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Abstract. We prove variational and jump inequalities for a large class
of linear operators arising in harmonic analysis.

1. Introduction

Variational and jump inequalities in probability, ergodic theory and har-
monic analysis have been the subject of many recent articles (see [32], [5],
[26], [27], [9], [10], and [28]). The purpose of this paper is to significantly
extend and generalize some of the results for families of integral operators in
harmonic analysis, and also to prove some previously open endpoint jump
inequalities.

To fix notation we denote by I a subset of R (or more generally an ordered
index set). We consider real or complex valued functions t 7→ at defined on
I and define their q-variation to be

(1) ‖a‖vq = sup
t1<···<tL

(L−1∑
`=1

|at`+1
− at` |

q
)1/q

where the sup is taken over all finite increasing sequences {t1 < · · · < tL}
with ti ∈ I.

Next we consider families of Lebesgue measurable functions F = {Ft : t ∈ I}
defined on Rd and define the strong q-variation of F as the vq norm of
t 7→ Ft(x); we denote it by Vq(F )(x). If I is assumed to be a countable index
set then Vq(F ) is a Lebesgue measurable function. However this countability
assumption can be removed in many cases where the function t 7→ Ft(x) is
continuous on I for almost every x; this will always be the case in our
applications. Here of course I is endowed with the natural topology as a
subset of R.
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Strong variational bounds follow from estimates of a more fundamental ob-
ject, the λ-jump function Nλ(F ). One defines Nλ(F )(x) to be the supremum
of all integers N for which there is an increasing sequence 0 < s1 < t1 ≤
s2 < t2 ≤ · · · ≤ sN < tN so that

|Ft`(x)− Fs`
(x)| > λ

for each ` = 1, . . . , N . It will sometimes be convenient to use a slight
modification of the λ-jump function, namely we define Nλ(F )(x) as the
supremum of all nonnegative integers N for which there exist 0 < t1 < t2 <
· · · < tN with the property that |Ft`+1

(x)− Ft`(x)| > λ, ` = 1, . . . , N − 1. It
is easy to see that

(2) Nλ(F )(x) ≤ Nλ(F )(x) ≤ 2Nλ/2(F )(x),

and thus we can pass from one definition to the other without difficulty. The
advantage of working with Nλ is that it is ‘effectively’ subadditive; that is,

(3) Nλ(F +G)(x) ≤ Nλ/2(F )(x) +Nλ/2(G)(x).

The advantage of Nλ is a pointwise comparison with the q-variation, namely
Nλ(F ) ≤ λ−qVq(F )q, and from (2) we see that also

λ[Nλ(F )(x)]1/q ≤ CqVq(F )(x)

holds for any q, uniformly in λ, with Cq = 21+1/q. An argument of Bourgain
allows us to often reverse this inequality in Lp (see Lemma 2.1 below). For
example, for a family of operators A = {At}t ∈ I uniform a priori bounds

‖λ[Nλ(Af)]1/2‖Lp ≤ Cp‖f‖Lp ,

in an open range p0 < p < p1 containing p = 2 imply strong q-variational
bounds for q > 2 in the same range,

‖Vq(Af)‖Lp ≤ Cp,q‖f‖Lp , p0 < p < p1.

Our attention therefore will be concentrated on establishing uniform Lp

bounds for λ[Nλ(Af)]1/2 in some open range p0 < p < p1. Such estimates
give us quantitative information on the rate of convergence of Atf(x) as t
tends to zero.

Lépingle’s inequality and applications. The main tool in proving vari-
ational inequalities is Lépingle’s result [32] for a general bounded martingale
sequence {fN}∞N=1; he proved Lp, 1 < p < ∞ and weak type (1,1) bounds
for Vq(f∗) whenever q > 2. These estimates can fail for q ≤ 2, see ([37],
[29]).

Simple proofs of Lépingle’s inequality have been given by Pisier and Xu
[36] and by Bourgain [5], by reducing matters to jump inequalities for the
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family {fN} (see §2). As observed in [36] and [5], the jump inequalities for
martingales follow from the pointwise estimate

λ[Nλ(f∗)(x)]1/r ≤
( ∞∑
k=1

|Fk+1(x)− Fk(x)|r
)1/r;

here Fk(x) = fτk(x)(x) defines the stopped martingale constructed from the
stopping times {τk} where τk(x) is the kth time the sequence {fk(x)} has
jumped by at least λ. Then one can apply Burkholder’s result (see [6]) for
square functions of difference martingale sequences to the martingale {Fk}
in order to obtain the Lp bounds, 1 < p <∞,

(4)
∥∥λ[Nλ(f∗)]1/r

∥∥
p
≤ Cp‖f‖p, r ≥ 2,

as well as weak type (1,1) bounds

(5)
∣∣{x : λ[Nλ(f∗)]1/r > α}

∣∣ ≤ Cα−1‖f‖1, r ≥ 2.

