ON SPACE-TIME ESTIMATES FOR THE SCHRODINGER OPERATOR

SANGHYUK LEE  KEITH M. ROGERS ANDREAS SEEGER

ABSTRACT. We prove mixed-norm space-time estimates for solutions of the Schrédinger
equation, with initial data in LP-Sobolev or Besov spaces, and clarify the relation with
adjoint restriction.

RESUME. Nous obtenons des estimations en norme-mixte espace-temps pour 1’équation
de Schrédinger avec valeurs initiales dans des espaces de Sobolev ou de Besov. Nous
éclaircissons également leurs relations avec celles de 'opérateur adjoint-restriction.

1. INTRODUCTION

We are concerned with regularity questions for the solution u of the initial value problem
for the Schrédinger equation on R? x I,

0w+ Au=0,  u(-,0)=f,

where [ is a compact time interval. When f is a Schwartz function, the solution can be
written as u = U f, with

. USe) = ¢26(0) = g [, Floe e

here ~ denotes the Fourier transform defined by f(& ) = [ f(y) e~ 1Y€ dy.

Bounds for the solution in the spaces L"(I; L9(R%)) with initial data in L2-Sobolev spaces
have been extensively studied; these are known as ‘Strichartz estimates’ [32] and they play
an important role in the study of the nonlinear equation (see for example [34]). In this
paper we are instead concerned with bounds in the spaces L? (]Rd; L™(I)), equipped with

the norm y Y
q/r q

|| ramd.rromy = u(z,t)|" dt dz

lallgzeay = ([, ([ 1uto o @) as)

when the initial datum is given in Sobolev spaces Lf,, with norm || f||z» = || (I_A)a/2f||Lp(Rd).
We thus seek to prove the bound

(1.2) U fll paraszrryy < Cllfll Lz may -

for suitable choices of p,q,r and «. Unlike the estimates in L"(I; LY(R?)), the inequality
(1.2) is no longer invariant under Galilean transformations when ¢ # r which usually makes
the problem more difficult.

Estimates with particular p,q and r are related to several well-known problems in har-
monic analysis and various results have been obtained in specific cases. Notably, when
r =o00 and p = 2, (1.2) is the global version of the usual (local) maximal estimates which
have been studied to prove pointwise convergence of Uf as t — 0 (see for example [7],
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[37], [3], [35], [18]). Two of the authors [27] proved the sharp maximal estimates for some
p = q > 2 which strengthen the fixed time estimates due to Fefferman—Stein [10] and Miy-
achi [21]. When p = ¢ > 2 and r = 2, the problem is closely related to square function
estimates for Bochner—Riesz operators, and also to L?(L?) regularity of solutions for the
wave equation (see [19] and §3.6). Finally, for p = 2, some ¢,r € (2,00) and I = R,
Planchon [24] considered a homogeneous version of the problem replacing L} with the ho-
mogeneous space HY, see also [16], [28], [35] for closely related results. In this article we
obtain some new results on (1.2) for various choices of p,q and r and clarify the relations
with the aforementioned problems.

Connection with adjoint restriction estimates. It is known that (1.2) is closely related to
estimates for the adjoint restriction operator defined on a compact portion of the paraboloid
in R4, Various maximal and smoothing estimates were obtained by relying on the adjoint
restriction estimate, or its bilinear and multilinear variants (see [29], [11], [30], [37], [3], [14],
[35], [18], [25], [4], [5]). Here we prove an actual equivalence of the space-time regularity
estimates with estimates for the adjoint restriction operator, which allows us to extend
the range of (1.2) by combining it with recent progress on the restriction problem [5]. A
related result establishing the equivalence between adjoint restriction and Bochner—Riesz
for paraboloids was found by Carbery [6].
Let £ denote the adjoint restriction (or Fourier extension) operator given by

(1.3) Ef(E,s) = fly) e WP=i€w gy (£s) e R x R.

lyl<1

Definition. We say that R*(p — q) holds if £ : LP(RY) — LI(R4*1) is bounded.

The critical cases for adjoint restriction occur when g = d%fp’ , and for a given ¢ we

denote the critical p by p(q). In that case, it follows from the explicit formula

iz — y|?

(14) Ufe0) = s | e (U ) rway

and scaling that R*(p(¢) — ¢) implies the LP(O(R?) — LI(R¢ x I) boundedness of U.
Moreover it was shown in [25] that it implies the LE — L9(R%x I') bound for o > d(1— %)— %.
We strengthen the connection between R*(p — ¢) and Schrédinger estimates by establishing
an equivalence for general p, q. In order to formulate it we invoke Besov spaces B .. Recall

that [|fllgz , = O r=0 2ka”|]PkaZ)1/” where for k > 1, the operators Py localize frequencies
to annuli of width ~ 2¥ and Py =T — Zk>1 b

Theorem 1.1. Suppose 2 < p < q < o0o. Then, for every v € (0,2], the following are
equivalent:
(i) R*(p — q) holds.

(ii) U : Bhy(RY) — LUR? x I) is bounded with o = d(1 — 2 — 2) = 2,

In §2 we shall also formulate more technical variants of Theorem 1.1 which are valid for
mixed norm spaces.

We note that the restriction v < 2 in Theorem 1.1 is only needed for the implication
(7)=(i7). Moreover, the theorem implies that R*(p — ¢) holds if and only if for all A > 1
the inequality

1 2

1 _1y_2
U fll pogasny S A 2774 1]l
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holds for all f € LP with frequency support in {£ : A/2 < [£] < 2A}; of course for those f
the parameter v plays no role. For more general initial data recall that Bb , is contained
in the Sobolev space L} for v < min{2,p}, and vice versa, L% is contained in Bh, for
v > max{2,p}. It remains open whether the condition v < 2 is necessary and whether Bf;z
can be replaced with L, in Theorem 1.1. However it follows from a result in [19] (see §5.1
below) that if one is willing to give up an endpoint in the g-range then one can also obtain
results on larger spaces including L%, as well as mixed norm inequalities with » > gq.

Corollary 1.2. Let 2 < gy < 00, 1 < pg < qo, and suppose that R*(pg — qo) holds. Let

Qo < q < o0, q<r< oo and suppose that 0 < %épio—qio. Then

U fll paesorry < ClFllgn @ey,  a=d(1-1-1)-2

By the trivial R*(1 — oco) estimate and interpolation one can deduce the conclusion in the
larger range p1(q) < p < ¢, where p1(q) < po is defined by m (q) - + (1— q—o)( ) The
recent progress on R*(p — p) by Bourgain and Guth [5], which employed the multlhnear
estimates of [2], can be used to prove new estimates of the form

U fll o azriry < CllFlge, @y, a=d(1—2) -2

In two spatial dimensions their result implies that the displayed estimate holds in the case
r > p for p € (56/17,00) (see [5, pp. 1265]); moreover, in higher dimensions, it holds for
the range p € (ppg(d),o0) with ppa(d) = 2 + W&ﬁ ifd+ 1=k (mod 3), k=-1,0,1.
This improves the result of [27], where the estimate was shown to hold in the range p €
(2%:3 ),oo) using the bilinear estimate of Tao [33]. We will also see that Bourgain and
Guth’s result can be combined with Tao’s restriction bilinear estimate to obtain the critical

restriction estimates R*(p(q) — ¢) for some range of ¢ with ¢ < 2%:13) (see §5.2).

3=

Necessary conditions. We now consider necessary conditions on p,q,r and « for (1.2) to
hold. As previously mentioned, due to connections with other problems, conditions for spe-
cific choices of p,q and r are known, and examples in those special cases are also relevant
when proving necessary conditions for general p,q and r. However we also establish addi-
tional conditions which seem to have not been noticed before. In particular the necessity of
the strict inequalities in (v), (vi) in the following proposition are proved by constructions
which involve the Besicovich set (see §3).

