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Abstra
t. We demonstrate the (H

1

; L

1;2

) or (L

p

; L

p;2

) mapping properties of several rough operators. In all


ases these estimates are sharp in the sense that the Lorentz exponent 2 
annot be repla
ed by any lower number.

1. Introdu
tion

In this paper we 
onsider the endpoint behaviour on Hardy spa
es of two 
lasses of operators, namely

singular integral operators with rough homogeneous kernels [4℄ and singular integral operators with 
on-

volution kernels supported on 
urves in the plane ([20℄, [27℄). These operators fall outside the Calder�on-

Zygmund theory; however weak type (L

1

; L

1;1

) or (H

1

; L

1;1

) inequalities have been established in the

previous literature ([7℄, [9℄, [16℄ [18℄, [25℄, [29℄) We shall show that the target spa
e L

1;1


an be improved

to the Lorentz spa
e L

1;2

, possibly at the 
ost of moving to a stronger type of Hardy spa
e (e.g. produ
t

H

1

). Examples of Christ [8℄, [17℄ show that these types of results are optimal in the sense that one 
annot

repla
e L

1;2

by L

1;q

for any q < 2.

The spa
e L

1;2

arises naturally as the interpolation spa
e halfway between L

1;1

and L

1

. As a gross


ari
ature of how this spa
e arises, suppose that we have a 
olle
tion of fun
tions f

i

whi
h are uniformly

bounded in L

1

, and whose maximal fun
tion sup

i

jf

i

j is in weak L

1

, and we wish to estimate the quantity










X
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i

f
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L

1;2

for some l

2


o-eÆ
ients 


i

. If the f

i

are suÆ
iently orthogonal, we may hope to 
ontrol this quantity by

the square fun
tion

(1.1)
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:

However from our hypotheses we see that
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L
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�

X

i

j


i

j

q

�

1=q

for q = 1 and q =1, and thus by interpolation for all 1 � q � 1 (
f. Lemma 2.2. below). Thus we expe
t

to 
ontrol (1.1) by the `

2

norm of f


i

g.

Our arguments will be based on more 
ompli
ated versions of the above informal strategy. Generally,

the L

1

estimates will be quite trivial, whereas the L

1;1

estimates will be variants of existing weak-type

(1,1) estimates for rough operators in the literature (e.g. [7℄, [25℄). We shall demonstrate this te
hnique for
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two 
lasses of operators. Firstly we show that the Hilbert transform on plane 
urves (t; t

m

) maps produ
t

H

1

into L

1;2

or a related Hardy-Lorentz spa
e; we also prove sharp L

p

! L

p;2

estimates for a related

analyti
 family of hypersingular operators. Then we dis
uss homogeneous singular integrals with rough

kernels in R

d

, satisfying an L log

2

L 
ondition on the sphere, and show that these map the standard Hardy

spa
e H

1

to L

1;2

.

We remark that a simple version of the above te
hnique has been used by one of the authors in [23℄ to

prove an endpoint version of the H�ormander multiplier theorem. Namely (stating only the one-dimensional

version) if � is a nonzero even smooth bump fun
tion then the 
ondition sup

t>0

k�m(t�)k

B

2

1=2;1

implies that

the 
onvolution operator with Fourier multiplier m maps H

1

to L

1;2

(and an example by Baernstein and

Sawyer [1℄ shows that L

1;2


annot be repla
ed by L

1;q

for q < 2). The se
ond author and Jim Wright [30℄

have re
ently improved this result by repla
ing the Besov spa
e B

2

1=2;1

by the larger spa
e R

2

1=2;2

de�ned

in [24℄ improving on the known (H

1

; L

1;1

) result whi
h is impli
it in the latter paper.

The paper is stru
tured as follows. After formulating our results in the 
urrent se
tion we review some

material about Hardy-Lorentz spa
es and interpolation, in x2. In x3 we prove an abstra
t variant of a

stopping time argument due to M. Christ whi
h may be helpful elsewhere. x4 
ontains the main square-

fun
tion estimate needed to prove our theorems on integrals along 
urves; in x5 we 
on
lude the proof of

these results. Rough homogeneous kernels are 
onsidered in x6 and x7.

Rough homogeneous 
onvolution kernels.

Let K be a 
onvolution kernel on the Eu
lidean spa
e R

d

and assume that K is homogeneous of degree

�d and that the restri
tion 
 to the unit sphere is integrable and has mean zero,

R

S

d�1


(�)d�(�) = 0:

We may de�ne the operator T




of 
onvolution with K on test fun
tions at least by the usual method of

prin
ipal values:

(1.2) T




f(x) = p:v:

Z


(y=jyj)

jyj

d

f(x� y)dy:

We 
onsider the mapping properties of T




, espe
ially near the endpoint L

1

. If 
 is somewhat regular

(for example, if it is H�older 
ontinuous or satis�es an appropriate L

1

Dini 
ondition) then the standard

Calder�on-Zygmund theory shows that T is bounded on all L

p

spa
es, 1 < p < 1, is of weak type (1; 1),

and maps the Hardy spa
e H

1

to L

1

. If no regularity is assumed, but K is L logL on the sphere, then it

was shown by Calder�on-Zygmund [4℄ that T




is bounded on L

p

; in fa
t (see [25℄) it is of weak type (1; 1).

The behaviour at H

1

is more subtle, however, as an example of M. Christ shows (see also [17℄). For the

sake of illustration let us 
onsider the 
ase d = 2. Let a be a smooth H

1

atom on the unit ball, whi
h is

smooth and radial, and let 


N

be the la
unary fun
tion de�ned on the unit 
ir
le by




N

(
os�; sin�) � G

N

(�) =

1

p

N

N

X

j=1

e

2�iC

j

�

;

where C;N are large integers. Roughly speaking, the fun
tion K � a(x) has magnitude � N

�1=2

jxj

�d

whenever jxj � C

j

for some j = 1; : : : ; N . This shows that the L

1

norm (and indeed the L

1;q

quasi-norm

for any q < 2) of K � a grows with N , even though 
 is in every L

p


lass, p < 1, uniformly in N . Thus,

the best result one 
an reasonably hope for is that T maps H

1

to the Lorentz spa
e L

1;2

, or the Hardy-

Lorentz spa
e H

1;2

, the quasi-norm norm in the latter is the L

1;2

quasinorm of a suitable square-fun
tion

or maximal operator used in the de�nition of H

1

(see x2 below).

The previous 
ounterexample 
an be modi�ed to in
lude the 
ase 
 2 L

1

. Take G

N

as above, " > 0

and let E

";N

= f� : jG

N

(�)j > N

"

g. De�ne G

";N

(�) = (G

N

(�)(1� �

E

";N

(�)) and




";N

(
os�; sin�) = G

";N

(�)�

1

2�

Z

�

��

G

";N

(s)ds:

2



Sin
e G

N

is in BMO with norm independent of N we have by the John-Nirenberg inequality that jE

";N

j =

O(e

�
N

"

), for some 
 > 0. From this one 
he
ks that the L

1

norm of T




N

�


N;"

a over the annulus jxj � C

j

is O(N

1=2

e

�
N

"

+2

�j

), hen
e negligible. Sin
e on the other hand k


N;"

k

1

. N

"

this disproves a uniform

H

1

! L

1;q

estimate for q < 2=(1 + 2").

Theorem 1.1. Let 
 2 L log

2

L(S

d�1

) and assume that

R

S

d�1


d�(�) = 0. Then the operator T




maps

H

1

to H

1;2

and also to L

1;2

.

Remark 1.2. In fa
t we shall see that the L log

2

L 
ondition 
an be strengthened to an L logL 
ondition

for a Littlewood-Paley square fun
tion (see Theorem 6.1 below)

Analogously we may also 
onsider a maximal variant of T ; here no 
an
ellation is imposed. Let

� 2 C

1

0

(R

d

) and

(1.3) M




f(x) = sup

h>0

�

�

�

Z

1

h

d

�(

y

h

)
(

y

jyj

)f(x� y)dy

�

�

�

:

Theorem 1.3. Let 
 2 L log

2

L(S

d�1

). Then M




maps H

1

to L

1;2

.

Again, a modi�
ation of the above example shows that M




may fail to map H

1

into L

1;q

for q < 2.

Integrals along 
urves in the plane.

In this subse
tion we shall always be working in the plane R

2

. Letm > 1 be a real number; all 
onstants

may impli
itly depend on m.

De�ne the Hilbert transform Hf and the maximal fun
tion Mf along the 
urve (t; jtj

m

) by

(1.4) Hf(x) = p:v:

Z

f(x

1

� t; x

2

� jtj

m

)

dt

t

and

(1.5) Mf(x) = sup

h>0

�

�

�

Z

f(x

1

� t; x

2

� jtj

m

)

1

h

�(

t

h

)dt

�

�

�

;

here � is a smooth fun
tion with 
ompa
t support. These operators are invariant with respe
t to the s
aling

(1.6) (x

1

; x

2

) 7! (tx

1

; t

m

x

2

); t > 0:

We shall work with the produ
t type Hardy spa
e on R

2

, 
onsidered by Chang and Fe�erman [6℄ among

others; we denote this spa
e by H

1

prod

. Moreover we denote by H

1;2

prod

the produ
t-type Hardy-Lorentz spa
e

(see x2).

Theorem 1.4. M maps H

1

prod

to L

1;2

, and H maps H

1

prod

to H

1;2

prod

and to L

1;2

.

This should be 
ompared with the results of Christ [7℄ who showed that M and H map the one-

parameter Hardy spa
e H

1

paraboli


(de�ned with respe
t to the dilations (1.6)) to L

1;1

, see also Grafakos

[16℄. In fa
t, Christ [7℄ observes that H

1

paraboli


is not mapped to L

1;q

for q <1.

