {£ : 1/4 < |£] < 4} such that
10%Y]loo < 1 for |a] < d+2, let 61,05 € ST be such that 27771 < |6 — O3] < C277, let
to € [1,2] and J be an interval of length 2=27=2 containing to. Then

| [ | $iQ"u(D) 1) STQP (D) ) § i)
22]5 1-d/q H /|f2 23,5 |W|q(l‘))l/qd1’> 1/2 ‘

i=1,2




IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS 17

Proof. Set 9 = &IZ; and eg = (0,...,0,1). Take Ry to be a rotation satisfying Ryeq = ¥

and let it act on functions by Ryf(y) = f(Ryy). Let A;f(y) = f(Ajy), where Ajy =
(271, ..., 2yq_1,—2%y4). Finally we set Dy, f(y) = f(toy) and, as before, the modulation
Mod,, is defined by Mod,g(x) = g(x)e®®.
For fixed §,j and i = 1,2, the multiplier for SPQ%71)(D) is given by
2 .
ma,(€.1) = v(©)s(57 (1 - E)8(6, )¢ (2(F - ).

Let Zy(n) = toRy(eq + A_;n) and t(s) = to(1 +27%s). A rescaled multiplier depending on
the parameter s = 2% (t; 't — 1) € [~1/2,1/2] is defined by

My, (n, 8) := mqg,(E9(n), t(s))
= (671 (1 L) B(20(0), () ) € (27 Ro (255720 — R516:]) 0 (Eo(m).

Now compute

1—

leat+ Ajnl® _ 51 (3(1 +27% 7 s) g — []?/2 — 7732‘23"1)
(1+27%s)2 (1+272%5)2

) /12
(39) = 9% (o a0 290y ),

where r; is a quadratic polynomial in 1 with coefficients uniformly bounded in s, j. More-

over the supports of the functions ¢ (2jR19 [% - Ry 19,-]), 1 = 1,2, are uniformly
separated and these functions have derivatives with bounds uniform in j.

Now let b = 10dC, and set M = 1+ 37, -, maxj<p max|s<; |057;(n, s)|, for the er-
ror terms 7; in (39). Let € be as in Proposition 3.2, and choose &1 small compared to

(2d)~1(e/M)/?. By the assumed separation property we have

S QD) fLSQ" (D) f, =0, 277 > dey.
For the relevant complementary range we have 272/ M < ¢ so that the functions (1, s)
In'1?/2 — s +27%r;(1),s) belong to Ell(b,e, N,). Since 3 is smooth and satisfies an in-
equality 2e9 < |B(€,t)] < (2e9)7t for 1/4 < [€] < 4, the formula (39) allows us to apply
Proposition 3.2 with a;(D,s) = My, (D, s)(1 4+ 2" %5)~Y2 and 6, = (2e9)102% < 1/2.
We obtain

/ s
\/Rd/ll;lll Mo (D, ) fila (o) de — 2

1/2
< (2%6)? /\f 2(2% )~ U1 500 )dx) :

1=1,2

where

B §d|w(z —y)|? 1/q
Vs, wi@) = </ a +6o!y\)(d+1)qdy> ‘

Now, with ¢ = to(1 4+ 27%s), we have mg, (¢,t) = My, (A;(Ry 'ty "¢ — eq), s), so that

S2Q%I4(D) fi(x) = Dy Ry Mod,, A_; My, (D, s)gi(x) with g; = A;Mod_.,RyD;. ;.
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This leads to
[ TS un)s@)F wie ds
5T 3=1,2
ds

P 23‘//1/2 H (D1 Ry Mode, A Mo, (D, )gi(e) 157~ () da

1/2
< 92 (% 5)2 / i) P(228) 9Dy, Ry Ay Vs (AR Dy )] () i
i=1,2

. 1/2
< 92j(1=d/q) §2—d/q H /‘fz 2Jt 5 ¥ lwlf(z )) Mda >

i=1,2

917 1 —J
The assertion now follows from ,C2Jt (@) ~ ICzjg( x) since to € [1,2] and |9 — 6;| < 277 for

1=1,2. ]

A version of the following lemma is originally due to Carleson (unpublished); slightly
different forms can be found in [10], [29] and [33]. For the sake of completeness we include
the proof.

Lemma 4.4. Let A be an invertible linear transformation and A’ its transpose. Suppose
that {my}xen have disjoint supports. Then for s > 0 and almost every x € R?

tNT 1/2 det(A™1) 1/2
(Z‘}— [my(A"-) f1(z)| ) SC'Sl]iPHmkH@(/WU(x—y)|2dy) .

Proof. We can assume that my = 0 for all but finitely many k. F~[mg(AL-)f](z) =

F~myf(A-)](A™1x) we may use a change of variable to reduce to the case where A is the
identity transformation. Also, using an analytic interpolation argument, we may assume
that s € NU {0}.