In what follows we set ag.(p;q,r) :==d(l —+ — =) — =,

Proposition 1.3. Let p,q,r > 2 and suppose that there is a constant C such that
1Ufll ara;or iy < Cllfllzemay -
holds whenever f € Lh(RY). Then
(i) p <

(i) o > acr(pvq, r)

1
(i) a > ; — 1
(Z’U)Oé %_%a
(v)a>%—% if 7> 2,

(i) a>0 if r=2,p=q>2,d>2

The same conditions hold if we replace Sobolev norm Lk, by the Besov norm of BY .,
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The condition (i) is a simple consequence of translation invariance. When p = 2, the
condition (i7) coincides with (éi7) if diql +1= %l. This is the condition in the endpoint
version of Planchon’s conjecture (cf. [24], [20]); that for these exponents U : H*(R?%) —
LI(R%; L"(R)) with o = d(5 — %) —2Zand r > 2. If p=2and r = oo, then the conditions
(797) and (v) follow from the necessary conditions for Carleson’s problem [7, 31], via an
equivalence between local and global estimates [25].

The necessary conditions also naturally connect to those in the restriction and Bochner—
Riesz problems. The necessity of the condition (vi) in dimensions d > 2 comes from the fact
that a sharp square function estimate for the Schrodinger operator implies sharp bounds
on Bochner—Riesz multipliers. When p = ¢ and 2 < r < ¢, the condition « > a.-(p;p,r) is

more restrictive than (vi) if d(% — %) — % > 0. In particular, if r = 2 and « = ae.(p; p, 2),
by (vi) the range p > d%dl is necessary (as can be deduced from the connection to the

. . . 2(d+1
Bochner—Riesz conjecture in ]Rd), and for r = p, @« = a.(p;p,p) the range p > %

is necessary (as can be deduced from the connection with the adjoint restriction problem
for the paraboloid in R%*!, ¢f. Theorem 1.1). On the other hand, if p < ¢, r = 2, the

condition o > aer(p;q,2) is more restrictive than (iv) if % < d}j,l, the familiar range

for the adjoint restriction theorem for the sphere in R%. Likewise if, p < ¢ = r then the

condition a > max{0, . (p;q,q)} implies d%;z < 1%’ the range for the adjoint restriction

theorem for the paraboloid in R4+!.

Remark (added March 2012). When d > 5, an additional necessary condition can be de-
duced from Bourgain’s recent lower bounds for the Schrédinger maximal estimate. Pre-
cisely he showed that |[UPa f|lLa((0,1);00[0,2-2F])) < C225%|| Pyr. f||2 holds for ¢ > 2 only if
s > 1/2—1/d. By scaling this implies that ||U P f[| La(ra;10[0,1)) < 2%k 2kd(1/a=1/2)|| Py f |l
can only hold if s > 1/2 — 1/d. By Sobolev imbedding this can be perturbed to give a
necessary condition

az1-3-d(1-}-1) -2

for p,q,r > 2, which is effective when p, ¢ are close 2 and r is relatively large.

Results for d =1 and d = 2. In one and two spatial dimensions, via more refined analysis
based on bilinear technology, it is possible to obtain sharp estimates. First we state precise
bounds for frequency localized functions in one spatial dimension.

Theorem 1.4. For large \, let
Ar(p;q,r) = SUP{HUfHLq(R;LT(I)) Il <1, suppfC{€:A/5 <€)< 15)\}}-

Then for A > 1, the following norm equivalences hold:
(i) For2 <r <p<q< oo,

A/a=Vpllog NJ1/2=1/r g 14 15 1
Ql)\(p; Q7T) ~ 1_1/;,,_1[/[1%2/1 f l{ ; %
A ’lf 7 + <73
(ii) For 2 <p<r < q< oo,
\L/a—1/r i 24ls1-1
Ql)\(p;q’r) ~ {)\I—I/P—l/Q—2/7“ Z.J]: g + i <1-— i
qg T P’

Again, using the result in §5.1 we obtain
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Corollary 1.5. Suppose that 2 <r<p<gq, = 7 —|— < 2, 07“2 <r<ag, %-I—% <1-— ]lj.
Then U : BE ¢(R) — LI(R; L"(I)) is bounded wzth a=1—+— l -2

p q

To compare these results, recall that Bé g, C Bag, for 1 < g2, that Bl , C La C Bay

when p > 2, and that BE , is the same as the Sobolev—Slobodecki space WP when 0 <

«a < 1. In higher dimensions, if one singles out the case p = ¢, one could hope to prove the
following

Conjecture 1.6. Let p € [2,00), r € [2,] satzsfy +1 <4 and 2d+1 +1 <d. Then
U : Bh,(RY) — LP(RY; L7(1)) is bounded with o = d(l — 2) -2

p T

In [19], the conjecture was proven in the reduced range p € (2(d;2) ,00), and for d =1 it
2(d+3)
d+1 ,00)

was proven in the range p € (4,00). In [27], the conjecture was proven for p € (
with r > p (see [25] for a nonendpoint version).

Theorem 1.4 also provides the negative part of the following corollary. The positive part
was proven in [19, Proposition 5.2].

Corollary 1.7. Let 2 < p < oo. Then U : LP(R) — LP(R; L"(I)) is bounded if and only if
r<2.

In two dimensions we can improve on the previously known range in p if r is large; this
is closely related to results on maximal operators for L2 functions (cf. [24], [18], [26], [20]).

Theorem 1.8. Let 16 <p<ooand4d <r <oo. Then U : Bh,(R?) — LP(R%, L7(I)) is
bounded with o = 2(1 — 5) — %

The range in r can be further improved for 16/5 < p < 4, by interpolating with the above
mentioned LP(LP(I)) bounds for p > 56/17 (see [5]) and the LP(L?(I)) bounds of [19] for
p > 4. Moreover one can obtain intermediate L5, — L4(L"(I)) bounds with the critical «
by interpolating with the sharp L? — L9(L") bounds in [20].

Organization of this paper. In the following section, we prove Theorem 1.1 and related
mixed norm results. In §3 we discuss necessary conditions to show Proposition 1.3 and the
lower bounds in Theorem 1.4. The upper bounds are proven in §4. In §5 we detail how to
combine the frequency localized pieces to obtain estimates for Besov and Sobolev spaces,
and in the final section we prove Theorem 1.8.

Notation. By m(D) we denote the convolution operator with Fourier multiplier m; that
is to say m(D)f = (mf)Y. For two nonnegative quantities A, B the notation A < B is
used for A < C'B, with some unspecified constant C. We also use A ~ B to indicate that
A< Band B S A

2. LP — L9(L"(I)) BOUNDS AND THE ADJOINT RESTRICTION OPERATOR

We formulate a more technical version of Theorem 1.1 that also applies to mixed-norm
inequalities. In what follows let

(2.1) Alp) = {€ € R : 3p < [¢] < 129}

Theorem 2.1. Let p,q,r € [2,00], p < ¢q, 5 > —d(% — 5) and 0 < v < 1. Then the
inequality

2 a/r \1/q
(2.2) sup ™ sup ([ ([T lesGeoras)” ae)
AT <t Ma) N
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holds if and only if for v = d(1 — % — %) —2 428,

{(/_11 \e“Af!’"dt>l/THq < 0.

If in addition r < oo this equivalence remains valid for the range 0 < v < 2.

(2.3) sup

/1157, <1

Taking Theorem 2.1 for granted we can quickly give

Proof of Theorem 1.1. By Theorem 2.1 we just have to show that R*(p — ¢) is equivalent
with (2.2) for large A, in the case ¢ = r and § = 0. Clearly the latter is implied by
R*(p — q); this follows by a change of variables (1,s) = (sA7!¢,s) which has Jacobian
bounded above and below in the region where s = .