Now let 
 = (


1

; 


2

) be a 
omplex multi-index with Re(


1

);Re(


2

) � 0, and de�ne the (pseudo)-

di�erentiation operator D




by

d

D




f = j�




j

^

f = j�

1

j




1

j�

2

j




2

^

f:

Consider the family of hypersingular operators H




de�ned by

(1.7) H




f(x

1

; x

2

) = p:v:

Z

1

�1

D




f(x

1

� t; x

2

� jtj

m

)jtj




1

+


2

m

dt

t

:

3



The spa
e L

p

(1 < p < 2) is not mapped to L

p;q

if q < 2 (see [8℄); moreover this shows that H does not

map H

1

prod

to L

1;q

or any Hardy-Lorentz spa
e H

1;q

for any q < 2. An angular Littlewood-Paley theory

plays a role in this 
ounterexample. Grafakos [16℄ proved using the methods in [7℄ that for m = 2, 


1

= 0

and Re(


2

) = 1 � 1=p the spa
e L

p

is mapped to L

p;p

0

if 1 < p � 2. His method surely extends to the

general 
ase 
onsidered here.

An improved optimal result is

Theorem 1.5. Suppose that Re(


1

) � 0, Re(


2

) � 0 and Re(


1

+ 


2

) = 1� 1=p.

� If 1 < p � 2 then H




is bounded from L

p

to L

p;2

.

� If p = 1 then H




is bounded from H

1

prod

to L

1;2

.

In both 
ases the bounds grow at most polynomially in j
j.

The following estimate for a lo
alized averaging operator will follow from our proof. Let � 2 C

1

0

(R)

and de�ne

(1.8) Af(x

1

; x

2

) =

Z

�(t)f(x

1

� t; x

2

� jtj

m

)dt:

Corollary 1.6. Suppose m � 2. Then A maps L

m;2

boundedly to the Sobolev spa
e L

m

1=m

.

Remarks 1.7.

(i) Suppose that t 7! g(t) is a smooth 
urve passing through the origin and suppose that its 
urvature

vanishes to at most order m� 2 at the origin. Then the statement of Corollary 1.8 remains true if (t; jtj

m

)

is repla
ed by a g(t) provided that � is supported in a suÆ
iently small neighborhood of the origin.

(ii) In the statements of Theorems 1.4 and 1.5 the 
urve (t; jtj

m

) 
an be repla
ed by (t; jtj

m

sign (t)).

(iii) A variant of this family H




was previously 
onsidered by Stein and Wainger [27℄ in their proof of

L

p

boundedness of the Hilbert transform. They worked with a distan
e fun
tion �, smooth and positive in

R

2

n f0g whi
h is homogeneous of degree 1 with respe
t to the dilations (1.6) and 
onsidered the analyti


family

e

H

�

f(x

1

; x

2

) = p.v.

Z

1

�1

�

�

(D)f(x

1

� t; x

2

� t

m

)jtj

�

dt

t

:

The result in [27℄ is that

e

H

�

is bounded on L

p

for � < 1� 1=p. Our proof of Theorem 1.3 shows that this

result 
an be improved to

e

H

�

: L

p

! L

p;2

if � = 1� 1=p, 1 < p � 2.

(iv) The prin
ipal value singularity p:v: t

�1

jtj




1

+


2

m

in the de�nition of H





an be repla
ed by

�




1

+


2

m�1

+

= lim

"!0

e

�"t

(�(


1

+ m


2

))

�1

t




1

+m


2

�1

+

. This requires only minor 
hanges in the proof of

Theorem 1.5.

2. Preliminaries

Notation. For two quantities a and b we write a . b or b & a if there exists an absolute positive 
onstant

C so that a � Cb. We shall 
onsistently refer to the homogeneous quasi-norms on Lorentz and Hardy-

Lorentz spa
es as \norms", even when the triangle inequality with 
onstant 1 fails. If I is a (dyadi
) 
ube,

then x

I

will denote its 
enter, and 2

i

I

will denote its side-length. We somewhat abuse notation and use

2

s

I to denote the 
ube with the same 
enter as I and sidelength 2

s+i

I

. The Lebesgue measure of a set E

will sometimes be denoted by jEj and sometimes by meas(E).

2A. Hardy spa
es. There are many equivalent 
hara
terizations of the isotropi
 Hardy-spa
es ([13℄), in

terms of maximal fun
tions, atomi
 de
ompositions and square-fun
tions (see [26℄ for a rather 
omplete

4



treatment). We shall use several of them, but most relevant will be the 
hara
terization via Littlewood-

Paley square-fun
tions, whi
h we 
hoose as a de�nition.

Let � 2 S(R

n

) with the property that

b

� is 
ompa
tly supported and equal to 1 in a neighborhood of

the origin. Let �

k

be de�ned by

(2.1)

b

�

k

(�) =

b

�(2

�k�1

�)�

b

�(2

�k

�)

Consider the spa
e S

0

restr

of tempered distributions whi
h are restri
ted at 1; it 
onsists of all f 2 S

0

with the property that f �� 2 L

r

for � 2 S, for suÆ
iently large r <1 (we use the terminology of Stein [26,

p.123℄). This 
hoi
e of the test fun
tion spa
e allows one to derive versions of the Calder�on reprodu
ing

formula (e.g. one ex
ludes polynomials whi
h have Fourier transforms supported at the origin). For

0 < p; q <1 we de�ne H

p;q

as the spa
e 
onsisting of tempered distributions restri
ted at1 whi
h satisfy

(2.2) kfk

H

p;q

:=










�

X

k2Z

j�

k

� f j

2

�

1=2










L

p;q

<1

and write H

p

= H

p;p

. Using arguments in [13℄, [21℄ one 
an show that the de�nition does not depend on

the parti
ular 
hoi
e of �. As shown in [21℄, [31℄ some aspe
ts in the 
lassi
al theory simplify by assuming

(as we do here) that

b

� has 
ompa
t support. In parti
ular for b > 0, r > 0 one has the inequality ([21℄)

(2.3) sup

jyj�2

�k

b

j�

k

� f(x+ y)j � C

b;r

(M [j�

k

� f j

r

℄(x))

1=r

and (2.3) allows us to take advantage of the Fe�erman-Stein theorem 
on
erning L

p

(`

r

) estimates for the

Hardy-Littlewood maximal fun
tion M ([12℄). This 
arries over to Lorentz-spa
es. Set

S

b

f(x) =

�

X

k2Z

sup

jyj�b2

�k

j�

k

� f(x+ y)j

2

�

1=2

Sin
e kgk

L

p;q

� kg

a

k

1=a

L

p=a;q=a

we obtain that for f 2 H

p;q

(2.4) kfk

H

p;q

� kS

b

fk

L

p;q

:

The spa
e H

p;q

is 
omplete quasi-normed spa
e. We note that the de�nition 
an be extended to Hilbert-

spa
e valued fun
tions (in fa
t when proving estimates we may often redu
e to �nite-dimensional Hilbert

spa
es with possibly large dimension).

For the purpose of real interpolation 
onsider the Peetre K-fun
tional K(t; f;H

p

0

; H

p

1

), de�ned for

f 2 H

p

0

+H

p

1

as the in�mum of kfk

H

p

0

+ tkfk

H

p

1

over all de
ompositions f = f

0

+ f

1

with f

0

2 H

p

0

and f

1

2 H

p

1

. Then a straightforward modi�
ation of arguments by Jawerth and Tor
hinsky [19℄ yields

the formula

(2.5) K(t; f;H

p

0

; H

p

1

) � K(t; S

b

f; L

p

0

; L

p

1

):

Consequently, by (2.4) and (2.5) one identi�es H

p;q

with the real interpolation spa
e [H

p

0

; H

p

1

℄

�;q

if

0 < � < 1 and (1� �)=p

0

+ �=p

1

= 1=p (see [2℄), and the spa
es H

p;q


an be identi�ed with the spa
es in

[11℄, [15℄ de�ned by means of various maximal fun
tions or square fun
tions (see [32℄).

Let fe

k

g be an orthonormal basis of `

2

. From standard Hardy spa
e theory [26℄ we have

(2.6)










X

k

L

k

f

k










H

p;q

�










X

k

e

L

k

f

k

e

k










L

p;q

(`

2

)

=










�

X

k

j

e

L

k

f

k

j

2

�

1=2










L

p;q

:

where L

k

,

e

L

k

denote 
onvolution with �

k

,

e

�

k

; here

e

�

k

is as above and

e

�

k

= 2

kd

e

�

0

(2

k

�) so that the Fourier

transform of

e

� equals one on the support of

b

�.

Moreover if E is any �nite subset of the integers we have

(2.7)










X

k2E

L

k

f

k










L

p;q

� C










X

k

L

k

f

k










H

p;q

where C does not depend on E. Note, however, that 
onvergen
e in L

p;q

may not be 
ompatible with


onvergen
e in the sense of tempered distributions, if p < 1 or p = 1, q > 1.
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A Littlewood-Paley de
omposition. It is shown in the 
lassi
al theory that the above assumptions

on � 
an be substantially weakened. A general result in this 
ontext is in [32℄. To eliminate a number of

te
hni
al error terms in the proof of Theorem 1.1 we shall work with Littlewood-Paley fun
tions lo
alized

in spa
e, and in order to have an analogue of the Calder�on reprodu
ing formula we will have to use a

somewhat unusual version of the Littlewood-Paley de
omposition:

Lemma 2.1. Let r, N

0

be nonnegative integers and let " > 0. Then for s = 0; : : : ; r there are radial

fun
tions 	

(s)

,  

(s)

in C

1

0

(R

d

) with the following properties.

(i) 	

s

is supported on the ball of radius " 
entered at the origin, and




	

s

(�) � 1 = O(j�j

N

0

) as � ! 0.