Let g, = F*[my]. Then Y, \f—l[mkf](x)f = SUP|la| 0 g, <1 | 2o @k gk * (2 )|%. Now,

for each fixed a € ¢*(Z%), we apply the Schwarz inequality in the convolution integral and
then Plancherel’s theorem to obtain

‘Zakgk*f <Hzakmk‘

Thus, we are done as for s € NU {0},
[ S, < 3 [ S awntml,

|o|<s
by the disjointness of the supports. O

= y)P , \1P
2 )

2
, S llallze Sup [E 7P

Some reductions. We remark that it suffices to prove Theorem 4.1 only for very small
values of ¢, as by straightforward estimation

L [1sts@rs wwar 57 [ 15w st e

for a suitable power C' > 0, and clearly Mw < 9 sw. In particular we may assume that
0 is small compared to the constant €5 in Lemma 4.3.
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We may replace S¢ by
(40) ) = ¥(D)S}

where 1 is as in Lemma 4.3 (smooth and supported in a ball of radius 7). In view of the
invariance properties of the weight operators one can use a partition of unity to deduce the
weighted inequality (37) from the corresponding result for T7.

We now prepare for an application of Lemma 4.3 and decompose on the frequency side
the product Fy F for suitable Fj (initially F; = T S fi). We let x, to be a radial C° function
Xo(w) = 1 for |w| < 25 and so that supp x. is contained in {w : |w| < 2% + 1}, moreover set,

X1(w) = Xo(w) — Xo(2w).
We also let j, = jo(d) denote the integer with

V0/eg <2790 < 24/8/eq

where €2 € (0,1) is as in Lemma 4.3.
Define bilinear forms for pairs of Schwartz functions by

Bo[F, B2)(@) = 5w / / Xo (2% (€ = m) 1 (€) Fy(—n)e €~ dedn,
(41)
BIIF Ful(0) = i [ [ @6 i@ Fa(-me 1) dedy
Then one easily verifies the decomp081t10n
F\Fy =B, [Fy, F] + Z BI[Fy, Fy).
J<jo
Later, in cases where the supports of the Fourier transforms of F; and F, are separated we

wish to dispense with the frequency cutoff ®;({ —n) and replace B, or B; by a product.
This will be accomplished by using the identities

(2m) B, [y, Fo(x) = 27709%,(277° ) » [FL Fy) (),
(2m) B [Fy, Fo)(x) = 27991 (277 - ) [FLFY) ()

which follow from the Fourier inversion formula (and the assumption that y, is radial).
The desired weighted norm inequality (37) follows from the following two propositions,
applied for fi; = fo = f. The proof of the first one is rather straightforward.

(42)

Proposition 4.5.

[ w0 o] 55 T ( [ o [ Ttnanae)”

i=1,2

More substantial (and relying on §3) is
Proposition 4.6. Let q € [1, %) Then, for j < jo,

‘//1251[7}51“1,%](:1:)%10(@@‘

. 1/2
< 82U llmgg/lfz )PH, o« W Sw( )d:r> ”

where Hj(x) = 2794(1 4 279|z|) =41
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We now introduce some basic decompositions. As in the definition (38) let ¢ € C°(R?)
be supported in {y : [y[ < 1/8}, now with the additional assumption that ((y) = 1 for

lyl <1/9. Let ¢ € C>®(R%) be supported in {y : |y| < 1/7} so that C(y) =1 for |y| < 1/8;
hence (¢ = ¢. Let ¢ be a smooth function supported in [—9/8,9/8] and equal to 1/2 on
[—7/8,7/8] such that

ji:‘ﬁ(‘ _

nez

We let ©; be a maximal 277 4_geparated set of S¢~! and define for n € Z, | € Z, operators
via the Fourier transform by

(5 —0)
Yoo, (221 (F —0)
FIPP (€)= (2 (F — 0)e(27 (¢ — ) F(©);

moreover, with Q%7 as in (38) set

FIQUIF1(€) = p(2]€] — n) f(€),

QM =% QMQ

so that

nf =Y 1% =3 S N1 P,
€0, 0€6; neZ I
for both cases j < jo and j = j,.

Note that the multipliers for Q?’j and Q%7 are contained in a sector of width 277
around 6. The multiplier for b7 is contained in a c277 ball centered around = with
|Z| = 277n + O(277). The multiplier for PIG’] is contained in a plate with (d — 1) sides of
length O(277) and a short side of length O(272%/), the long sides being perpendicular to 6 .
Note that for 272/m € [1,2]

(43) z‘?@e,jQ%jPle,j ?é 0 for some t € [(m _ 1)2—2j’ (m + 1)2_2‘]‘]’
= Im—1| <1, [27¥—-27n| <277,

We also notice that, from the localization and separation properties of the cutoff functions
Xo(27°(§ — 1)) and x1(2/ (£ —n)) in (41),
Bo(T7 Q% g, TPQYig) #0 —> dist(,0') < C277°,

(44) S , ,
BiTPQ% g, TP Q% ig) #0 — 27913 < dist(9,6') < 27976,

Proof of Proposition 4.5. We first observe by a stralghpforward integration by parts
that for ¢ € [1,2] the convolution kernel associated to T)Q%7° is dominated by

d+1

07]0 0,]0
O 010,00+ 02 — () ~ 2o ()~ Koo @)

On the right hand side we may also replace 6 by any 0 with |0 — 5] < 27J°. For more
compact notation we write

Ko = K572 ().