Vice versa, supposing that (2.2) holds in the case ¢ = r and f = 0, by the change of
variables, we have that & : LP(R?) — L9(W)), where

Wy ={(&s): s€ N2\, zeA(s)}.

For w € R™! define f(y) = ewv)=iwa1lvl® f(y) and observe that £f* = £f(- —w). Thus
using a finite number of translations we see that £ : LP(R?) — L9(B,), where By is the
ball in R%*! of radius A centred at the origin, and the operator norm is uniformly bounded
in A. Letting A — oo yields R*(p — ¢). O

We now proceed to prove Theorem 2.1.

Lemma 2.2. Let p,q,r € [2,00] with p < q and let A > 1. Suppose that

237 i ~ o\ N
(24) ([ ([, tErGeesras) i)™ < 4y
holds. Then, for ¢ € C with support in {& : 4 < [§| < 5},
1 . 1/r
itA D r e — 1 _1y_ 2
e |(/f Jeeisra) | s iy, a=do-g-3) -2

Proof. If fy is the characteristic function of a ball of radius (100A)~2 then |£(f))(5%¢, )| >
A2 for (£,5) € A(N?) x [A2,2)%]. The resulting lower bound A > cA\24(=1+1/p+1/a)+2/r
(which is far from being sharp) will be used repeatedly to dominate certain error terms
which decay fast in A.

The convolution kernel for e?*2¢)(£) can be written as

A\d 2112 s
A — (= —itA2 [P +HiN(z,€)

K@) = (32)" [wi©)e de.
By integration by parts it follows that
(2.6) |KN(z)| < Cnlz|™N, for |z| > 11\
Hence, by a standard argument, (2.5) reduces to showing the inequality

1 a/r \1/a
2.7 / / K} s flrdt) dz) < AXY||fll,, a=d(1-L1-1)_2
en (., (e sra)do) £ (1-1-YH-2

for f supported in the cube of sidelength A\(2d)~! centred at the origin. Indeed, suppose
that (2.7) is verified, let Q) = {Q} be a grid of cubes with sidelength \(2d)~!, and centres
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zQ, and let Bg be the ball of radius 11\ centred at xg. Then we may estimate the
L4(R% L7([1/2,1])) norm of e*A4(L) by

(/ 2. xpe @) /1;2 K [xallar) )
' ( / ZQ: Xl ( /1;2 B [fXRd\BQ](x)th) q/rdx) Ha

by Minkowski’s inequality in L". We use the finite overlap of the balls, the translation
invariance of the operators and (2.7) to estimate the first term by

/
e (X lfxaly) s carfl,
Q

(2.8)

where for the last inequality we have used the assumption p < ¢. For the second term in
(2.8) we use (2.6) with N > 2d and then Young’s inequality to bound it by

C(/ [/wm'w'_N'f <$‘w>'dw}qd$>/ SATNFOED| £, < AN -

We used the trivial lower bound for A in the last step.
Our task is now to prove (2.7). We use a stationary phase calculation to see that
K} = H} + E}, where
o—ilel?/ar M

H@) = Gz 22 (557)

AV

and
|Ex(z,t)] < CpA™F

where we choose L > d. For the leading term 1y = v, and the functions 1, are obtained
by letting certain differential operators act on v; thus ¥, (w) = 0 for |w| < 4 and |w| > 5.
For the error term we use a trivial bound

(oo <// [ 1t —wons@tas] @) )" S 5ty £ 4

For the oscillatory terms we have to prove the inequality

oo ([ ([ folmhen o ma] @) w) " s e,

whenever f is supported in {|y| < A/2}. By a change of variable ¢t — u = 1/t (with
u~t~ 1) and the support properties for 1/)1, this follows from

(2.10) /)\<x<21)\ /‘/qu/2 y 2 y))exp(i%(|y|2_2($,y>))

< fay| au)""ax) " < ax 11,

whenever f is supported in {|y| < A/2}. We now use a parabolic scaling in the (z,u)-
variables and set

z=2"lw, u=\32s y = 2Az.
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The previous inequality becomes

2)2 2
sw — 2M\“sz
2.11 ‘ Y e —
( ) (/;A2<w|<221>\2 </,\2 /|z|<11/} ( 204 )
a/r dw

< explilsl=l? — (. ) fAz) 0 de] ) TRy

We have the Fourier series expansion 1, (z) = 3" ,cza cop et for x € [— 2, 27]? and for

each v the Fourier coefficients are rapidly decaying, |c,| < Cn, (1 + [€])~. Thus
— 2>\2
T,Z)y(sw SZ ZCZ Ve 4 (sw, L) /2 —iX"2s(z, Z)

Using Minkowski’s inequality for the sum and the rapid decay of the Fourier coefficients
the previous inequality (2.10) follows from

(2.12) (/W'w ) / (/||<1exp (s]2]2 — { (WM), N F2A2) dz‘ ds) dw)l/q

2

a—d+=4+2
< (1 [E)M AN 1

The left hand side is trivially bounded by C\2/7+24/4 and therefore the displayed inequality
holds for |[¢] > A2/4. If |¢| < \?/4, we change variables and see that for (2.12) we only need
to show

2)2
2 sSw r q/r 1/q
ex Z ) z)dz| ds dw
</3>\2<w|<11,\2 / ‘/||<1 p(i(sl2]” - </\2 2)))9(2) ‘ ) )

S AN g,
The right hand side is just Al/g||,, so that this would follow from (2.4). O

Lemma 2.3. Let p,q,r € [2,00] and A > 1. Let 2 < ag < ay and let n be a radial C°
function which satisfies n(§) =1 for “0_2 < €] € 2(ay + 2). Suppose

(2.13) ||f||p<1H</ AR fI dt) /THq < B.

Then

(2.14) (/Wdamz(/p et )las) " de) s A g

Proof. In what follows let oo = d(1 — % — %) — 2. We begin by observing the lower bound

T

B > cA\® which follows from the example in §3.2.
By a change of variable £ = Az, s = A2p, y = 2\z we see that (2.14) is equivalent with

</ao>\<x<a1>\ /‘/|<2)\ (Bx)e 2(p\y|2/4—p<:c7y>/2)dy‘de>q/7’dx>1/‘1

S OBA 2NNV £

l\D
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By inverting ¢ = 1/p the previous inequality follows from

1 1 / z\w y\2 ToNg/T 1/q
—_— gly)e dy| dt dzx
</ao)\<x<al)\ </1/2‘(47mﬁ)d/2 lyl<2) (w)e ) >

< BATONT U2z g,

which can be rewritten as

ro - N9 \1/a
(215) (/ ([ 1eg@ran)” a) ™ 5 Bl
apA<|z|<ar A 1/2

for g supported in {y : |y| < 2A}. By assumption

</ao>\<w<a1)\ </1/12 e"n(3)g (x)‘rdty/ dx) v < Bllgllp

and thus (2.14) follows from the straightforward estimate

(2.16) </¢10)\<|IE|<¢11)\ </1/12 ZtA(I 77(%)) (z) Td >q/ dw) v S CM)\_MHQHP’

whenever ¢ is supported in {y : |y| < 2A}.
To see (2.16) we decompose the multiplier. Let xo be smooth and supported in {|¢| < 2}
and xo(€) = 1 for |¢] < 1, and let x (&) = x0(27%€) — x0(2'7%¢), for k > 1. Let

[ n(g e e ieagg

1
E t) = ——
)\,k(x7 ) (27T)d
and we need to bound the expression

(I-n(R))e"g(x,t) Z/ Exi(z —y)g(y)dy.

k>0 ly| <2

We now examine Ve ({z —y,&) —t|¢|?) = z —y — 2t£. Since ag > 2, for the relevant choices
ap|A| < |z| < a1\, 1/2 <t < 1, |y| < 2\ we have

|z —y —2t8| > (a0 — 2)) ife] < =0
7\ max{l, (a1 +2)A) i ¢ > (a1+2))\

Since 1 — n(A71E) = 0 for =2 < |¢| < 2(a1 + 2), after an N-fold integration by parts we
find that |Eyk(z — y,t)] < On(28X)3=% for this choice of x,y,t, and the estimate (2.16)
follows. O

>/

To complete the proof of Theorem 2.1 we also need the following scaling lemma.