Moreover  

s

= 	

s

� 2

�d

	

s

(2

�1

�) so that the moments of order � N

0

of  

s

vanish.

(ii) De�ne  

k

s

(x) = 2

kd

 

s

(2

k

x) and let L

k

s

be the operator of 
onvolution with  

k

s

. Then for every

tempered distribution f restri
ted at 1 we have

(2.8) f =

X

k2Z

L

k

0

� � �L

k

r

f ;

moreover if S

0

r

denotes the operator of 
onvolution with 	

r

then

(2.9) f = S

0

r

f +

X

k�1

L

k

0

� � �L

k

r

f:

The 
onvergen
e in (2.8), (2.9) holds in the sense of tempered distributions.

Proof. Let 	 be a radial bump fun
tion supported in fx : jxj � 2

�6r�6

"g so that

b

	� 1 = O(j�j

N+1

), and

let S

k

0

be the operator of 
onvolution with 2

�dk

	(2

�k

�). Let

L

k

0

= S

k

0

� S

k�1

0

:

We re
ursively de�ne for s = 0; 1; : : : ; r � 1

S

k

s+1

= (2Id� (S

k

s

)

2

)(S

k

s

)

2

(2.10)

L

k

s+1

= (2Id� (S

k

s

)

2

� (S

k�1

s

)

2

)(S

k

s

+ S

k�1

s

)(2.11)

and note the identity

(2.12) S

k

s+1

� S

k�1

s+1

= (S

k

s

� S

k�1

s

)L

k

s+1

so that S

k

s+1

� S

k�1

s+1

= L

k

0

� � �L

k

s+1

. One 
an 
he
k indu
tively that ea
h S

k

s

is the operator of 
onvolution

with 2

kd

	

s

(2

k

�) where the radial bump fun
tion 	

s

is supported in fx : jxj � 2

�6(r�s+1)

"g and




	

s

(�)�1 =

O(j�j

N

0

+1

) as � ! 0, and that the operators L

k

s

, S

0

s

have all the desired properties. �

Remark. We note that (2.6) holds if L

k

,

e

L

k

are repla
ed by any of the operators L

k

s

above, or perhaps by

a 
omposition of �nitely many su
h operators. This remark holds under the 
ondition that the number N

0

of vanishing moments is suÆ
iently large (in dependen
e of p; spe
i�
ally we need N

0

� n(1=p� 1)).

Paraboli
 dilations. One may de�ne Hardy spa
es with respe
t to a nonisotropi
 dilation stru
ture [3℄.

In this paper we need to 
onsider su
h Hardy-spa
es on R

2

de�ned with respe
t to the s
aling (x

1

; x

2

) 7!

(tx

1

; t

m

x

2

), for a �xed real number m > 1.

If we rede�ne the fun
tion �

k

to be

b

�

k

(�

1

; �

2

) =

b

�(2

�(k+1)

�

1

; 2

�(k+1)m

�

2

)�

b

�(2

�k

�

1

; 2

�km

�

2

) then the

operator of 
onvolution with �

k

is a Littlewood-Paley proje
tion to the region j�

1

j + j�

2

j

1=m

� 2

k

. We

may then de�ne H

p

paraboli


as the spa
e of distributions f restri
ted at 1, for whi
h k(

P

k

j

e

�

k

� f j

2

)

1=2

k

p

is

�nite. Similarly one 
an de�ne paraboli
 Hardy-Lorentz spa
e and the obvious analogues of the statements

in the previous subse
tions remain true.
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Produ
t type Hardy spa
es. Let fL

k

1

;k

2

g

k

1

;k

2

2Z

be a produ
t Littlewood-Paley de
omposition on R

2

,

where L

k

1

;k

2

is a multiplier with symbol supported in the region f(�

1

; �

2

) : j�

1

j � 2

k

1

; j�

2

j � 2

k

2

g; we may

assume that L

k

1

;k

2

is the operator of 
onvolution with �

k

1


 �

k

2

where �

k

1

, �

k

2

are as above (de�ned on

the real line).

If 0 < p; q <1, we de�ne the produ
t Hardy-Lorentz spa
e H

p;q

prod

to be the quasi-Bana
h spa
e whi
h


onsists of all tempered distributions restri
ted at 1 for whi
h

kfk

H

p;q

prod

=










�

X

k

1

X

k

2

jL

k

1

;k

2

f j

2

�

1=2










L

p;q

is �nite. We de�ne H

p

prod

to be H

p;p

prod

.

The formulas for interpolation of Hardy-Lorentz-spa
es remain true; in fa
t (2.5) was proved in this


ontext in [19℄. Moreover analogues of (2.6), (2.7) remain true for the operators L

k

1

;k

2

. These 
an be

proved by using the theory of produ
t-type singular integral operators (see e.g. [6℄, [14℄).

2B. Analyti
 interpolation in Lorentz spa
es. We need a version of a theorem by Sagher [22℄ 
on-


erning analyti
 families of operators a
ting on Lorentz spa
es. It has been observed in [23℄ and [16℄

that Sagher's arguments 
arry over to somewhat more general situations; we now re
all the version whi
h

appeared in [16℄.

We denote by S the strip S = fz : 0 < Re(z) < 1g and by S its 
losure. A fun
tion g on S is said to

be of admissible growth if there is a < � so that jg(z)j . exp(e

ajIm(z)j

) for z 2 S. Let X

0

and X

1

be two

Bana
h spa
es, 
ompatible in the sense of interpolation theory, and assume that there is a subspa
e W of

X

0

\X

1

whi
h is dense in both X

0

and X

1

. For z 2 S let T

z

be an operator whi
h maps fun
tions in W

to measurable fun
tions on R

n

; T

z

is then 
alled an analyti
 family if for any f 2 W and almost every

x 2 R

n

the fun
tion z ! T

z

f(x) is analyti
 in S and 
ontinuous and of admissible growth in S. Now if

(2.13) kT

z

fk

L

p

i

;q

i

� C

i

(z)kfk

X

i

; i = 0; 1;

and if C

i

(z) is of admissible growth then the result in [16℄ states that T

�

maps the 
omplex interpolation

spa
e [X

0

; X

1

℄

�

boundedly to L

p

�

;q

�

; here (1=p

�

; 1=q

�

) = (1� �)(1=p

0

; 1=q

0

) + �(1=p

1

; 1=q

1

). We shall need

the following 
onsequen
e of this result.

Lemma 2.2. For k 2 Z and z 2 S let T

k;z

be an operator whi
h maps fun
tions in W to measurable

fun
tions on R

n

and assume that T

k;z

is an analyti
 family, for ea
h k. Suppose that for all f 2 W










X

k2E

jT

k;i�

f j










L

1

� C(i�)kfk

X

0

(2.14)










sup

k2E

jT

k;1+i�

f j










L

1;1

� C(1 + i�)kfk

X

1

(2.15)

for any �nite subset E � Z, with admissible 
onstants C(i�), C(1 + i�). Let 0 < � < 1. Then

(2.16)










�

X

k2Z

jT

k;�

f j

q

�

1=q










L

1;q

. kfk

[X

0

;X

1

℄

�

if 1=q

�

= 1� �.

Proof. Fix

~

f 2 [X

0

; X

1

℄

�

and E � Zbe �nite. There are measurable fun
tions g

k

su
h that

P

jg

k

(x)j

q

0

� 1

and

�

�

�

X

k2E

T

k;�

~

f(x)g

k

(x)

�

�

�

�

1

2

�

X

k2E

jT

k;�

~

f(x)j

q

�

1=q

7



for almost every x 2 R

n

. De�ne g

k;z

(x) =

g

k

(x)

jg

k

(x)j

jg

k

(x)j

q

0

z

if g

k

(x) 6= 0, and g

k;z

(x) = 0 if g

k

(x) = 0.

Now de�ne an analyti
 family by T

z

f(x) =

P

k2E

T

k;z

f(x)g

k;z

(x): Then the assumptions (2.14-15)

imply the boundedness of T

i�

from X

0

to L

1

and of T

1+i�

from X

1

to L

1;1

, with admissible 
onstants.

One dedu
es the boundedness of T

�

from [X

0

; X

1

℄

�

to L

1;q

. The 
onstants are independent of E and the


hoi
e of fg

k

g. This implies










�

X

k2E

jT

k;�

~

f j

q

�

1=q










L

1;q

� Ck

~

fk

[X

0

;X

1

℄

�

with C being independent of E and

~

f . The �niteness assumption on E 
an be removed by appli
ations of

the monotone 
onvergen
e theorem. �

2C. A ve
tor-valued inequality. We shall use the following observation whi
h 
an serve as an elemen-

tary substitute for the failing L

p

(`

1

) inequality for the ve
tor-valued Hardy-Littlewood maximal operator

([12℄). It is just the dual version of a s
alar maximal inequality.

Lemma 2.3. Let � 2 L

1

(R

d

) so that for ea
h � 2 S

d�1

the fun
tion r 7! j�(r�)j is de
reasing in r > 0.

Let ft

k

g

k2Z

be a 
olle
tion of positive numbers and let P

k

be the operator of 
onvolution with t

d

k

�(t

k

�).

Then for 1 � p <1

(2.17)










X

k

jP

k

f

k

j










p

� C

p

k�k

1










X

k

jf

k

j










p

:

Proof. We may assume that � is nonnegative. Then by duality the assertion follows immediately from

the L

p

0

boundedness of the maximal operator w 7! sup

k

jP

k

wj; the latter is a 
onsequen
e of the method

of rotation and the bounds for the one-dimensional Hardy-Littlewood operator (see [26, p.72-73℄). �

2D. Averaging fun
tions in L

1;q

. The triangle inequality fails in L

1;q

if q > 1, but the following

Lemma, proved for q =1 by Stein and N. Weiss [28℄, 
an often serve as a substitute. For 1 < q <1 the

statement follows from the 
ases q = 1 and q =1 by interpolation.