2—Jo
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Now for |61 — 02| < 277° and each t € [1,2], we have

‘/ [T e gt de] 5 [ [ [0 o @) lutoles

(45 0 1/7;:12 1/2

/’CO“JO |gl )|w($)|d3§‘) § /|gz |2,C0“j° |?,U|( )dy) :
1=1,2

1,2

here we used ||[K%7¢||; = O(1) and applied the Schwarz inequality twice.
By Lemma 4.4

(16) Do IBIE f)? S K | f )

l

Now let I35 = [272°m, 27 %°(m+1)]. It will be implicit in all m-summations that I7; C [1,2].
In what follows 2" will be an index set consisting of (I1,l2,n1,m2) with [l; —m| < 1,
|272e]; — 27 3°n]<2 Jo for i = 1,2. Then

> [ [ I me nw e al

01,02€0; i=1,2
61— | <C2 30
3 o Jo 0 dt
Y s % [ ITmee e s i
01,02€0; (l1,l27n1,n2 i=1,2
|91 92‘<02 Jo eA™

Jo

' /
5 2_2]0 Z Z Z H /‘P ’Li.]OQGz,]O ( )‘2 ICGMJO * ‘w‘( ) )1 2;

01,02€05, ™ (I1,la,n1,n2) i=1,2
|61 —6s|<C277° €%

here we have applied (45) and carried out the ¢ integration. We now notice that [ny—mns| < 1,
Iy — lo| S 1 for (I3,le,n1,n2) € A7 and that for fixed (11,12, m1,n2) there are only O(1)
integers m for which (I1,l2,n1,n2) € A7, Hence, by various applications of the Schwarz
inequality and then by (46) the last displayed quantity is controlled by

—2 I < 3 Zz/wzm)@e“yo 2)[2 K%  fw(z) d ) 1/2

1= 12 66@]0 i

(47) <27 2Jo H Z Z/‘QGZ,JO ‘2 JCOisdo y jOisdo % |wl(z) dy) 1/2

= 12 GEGJO ng

where, by Lemma 2.2, we may replace %o kaCei’j° with JCOisde
By Lemma 4.4 we have, with H;_ (z) = 277°4(1 + 277 |z|)~4-1

DD QWS H x| P (@)
0c®;, n
so that we may estimate the term (47) by

. 1/2
(48) 2% T] ([ 15 Hy xsupl? « o) dz)
,2

=1
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Now by the definition of B,, (42) and translation invariance

BT f1, T fol(w) = Y B[TP QM f1, TP Q020 fi) (x)
01,02€0,
|61 —02]|<C277°
1 . . * .
_ —Jod> —Jo 0 )0i,Jo .
- Y o / 273 (2 9oh) [ 129 Q" i)
91,9266j0 i=1,2
‘91—92‘§027j°

where 75, f(z) = f(x — h). We combine this identity with the previous estimate and the
obvious inequality [277°?%,(277°-)| < H;, to obtain

‘ //12 ‘Bo[Tt‘Sflym](x)% w(z) dm‘

2 * .
N /H'o(h)\// > 11 [ﬂéQei’]"Thfi](x)%w(:n) dm‘dh
L g,00c0;, =12
|01—62|<C27 0

S [ T] ([ 1o = 0P Hy, ouplc? < ful)(@) o)

i=1,2

/2
dh .

Clearly supy[K07° * |w|] < M /5lw]. By the Schwarz inequality and a subsequent change of
variable the last displayed quantity is bounded by

1/2
i [] (X [1@l t s i «mglul(w)de)
=12 6,€0;,
Since Hj, * Hj,(z) S 6¥2(1 + 6*/2|z[)~9~1, by Lemma 2.2, this concludes the proof of the

proposition. ]

Proof of Proposition 4.6. We fix j < jo so that 227§ < 1/2. We define that 6 ~ @' if
0 €0;,0 ¢c0;and 27713 < |0 — 0| <27776; this is the relevant range in (44).
Below we shall prove the estimate

w) | [ [ T wene)® wwa

1=1,2
_d__gid_ . s 1/2
S T (X [ 100 @O « (@) Vrde)

i=1,2 n

for any 61,0y with 6, ~ 0. We first show why (49) implies the asserted estimate.
It is crucial to observe that for #; ~ 62 and any g1, gs the Fourier transform of the

product Tf@el Jg1 TP Q92:4 gy is supported in
{€:2772 < g <2790, (¢, 0)] < 2712

here ¥ = @iiz;. Let 9 € C°(R) be even and supported in [—2'3,2'3] so that 7g(s) = 1
for |s| < 2!% and let 1, € C°(R) be supported in [2,128] so that 1;(s) = 1 for s € [4,64].