Lemma 2.4. Let vy > d(— - —) — 2. Suppose that for A > 1

v 1/q
(217) I( / e @srar) | < X
1/2 1
where x € C is supported in (1/2,2) (with suitable bounds). Then, for A > 1,

(218) [([reexisrae) ™| s xisi
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Proof. 1t is easy to calculate that

sup  |F x(5) exp(—it| - %)) ()] < OnAT(L+ Alz])™
0<t<(8N) 2

and thus, by Young’s inequality,

H</(8>\ s (%)f!rdt> ’“H < H)\_2/7‘/)\d(1+)\’y‘)—1\7’f(._y)’dqu
(219 ATl

Now letting (8\)™2 < b < 1,

b 1/r 1 . r 1/r
([ esx@rara) " =vr ([ [ Gheisee 2| as) "
b/2 1/2
Thus by a change of variable (2.17) implies
Z r /7" e
([ esxcgisra)™] < m - ovirin,
We choose b = 27!, and since v > d(— — %) - % we may sum over | with (8)\)™2 <27/ <1
and combine with (2 19). Hence we get
1/r
([ eaxisran™|, < visty

Now (2.18) with I = [~1,1] follows using the formula e #2 f = ¢#Af  and the triangle
inequality. Finally, by scaling, we can enlarge the time interval (so that the implicit constant
is of course dependent on the interval), and we are done. O

Proof of Theorem 2.1. The implication (2.3) = (2.2), for all v > 0, follows from Lemma 2.3.

For the implication (2.2) = (2.3) we decompose f = > ;2 P.f, with the standard
inhomogeneous decomposition and assume for k£ > 1 that Suppﬁ;:f is contained in {¢ :
2F=1 < |¢] < 2841} and supp Py is contained in {€: 1€l < 2} We estimate x(£)U Py f(x, 1)
where x € O with x(t) = 1 on [-1,1]. Let P, have similar properties to Py, with
f’kPk = P;. We prove the inequality

e20) ([ ouBseora) | S v =da-5-1) - 2428,

which we apply with Py f in place of f. Now if 8 > —d(1/2—1/p) then the restriction on ~y
in Lemma 2.4 is satisfied. Thus (2.20) follows by combining Lemmata 2.2 and 2.4 (together
with a finite decomposition and mild rescaling). This immediately yields the implication
(2.2) = (2.3) in the range v < 1.

If r < 0o we can use Littlewood—Paley theory to extend this implication to the case v = 2
(which implies the corresponding inequality for v < 2). Let, for a function g on R? x R,

%//5(2_%7’)6”@_5)(17'9(:17,3) ds,
T

where f is supported in [1/10,10] and 5(7) =1 for 7 € [1/8, 8].

R2kg($7 t) =
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The contribution (I — Rog)[x U Py f] is negligible. To see this one uses various standard
integration by parts arguments, in particular the decay of [ X(s)e““ *~7)ds when €2 > 1
or 7> |¢€|% to analyze the kernel. We omit the details which give

1/r
| e S CN2N IS

~

H(/R (I = Rop) XU P f)I"dt)

La(R4)

It thus remains to show
o\ 1/2
ey () %Rzk[x UPf] i S (S EIPTT)

Using Littlewood—Paley theory on L"(R) followed by applications of the triangle inequa-
lities for L'/? and L%/? we see that the left hand side of (2.21) is controlled by a constant

Tdt) 1/r

times
ORI R IS D SINCE -
(SRl ngony) = (IO unsra)

Now (2.21) follows from (2.20). O

3. PROOF OoF PROPOSITION 1.3

First we prove the easier necessary conditions (7)-(iv).

3.1. The condition p < q. This follows from the translation invariance (see an argument
n [12]). More precisely, the Lh(R?) — L(R% L"(I)) boundedness is equivalent with the
LP(R?) — L4(R% L7(I)) boundedness of the operator U[(I — A)*/2f] which commutes
with translations on R%. Let A = supy sy, <1 1U[(L — A)a/2f”|Lq(Lr). Then by the density
argument, for € > 0 there is a g € C2°(R%) such that A — e < |U[(I — A)*/2g]||14(zr) and
llgll, = 1. One may test the inequality with f = g+ g(-+ae;). Letting a — oo, we see that
(A —€)2Y/9 < A2Y/P, which gives A2'/9 < A2'/P by letting € — 0, and thus p < q.

3.2. The condition o > d(1 — 5 — %) — 2. This condition follows by a focusing example

(see for example [25]). Let n € C° be radlal and supported in {{ : 1 < |{] < 2}. Define
for A > 1, the function fy by f\(§) = e%mzn()\_lg). Then || fallze S \et+d/p - Moreover
|U f(x,t)| = A if, for Sultable c>0, |:17| < cA7land [t — 4| < eA72. For large A this leads

to the restriction o > d(1 — = — %) — 2

3.3. The condition o > 1 — % Let gy be defined by g)(§) = x(|§ — Ae1|), x supported in
an e-neighborhood of 0 (see [8], [27]), so that [lgx][z» < AY. Also,

1 .
et [ X

where ¢A(m,t, h) = —t|h]®> — t)\2 + 1A + (@ — 2the1, h). Then |Ugy(z,t)| = co > 0 if
[t —(2N) Tz < et for 0 <o <A, || < ¢ i =2,...,d. It follows that |Uf|pacrr(r)) =
A/a=1/7  Hence the condmon a>1/q—1/r follows.

s}

Ug)\($7 t) =
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3.4. The condition o > % %. Let A > 1 and set }/1;(77) = o(lfDA¢A(m1 — N)) with
¢ € C°(R). Then [hrz < AAYP. Note that

( )d /B_itml|2+i<x/’n,>)¢(|’r}/|)d77/€_i)\2t+i)\ml /ei(—tﬁ%—2)\t§1+m1§1))\qs(Agl)d£1
27 ’

so that |[Uhy(z,t)] = ¢ > 0if |t|,|2'| < ¢ and |z1] < ¢ for small enough ¢ > 0. This shows
the necessity of o > 1/q — 1/p.

Uh)\(l‘, t) =

To show the conditions (v) and (vi), we use sharp bounds in the construction of Besicovich
sets [15] and adapt Fefferman’s argument for the disc multiplier [9] (see also [1]).

3.5. The condition o > % — % if r > 2. This follows from

Proposition 3.1. Let p,q,r € [2,00). Let n be a radial C° function satisfying n(§) = 1
for 1/4 < |€] < 12. Define ay by

La(R4)

(3.1) ax(pig,7) = sup H(/l/lz\emn(%)ﬂrdtwr‘

Ifllp<1
Then for A > 1,
(3.2) ax(p;q,r) = AV P (1og A)1/271/T,
Proof. In what follows we set
As(0N) = {z: 322 < |¢] < 4%}
By Lemma 2.3, with parameters ag = 3, a1 = 4, for A > 1
2 o Na d d_ 2
Sup </ (/ |5f(x_825=3)|rd3)rd§>q Saxlpy g Hrtat
11l Lo ray <t 7 As(A2) SN2

Let
Tf(Es)=EF(53¢s)
Using Khintchine’s inequality we also get

)\2 T q 1
(33) P </ (/2 (> !Tfj!2>2d8)gd§>; < ap(p; )N RtatT
Ay (A2) A2 7

||{fj}||Lp(z2)<1

For integers |j| < A/10, let 27 = (A714,0,...,0) in R% Let I = {y:|y— 2] <
(100dX\)~1}. Let

R; ={(&5) € RI o |gg — 2507 1s| <1071, &) <1071, i =2,...,d, |s| <10071N\?}.
For a pointwise lower bound we use the following lemma.