By (2), we have also have the Lp and weak type (1,1) bounds for λ[Nλ(f∗)(x)]1/r,
r ≥ 2, uniformly in λ.

In [5] Bourgain used Lépingle’s result for the classical martingale generated
by dyadic intervals to obtain similar variational estimates on L2(Z) for the
averages N−1

∑N
n=1 f(m + n). These L2 estimates have been extended to

Lp, bounds for 1 < p <∞, and weak type (1,1) bounds (see [26]). One can
then transfer these estimates via Calderón’s transference principle [7] to the
general setting of a dynamical system (X,µ, T ) and obtain Lp (and weak
type (1, 1)) bounds for strong q-variations of the corresponding operators

ANf(x) =
1
N

N∑
n=1

f(Tnx),

where one is averaging over the orbit generated by the measure preserv-
ing automorphism T . This gives an alternative proof of Birkhoff’s point-
wise ergodic theorem since for any x ∈ X, if Vq(Af)(x) is finite for some
finite q then the limit of ANf(x) exists as N tends to infinity. Tradition-
ally one first controls a smaller object, the corresponding maximal function
Mf(x) = supN>0 |ANf(x)| in some Lp, reducing the pointwise result to
proving convergence a.e. for some dense subclass of Lp functions. Note the
comparison V∞(Af)(x) = 2Mf(x), yet Mf(x) ≤ V∞(Af)(x) +At0f(x), for
any t0 ∈ I. Establishing pointwise convergence a.e. for a dense class may not
be straightforward in certain cases, and a variational Vq (q < ∞) estimate
shows almost everywhere convergence without this step, and, furthermore,
gives some information about the rate of convergence.

Bourgain’s work has inspired a number of authors to investigate variational
bounds for other families of averaging operators, and also for families formed
by truncating classical singular integral operators (see e.g., [1], [9], [10], [26],
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[27] and [28]). For example in [27], Lp(Rd), 1 < p < ∞, and weak type
(1, 1) bounds were obtained for strong q-variations for the family of higher
dimensional averages over Euclidean balls

(6) Atf(x) =
1

|Bt(x)|

∫
Bt(x)

f(y)dy;

thereby improving on the well known estimates for the Hardy-Littlewood
maximal function.

To establish strong q-variational estimates for a family of linear operators
as in (6), the idea is to divide the analysis into short and long variations.
Effectively, the short variations are defined in the same way except that the
{t`} lie in some dyadic interval [2j , 2j+1] whereas the long variations are
computed over the sequence of dyadic numbers {2j}. Known techniques
from harmonic analysis are used to estimate the short variations whereas
one compares the long variations with the variation along an appropriate
martingale sequence. For example with respect to the {At} in (6), the
martingale sequence {fN} one takes is given by f−N = ENf = E(f |FN )
where the σ-algebras FN are generated from the usual (‘half-open’) dyadic
cubes in Rd; specifically,

(7) ENf(x) =
1
|Q|

∫
Q
f

where Q is the unique dyadic interval of sidelength 2N containing x. Then
one can apply Lépingle’s inequality to obtain strong q-variational estimates
for q > 2. The arguments in [37], [29] show that strong q-variational esti-
mates with respect to the martingale sequence in (7) fail whenever q ≤ 2
and hence there are no Lp bounds for Vq(Af), A = {At} with At in (6),
whenever q ≤ 2. Thus, from now on we will restrict ourselves to the range
q > 2.