Consider the even Schwartz function ¥ = W391.%2 defined by

WioP2 (€) = g (27 (€, 9))m (2 [€]).
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Note that there is a constant C' (independent of j,0;,63) so that
—1y,7,01,0 0i,3
C™pro2 ¢ Sj_f,

forv=0,...,8,i=12.
From these considerations it follows that

/H (T2 Q% f,)(x)w(x) dw = Z/H (T2 Q% f,)(x) W0 %25 P, _jw(x) da

i=1,2 lv|<8” i=1,2

and therefore, for any 61,02 with 61 ~ 03, (49) can be changed to

(50) ‘// H Tégem dgj‘< H Z/‘Qez,jfl ’ M w(w)d )1/27

1=1,2
where
Upgw(a) = 8*7 827G 37 (K sup W Ppjuf?(a) "
v|<s ves)?;
By the definition of B; we have
BT f1, T fol(x) = > BT QM f1, T Q2 o) (x)
01~62
= (27T)_d/2 51277 h) H*m‘SQG“%ﬂ](z)dh
601~05 h i=1,2

Therefore (50) yields
‘//2Bj[ﬂ5fl7m]($)ﬂw(x)dx‘
/H LY Z/!QG’]JC DR (a;)dx)l/2

=12 6;,€0; n

Z Z/\Qg’]fz )[2H; * [SI;pUi’gw](a:) dx) 1/2,

212 0;€0; n

AN

AN

07] ~ IC07] v

67j
ol oivs and therefore supy U, 5w (z) <

~

by the Schwarz inequality. Now, for |v| < 8, observe K
542 _2](7_1))/\/]5010( ). Moreover, by Lemma 4.4,

DD QN f@)P S Hyx | fP(x).

Hence, using the Schwarz inequality again, we get
2 T L dt
[ ] B TR S i) daf
1

| 1/2
< 6299 ¥ igs. /Ifz P Hy  Hyx Wi Guw(a) da)
IS i= ’2

and since H; x H; < H; we obtain the asserted estimate.
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Proof of (49). We argue as in the proof of Proposition 4.5 and rely on Lemma 4.3. We let
I, = [27%m,27% (m+1) if this interval is a subset of [1,2] (otherwise I}, = 0). Define the
index sets 27" as in the proof of Proposition 4.5 (with j instead of jo).

Then the right hand side of (49) is equal to

DI / / [T 179 Q QU P a5 i)
m - (l1,l2,n1,n2)€AT Im =12
and, by Lemma 4.3, this is estimated by

S Y % i ([ se P e )
1=1,2

m [y —m|§1 [n1—ne2|<1

[lo—m|<1
2-¢ 9= 2i( 0;, 0, 1 1/2
< ) 3 ( ZZ/‘P JQG@,] | (K:2J§ ‘w‘q(x)) /qu)
1=1,2 n; l;
2—* —2J 0 0 j 0 _] 1/q 1/2
<6 IT (X [ 1Q% i) [Py + (s = wlo()) )
1=1,2 n;
here we have used the Schwarz inequality and
g, 0,
Z\P] )1 S K52, + gl ()
which is a consequence of Lemma 4.4. We also have
j 1 1 1
Ko7, 5 (g [w| ()T S (5, Kol () 7 < (Ko = ol () 7,

where the first estimate follows from Holder’s inequality and the second from (18) and
the assumption 27§ < 277. This completes the proof of (49) and thus the proposition is
established. 0

5. LP(L?) ESTIMATES FOR SOLUTIONS OF SCHRODINGER AND WAVE EQUATIONS

Proposition 5.1. Let d > 2 and p € ( (d+2),oo], ord=1 and p = o0, and let a € (0,00).
Let I denote a compact interval of time. Then for k > 1,

1/2 1 1 1

a 2 < okaX(p) _ I T

o) ([ werara) T s 200 s, 20 =a(-1) -5
Proof of Theorem 1.5. The result is an immediate consequence of Proposition 5.1 and the
case ¢ = 2, r = 1 of Proposition A.3. O

Proof of Proposition 5.1. We may assume that 2F is large. Let ¢ be an even real-valued
function so that ¢(t) > ¢ > 0 for t € I and supp¢ C [—1/4,1/4]. Tt suffices to estimate
the LP(RY, L2(R)) norm of ¢(t)Uf Py f(x). For fixed  the L?(R) norm of this expression is
equal to

27T1)1/2 /‘/qb exp(—ut7)Ui' Py f (2 dt‘ d7>

2(k+3)a

= ([, [0 = pF e o)
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By a finite splitting we may replace the integral over [2(F=3)2 2(k+3)a] by an integral over
(2FT)e, (2F+1T)*) with T = 1. After changing variables 7 = (28T7)® it suffices to show
that

I / F ol - 12— @ rnmne - D7) ar) | s 2wy,
or, after scaling and setting § = (2F7")~¢
& ([ e -t o)) | < s,

But as ¢ is even, (5 (|¢]* — %)) = ¢(07'18(&, ) (1 — [€]*/r?)) where (¢, ) = 2% is
smooth for £ away from the origin, and nonvanishing. Thus Corollary 4.2 may be applied
and we get the LP inequality (52) for d > 2 and p > 2 4+ 4/d.

The case d = 1, p = oo is more straightforward; the estimate

2 .
63 ([ e = pa - DFl @) £ 0
1
for T ~ 1 follows from
ST FE @M 0= (Lo + o) xa(T] - DF @) S IR, 0<o <6,
0<n<g§—1

and integration in . The last displayed inequality however is a consequence of Lemma 4.4.
0

We finish by stating a global variant of the one-dimensional square function estimate
which does not use Sobolev spaces and which we will not use elsewhere in the paper.

Proposition 5.2. Letd =1, p € [2,00), a € (0,00), and let I be a compact interval. Then

I(f[1oes2a)”™],, S 15l

H</I ’Utaf’2 dt)l/ZHBMO(R) < Hf”LOO(R)‘

Given the reduction in the localized case, in the proof of Proposition 5.1, the LP(L?)
estimates can be deduced from a regularized version of Rubio de Francia’s square function
estimate [30] associated to arbitrary disjoint collection of intervals. The L>°-BM O estimate
can be obtained from Sjolin’s proof [34] of that estimate. We omit the details.