Lemma 3.2. Leta € RY, b € R, and g;(y) = X1; (y)ei<“’y>_ib‘y|2. Then there is a constant
¢ > 0, independent of \, j so that

Re [ei<5—a,zj>—i(s—b)|2j|28[gj](67S)] 2 C)\_d, ’lf (S,S) c R] + (CL, b) )



SPACE-TIME ESTIMATES FOR THE SCHRODINGER OPERATOR 13

Proof. Let Iy = {y : |y| < (100d\)~'}. We have
Eg5(6.5) = /eisy|2—i<§,y>gj(y) dy = /e_i<g_a,za‘+h>+z(s—b)zj+h|2XIj (9 + h)dh
= e—i<§—avzj)ei(8—b)lzj2/e—i(<£—a—2(8—b)zj7h))ei(s—b)hIZXIO(h)dh
The pointwise lower bound follows quickly. O

Let Ny to be the largest integer which is smaller than A/10. By making use of the
Besicovich set construction of Keich [15], there are vectors v; € R such that v; =
ajer + bjeqrq for some aj,b; € R, v+ Rj C {(&,8) : A2 < s < 2A?}, and

Ny )\d+3
meas(jg(vj + Rj)> < Tog X

This is just an obvious extension of the two dimensional construction which gives a collec-
tion of rectangles {Rg-ﬂ} and vectors (a;,b;) such that meas(U;-\gl (vj + Rgg])) < % and
(aj,bj) + Rg-ﬂ C{(&,8) 1 A2 < s <222}

Let ®(&,s) = (5%€,s) which is 1-1 on A4(A?) x [A%,2)X?], and has Jacobian Jp with
| det(Jp (&, s))| ~ 1. Let

V= 07 (0 4+ Ry) N (A2 x D22XY),  B= ) W
jzlv"'vNA

Then it follows that

(3.4) Adt+2 < meas(V}), meas(F) < AP )
~ ~ log A
Let f;(y) = x1; (y)6i<aj’y>_ibj|y‘2. Then by Lemma 3.2,
(3:5) THEOIZA €e;,
and
(3.6) H(Z |fj|2>1/2H < 1=/,
P
We now modify arguments in [1]. By (3.4) and (3.5), we have
Ny
(3.7) AT S NG < " meas(V;)
j=1

Ny N
=/ vaj(f,s)dsd§§A2d/ D ITFi(E,5)Pds de,
B j=1 B

and by applications of Holder’s inequality,

Ny
(3.8) A /E S OITS(6 )Pdsdg < XA - B,
j=1
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where
A= ([ [ (Smptean) o))l
4 j
B ([ ([ st g

From (3.3) and (3.6) we obtain,

1—d 1,d,2\2
(3.9) A< <)\Ta>\(p; q,r))\_d+5+5+?> .
In order to estimate B we set

2)2
() ZA xe(&, s)ds,

2
the measure of the vertical cross section of F at £&. For M > 0, we break
(a/2) 1-2 (a/2)' 1-2
px(f 0(©) ) ([ o(6) "1 de)
{¢€Aa(X?) 0(§)<M} {€€Aa(A?):0(§)>M}

From the construction of E it is obvious that v is supported in a tube where |£;] < C\?
and |&] < CA, 2 <i<d, so that

(a/2)’ 1-2

</ U(ﬁ)de) T A=)
{€eAs(N?) () <M}

Moreover since r < g and therefore (1 — Ezg;:) >0, by (3.4)

(a/2)' 1-2 (a/2) | N1-2
(/ o€ dg) " 5 (([oem o ag)
{€eAL (M) (&) >M}

S
2_
< M

3o
Qv

A
SN

meas(E)'~ Mi~

pax 1_%
<log )\> '
Combining these two bounds, we have

B < M A=D1 20D 4w log A)a Y,
and choosing M = A?(log A\)~!, which optimizes the above, we obtain
(3.10) B < A=\ (log N)F L.
Finally, we combine (3.10), (3.9), (3.8) and (3.7) to obtain
X NI log AT [T ap (g )N T,

which yields ay(p; ¢, 7) > c(log )\)%_%)\%_

Al
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3.6. Relation with Bochner—Riesz and the condition o > 0 if r =2, p=¢q > 2,d > 2
The LP — LP(L?(I)) estimate implies sharp results for the Bochner-Riesz multiplier in the
same way as the wave equation (cf. §7 in [22]).

For small § > 0, let us set hs(&) = ¢(67 (1 — [£]?)) with ¢ € C°(—1,1). Let v be radial,
supported in {1/2 < |{| < 2} so that ¢» = 1 on the support of hs. Then by the Fourier
inversion formula and the support property of 9 it follows that

m(D)f = o= [ 80(ds) 5B (D) ds.
By the Schwarz inequality we get
(o)1 < ( [180691as) " ( [1e=2usPissiasyas)
Thus we see that

1sllaz, <

)

([ 1e2umisiaaesias)

p\

which after rescaling becomes

/ (D) FRIBNd) iR

hslia, <

Hence, using the rapid decay of <;5 and a further rescaling we see that the sharp bound
1hs||ar, S 6Y/2740/2=1/P) for p > 2 4 22+, would follow from U : B, — LP(L?*(I)), with
a:d(l—%)—l, for any v > 0.

We see that the LP — LP(L?(I)) inequality for some p > 2 would imply that hs is
a multiplier of FLP with bounds independent of §. However a variant of Fefferman’s
argument for the ball multiplier [9], based on a Kakeya set argument, shows that

(3.11) sl 0, = log(1/8)1/2= 1P,

This establishes the final necessary condition (vi) in Proposition 1.3. For completeness we
include some details of the argument.

Proof of (3.11). By de Leeuw’s theorem it suffices to prove the lower bound for d = 2. We
may assume that § < 10719, By Khintchine’s inequality, we have

(3.12) | 1@ ), % tslas, | (2 152) 7]

For v € ZN[-10726"1/2,1072671/2], let us set
hsw(€) = hs()d(67V2&1 — v)x1(€), €= (&1,&) € R?

where x4 is the characteristic function of the upper half plane. Define 7T, by f:f =
h57yj/“\. Let 7, be the inverse Fourier transform of a bump function which is supported
on a ball of radius C3~/2 so that 7,(£) = 1 for ¢ in the support of hs,. Define ®, by
(&) = m()D(67V2E1 — v)x1 () Then |, (2)| S 5~V2(1 + 672]z)~@*D for the v's
under consideration, so that [[{®, * g, } |12y S ||{g,,}||Lp(gz Since T, g = hs(D)[®, * g,
inequality (3.12) applied to f, = ®, * g, implies that

(313) | 1B, < Ml | (1)
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Let 6, = ((51/2V, V1 = 612), let A be a unit vector perpendicular to 6, and
R, = {(z1,22) : [(2,6,)] 1072571, [(2,0)] < 107167 1/2}.
Letting f,(y) = xg, (y)e/% ¥, we have that
(3.14) e @O, f ()| = ¢> 0 for z € R, .