Lemma 2.4. Suppose that kf

i

k

L

1;q

� 1 and

P

j


i

j � 1. Then










X

i




i

f

i










L

1;q

.

X

i

j


i

j(1 + log

+

j


i

j)

1�

1

q

:

3. A stopping time 
onstru
tion

We shall use an abstra
t form of the Calder�on-Zygmund de
omposition, in whi
h no nesting or doubling

properties are assumed. The argument is related to the stopping time 
onstru
tion in [7℄.

Lemma 3.1. Let �, � be partial orders on a set �; we also use the notation � synonymously with �. Let

� be a �nite subset of �, let � be a non-negative measure on �, and let A : �! R

+

be a positive fun
tion.

Assume that for ea
h 
 2 � and N > 0 the set

(3.1) f� 2 � : A(�) � N and 
 � �g

is �nite.

Then one 
an �nd a subset B of � and a map q : �! � whi
h have the following properties.

(1) 
 � q(
) for all 
 2 �.

(2) If q(
) =2 B then q(
) = 
.

8



(3)

X

�2B

A(�) � �(�)

(4) For all � 2 �, we have

�(f
 2 � : q(
) � �; 
 � �g) < A(�):

Proof. De�ne

(3.2) �

�

= � [ f� 2 � : A(�) � �(�) and 
 � � for some 
 2 �g

By the �niteness of � and the �niteness assumption on the sets (3.1) the set �

�

is �nite. Suppose we have

found q and B with properties (1)-(4) relatively to �

�

then (1)-(4) are un
hanged if �

�

is enlarged to �.

Hen
e it suÆ
es to give a proof under the additional assumption that � is �nite.

We now indu
t on the 
ardinality of �. The lemma is va
uously true when � is empty, with B being

empty and q being the empty fun
tion.

Now suppose indu
tively that � is non-empty, and that the lemma is true for all sets � of lesser


ardinality. Choose an element �

max

2 � whi
h is maximal with respe
t to the partial ordering �, and let

�

0

= �� f�

max

g. De�ne the set �

0

� � by

�

0

= � \ �

0

if the estimate

(3.3) �(f
 2 � : 
 � �

max

g) < A(�

max

)

holds, and by

�

0

= f
 2 � : 
 6� �

max

g

otherwise.

Now apply the indu
tion hypothesis with � repla
ed by �

0

, � repla
ed by �

0

, and A and � repla
ed

by their restri
tions to �

0

and �

0

respe
tively. This gives us a set B

0

� �

0

and an assignment q

0

: �

0

! �

0

satisfying analogues (1

0

)-(4

0

) of the desired properties (1)-(4).

De�ne the subset B of � by B = B

0

if (3.3) holds, and B = B

0

[ f�

max

g if (3.3) fails. De�ne q : �! �

by setting q(
) = q

0

(
) if 
 2 �

0

, and q(
) = �

max

if 
 2 �n�

0

.

We now 
laim that (1)-(4) holds for these 
hoi
es of B and q. The 
laims (1), (2) are easily veri�ed

from (1

0

), (2

0

), and the 
onstru
tion of B and q. If (3.3) holds then B = B

0

and (3) follows from (3

0

);

otherwise, B = B

0

[ f�

max

g and (3) follows from (3

0

), the 
onstru
tion of �

0

, and the failure of (3.3).

It remains to verify (4). First suppose that � 6= �

max

, so that � 2 �

0

. Then (4) follows from (4

0

),

be
ause the elements 
 of �n�

0

satisfy q(
) = �

max

and thus 
annot 
ontribute to the left-hand side of (4)

by the maximality of �

max

.

Now suppose that � = �

max

. If (3.3) holds, then (4) is immediate. If (3.3) fails, then by 
onstru
tion

the left-hand side of (4) is zero. Thus (4) holds in all 
ases, and the indu
tion step is 
omplete. �

We remark that the �niteness assumption (3.1) may be dropped if one is willing to repla
e the indu
tion

by trans�nite indu
tion (i.e. use Zorn's lemma). One 
an then prove this lemma for arbitrary �.
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4. Integrals along plane 
urves

In this and the next se
tion we shall always be working in the plane R

2

. We �x a real number m > 1,

all 
onstants may impli
itly depend on m. We de�ne H

1

paraboli


to be the one-parameter Hardy spa
e with

respe
t to the s
aling (1.6).

The proofs of our results 
on
erning plane 
urves are based on the following key estimate.

Proposition 4.1. For ea
h integer l let �

l

be a C

1

fun
tion with 
ompa
t support in [1=2; 2℄ or in

[�2;�1=2℄, with C

4

norms uniformly bounded in `.

Let d�

l

be the measure de�ned by

Z

fd�

l

=

Z

f(x

1

� t; x

2

� jtj

m

)2

l

�

l

(2

l

t) dt:

Then for any ve
tor-valued fun
tion F = ff

l

g

l2Z

,

(4.1)










�

X

l

jf

l

� d�

l

j

2

�

1=2










L

1;2

. kfk

H

1

paraboli


(`

2

)

:

We allow the f

l

themselves to be Hilbert spa
e valued fun
tions, and j � j is then to be interpreted as the

Hilbert spa
e norm.

In the next se
tion, we shall see how this proposition implies L

1;2

and L

p;2

mapping properties for the

Hilbert transform on plane 
urves and similar obje
ts; this will be done by exploiting the fa
t that the

d�

l

have essentially disjoint frequen
y supports if some moment 
onditions are assumed on the �

l

. The

estimate (4.1) should be 
ompared with the bound







sup

l

jf � d�

l

j







L

1;1

. kfk

H

1

paraboli


proven in Christ [7℄. Our te
hniques shall be 
losely related to those in that paper.

Proof. We may de
ompose f atomi
ally as f =

P

I




I

P

I

(b

I

), where the I are 2

k

� 2

mk+#

re
tangles with

sides parallel to the axes, and k, km+ # are integers, 0 � # < 1. The 


I

are non-negative numbers su
h

that

P

I




I

� kfk

H

1

paraboli


(`

2

)

, the b

I

satisfy kb

I

k

L

2

(`

2

)

. jI j

�1=2

, and P

I

is the proje
tion operator de�ned

by

P

I

[b℄(x) =

�

b(x)�

1

jI j

Z

I

b(x)dx

�

�

I

(x):

Note that the de�nition of P

I

makes sense as a
ting on s
alar valued fun
tions or on ve
tor-valued fun
tions,

as above. By the translation tri
k in [7℄ (attributed to P. Jones) we may assume that the 
ubes I are dyadi
.

Hen
eforth we shall refer to the I as (paraboli
) 
ubes. It thus suÆ
es to show the estimate

(4.2)










�

X

l

�

�

�

X

I




I

P

I

[b

I;l

℄ � d�

l

�

�

�

2

�

1=2










L

1;2

. (

X

I




I

)(sup

I

jI j

1=2

)










�

X

l

jb

I;l

j

2

�

1=2










2

for arbitrary 
olle
tions I of 
ubes, non-negative numbers 


I

, and arbitrary measurable fun
tions b

I;l

. By

limiting arguments it is suÆ
ient to prove the analogue of (4.2), where the sums in l and the sums in I are

extended over �nite sets (with bounds independent of the 
ardinalities). Hen
eforth we make this �niteness

assumption.

Fix the I and 


I

. By 
omplex interpolation (Lemma 2.2) it suÆ
es to show that

(4.3)










�

X

l

�

�

�

X

I




I

P

I

[b

I;l

℄ � d�

l

�

�

�

q

�

1=q










L

1;q

.

�

X

I




I

��

sup

I

jI j

1=q

0

�










�

X

l

jb

I;l

j

q

�

1=q










q
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holds for q = 1 and q =1 and all (
omplex) fun
tions b

I;l

.

When q = 1, (4.3) simpli�es to

X

l

X

I




I







P

I

[b

I;l

℄ � d�

l







1

.

�

X

I




I

�

sup

I

X

l

kb

I;l

k

1

;

and the 
laim follows from Young's inequality, the �nite mass of d�

l

, and the fa
t that P

I

is bounded on

L

1

. Thus it remains to prove the q =1 endpoint, namely










sup

l

�

�

X

I




I

P

I

[b

I;l

℄ � d�

l

�

�










L

1;1

.

�

X

I




I

�

sup

I

sup

l

jI j kb

I;l

k

1

:

We may assume that

(4.4) sup

I

sup

l

jI j kb

I;l

k

1

� 1

Writing a

I;l

= P

I

[b

I;l

℄, we thus see that a

I;l

is supported on I , has mean zero, and ka

I;l

k

1

. jI j

�1

, and

our task is now to show that

(4.5) meas

�

fsup

l

j

X

I




I

a

I;l

� d�

l

j & �g

�

. �

�1

X

I




I

for all � > 0.

Fix � > 0. We shall use a sort of Calder�on-Zygmund de
omposition and will �rst look at the \good"


ubes 
ontributing to a fun
tion whi
h is O(�). Let G be the family of all I for whi
h

(4.6) M

�

X

I

0




I

0

�

I

0

jI

0

j

�

(x) � � for some x 2 I ;

here M is the Hardy-Littlewood maximal operator with respe
t to the s
aling (1.6).