Moreover

6. AN LP(L?) ESTIMATE

We state the LP(LY) estimates alluded to in the introduction. We work with the norm

lull o (La(ry) —H /!u \th ‘

in LP(R%; L9(I)), with the usual modification |[u||pr(zo(r)) = || supses [u(-, )|l if ¢ = o0

Lr(R4)

Theorem 6.1. Let a € (1,00) and let I be a compact interval of time. Then

. s 1 1y 1
(54) 10 lgazaay < Wi 2 =d(5-7) ~ 4

holds true in each of the following three cases:
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(i)d=1,4<p< o0, 25 <q< o0,

g 2(d+3) 2(d+2) 2
(i) d =2, == <p < =7~ (d+1)p—p2(d+2) <q <00,

(iii) d > 2, 22 < p < 00, 2 < ¢ < 0.

Remark. The statements (i) and (iii) also hold for 0 < a < 1.

Proof. The stated results for p < g < oo are in [28]. Consider the inequality

55 o k559 ||ue[p, <

(55) sup 1T P ooy S I llee

which holds for 2(d+3)/(d+1)<p<g<oo,d>2and4<p<qg<oo,d=1, by [28]. It
holds for g =2ifp=o00,d=1and 2+4/d < p < oo if d > 2, by Theorem 1.5. By complex
interpolation (55) also holds for d > 2, 2(67:13 ) < p< ﬂdfjm and % < di21 - % which is
equivalent with W% < q < 00. Moreover for d = 1 complex interpolation shows
that (55) holds for % <1- % (i.e. 1727”2 < q¢ < o). Finally we may combine the dyadic
pieces by using Proposition A.3 in the appendix. O

Remark. In two space dimensions, for a = 2, this result is further improved in [24] to
include an LP(L*) bound for p > 16/5.

APPENDIX A. COMBINING FREQUENCY LOCALIZED PIECES

We state a variant of results by Fefferman and Stein [16] and Miyachi [25] which is
motivated by its application to prove Theorems 1.5 and 6.1. The approach extends and
somewhat simplifies the one in [28] (see also [32], [27] for related results).

Let B be a Banach space with norm | - |3; in our application B = L%(I) for a com-
pact interval I. We consider convolution operators T}, with k£ € N, mapping Ll(Rd) into
L'(R%, B), a space of B-valued functions. We define T}, by

Tyf () = hy * f(z) = / hie — ) f(v) dy.

where for each k we make, for simplicity, the a-priori assumption that hj € L'(R?, B) but
we do not assume a bound on these L! norms. We shall be interested in situations where,
for some a > 0, the part of the kernel hy, supported in |z| > C12%(=1) can be neglected. In
particular, this is true of U as defined in (7).

In what follows let p, € C1(R%) be such that
(56) i ()| + 27F |V py ()] < 2%,
supppr C {w : |z <277}

We define Ry, on B-valued functions g by

(57) Rrg(x) = prp x g(x) = / pr(v)g(x —y) dy.

In applications the operators Ry, often arise from dyadic frequency decompositions, however
no cancelation condition on pi is needed in the following result.

Theorem A.1. Let py € (1,00) and a € (0,00). With Ty, and Ry, defined as above, let

(58) Alpo) = sup 20| T oo — oo ()
>



IMPROVED BOUNDS FOR STEIN’S SQUARE FUNCTIONS 27

and

(59) B(pog) := sup 2kad/po / |y ()| pda
k>0 |z|>Cy2k(a=1)

for some fized constant Cy > 1. Then for all p € (po,00) and r > 0, there exists C =
C(p07p7 T, CO7 Cl; d, E) so that

1r B(po)\ 1—po/p 1/p

kadr/p r H < p .
©60) | @%2 ReTifils) | < CAGo)(1+ 00) (kzwnfknp)
Moreover,
61 Reifil) <C(A B
(61) | (,;0' $Tifils) ||y < C(AWO) + B(po) sup il

Before we begin with the proof we state a preliminary Lemma.
Lemma A.2. Define
B =2 [ T ady
|z—y|<27k

and with the notation as in (58) and (59) let
(62) Alp.po) = C{7 71 Apo) + Alpo )P Blpo) 007

Then, for pg < p < oo,
T f Il o (my S 275992 Alp, po) || £ l,-

Proof. We interpolate between p = pg and p = oo. Since A(pg, po) = A(pp) the inequality
is immediate for p = py from assumption (58).