Here we use again the sharp bounds in the construction of Besicovich sets [15]. There are
vectors a,, || < 10726712 so that with E := (J, R, the measure of E is O(672/log 6~ 1)
but the corresponding translations a, + R have O(1) overlap. Define g, (z) = f,(z — a,),
which is supported in a, + R,. Then |T,g,| > ¢ on a, + R,. Thus we get

2 <Y IR Y / Nowir, () di / S (T2
12 1% E 12

and also by Holder’s inequality and (3.13) the last one in the above string of inequalities is
bounded by

meas(E)1_2/pH (Z ]T,,g,,]2>1/2HZ S HhJH?\/Ip (loz%y—?/p“ (Z ’91/’2) 1/2“;'

Now by the bounded overlap of the translated rectangles a, + R,, we see

H(Z;’gu 1/2 /ZXaquRudx) (Z‘R ’> /p<6 i

Combining the three displayed inequalities we get §=2 < Hh(;HMp(5_2/10g o hH1=2/p5=4/p
and thus the desired (3.11). O
4. PROOF OF THEOREM 1.4

The lower bounds for 2y(p; q,r) were established in the previous section, and here we

prove the upper bounds, mainly by interpolation arguments. By Lemma 2.4, we can take
I=11/2,1].

4.1. Proof of (i). We consider the cases % + % > % and % + % < % separately.

T

The case % +1> % Note that the set

is the closed tetrahedron with vertices (%, %, %), (%, %, %), (%,0, %), and (0,0, %) Hence by
interpolation it is enough to show the estimate

(4.1) An(p;q,7) S A7 Fllog N2 7

for (p,q,7) = (4,4,4), (2,2,2), (2,00,2) and (00, 00,2). The estimate for (p,q,7) = (2,2,2)
is immediate from Plancherel’s theorem. More generally we recall from [19] the estimate
Ax(p;p,2) < 1 with 2 < p < oo, which is related to a square-function estimate for equally
spaced intervals. So we also get the estimates for (p,q,7) = (00, 00,2). For (2,00,2) we
choose a nonnegative x, € C°(R), so that xo(¢) =1 on [1/2,1]. We need to estimate, for
fixed x,

/ XoOIUn(R)f @ 1) it = g // i2(€=0) fle) Flu)n($)mDRa €] — lw]?) de duw
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and since [£] + |w| > A, the above is bounded by

cN// (14 A[l€] = [wl]) ™V 1F@) 1 Fw)] dé dw < 21| FI2.

This gives the desired estimate for (p,q,7) = (2,00,2). For (p,q,7) = (4,4,4) we use the
bound

(f[Iptes [ sween=eo ] acas) ™ < x4 tog 1151,

where ¢ € Cg°. This is implicit in [13] (see also [23] for more discussion and related issues).
Then by rescaling, Lemma 2.2 and Lemma 2.4 we get (4.1) for (p,q,7) = (4,4, 4).

The case % + % < % We begin as before by observing that the set
Ar={(G 11 2<r<p<g<oo, 1+1<1}

plq’r
is the closed tetrahedron with vertices (0,0,0), (%, 1, }l) (3,0,2) and (0,0, %), from which
the triangle with vertices (1,%,1) (3,0,3), and (0,0, 3) is removed. We use a bilinear
analogue of our adjoint restriction operator, and rely on rather elementary estimates from

[13]. Define x¢ so that >,z xe = 1, xe = x1(2%) and x; is supported in (2,8). Let
is(|y|?+]z|?)—i-5 z
Brelfol = [[ | S OIETEOD y —2s gt v,

so that
(EFER(5565) =D Baulf ))& 9)-
€20
We shall verify that for £ > 0
—20(3-1-1)
(4-2) H%A,Z(f, 9)||Lq/2(A()\2);Lr/2[>\272)\2]) S 2 HprHng
when (%, %, 1) is contained in the closed tetrahedron with vertices (0,0,0), ( 1) (3,0,3)

11

404>
and (0,0, %) By summing a geometric series, this yields (2.4) for (% (11 i) € A4, which by
Lemmata 2.2 and 2.4, yields the desired

(4.3) Wn(prq,r) SN I

We remark that conversely, if (4.3) holds, then we can use Lemma 2.3 and a Fourier
expansion of x;(y—z) to bound the left hand side of (4.2) by C/||f||,||¢]|p, with C independent
of /.

It remains to show (4.2). By interpolation it is enough to do this with (p,q,7) =
(00, 00,00), (4,4,4) (2,00,2), and (00, 00,2). The last two estimates were already obtained;
note that the bounds (4.1) and (4.3) coincide for the cases (p, ¢, ) = (2, 00, 2) and (00, 00, 2)
and the bounds for (4.2) are independent of ¢. Hence from the bounds (4.1) previously ob-
tained and the discussion above we have the required bounds for (p,q,r) = (2,00,2), and
(00,00,2). We note that the argument for the proof of the endpoint adjoint restriction
theorem in [13] gives

(4.4) 1Bxe(fs 9z | < 1 fllallglls,

uniformly in ¢ > 0, where B) ¢(f,9)(&,s) = B(f, g)(%f, s), and by a change of variables
we obtain (4. ) holds with (p,q,7) = (4,4,4). To get the inequality (4.2) for (p,q,r) =
(00, 00,00) we need to integrate x,(|y — z|) over [—1, 1]? which yields the gain of 27¢
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4.2. Proof of (ii). We also consider the cases 1 — % > % + % and 1 — = < % + % separately.

1
p

The case 1 — = < % + % We note that the set

Ay =1

is the closed tetrahedron with vertices (%, %, %), (%, %, %) (%, %, %) and (%,O, %), from which
the face with vertices (%, %, %), (%, %, %) and (%, 0, %) is removed. Note that from the previous

bounds (4.1) and (4.3) we already have the required bounds

1
p

111y . 2,1 1
5,5,;).2<p<r<q<oo, st 2 ——}

1 1
(4.5) AMa(pig,r) S AT
for (p,q,7r) = (2,2,2) and (2, 00,2). Obviously As is contained in the convex hull of (%, 0, %),
(%, %, %), and the half open line segment [(%, %, %), (%, %, %)) Hence by it is enough to show
(4.5) for (%, %, 1) contained in the half closed line segment [(3, 3, 3), (%, 1,1)). But these
follow from Lemmata 2.2 and 2.4, combined with the restriction estimate for the parabola
which gives (2.4) for (1,1, 1) € [(3,§.§) (1,1, 1))

The case 1 — % > % + % We note that the set

{G.53):2<p<r<g<oo, 241<1-1}

is contained in the quadrangular pyramid Q with vertices (0, 0, 0), (%, 0,0), (%, %, i) (%, %, %),

and (3,0, 3). We need to show (4.3) for (%, %, 1) contained in the above set. Repeating the

above argument, the asserted estimates follow if we establish, for £ > 0 and (%, %, %) €9,
< _5(1_1_2_1)

(4.6) [Bxe(f g)HLq/Z(A()\2);LT/2[A2,2)\2}) S 2 pa | fllpllgllp-

We only need to verify it for (p, ¢,r) = (00, 00, ), (4,4,4), (2,0,2), (2,6,6), and (2, 00, 00).
The first three cases were already obtained when we showed (4.2), and the case (p,q,r) =
(2,6,6) follows from the linear adjoint restriction estimate for the parabola as before. Fi-
nally the case (p,q,7) = (2, 00,00) with a gain of 27¢/2 follows from the Schwarz inequality,
and so we are done.

5. SHARPER REGULARITY RESULTS

5.1. Combining frequency localized pieces. One can use the uniform regularity results for
the frequency localized pieces to prove sharper bounds such as Sobolev estimates by using
arguments based on the Fefferman—Stein #-function. Let ¢ be a radial smooth function
supported in {¢ : 1/4 < [¢] < 4}, not identically 0. Let I = [—1,1] and

. _ —d(—1-1)42
(5.1) 1“(1),61,7“)—§1;111>A et UM 1o poecr )

It is not hard to verify that the finiteness of I'(p; ¢, ) is independent of the particular choice
of ¢. The following statement is a special case of the result in the appendix of [19].