We 
onsider the 
ontribution of the 
ubes in G to (4.5). The L

1

norm of

P

I2G




I

�

I

jIj

is O(�), to see

this, 
onsider for ea
h for ea
h x

0

the smallest 
ube in G 
ontaining x

0

and apply (4.6) for this 
ube. We

now apply Chebyshev's inequality and the standard fa
t [28℄ that the maximal fun
tion asso
iated to the


urve (t; jtj

m

) is bounded on L

2

. This yields

meas

�

�

x : sup

l

�

�

X

I2G




I

a

I;l

� d�

l

�

�

� �

	

�

� �

�2










sup

l

�

�

X

I2G




I

a

I;l

� d�

l

�

�










2

2

. �

�2










sup

l

X

I2G




I

�

I

jI j

� jd�

l

j










2

2

. �

�2










X

I2G




I

�

I

jI j










2

2

. �

�1










X

I2G




I

�

I

jI j










1

. �

�1

X

I




I

:(4.7)

Thus we may restri
t our attention to the \bad" 
ubes. By the Hardy-Littlewood inequality, the L

1;1

norm of M(

P

I




I

�

I

=jI j) is O(

P

I




I

), and so by the de�nition of G

meas

�

[

I =2G

I

�

. �

�1

X

I




I

:
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Let C > 1 and CI denote the 
ube expanded by C (with same 
enter as I). By the Hardy-Littlewood

inequality again we have

(4.8) meas

�

[

I =2G

CI

�

. �

�1

X

I




I

:

To 
omplete the proof of (4.5) we shall prove the stronger square-fun
tion estimate

(4.9) meas

�

�

x :

�

X

l

�

�

X

I =2G




I

a

I;l

� d�

l

(x)

�

�

2

�

1=2

� �

	

�

. �

�1

X

I




I

:

In order to prove (4.9) we use an abstra
t version of the Calder�on-Zygmund de
omposition based on

Lemma 3.1. We �rst des
ribe the sets � and � whi
h o

ur in this lemma. If m � 2 we de�ne � as the

set of all dyadi
 re
tangles Q of dimensions 2

�

� 2

�+(m�1)�+#

for integers �, � and for # 2 [0; 1), where

� � � , and (m � 1)� + # is the smallest integer � (m � 1)� (i.e. # = 0 if m is an integer). Note that �,

� and # are unique for ea
h Q and we shall write � = �(Q), � = �(Q), # = #(Q). If 1 < m < 2 we de�ne

� similarly, with the additional requirement that we only admit those � for whi
h the fra
tional part of

(m� 1)(� � �) is < m� 1; this is to ensure that �(Q) is well de�ned. In both 
ases the subset � is the set

of paraboli
 
ubes I for whi
h 


I

6= 0 and whi
h do not belong to G; by assumption � is �nite. Note that

one has �(I) = �(I) for paraboli
 
ubes I .

We wish to partially order the set � by requiring Q � Q

0

if �(Q) < �(Q

0

); note that then Q and Q

0

are

in
omparable under � if �(Q) = �(Q

0

) and Q 6= Q

0

. Finally we take set in
lusion � as the se
ond partial

order in Lemma 3.1.

We de�ne the tendril T (Q) to be the set

(4.10) T (Q) = fx+ (t; jtj

m

) : x 2 2Q; jtj � 2

�(Q)+2

g:

Note that jT (Q)j � 2

�(Q)+m�(Q)

+2

2�(Q)+(m�1)�(Q)

for any re
tangle Q parallel to the axes, and therefore

(4.11) jT (Q)j � 2

�(Q)+m�(Q)

for Q 2 �.

The fun
tion A(Q) in Lemma 3.1 is then de�ned by

A(Q) = �2

�(Q)+m�(Q)

;

and the measure � is de�ned by

�(fIg) = 


I

:

The �niteness 
ondition in the proof of Lemma 3.1 is easily veri�ed and we �nd a map I 7! q(I) de�ned

on � so that I � q(I) and

(4.12)

X

I2�

q(I)�Q

I�Q




I

< �jT (Q)j

for all Q 2 �, and

meas

�

[

I2�

T (q(I))

�

.

1

�

X

I




I

+meas

�

[

I2�

T (I)

�

;

the latter inequality follows from statements (2) (3), (4) of Lemma 3.1. Sin
e for paraboli
 
ubes I the

tendril T (I) is 
ontained in a �xed dilate of I and sin
e � \ G = ; one has a
tually

(4.13) meas

�

[

I2�

T (q(I))

�

.

1

�

X

I




I

;

12



by (4.8).

For any I , l we see that a

I;l

�d�

l

is supported in T (q(I)) if l < �(q(I)). In view of (4.13) the inequality

(4.9) follows from

meas

�

�

x :

�

X

l

j

X

I:l��(q(I))




I

a

I;l

� d�

l

j

2

�

1=2

� �g

�

. �

�1

X

I




I

:

It suÆ
es by Chebyshev's inequality to prove the L

2

estimate

(4.14)










�

X

l

�

�

�

X

I2�

l��(q(I))




I

a

I;l

� d�

l

�

�

�

2

�

1=2










2

2

. �

X

I




I

:

Let

(4.15) �(m) = fI 2 � : �(q(I)) = mg:

By the triangle inequality it suÆ
es to show










�

X

l

�

�

X

I2�(l�s)




I

a

I;l

� d�

l

�

�

2

�

1=2










2

2

. 2

�s

�

X

I




I

for all s � 0.

Fix s. It then suÆ
es to show that for ea
h l

(4.16)










X

I2�(l�s)




I

a

I;l

� d�

l










2

2

. 2

�s

�

X

I2�(l�s)




I

for ea
h l, sin
e the 
laim follows by summing in l. By s
aling (with respe
t to the paraboli
 dilations (1.6)

and taking into a

ount the de�nition of �(Q) we see that it suÆ
es to prove (4.16) for l = 0. Expanding

the left-hand side of (4.16), we redu
e to

X

I;I

0

2�(�s)




I




I

0

jha

I;0

� d�

0

; a

I

0

;0

� d�

0

ij . 2

�s

�

X

I2�(�s)




I

:

By symmetry we may assume that jI

0

j � jI j. It then suÆ
es to show that

(4.17)

X

I

0

2�(�s)

jI

0

j�jIj




I

0

jha

I;0

� d�

0

; a

I

0

;0

� d�

0

ij . 2

�s

�;

for all I 2 �(�s).

Fix I 2 �(�s) with 
enter x

I

. I has dimension 2

�(I)

� 2

m�(I)+#(I)

; sin
e I � q(I) by Lemma 3.1, (1),

and �(q(I)) � �(q(I)) by de�nition of � we see that

(4.18) �(I) � �(q(I)) = �s:

Rewrite the left-hand side of (4.12) as

(4.19)

X

I

0

:jI

0

j�jIj;�(q(I

0

))=�s




I

0

jha

I;0

� F; a

I

0

;0

ij

13



where F = d�

0

�

f

d�

0

(ande refers to re
e
tion in the argument). Observe that F is supported on a se
tor

f(x

1

; x

2

) : jx

2

j . jx

1

jg

and obeys the estimates

jr

�

F (x)j . jxj

�1�j�j

for all multiindi
es � with j�j � 2. From the size 
onditions on a

I;0

, this implies

ja

I;0

� F (x)j . 2

��(I)

and by the moment 
onditions on a

I;0

jr

�

(a

I;0

� F )(x)j . 2

�(I)

jx� x

I

j

�2�j�j

; if jx� x

I

j � 2

�(I)+1

; j�j � 1:

This in turn implies from the size and moment 
onditions on a

I

0

;0

and the assumption jI

0

j � jI j that

jha

I;0

� F; a

I

0

;0

ij . 2

2�(I)

diam(I [ I

0

)

�3

;

where the diameter is respe
t to the Eu
lidean metri
.

Thus it suÆ
es to show that

(4.20)

X

I

0

2�(�s)

jI

0

j�jIj




I

0

diam(I [ I

0

)

�3

. 2

�2�(I)

2

�s

�:

For � � �s, let R

�;s

be the set of dyadi
 re
tangles of dimensions (2

�

; 2

��(m�1)(s�1)+#

) so that

0 � # < 1. Observe that R

�;s

is a subset of � 
onsisting of re
tangles R with �(R) = �s+1. Also let W

�

be the set of isotropi
 dyadi
 
ubes of dimensions (2

�

; 2

�

); then ea
h W 2 W

�

is a union of � 2

(m�1)(s�1)

re
tangles in R

�;s

, with disjoint interiors.

If I

0

2 �(�s) with jI

0

j � jI j then I

0

has dimensions (2

�(I

0

)

; 2

�(I

0

)�(m�1)s

) and �(I

0

) � �(I) = �(I),

and therefore every su
h I

0

is 
ontained in a unique re
tangle R 2 R

�(I);s

. Sin
e �(q(I

0

)) = �s and

�(R) = �s+ 1 we have from Lemma 3.1, (4),

X

I

0

2�(�s)

jI

0

j�jIj

I

0

�R




I

0

. �jT (R)j . �2

�(I)�ms

and therefore

X

I

0

2�(�s)

jI

0

j�jIj




I

0

diam(I [ I

0

)

�3

=

X

W2W

�(I)

X

R2R

�(I);s

R�W

X

I

0

2�(�s)

jI

0

j�jIj

I

0

�R




I

0

diam(I [ I

0

)

�3

. �2

�(I)�ms

X

W2W

�(I)

(2

�(I)

+ dist(W; I))

�3


ard(fR 2 R

�(I);s

: R �Wg)

. �2

�(I)�s

X

W2W

�(I)

(2

�(I)

+ dist(W; I))

�3

. 2

�2�(I)

�2

�s

whi
h is (4.20). �
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5. Integrals along plane 
urves, 
ont.

We now prove Theorems 1.4 and 1.5. Following [5℄ we work with an angular Littlewood-Paley de
om-

position.

Let � 2 C

1

0

(R

+

) so that �(s) = 1 if s 2 ((10

m

m)

�1

; 10

m

m) and de�ne Q

l

by

(5.1)

d

Q

l

f(�) = q

l

(�)

b

f (�) = �(2

l(m�1)

j�

1

j=j�

2

j)

b

f(�):

The operators Q

l

form a Littlewood-Paley family of multipliers supported in se
tors. Note that q

l

(�) = 1

whenever � is normal to the 
urves (t;�jtj

m

) if 2

l�1

� jtj � 2

l+1

.