To prove the inequality for p = oo we choose a grid QF of cubes Q of sidelength ok(a—1)
so that the cubes in QF have disjoint interior and EQEQ]; Xo = 1 almost everywhere. For

each O € Q’; let @* be the cube with same center as Q and sidelength 10dC’12k(“_1). It
then suffices to show that for each cube Q € QF

(63) Xo(@)|Tef (@)|z S (CF7° Alpo) + B(po)) || fll<

for every z. Given Q we split f = bg + go where bg = fxg- and gg = fxga\g-- For bo
we apply Holder’s inequality and use assumption (58), so that
[ Tibo(@)|z S 2570 ||| Tibol s, S 2470 A(po) 2~ /™ |[bg |y,
< A(po)2F o2 ke QR fllog < C)CY™ Alpo) |1l

~

since |Q*| ~ C¢f2k(a—1)d,
For ggo we note that when = € Q, w ¢ Q* and |z — 2| < 27%, then |z — w| > C 2k,
so we can use (59) to estimate

Trgo ()| 5 Sgkd/ / \hi(z — w)|s|f(w)| dw dz
le—z|<2=F J]|z—w|>C 2k @=1)

< B(po) 1 flloe-

Combining the two estimates, we get (63). O
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Proof of Theorem A.1. We may assume r < 1 and that the summation in k is extended
over a finite set. We proceed as in [27] and, by the Fefferman-Stein theorem [16] on the
#-maximal operator and the inequality | |u|y — |v|3| < |u — v|z we get

(= perrmanss) ™|,

N H sup ZQkadr/p)(Q ){2|Rkafk( ) — RiThe fr(z )|BdZdyH

Q:xeQ k Lr/7(d

Let z — Q(x) depend measurably on z, so that for each = the cube Q(x) is centered at x
and has sidelength in [28(®) 2L®)+1) Tt suffices to estimate the LP norm of

kadr/p - 1/r
(32 )[ )[ BT fily) — BaTifi(2) [ dzdy)
k Qz) JQ(z)
We let F' = {f1,}r>0 and estimate the displayed expression by S2_ &;F(z) where

1/r
61 F(x) = < Qkadr/pf )[ |Ri Ty fr(y) — RiTh fr(2)|3 dz dy) :
k+L(z Q(x)

1/r
&P () = ( Z gt [ Rnld)
k+L(z)>0 Q@)

k(a—1)<L(x)

1/r
&3 F(z) = < > Zk“d’"/px R T fro(y) |5 dy) :
k+L(z)>0 Q=)
k(a—1)>L(x)

Set | Flly = |1 Fll o awry = (g 1 fellp) '/ for p < 0o and [|F|le = supy, || filloo. For p > po
we will bound the LP norms of &;F by CA(p,po)||F||p- In the proofs we shall use the
notation

LP bound for &1(F). Using the estimate (56) for Vpy we see that for y,z € Q(z)

ReTkfu(y) — ReTifa(2)|n < 21+ / (@ — ) T fuo(w) | el

Using the embedding of /7/7 € (> we estimate

GlF T < sup Z 2k+L/wk 2kad/kafk( )lgdu]r
k+L<0
r/
<Z [ e 0T o))
0<k<-L
and therefore, with the change of summation variable n = —L — k and Minkowski’s in-
equality
r|1/r
1811}, = [[[S.E) ||,

<22_ ( Z HQ (L+n)d / 2—(L+n)ad/p’T_L_nf_L_n( ’deH >1/p

n>0 L>—n lyl<C2ttn
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By Lemma A.2 this can be estimated by

Aw.o) Y2 (2 Weomall) " S A o)1

n>0 L>—n

L? bound for G9(F). The LP bound for &2 F follows by interpolating the inequalities
162y < Apo) I Fllpo »

182F |0 S (Alpo) + B(po)) || Fl|oo-

For the LP° bound, we sum a geometric series, using p > pg, to estimate
1/r
f 2ol B\ Ry Ty i (y) gy ) S (M [sup 29/ | BTy fliy) (2) "
Q(x) k>0

k+L(x )>0
(a-1)<L()

(64)

and by the LP9/" boundedness of the Hardy-Littlewood operator we get

162F Iy < || Supzkadr/polekak\BH = SUP?kad/po!Rkafk!BH

po/T

1/
S<2H2kad/p°\Rkafk!B|Zg) " (ZHQkad/pO’kak’B‘ > APo) [ Flpo -
k>0

k>0

For the L> bound, we fix 7, Q@ = Q(x), L = L(x) and let yq = yg() be the center of Q.
By Holder’s inequality and (56),

sF@ < ( Y 2MWPX/Lk—wuwk (@) pzay) )"

k+L>0
k(a—1)<L

Let Q* be the C12'9¢ dilate of @ with respect to yg. We may estimate the last displayed
expression by " + £far where

gnear _ < Z 2kadT/P[fQ/wk(y—z)‘Tk[kaQ*](Z”%dzdy]r>1/r’

k+L>0
k(a—1)<L
r\ 1/7
gar _ < Z 2kadr/p[f /Wk(y—Z)‘Tk[kaRd\Q*](Z)‘.BdZdy:| ) ,
k+L>0 Q@
k(a—1)<L
and it suffices to check that
(65) grear S O™ Apo)||F oo
(66) E™ S B(po) | Fllso -

To prove (65) we apply Holder’s inequality, use po < p and assumption (58):

ghear 5 (szadr/p ’Q* /‘Tk kaQ |p0d2’)7“/p0)1/r

k
< C«f/po Sl]ip okad/po Q* |—1/po HTk [fexo-]

)

< Apo)Cye stp Q%177 || frxor < A(po)CVP°||F oo -

LPo(B) ~
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To prove (66) we use assumption (59). Note that if y € Q, |y — 2| < Vd27*+3 (and
E(a—1) < L), w € R\ Q*, then |z — w| > 12D, Thus

){2 / iy — )| Tyl fixmao](2)| dz dy

< )( / wnly — 2) / ez — )8l filoodew d= dy
Q |z—w|>C42k(a=1)
< 9Had/m B (o) | F

and (66) follows.