Proposition 5.1. Let pg,qo, 70 € [1,00], ¢ € (g0,0), 70 < r < 00, pp < qo and assume
1/po —1/qo = 1/p — 1/q. Suppose that T'(po;qo,r0) < 0o. Then

(5:2) H </I|Uf("t)|rdt> l/rHLq(Rd) S fllge ey, a=d(1-1-1)—

3N
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If f € BE,(RY) with s = d(1 — % - %), then for almost every x € R? the function t —

Uf(x,t) is locally in Bl/qy(]R), and (thus) continuous, and
Isup WO oy S W lm2 gy, 5= (=5 =3)

The Sobolev estimates follow from this since for ¢ > p > 2 one has L5, C Bg,p C Bg,q
We note that the result in [19] is slightly sharper. Namely the left hand side of (5.2) can
be replaced by the L¢(R?) norm of (3, ([ [PUf (- )|7dt)Y/T)YY | where v > 0.

Proof of Corollaries 1.5 and 1.2. Proposition 5.1 implies the validity of the corollaries given
their analogues for frequency localized functions (namely Theorems 1.4 and 1.1). For
Corollary 1.2 we use that R*(pg — ¢o) implies R*(p — qo) for all p > po. O

5.2. A remark on recent results by Bourgain and Guth. As mentioned in the introduction,
the recent results in [5] on R*(¢ — ¢) give results on the sharp L& — L9(R%x I') boundedness
of U. In a restricted range they also imply new results on R*(p — ¢) with the best
possible p = p(q) which Tao [33] had proved for g > 2%:'13), and likewise one then obtains
corresponding results for the Schrodinger operator. The following statement is proved by

a simple interpolation argument for bilinear operators.

Proposition 5.2. Suppose that R*(qo — qo) holds for some qg € (2, %j—rl?’)). Then

(i) R*(p — q) holds with q = d+2p’ provided that

1 d+1
2(d + 3) w ~ Tdr3

q > gx = ﬁ(l —(d, QO))a where y(d, q0) = qd(;idl _(%L; ’
40

(ii) Let ¢ < q < 00, ¢ < r < 0o and suppose that 0 <

U : LE(R?) — LY(RY; L7(1)) is bounded with o = d(1 — % - %) -2

_1 _ 20d+D)
q<1 dq*.Then

In two dimensions R*(¢ — ¢) was proven in [5] for ¢ > 56/17 and the sharp inequality
R*(p — q) for ¢ = 2p’ follows for ¢ > 13/4.

Proof of Proposition 5.2. By Theorem 1.1 and Proposition 5.1 it suffices to prove the first
part.

Let F; and E; be 1/2-separated sets in the unit ball of R? and define & f = £[fxg,]. B
Theorem 2.2 in [36], it suffices to prove the estimate

(5.3) H51f152f2Hq/2 S L fallpllf2llp
a+2, 7

for ¢ > ¢4 and p in a neighbourhood of m (i.e. the p which satisfies ¢ = “=p’).
By hypothesis and Hélder’s inequality, (5.3) holds with p > ¢ = qo. By Tao’s theorem
(5.3) holds with p > 2 and ¢/2 > 443 " The theorem then follows by interpolation of bilinear

d+1°
operators. Indeed, we determine 6 € (0,1) and ¢« € (qo, 2(67:5’ )) by
1-— 2 1 2
_0+£:1_d+ , (_Q)di_|_9_:_,
2 q0 dq. d+3 q ¢
d+2 1\ /(1 d+1 1 d+1 .
We compute 6 = (d% 1— 5)/1)(5 — q—o)d a;ad 0 = (—* — @)é(f_’* — 21(d—j_3)1), from which
we obtain 1/¢, = (2(d—t—3) — 5)/( + b) with b = (q_o — 2(d—t—3))/(§ — q—O). A further
computation shows that g, is equal to Sl:l?’) (1 —~(d, qo)) as in the statement of the lemma.

O
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6. PROOF OF THEOREM 1.8

Definition. Fix d > 1, and let p,q,r € [2,00]. For N > 1, let
Ap,q,r(Na p) = AP,Q,T’(N7 P; d) = sup HUfl UfQHLq/Q(Rd,LT'/Q[O,p])

where the supremum is taken over all pairs of function (fi, f2) whose Fourier transforms are
supported in 1-separated subsets of {£ : [ —Ne;j| < 2d}, and which satisfy || fi ||, || f2][, < 1
We remark that the unit vector e; does not play a special role here. It could be replaced
by any unit vector, by rotational invariance.
By considering two bump functions, it is easy to calculate that

2 2
(61) Ap,q,T(N,p) Z;Na_;7 1 <p7Q7T SOO7
whenever p > 1, and significant for Theorem 1.8 is the following two dimensional estimate,
2 2
(6.2) Supqur(N p;2) SNa 7, g>16/5, r>4,
p>1

which was proven in [20] (see also [18] and [26] for related previous results). We will combine
this with the following two lemmata.

Lemma 6.1. Let pg < p < g <71 and e, > 0. Then, for N,p > 1,
(6.3) Apar(N,p) S NG5, (N, p).
Lemma 6.2. Let 2
{€eR: 1/2<[¢]

) T () oqgaseroay

— - T / -r P q
S (T sup NIHGTIRE, L (V0 N) AT ),
<NL

p<Lqg<r< qTq and € > 0. Let 1y € C° be supported in the annulus

<
< 2}. Then, for)\ > 1,

Lemma 6.1 relies on a localization argument such as in [17] and Lemma 6.2 relies on a by
now standard scaling argument in [36] which reduces estimates for bilinear operators with
separation assumptions to estimates for linear operators.

We may combine (6.3), with pg = 2, and (6.4) to obtain

Corollary 6.3. Let 2 <p<qg<r< (12_—‘12. Suppose that

(6.5) supqur(N p;d) SN, for some v <2d(1— % — %) — 4
p>1
Then if d(1 5—%)—5>0 then for all A > 1,
d _l__ _2
(6.6) 1% () £l aasirio S A5l
[0,1])

Supposing this for the moment we give the

Proof of Theorem 1.8. By Proposition 5.1 it suffices to prove, in two spatial dimensions,
the estimate (6.6) for p = ¢ > 16/5 and r > 4. Using (6.2), we put v = 2/q — 2/r and
verify that the condition (6.5) with d = 2 in the range p = q > 16/5 and r > 4. Thus (6.6)
holds in this range, and we are done. O
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Proof of Lemma 6.1. Let 1y, 12 be smooth, supported in balls of diameter 1/2 which are
contained in {£ : |§ — Nej| < 2d}, and which are separated by 1/2. Define the operators

Sy, So by Sif(&,t) =ni() U f(£), i = 1,2. It suffices to prove that ||S1 fi nggHLq/z(ng L7/2[0,p])
is dominated by || f1p||f2]lp times a constant multiple of the expression on the right hand
side of (6.3).

We partition R? into cubes Q,, of side p with centre pv € pZ<, and define

(6.7) P, = {(x,t) e R x [0,p] : & —2tNe; € Q,}.