Let �

0

be a smooth and even fun
tion on R so that �

0

(s) = 1 if jsj � 1=2 and �

0

(s) = 0 of jsj � 1.

De�ne P

l

by

d

P

l

f(�) = �

0

(j(2

�l

�

1

; 2

�lm

�

2

)j)

b

f(�).

Observe that the multiplier q

l

satis�es the estimates �

�

q

l

(�) = O(j�

1

j

��

1

j�

2

j

��

2

) uniformly in l. There-

fore by standard produ
t theory we have the estimate

(5.2)







f(Id�P

l

)Q

l

fg







H

1

prod

(`

2

)

.







fQ

l

fg







H

1

prod

(`

2

)

. kfk

H

1

prod

where f itself may be a Hilbert-spa
e valued fun
tion.

We now 
onsider the maximal fun
tion Mf . We show that

(5.3) k sup

l

jd�

l

� f jk

L

1;2

. kfk

H

1

prod

;

where d�

l

is a measure as in Proposition 4.1.

Given (5.3) we show the same bound for the nondyadi
 maximal fun
tion by a standard argument.

After a straightforward appli
ation of Lemma 2.4 we may assume that � has support in (�2

�5

; 2

�5

) and

vanishes in (�2

�6

; 2

�6

). Let ~� be supported in [ � (2

�8

; 2

�3

) and equal to 1 on [ � (�2

�7

; 2

�2

). We use

a Fourier expansion and write for 1=2 � s � 2

1

s

�(

t

s

) = ~�(t)

X

k2Z




k

(s)e

2�ikt

where 


k

(s) = O((1 + jkj)

�N

) uniformly in s 2 [1=2; 2℄. We set

d�

k;l

=

Z

f(t; jtj

m

)2

l

~�(2

l

t)e

2�ik2

l

t

dt:

and M

k

f(x) = sup

l

jf � d�

k;l

j. An appli
ation of (5.3) shows that M

k

maps H

1

to L

1;2

with norm

O((1 + jkj)

4

) and sin
e Mf(x) .

P

k

(1 + jkj)

�N

M

k

f(x) we obtain the inequality for the nondyadi


maximal operator from another appli
ation of Lemma 2.4.

Now we turn to the proof of (5.3). As in [5℄ the idea is to approximate d�

l

by Q

l

(Id�P

l

)d�

l

in order

to apply Proposition 4.1 and (5.2).

Using straightforward integration by parts arguments we observe that the fun
tions P

0

d�

0

and (Id�

P

0

)(Id�Q

l

)d�

0

are S
hwartz fun
tions. By res
aling this, using (1.6), we see that the maximal fun
tions

sup

l

jf � P

l

d�

l

j and sup

l

jf � (Id � P

l

)(Id � Q

l

)d�

l

j are dominated by nonisotropi
 version of the grand

maximal fun
tion (with respe
t to (1.6)) whi
h maps H

1

paraboli


and hen
e H

1

prod

to L

1

. It thus suÆ
es to

show that







sup

l

jf � (Id�P

l

)Q

l

d�

l

jk

L

1;2

. kfk

H

1

prod

:
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Writing f

l

= (Id � P

l

)Q

l

f , we 
an dominate the left-hand side by the L

1;2

norm of the square-fun
tion

(

P

l

jf

l

� d�

l

j

2

)

1=2

. With this 
hoi
e of f

l

the inequality

(5.4)










�

X

l

jd�

l

� f

l

j

2

�

1=2










L

1;2

. kfk

H

1

prod

follows from from Proposition 4.1, the embedding H

1

prod

(`

2

) � H

1

paraboli


(`

2

) and (5.2).

Now 
onsider the analyti
 family H




(and in parti
ular the Hilbert transform H = H

0

). We may

de
ompose

H




f =

X

l

f � d�




l

where

hd�




l

; fi =

Z

f(t; jtj

m

)2

l

�(2

l

t)jtj




1

+


2

m

dt

t

and �(t) = �

0

(t)��

0

(t=2). Note that � is an even fun
tion. The fun
tions P

0

d�




0

and (Id�P

0

)(Id�Q

l

)d�




0

are S
hwartz fun
tions as before, but also have mean zero and so their Fourier transforms de
ay at 0 as

well as in�nity.

Summing this, we see that D




P

l

(Id � P

l

)(Id � Q

l

)d�

l

and D




P

l

P

l

d�

l

are standard produ
t type

Calder�on-Zygmund kernels and so 
onvolution with these kernels will preserve L

p

, 1 < p � 2 and H

1

prod

.

It thus suÆ
es to show that

(5.5)










X

l

(Id�P

l

)Q

l

D




d�




l

� f










H

1;2

prod

. kfk

H

1

prod

if Re(


1

+ 


2

m) = 0

and

(5.6)










X

l

(Id�P

l

)Q

l

D




d�




l

� f










2

. kfk

2

if Re(


1

+ 


2

m) = 1=2

with 
onstants depending polynomially on 
.

To see (5.6) we note that a standard stationary phase 
al
ulation yields that j

d

d�




0

(�)j . (1 + j�j)

�1=2

.

By s
ale invarian
e we obtain the uniform L

2

boundedness of the operators with 
onvolution kernels

(Id�P

l

)D




d�




l

if Re(


1

+m


2

) = 1=2. The inequality (5.6) follows now from the almost orthogonality of

the operators Q

l

.

In order to prove (5.5) it suÆ
es to show that

(5.7)










�

X

k

1

;k

2

�

�

X

l

(Id�P

l

)Q

l

L

k

1

;k

2

f � d�




l

�

�

2

�

1=2










L

1;2

.










�

X

k

1

;k

2

jL

k

1

;k

2

f j

2

�

1=2










1

;

by the square fun
tion 
hara
terization of H

1;2

prod

; here L

k

1

;k

2

are as in x2. For ea
h k

1

, k

2

there are at most

O(1) indi
es l for whi
h (Id�P

l

)Q

l

L

k

1

;k

2

does not vanish, so we may majorize the left-hand side of (5.7)

by










�

X

k

1

;k

2

X

l

�

�

(Id�P

l

)Q

l

L

k

1

;k

2

f � d�




l

�

�

2

�

1=2










L

1;2

:

By Proposition 4.1 we may majorize this in turn by







f(Id�P

l

)Q

l

L

k

1

;k

2

fg

l;k

1

;k

2

2Z







H

1

paraboli


(`

2

)

:
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But this is bounded by kfk

H

1

prod

, by standard arguments similar to the proof of (5.2) above. This 
on
ludes

the proof of Theorem 1.5. To see that the Hilbert transform H maps H

1

prod

to L

1;2

we use in addition the

produ
t version of inequality (2.7).

Finally we prove Corollary 1.6. De�ne the measures d�

�

l

by

Z

fd�

�

l

=

Z

f(t; jtj

m

)2

l

(�(2

l

t))�(t)jtj

m�

dt

t

and set d�

l

= d�

1=m

l

. We use duality and prove that 
onvolution with (Id ��)

1=2m

P

l

d�

l

maps L

m

0

to

L

m

0

;2

.

It is easy to see that for �

1

+�

2

< 1, �

1

� 0, �

2

� 0 the fun
tions (Id��)

�=2

P

l

(Id�P

l

)(Id�Q

l

)d�

l

�f

and (Id��)

�=2

P

l

P

l

d�

l

�f are dominated by a 
onstant times the nonisotropi
 Hardy-Littlewood maximal

fun
tion of f .

Let

e

Q

l

= eq

l

(D) is de�ned similarly as Q

l

but with q

l

eq

l

= q

l

. Observe that in view of the 
ompa
t

support of � we have d�

�

l

= 0 if l > C

1

for suitable C

1

. Moreover, if l � C

1

, we see, using the de�nition of

Q

l

and the Mar
inkiewi
z multiplier theorem that for � � 0, that







(Id��)

�=2

(Id�P

l

)

e

Q

l

g







L

m

0

;2

.







D

�

2

Q

l

g







L

m

0

;2

:

Thus it remains to show that







fD

�

2

Q

l

d�

�

l

� fg







H

p;2

prod

(`

2

)

. kfk

H

p

prod

; Re(�) = 1� 1=p;

for 1 � p � 2. This is done by a reprise of the arguments above.

6. Rough homogeneous kernels: Preliminary redu
tions

Let �

0

be a radial bump fun
tion whi
h is 1 on fx : jxj � 1=2g and zero on fx : jxj > 1g, and

�(x) = �

0

(x) � �

0

(x=2) is then a fun
tion on the unit annulus. We also denote by ~�(t) the restri
tion of

� to the positive real line R

+

.

In what follows we shall work with the Littlewood-Paley operators introdu
ed in Lemma 2.1 (with

r = 3) and de
ompose the identity as Id =

P

k

L

k

0

L

k

1

L

k

2

L

k

3

; we assume that the numbers N

0

, " in Lemma

2.1 are 
hosen so that N

0

� 100d and " � 10

�10d

.

Let Æ

j

be the dilation operator de�ned by

Æ

j

g(x) = 2

�jd

g(2

�j

x);

and let A be the averaging operator de�ned by

Ag(x) = C

�1

Z

~�(t)t

�d

g(t

�1

x)

dt

t

;

where C =

R

~�(t)

dt

t

is a normalization 
onstant.