L? bound for G3(F). Let By be the ball of radius 10d2” centered at the origin. We may
estimate

1/r
S=(F < H XBrL, 2kadr/p R.T r H
H 3( )Hpr\/ Slll/p |BL| *[ kgo | k k)fk:|3:| p/r
k(a—1)>L

5 H sup X5y * 2<n_L)adr/p|Rn—LTn—Lfn—L|T
<n§>:0 L<(l—a=1)n |BL| [ B]

)

by Minkowski’s inequality. By Holder’s inequality on each ball B; we see that the last
expression is dominated by

r\ 1/r
(Z H sup DL, 2 =L)ad/P\ R T r faerl® ) :
n>0  L<(l-a=YHn |BL| p
Now for n > 0 we have xp, * wn—r(z) < XB,,,. Thus we get
. 1/r
s, < (D 18 F1)
n>0
where
Gy nF(x) = sup 2_LdXBL+1 * 2("_L)“d/p]Tn_Lfn_L\g.
L<(l—a=1)n
It thus suffices to prove
_nd(L -1
(67) 1850 Fllp S 27" "0 ™2 A, po) | Fll,

We shall use an analytic interpolation argument and for this it is necessary to linearize
the operator. For any bounded linear functional A € B* we denote by (v, A) the action of
Aonwv € B. Let (z,y) — ur(x,y) be any measurable function with values in B*, so that
|lurllco < 1. After replacing a sup in L by an ¢? norm and interchanging an integral and a
summation it then suffices to bound

3 HZ(n_L)ad/‘DQ_Ld/XBL+1(y)<Tn—Lfn—L(' —y),UL(wy)>dyHZ>

L<(l—a=1)n

1/p

by the right hand side of (67), with a constant uniform in the choices of the ur. In what
follows we fix such a choice.
Define an analytic family

gz’nF(gj) = 2(n—L)ad(1—z)/PO 2—Ld / XBris (y)<Tn—Lfn—L($ o y)’ ur, ($’ y)>dy
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We then show that for pg < p < oo
1/p Cnd(L_1 1 —Re(z) 1
) (X NGaFIE) " s S TP AG ) Il =<
L<(1—a—Y)n po p

and the required LP estimate follows if we let z = (1—pg/p). By Stein’s theorem on analytic
families of operators it suffices to show (68) for Re (z) =0, p = pp and Re (z) =1, p = 0.
First, for p = pg, z = vy we bound

( Z Hg Lo | ) /po S( Z 2= LadHTn Lfn— LHLPO('B> "

L<(l—a—Y)n L<(l=a=Y)n
Awo) (D -l ) < Apo)|IFlpo
L<n

which is (68) for Re (z) = 0.
Now let p = oo, Re(z) = 1. The required bound for QE;W follows if we can show that
for any fixed zg and fixed L < (1 —a™1)n

(69) 2_LdXBL+1 * |Tn—Lfn—L‘3(x0) 5 2—nd/p0 (Cf/pOA(pO) + B(pO))”F”oo .

Let Q* be a cube of sidelength 20dC;2"~L)(@=1) centered at xg; recall the inequality
(n — L)(a — 1) > L. We dominate the left hand side of (69) by C(£2% 4 £far) | where

(S}rllear — /2_LdXBL+1 ($0 — Z)‘Tn—L[fn—LXQ*](z)‘B dZ,

g = / 2B, (w0 = 2) | T L[ fa- Xm0\ @) (2) | A2

By Holder’s inequality

1/
(S}rllear 5 (2_Ld/‘Tn—L[fn—LXQ*](Z”%) dz) Po

5A(p0)2_(n_L)ad/p02_Ld/pOan—LXQ* .

Do S Cd/p02(n L)(a=1)d/po | fn—Llloo this yields

and since || fn—rXx0*

et < CYM Alpo)2 70|l

Next observe that if zg — 2 € Bry1 and y € R?\ Q* then |z —y| > C12*~L)@=1) and
thus

e s [, w2 [ s — )l )l dy dz
|z—y|>C12(n—L)(a=1)
S 2_(n_L)ad/poB(p0)an—L”oo :
Since by assumption aL < (a — 1)n we get
37 S B(po)2 || Pl

The estimates for £2°7 and £ yield (69). This finishes the estimation of &3, (F) and
thus concludes the proof of the theorem.

O
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Applications. We show how for the semigroups U/ one can use Theorem A.l to prove
global estimates from frequency localized versions.

Let LP(L9) = LP(R%, L9[-1/2,1/2]), and let ¢ € C™(R) be supported in (1/4,4) so that
 is not identically zero. Define

(70) Fa(p,Q)—SUPR 5 HUa (R _1|D|)HLP—>LP(L‘1)

Clearly this definition depends on ¢, however the finiteness of I'y(p,q) is independent of
the particular ¢ used.