The parallelipipeds form a partition of R% x [0, p]. For fixed = the intervals I? = {t : (z,t) €
P, } are disjoint. Thus

LE— Z/ P o ar)” o < 3 e Pl sy

here we used the triangle inequality for || - || arr 38 q/T <1
Taking F' = S f152 f2, and denoting by Q;, the enlarged cube with side 50dpN¢, where
0 < € < 4de,, we obtain

2
Hslfl 52f2H%/q/2(Rd;Lr/2[0’pD < Z ||X7)u51f1 S2f2||i/‘12/2(Rd;LT/2[O,pD

S YR+ 1P+ 101 4 V),
1%

where
I, = [|xp, S1lfixes] Selfoxesl| parza.rrr2i0,:
(6.8) , = [|xp, S1lfixeao;] S2lfaxos | arega. 1200 )
1, = ||xp, Silfixes] Salfoxea o3|l Laszma. 20,0
[

1V, = |[xp, Silfixeaoz) Salfoxwa ;)| parz a0,

First we consider the main terms I,,. By Holder’s inequality,

2
Iy < Apggr(N,p) H 1fixozllpo S Aposar (N, )(PN€ H 1fixallp
i=1

We use the Schwarz inequality, the embedding /P C ¢, p < ¢, and the fact that every z is
contained in only O(N¢?) of the cubes Q% to get

2

/ 2
S ety < T (X bvertf) ™ < v TT 0l
v i=1

v =1 i=1

Combining the previous two estimates we bound

1

d. __l d( L — l
(6.9) ZIW /1 < NG5 2T AL anznp

We use very crude estimates to handle the remaining three terms which can to be domi-

nated by Chsc(Np)~™ || f1l»|| f2|lp, which finishes the proof since Ay 4 (N, p) = NiF by
(6.1).
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We only give the argument to bound ), Hg/ % as the other terms are handled similarly.
By the Schwarz inequality we estimate ), II, 3/ 2 by

/
(6.10) (Z Ixep, S1lfixma ;) iq(md;mo,p])) 1 2(2 52l f2x0z]

For the second factor we use a wasteful bound, namely that the LP — LI(R% L"[0, p])
operator norm of Sy is O(p*/" N¢). Consequently, the second factor in (6.10) can be bounded
by Cpt/ @I NAetar2) | gy 3.

We consider the first factor in (6.10) and write S f(x,t) = K¢ * f(x) where

Ki(y) = # /]R X Ney)e P +itwe) ge

with x € C2° equal to 1 on the ball of radius 2d centred at the origin. Integration by parts
yields that for every t € [0, p]

KCe(y)| < Curly — 2tNea|™™ it |y — 2tNes| > 4dp.

Let ¢, be the centre of QF. If z —y € R\ Q% and (x,t) € P, then |z —y — ¢,| > 10dpN¢,
|z —2tNep — ¢,| < 2dpN°®, and therefore also |y —2tNej| > 8dpN¢. Thus for this choice of
(x,t) and y we have

q 1/2
La(R4:Lr [o,pl)) :

[S1lfixeags]| S (pNF)~HHHE / Mdy

d+1
|y—2tNe1|>8dpN* |y - 2tN61| +

and the integral is bounded by (pN)*1 [(1 + |y[)~4 | fi(z — y)|dy. Here we use p > 1.
Now let Q}* be the cube of sidelength p(2 + N) centred at ¢,; then QF* x [0, p] contains

P,. Letting C, n := p'/"(pN®)~MiFd+1(pN )4+ e have
q |fi(z —y)| 4
ZHXPVSﬂﬁXRd\Q;] La(R4;L7[0,p]) SC;NZ/** /Wdy dx

which is < Cg7 ~ (PN @D £1]12: here one uses Young’s inequality and the fact that each

r € R? is contained in at most O((pN)¥*1) of the cubes Q3*. Collecting the estimates
yields the crude bound

> Iy < Cur(pN=) =M (pN) | £ 182 £/,

and we conclude by choosing M sufficiently large. O
Proof of Lemma 6.2. For j > 0, we write

A(G,A) = 92 (2 =d(;=3)) sup Ay gr(N,CAN22720F0),

2-1<N<2I+1

Define T' = Utp(D), and thus Uy(2) f(z,t) = T[f(A\~1)](Az, A?t). By scaling,

_24 411
(6.11) 0% (R) o pagas ooy = A 0N oy pagga.irone))
so that the statement of the lemma is an immediate consequence of
4_og(l_1 ‘ 1/2
(6.12) HT”LP—>L‘1(R‘1;LT[O,)\2D < ()\q 2d(5—5) 4 Z A(Jy)\))

1<29 <A
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Now by scaling we have that
2
(613) HTfl Tf2HLq/2(Rd;LT/2[O,)\2D S A(]? )‘) H ”fl”I“

whenever f1 and f2 are supported in a 2771 ball, contained in {¢ : 1/2 < |¢| < 2}, and
their supports are 2~7-separated. We will also require the following simpler estimates

(614) HTfl Tf2HLq/2 Rd LT/Z[O >\2D < )\__2d poa H ”f’l”p7

whenever f1 and f2 are supported in an ball of radius A™!, contained in {¢ : 1 / 2 < €] < }

2_g(i_1
HL(I(Rd;Lr[QMD NIRX ( ||f1||p-
t — w(t) be a Schwartz function which is positive on [0, 4d] and whose Fourier transform
is supported in [—1, 1]. By scaling and rotation this would follow from

2_2
(6.15) HWTfHLq(Rd;LT(R)) 5 Aa T ”f”P

By the Schwarz inequality, this follows from HT fi

whenever f is supported in {€ : |€ — Xe1| < 2d}. By a change of variables and trivial
estimates it is easy to see (6.15) for 1 < p < ¢ = r < 0o. The estimate for r > ¢ follows
by applying Bernstein’s inequality in ¢ since the temporal Fourier transform of wT f is
contained in {s:s ~ A2}.

We now argue similarly as in [36]. Write ||Tf|7, ®e:Lr0.22) = = [[Tf T fll Lar2(ma;rrr2(0,72))-
For each j, 1 < 27 < 2, we tile R? with dyadic cubes s} = HZ 1[2 3&, 2774;, 1) of sidelength
277, indexed by ¢ € Z%. For j, 1 < 29 < X, we write £ ~j ?if s) and s% have adjacent
parents, but are not adjacent. When A\ < 2/ < 2\, we mean by /¢ ~j - that the distance
between SZ and 8 is < A7!. Then, we then can write for every (£,7) € R?, with & # n,

(6.16) >3, 1 =1

1<29<2X (¢,0)
b 7

—

Define sz by ng f= XS%'J?; then the operators sz are bounded on LP, 1 < p < oo, with

operator norms independent of ¢ and j. For any Schwartz function f we have by (6.16)

Tf(z 0P = Y. > TP f(x,t)TP!f(x,1)

1292 (£,0):0m 50
Let ¢ € C be supported in [—1,1]¢, satisfying dezd (& —3) =1 for all £ € R%. Define
]Szj as acting on L?(LP) functions by EJG(g, t) = o(27¢€ — 3)G(&,t). We use the inequality

TR are
3

La(Lb) S CH{Gﬁ}Héa(La(Lb))v 1<a<2, a<bg a/,

The constant C' in (6.17) is independent of j. The inequality follows from Plancherel’s
theorem in the case a = b = 2, and from an application of Minkowski’s inequality in the
case a =1, 1 < b < co. The intermediate cases follow by interpolation. Note that for any
j and any 3 € 37 the number of pairs (¢,/) with ¢ ~; £ for which P} [TngTng] # 0 is
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uniformly bounded (independent of j, 3, f). Thus inequality (6.17) applied with a = q/2,
b =r/2, implies

2 2/‘1
(6.18) 1T awroney S 20 (Z”TP]fTP]f”qL/q/zLW[ovn) ;

12920 gnjd

here we use that 1 < ¢/2 <7/2 < (¢/2) (le. <7 < —q which implies that ¢/2 < 2.)
Now by (6.13) and (6.14) the right hand side of (6.1 ) is dominated by a constant times

S aG N (IR AP AI2) T 4 A D (Z 1B 2P )

1<29<A il b~

0
SNHED (TR Y agn (e
7 L

129

Here jy is the integer such that A < 2790 < 2, and we have used the Schwarz inequality
and the fact that for each (j,¢) the number of ¢ with ¢ ~; ¢ is uniformly bounded. Since

2 < p < g, we also have
J £114 Y <
(DR 12) ™ < Ul
4
and thus we have shown (6.12). O
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