In this paper we develop a general method which will allow us to obtain
strong variational inequalities for a large class of averaging and truncated
singular integral operators arising in harmonic analysis. For example, be-
sides the family of linear operators in (6), we will consider more singular
variants such as spherical means (see (17)) or averages along curves (t, ta) in
the plane (here a > 1). The latter operators exhibit some homogeneity with
respect to nonisotropic dilations and our definition of the appropriate mar-
tingale has to reflect this dilation structure. Thus if a is an integer we may
work with the martingale sequence generated by rectangles (or generalized
dyadic cubes) of the form [j12k, (j1 +1)2k)× [j22ak, (j2 +1)2ak) in the plane.
There is no obvious definition of ‘dyadic cubes’ compatible with the dilation
structure when a ∈ R+ \ Z. However there is a construction due to Christ
[16] which shows that there is a family of suitable ‘dyadic cubes’ with all the
necessary properties in the general setting of a space of homogeneous type.



STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 5

This allows one to define martingales which are appropriate for a general
dilation structure

(8) tP = exp(P log t);

here P is a real d×d matrix whose eigenvalues have positive real parts. Any
regular quasi-norm ρ which is homogeneous with respect to the dilations
(i.e., ρ(tPx) = tρ(x), t > 0) makes Rd, together with Lebesgue measure and
the quasi-metric induced by ρ, into a space of homogeneous type (see [50] for
the existence of a ρ ∈ C∞(Rd \{0}) and other properties of general dilations
tP ).

Jump inequalities – dyadic dilations. We formulate two main results
for convolution operators whose formulation is motivated by the results on
maximal operators of Duoandikoetxea and Rubio de Francia [21]. Below we
shall discuss specific examples.

Let σ be a compactly supported finite Borel measure on Rd. We consider
dilates σt of σ defined with respect to a group of dilations {tP }t>0 as in (8)
with the dilate σt being defined by

(9) 〈σt, f〉 =
∫
f(tPx)dσ.

We assume a weak regularity condition on σ in terms of the Fourier trans-
form:

(10) |σ̂(ξ)| ≤ C|ξ|−b, for some b > 0.

Under this assumption bounds in Lp(Rd), 1 < p ≤ ∞, were derived for the
maximal operator defined by Mf(x) = supk∈Z |f ∗ σ2k(x)|. Moreover it is
well known that these Lp estimates can be extended to weak type (1, 1)
bounds under the stronger hypothesis that σ is absolutely continuous, with
L1 density Φ say, and

(11)
∫

Rd

|Φ(x+ y)− Φ(x)| dx ≤ C|y|b

for some b > 0 (see e.g., [49], p. 72). Clearly (11) implies (10).

In this setting we extend these estimates as follows.

Theorem 1.1. Let A = {Ak} where Akf(x) = f ∗ σ2k(x) and σ2k are as in
(9).

(i) If σ satisfies (10), then∥∥λ√
Nλ(Af)

∥∥
Lp(Rd)

≤ Cp‖f‖Lp(Rd), 1 < p <∞,

uniformly in λ > 0. Moreover Vq ◦ A is bounded on Lp(Rd) for 1 < p <∞,
q > 2.
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(ii) If σ satisfies (11), then in addition we have∣∣{x : λ
√
Nλ(Af) > α}

∣∣ ≤ C

α
‖f‖L1(Rd),

uniformly in λ > 0. Moreover Vq ◦ A is of weak type (1,1), for q > 2.

We now state a theorem on truncated singular integral operators in the
setting of convolution operators on Rd which are homogeneous with respect
to a general group of dilations {tP }.

We start with a compactly supported finite Borel measure ν on Rd with
mean zero,

(12)
∫
dν = ν̂(0) = 0

and consider the singular integral operator defined by Tf(x) =
∑

k∈Z f ∗
ν2k(x), and its family of truncations T = {Tn}n∈Z where

(13) Tnf(x) =
∑
n≤k

f ∗ ν2k(x).

In [21], Lp(Rd) bounds (1 < p < ∞) were obtained for T as well as for the
associated maximal truncated operator, T∗f(x) = supn |

∑
n≤k f ∗ ν2k(x)|

if ν satisfies the weak regularity condition (10), and the same is true for
the square function g(f)(x) = (

∑
k |f ∗ ν2k(x)|2)1/2. In both cases, these

estimates can be extended to weak-type (1,1) bounds if ν has an L1 density
satisfying (11), see e.g., [22]. In the following theorem we give bounds for
the λ-jump function Nλ(T f)(x) of the discretely indexed family T .

Theorem 1.2. Let T = {Tn} as defined in (13), with ν satisfying (12).

(i) If ν satisfies (10), then∥∥λ√
Nλ(Tf)

∥∥
Lp(Rd)

≤ Cp‖f‖Lp(Rd), 1 < p <∞,

uniformly in λ > 0. Moreover Vq ◦ T is bounded on Lp(Rd), for 1 < p <∞,
q > 2.