Sin
e K is homogeneous of degree �d we have the de
omposition

(6.1) K =

X

j

Æ

j

A[K�℄:

If the restri
tion 
 of K to the unit sphere belongs to L log

2

L(S

d�1

) then K� 2 L log

2

L(R

d

) and, sin
e

standard Calder�on-Zygmund operators map L log

2

L to L logL the L log

2

L assumption for K� is implied

by

(6.2)

�

X

k

jL

k

0

(K�)j

2

�

1=2

2 L logL:

In the present and subsequent se
tion we prove the following stronger version of Theorem 1.1.
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Theorem 6.1. Let K be homogeneous of degree �d and assume that the restri
tion 
 to S

d�1

is an

integrable fun
tion satisfying

R


d� = 0. Suppose that (6.2) holds. Then the operator T




maps H

1

boundedly to L

1;2

and also to the Hardy-Lorentz spa
e H

1;2

.

We also have

Theorem 6.2. Let K

0

(r�) = ~�(r)
(�) and assume 
 2 L

1

(S

d�1

) and (

P

k

jL

k

0

(K

0

)j

2

)

1=2

2 L logL. Then

M




maps H

1

boundedly to L

1;2

.

We shall prove Theorem 6.1. To prove Theorem 6.2 we use the argument in x5 to redu
e to a version

whi
h involves only dyadi
 dilations. The proof of the relevant estimate for this dyadi
 maximal operator

is similar to the proof of Theorem 6.1 and therefore omitted.

Let T be the operator de�ned by

(6.3) T f =

X

j

Æ

j

A[K�℄ � f

We now have to show that T is bounded from H

1

to H

1;2

. The H

1

! L

1;2

boundedness follows then from

(2.7) and limiting arguments. In our proof of (6.3) we shall assume that the sum in j is a
tually �nite, but

prove a bound whi
h is independent of this �niteness assumption. Again a limiting argument proves the

general 
ase.

We now de
ompose f in the standard manner as f =

P




I

a

I

, where 


I

are nonnegative 
onstants su
h

that

P

I




I

. kfk

H

1

, and a

I

is an atom supported on I with mean zero and su
h that ka

I

k

1

. jI j

�1

([26℄). The 
enter of the atom will be denoted by x

I

and we may assume that ea
h atom has sidelength

2

i

I

where i

I

is an integer.

For te
hni
al reasons we wish to suppress low frequen
ies in our atoms. Let

ea

I

=

X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

L

l�i

I

3

a

I

;

We assume










�

X

k

jL

k

0

(K�)j

2

�

1=2










L logL

� 1

(working with the norm kgk

L log




L

= inff� > 0 :

R

jg(t)j

�

log




(e+

jg(x)j

�

)dx � 1g) and we shall prove that

(6.4)










X

I




I

X

j

Æ

j

A[(K�)℄ � ea

I










H

1;2

� B

X

I




I

where B is a 
onstant depending only on d. Now the 
an
ellation of the atoms shows that ka

I

� ~a

I

k

H

1

.

2

�"C

0

, and so

(6.5)







f �

X

I




I

~a

I







. 2

�"C

0

kfk

H

1

:

Let kT k denote the H

1

! H

1;2

operator-norm, whi
h be
ause of our �niteness assumptions is a priori

�nite. (6.5) implies

kT fk

H

1;2

. 2

��C

0

kT kkfk

H

1

+B

X




I

:

Therefore, if C

0

in the de�nition of the ea

I

is 
hosen large enough, this implies that kT k . B.

In what follows we may assume

(6.6)

X




I

� 1:
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We now dispose of the 
ontributions when j � i

I

+ 2C

0

. We 
laim this portion is not only in H

1;2

but is

a
tually in H

1

. Sin
e H

1

is a Bana
h spa
e we may restri
t ourselves to a single 
ube I , so that it suÆ
es

to show that










X

j�i

I

+2C

0

Æ

j

A[K�℄ � ~a

I










H

1

. 1:

This we rewrite as










X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

[

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

℄










H

1

. 1:

By the analogue of (2.6) for the Littlewood-Paley operators L

k

0

L

k

1

L

k

2

it thus suÆ
es to show










�

X

l��C

0

�

�

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

�

�

2

�

1=2










1

. 1:

Sin
e the expression inside the norm is supported in a �xed dilate of I , it suÆ
es by the Cau
hy-S
hwarz

inequality to bound










�

X

l��C

0

�

�

X

j�i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

�

�

2

�

1=2










2

. jI j

�1=2

:

By modifying the method of rotations argument in [4℄ we see that the operator with 
onvolution kernel

P

j<i

I

+2C

0

Æ

j�i

I

+s

[K�℄ is bounded on L

2

; hen
e the above redu
es to

(6.7)

�

X

l��C

0







L

l�i

I

3

a

I







2

2

�

1=2

. jI j

�1=2

:

But this follows from the L

2

estimates on a

I

and the almost orthogonality of the L

l�i

I

3

.

We now turn to the 
ontributions j > i

I

+ 2C

0

and we wish to establish










X

I




I

X

l��C

0

L

l�i

I

0

L

l�i

I

1

L

l�i

I

2

[

X

j>i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

3

a

I

℄










H

1;2

. 1:

We set a

I;l

= L

l�i

I

3

a

I

and let fe

j

g be the standard orthonormal basis of unit ve
tors in `

2

. By the

remark following Lemma 2.1 we redu
e to show that










X

I




I

X

l��C

0

L

l�i

I

1

[

X

j>i

I

+2C

0

Æ

j

A[K�℄ � L

l�i

I

2

a

I;l

℄e

l�i

I










L

1;2

(`

2

)

. 1:

By Lemma 2.1 we may de
ompose

K� = S

0

1

(K�) +

1

X

k=1

L

k

1

L

k

0

(K�):

One easily 
he
ks that the 
onvolution operator with kernel K =

P

j

Æ

j

A[S

0

1

K�℄ is a standard Calder�on-

Zygmund operator. Indeed using the 
an
ellation of the fun
tions L

l�i

I

2

a

I;l

it is easy to see that for a �xed


ube I










�

X

l��C

0

�

�

�

X

j>i

I

+2C

0

Æ

j

[AS

0

1

(K�)℄ � L

l�i

I

2

a

I;l

�

�

�

2

�

1=2










1

. 1;

and the resulting H

1

! L

1

(`

2

) inequality follows for this part.
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Therefore it suÆ
es to prove that

(6.8)










X

I




I

X

j>i

I

+2C

0

X

l��C

0

L

l�i

I

1

Æ

j

A(

X

k>0

L

k

1

K

k

) � L

l�i

I

2

a

I;l

e

l�i

I










L

1;2

(`

2

)

. 1;

where still a

I;l

= L

l�i

I

3

a

I

, and K

k

= L

k

0

(K�).

We 
an rewrite the desired estimate for this portion using the identity

L

m

1

Æ

j

= Æ

j

L

j+m

1

:

Consequently we have to prove for q = 2 the inequality










X

I

X

j>2C

0

+i

I

X

l��C

0




I

Æ

j

(L

l�i

I

+j

1

A[

X

k>0

L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

e

l�i

I










L

1;q

(`

q

)

. sup

I

jI j

1�1=q

�

X

l

ka

I;l

k

q

q

�

1=q










�

X

k

jK

k

j

q

�

1=q










L log

2�

2

q

L

(6.9)

for arbitrary measurable fun
tions K

k

on fx : 1=4 � jxj � 4g and a

I;l

on CI . (6.8) follows then by using

also (6.7).

We shall dedu
e the inequality for q = 2 from the inequality (6.9) for q = 1 and the obvious modi�
ation

of (6.9) for q =1.

Noti
e that







L

l�i

I

+j

1

A[L

k

1

K

k

℄







L

1

!L

1

�

Z

j~�(t)jt

�d







 

l�i

I

+j

1

� t

�d

 

k

1

(t

�1

�)







1

kK

k

k

1

dt

. 2

�jl�i

I

+j�kj

kK

k

k

1

(6.10)

where we have used the 
an
ellation of the Littlewood-Paley kernels. The last estimate immediately implies

(6.9) for q = 1. The nontrivial part 
on
erns the estimate for q = 1 whi
h is proved in the next se
tion.

From these two estimates we dedu
e (6.9) for q = 2 by 
omplex interpolation, using Lemma 2.2. Assuming










�

X

k

jK

k

j

2

�

1=2










L logL

� 1;

we 
onsider the analyti
 family K

z

= fK

k

z

g

k2Z

de�ned by

K

k

z

(x) = K

k

(x)jK

k

(x)j

1�2z

�

�

K(x)

�

�

2z�1

`

2

�

log(e+ jK(x)j

`

2
)

�

1�2z

if K

k

(x) 6= 0 and by K

k

z

(x) = 0 otherwise. Then kK

i�

k

L

1

(`

1

)

. 1 and kK

1+i�

k

L log

2

L(`

1

)

. 1. The rest is

straightforward.

7. Rough homogeneous kernels: The weak type estimate

We are now proving the analogue of (6.9) for q =1. In addition to (6.6) we may also suppose that

(7.1) sup

I

sup

l

ka

I;l

k

1

� 1;







sup

k

jK

k

j







L log

2

L

� 1

and show that for � > 0
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(7.2) meas

�

�

x :

�

�

X

I

X

j>2C

0

+i

I

X

l��C

0




I

Æ

j

(L

l�i

I

+j

1

A[

X

k>0

L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

e

l�i

I

�

�

`

1

> �

	

�

. �

�1

:

Let F =

P

I




I

�

I

jIj

. Sin
e kFk

1

. 1, we may apply the standard dyadi
 Calder�on-Zygmund de
ompo-

sition to F at level �, and obtain a 
olle
tion of disjoint dyadi
 
ubes J = fJg su
h that

P

J

jJ j . �,

R

J

F (x) dx . �jJ j, and su
h that F is O(�) outside of

S

J

J .