Proposition A.3. Let py,qo € [1,00], p € (po,), ¢ > qo, 7 € (0,00), and let I be a
compact interval. Suppose that T'y(po,qo) is finite. Then for s/a =d(1/2 —1/p) —1/q,

() /W&U% 0ftat) )" ey S (S 2R )
k>0

and if s/a = d/2 —1/q then

w (e )

Moreover, if t — w(t) is smooth and compactly supported then
(73) 12 UF|| g sy < 152

s+avy,p

If f € BE,(RY) with s = ad(1/2 — 1/p), then for almost every x € R? the function t —
U f(x,t) is locally in B 1, (R), and (thus) continuous, and we have the mazimal inequality

(74) Hsupanf | Loy < 1f 112

< sup 2" P f o -
>0

~

BMO(R?)

(R4

aa(1/2-1/p),p(RY)’

We note that the constants implicit in (71) and (73) depend on p, q, qo, I, a, d, v, however
if we take I = [—1/2,1/2] they are independent of ¢ and g¢o.
For the proof of Proposition A.3 we need a standard imbedding result.

Lemma A.4. Letp € [1,00] and 1 < g9 < ¢ < 00. Then

La(p,q) S Talp, 0)-
Proof. Let h be in C'(—1/2,1/2). By the fundamental theorem of calculus,

1/2
[h()]7 < [h(T)[* + q0/1/2 [h(y) |71 (y)] dy.

for all t,7 € (—1/2,1/2). Integrating in 7 € (—1/2,1/2) and applying Hélder’s inequality
yields
sup —[A(6)|™ < 1A% + qollAllds 1A lla,
~1/2<t<1/2

where the L? norms are on (—1/2,1/2). Now, as ||h||Z < Hh||q D|h||&0, we have
1 11

Iy < 29 (Wl + 0 Il ™ 038

Setting Urf(x,t) := U%p(R|D|)f](z,t), for fixed x we apply the displayed inequality
with h(t) = Urf(x,t), then integrate and apply Holder’s inequality in z to get

1 1

141
HURJCHLP(LQ) < 25t (HURJCHLP(L‘ZO) + q¢° E HuRf”Lp L90) HatuRf”Lp L90) >
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Now by definition 9,U% = 2(—A)%2U?, so that

and substituting these bounds into the displayed inequality implies the assertion. O
Proof of Proposition A.3. We can reduce to the situation where I = [-1/2,1/2] or w €
C°((—1/2,1/2)), by a change of variables argument. By Lemma A.4 we may assume
qo = ¢g.

To prove (71) we apply Theorem A.1. Let p be a radial C™°(R?)-function which is
compactly supported in the ball of radius 1/2 centered at 0, with the property that p is
positive on supp x(| - |). Denote by Ry the operator of convolution with 2*9p(2F.). Let
Ly = p(27%|D|) where ¢ is chosen so that (|- |)p = 1 on supp x(| - |). Thus RyLyPs, = Pj.

d_1

Now let B = L9[—1/2,1/2] and let T} f(x,t) = 2_ka(5_5)LkU‘1f(:1:,t). Then the hypoth-

esis that T'4(po, qo) is finite enables us to conclude that

Alpo) 1= sup k20| Ty || oo . oo () < 0.
>

For fixed ¢ let hl be the convolution kernel for 2_ka(%_%)LkUta ;
_ —ka(d-1 W28 (2 aky|¢la
(2m)hi (o) = 272 [ (e g,
An N-fold integration by parts yields

G0 (@) < On2HE M| N, Ja] 2 20D e o,1),

and thus condition (59) is satisfied with C; = 2°. Thus, by Theorem A.1 we obtain the
inequality

(75) H (Z2kadr/pHRkakaEq([_mJ/z ) H (ZkaHp> w

k>0 k>0

and if we apply it with f, = 2P, f, s = a(% — g - —) then (71) follows. The assertion
(72) is obtained in the same way.

Now consider a standard inhomogeneous Littlewood-Paley decomposition {Py}32, on
LP(RY) so that Py, = Py for k > 0 and where Py localizes to frequencies with |¢| < 2. For
the estimation of PyU® standard multiplier arguments apply. We also need to consider a
similar inhomogeneous Littlewood—Paley decomposition in the ¢ variable, which we denote
by {£;}72y. Then inequality (73) can be rewritten as

NI n) 3 (S )

We claim that there is a constant M for which
(7)) 1wV Prgll| oy < O min{277V, 275N} gl whenever |ka —j| > M,

so that for the essential terms k and j are coupled via |ka — j| < M. This would mean
that a ¢ derivative of order o could be traded with an z derivative of order ac, so that (76)
would follow from (75). Thus it remains to prove (77). Note that for k& > 0, j > 0, the
convolution kernel of g — L;[wU%Pyg](-,t) can be written as

(21) d+1 // /w )e U =T (27 |7 xa (2 k\f!)dS} @O dr de
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and similar formulas hold if either £ = 0 or j = 0. One checks that if |ka — j| > 1 then
for £ and 7 in the support of the indicated cutoff functions the inequalities ||{|* — 7| >
cmax{ ||, ||} hold. We perform N 4 d+ 1 integration by parts in s. For ¢ large, we follow
this by integrations by parts in 7. This easily yields (77).

The final assertions of the proposition are a consequence of the fact that for r < 1 the
space BY /q’r(}R) is imbedded in the space of bounded continuous functions. O
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