To every dyadi
 
ube I we assign a nonnegative integer t

I

as follows. If I is not 
ontained in any of

the J , then t

I

= 0. If I is a subset of a 
ube J 2 J , then t

I

is 
hosen so that the sidelength of J is 2

t

I

times the sidelength of I . One 
an view t

I

as a stopping time; roughly speaking, 2

t

I

I is the largest dilate

of I on whi
h the mean of F is greater than �, or I if no su
h dilate exists.

The 
ontribution of the terms in (7.2) for whi
h j < i

I

+ t

I

+ 2C

0

is 
ontained inside the ex
eptional

set

S

J

CJ , whi
h has measure O(�). We 
an therefore restri
t ourselves to the 
ase j � i

I

+ t

I

+2C

0

. We


hange the summation variable to s = j � i

I

� t

I

� 2C

0

. Thus for the expression

(7.3) E(x) =

X

I

X

s�2C

0

X

l




I

X

k>0

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

we have to show that the measure of the set fx : jE(x)j

`

1

> �g is O(�

�1

). This will be estimated by

further splitting the expression E(x) into four pie
es and then by applying of Chebyshev's inequality and

L

1

or L

2

estimates for the individual pie
es.

We now des
ribe this splitting. Let

(7.4) M(x) = sup

k>0

jK

k

(x)j:

We break up the fun
tions K

k

into a bounded part and an integrable part (this trun
ation has �rst

been used in [9℄). Let "

0

> 0 be a 
onstant to be 
hosen later ("

0

= 10

�2

, say, works). For all k write

K

k

= 2

"

0

(s+l)

K

k

l;s;I

+R

k

l;s;I

, where jK

k

l;s;I

(x)j � 1 and the remainder R

k

l;s;I

is the restri
tion of K

k

to the

set fx :M(x) � 2

"

0

(s+l)

g. We split

E(x) = E

1

(x) + E

2

(x) + E

3

(x) + E

4

(x)

where

E

1

(x) =

X

I

X

s�2C

0

X

l��C

0




I

X

k>0

jk�l�s�t

I

j�s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.1)

E

2

(x) =

X

I

X

s�2C

0

X

l��C

0




I

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

R

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.2)

E

3

(x) =

X

I

X

l�2C

0

X

2C

0

�s�l




I

2

"

0

(s+l)

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.3)

E

4

(x) =

X

I

X

s�2C

0

X

�C

0

�l<s




I

2

"

0

(s+l)

X

k>0

jk�l�s�t

I

j<s+l

Æ

i

I

+t

I

+s

(L

l+s+t

I

1

A[L

k

1

K

k

l;s;I

℄) � L

l�i

I

2

a

I;l

(x)e

l�i

I

(7.5.4)
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It suÆ
es to show that for i = 1; 2; 3; 4 the measure of the set fx : jE

i

(x)j

`

1

> �=4g is O(�

�1

). By

Chebyshev's inequality and the 
ontinuous imbedding `

1

� `

2

� `

1

it suÆ
es to show that

(7.6) kE

1

k

L

1

(`

1

)

+ kE

2

k

L

1

(`

1

)

+ kE

3

k

L

1

(`

1

)

. 1

and

(7.7) kE

4

k

L

2

(`

2

)

. �:

The estimation of E

1

and E

2

is straightforward. Sin
e k(L

l+s+t

I

1

A[L

k

1

K

k

℄)k

L

1

!L

1

. 2

�jk�l�s�t

I

j

we

get

kE

1

k

L

1

(`

1

)

.

X

I

X

s�2C

0

X

l��C

0




I

X

jk�l�s�t

I

j�s+l

2

�jk�l�s�t

I

j

kL

l�i

I

2

a

I;l

k

1

.

X

I




I

X

s�2C

0

X

l��C

0

2

�s�l

. 1:(7.8)

Next, by the de�nition of R

k

l;s;I

kL

l+s+t

I

1

A[L

k

1

R

k

l;s;I

℄k

1

. 2

�jk�l�s�t

I

j

Z

x:M(x)�2

"

0

(s+l)

M(x)dx

and therefore

kE

2

k

L

1

(`

1

)

.

X

I

X

s�2C

0

X

l��C

0




I

X

jk�l�s�t

I

j�s+l

2

�jk�l�s�t

I

j

Z

x:M(x)�2

"

0

(s+l)

M(x)dx

.

X

I




I

Z

jM(x)j log

2

(e+ jM(x)j)dx . 1:(7.9)

The following Lemma is 
ru
ial for the estimation of E

3

.

Lemma 7.1. Suppose that g is a bounded fun
tion supported in fx : 1=4 � jxj � 4g and a is supported in

a 
ube I with sidelength 2

i

I

; moreover kak

1

� jI j

�1

. Then for m � 0







Æ

i

I

+m

[L

l+m

Ag℄ � a







1

. 2

�l=2

kgk

1

Proof. We may assume kgk

1

� 1. Let V

m

= f�g be a maximal 2

�m

-separated subset of unit ve
tors

in R

d

; its 
ardinality is O(2

m(d�1)

). We may split g =

P

�

g

m;�

where g

m;�

is supported in the se
tor

fx : j

x

jxj

� �j . 2

�m+10

g (and in the annulus where 1=4 � jxj � 4).

Now Æ

i

I

+m

[L

l+m

Ag℄ � a is supported in a re
tangle of dimensions C

1

2

i

I

� � � � � C

1

2

i

I

� C

1

2

i

I

+m

.

Therefore by the Cau
hy-S
hwarz inequality
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We estimate this sum using Plan
herel's theorem. For � 2 (R

d

)

�

j
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by Plan
herel's theorem and the estimate j
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The asserted estimate follows from (7.10) and (7.11). �

We now estimate the L

1

(`

1

) norm of E

3

. To apply Lemma 7.1 we note that L

l�i

I

2

a

I;l

is supported in a

�xed dilate of I and kL

l�i

I

2

a

I;l

k
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�1
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e
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Finally we turn to the estimation of kE

4

k

L

2

(`

2

)

. We �rst observe the basi
 estimate

Lemma 7.2.
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Proof. Consider �rst those 
ubes I for whi
h t

I

= 0. It is easy to see that this 
ontribution is bounded

pointwise by min(F;C�) for some 
onstant C, and so the 
laim follows sin
e kFk

1

. 1.

Now 
onsider the 
ubes I for whi
h t

I

> 0. This part is majorized pointwise by
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;

where for the �rst inequality we have used Lemma 2.3. �

The 
laimed estimate for E

4

will follow from
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Lemma 7.3. Let g

I

be bounded and supported on fx : 1=4 � jxj � 4g and set b

I;l

= L
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Proof. This inequality is 
losely related to one in [25℄ and we shall adapt the proof here. Let V

s

= f�g

be a maximal 2

�s

-separated subset of the unit sphere S

d�1

; the 
ardinality of this set is O(2

(d�1)s

). We

de
ompose g

I

=

P

�

g

I;�

, where ea
h g

I;�

is a bounded fun
tion on the se
tor

(7.13) S

s

�

= fx : 1=4 � jxj � 4;\(x; �) � 2

�s

g;

here we used \(x; �) to denote the angle x and � make at the origin.

We introdu
e a lo
alization in Fourier spa
e to a 
oni
 neigborhood of the hyperplane perpendi
ular

to �, namely

�

s

�

= f� : jh�; �ij � 2

�s=2

j�jg

(The exa
t 
hoi
e of aperture 2

�s=2

is unimportant as long as it is well between 2

�s

and 1). We de�ne the

multiplier Q

s

�

whose symbol m

�

is homogeneous of degree 0, and equals 1 on �

s

�

and vanishes outside a

slight widening of �

s

�

.

We then redu
e to showing that

(7.14)
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and, for �xed �,

(7.15)
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where N � N

0

=10 (re
all that N

0

� 100d). The estimate (7.15) is favorable if N > d� 1.

To prove (7.15) we show the estimate

(7.16)
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1

dilate of a radially de
reasing L

1

fun
tion. By Lemma 2.3 and Lemma 7.2 the left

hand side of (7.15) is dominated by
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We now show (7.16). Fix �. Res
aling so that i

I

+ t

I

+ s = 0, it suÆ
es to show that
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for all j � l + t

I

+ s � s and all bounded h supported on S

s

�

.

Fix j; x. We expand the left-hand side as
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where the moments of  

1

vanish up to order N

0

and ~� is supported where 1=4 � t � 4. The de
ay in x

follows from the fa
t that the phase is non-stationary in the � variable when jxj � 1.

Now we demonstrate the 2

�Ns

bound; we may assume that jxj � 2

s=5

. Sin
e h is supported in S

s

�

and m

�

equals 1 on �

�

we see that for ea
h j�j & 2

j

, the phase is non-stationary in the t variable (with a

gradient of at least 2

"s

). For j�j . 2

j

one pi
ks up a loss of (2

j

=j�j)

C

, but this 
an be 
ompensated for by

the moment 
onditions on  

1

, sin
e j � s.

To show (7.14) we use the fa
t that the Q

s

�

have some weak orthogonality. More pre
isely, we have for

any fun
tions f

�

that

(7.17)
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as in [25℄ this estimate is easily proven from Plan
herel's theorem, the Cau
hy-S
hwarz inequality, and

geometri
al 
onsiderations. Be
ause of this orthogonality, and Lemma 7.2, it now suÆ
es to show that

(7.18)
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uniformly in � 2 V

s

.

Fix �. Let R

s

�

be the re
tangle 
entered at the origin, with dimensions C

1
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�� � ��C

1
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1

so that

the long side is parallel to �. Then, if C

1

is 
hosen large enough there is the uniform pointwise estimate
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:

Thus (7.18) follows from Lemma 2.3. This 
ompletes the proof of (7.14) and the Lemma. �

The estimate (7.7) is an immediate 
onsequen
e of Lemma 7.3. The estimate (7.6) holds by (7.8), (7.9)

and (7.12) and thus we have proved the asserted weak type inequality.
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