(ii) If ν satisfies (11), then in addition we have∣∣{x : λ
√
Nλ(T f)(x) > α}

∣∣ ≤ C

α
‖f‖L1(Rd),

uniformly in λ > 0. Moreover Vq ◦ T is of weak type (1,1) if q > 2.

Dyadic jump functions and short variation operators. In order to
apply Theorems 1.1 and 1.2 we have to combine these results with certain
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square-function estimates. We now work with a family A = {At}t∈R+ and
split the analysis of Nλ(Af) into short and long λ-jumps. Set

(14) Vρ,j(Af)(x) =
(

sup
t1<...<tN

[t`,t`+1]⊂[2j ,2j+1]

N−1∑
`=1

|At`+1
f(x)−At`f(x)|ρ

)1/ρ

and let

(15) Sρ(Af)(x) = (
∑
j∈Z

[Vρ,j(Af)(x)]ρ)1/ρ

be the short ρ-variation operator (we shall mostly use ρ = 2).

Define Ndyad
λ (Af)(x) to be the largest integer N such that there is an in-

creasing sequence of integers j1 < k1 ≤ j2 < k2 ≤ · · · ≤ jN < kN over
which

|A2k`f(x)−A2j`f(x)| > λ

for each ` ∈ {1, . . . , N}. Thus Ndyad
λ (Af) is precisely the jump function for

the dyadic families {A2n}n∈Z treated in Theorems 1.1 and 1.2.

One observes

Lemma 1.3.

(16) λ[Nλ(Af)(x)]1/ρ ≤ C
(
Sρ(Af) + λ [Ndyad

λ/3 (Af)(x)]1/ρ
)
.

Proof. To prove this lemma we begin by fixing a sequence s1 < t1 ≤ · · · ≤
sN < tN such that |At`f(x)− As`

f(x)| > λ for each ` = 1, . . . , N and then
separate the ` into two groups;

JS = {` : [s`, t`] ⊂ [2j , 2j+1) for some j ∈ Z}
and

JL = {` : s` < 2j ≤ t` for some j ∈ Z}.
First of all,

#JS ≤
∑
j∈Z

Nλ,j(Af)(x)

where Nλ,j is defined in exactly the same way as Nλ except the sequence
s1 < t1 ≤ · · · ≤ sN < tN is required to lie entirely in the dyadic interval
[2j , 2j+1]. For ` ∈ JL, choose j` ≤ k` so that 2j`−1 ≤ s` < 2j` and 2k` ≤ t` <
2k`+1. Then

λ < |At`f(x)−As`
f(x)|

≤ |At`f(x)−A2k`f(x)|+ |A2k`f(x)−A2j`f(x)|+ |A2j`f(x)−As`
f(x)|

implies
#JL ≤ 2

∑
j∈Z

Nλ/3,j(Af)(x) + Ndyad
λ/3 (Af)(x),
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and therefore

N = #JS + #JL ≤ 3
∑
j∈Z

Nλ/3,j(Af)(x) + Ndyad
λ/3 (Af)(x).

Consequently we have

λ [Nλ(Af)(x)]1/ρ ≤ 3
(∑

j∈Z
λρNλ/3,j(Af)(x)

)1/ρ + λ [Ndyad
λ/3 (Af)(x)]1/ρ

≤ C Sρ(Af)(x) + 2λ [Ndyad
λ/3 (Af)(x)]1/ρ,

establishing (16). �

Specific families of operators. We shall formulate some results for sin-
gular families of averages and singular integrals which follow from Theorems
1.1 and 1.2 and additional results for the short-variation operators.

We first consider the family of spherical means, defined by

(17) Atf(x) =
∫

Sd−1

f(x− ty)dσ(y);

here dσ is the rotationally invariant measure on the unit sphere Sd−1, nor-
malized to have mass 1. The corresponding maximal operator is bounded
on Lp(Rd) if and only if p > d/(d− 1). This was shown by Stein [48] when
d ≥ 3, the d = 2 case was established later by Bourgain [4]. In dimensions
d ≥ 3 Bourgain [3] also established a restricted weak type inequality for the
endpoint p = d/(d − 1); i.e. the maximal operator maps the Lorentz space
Ld/(d−1),1 to Ld/(d−1),∞. The latter result fails in two dimensions (see [43]).
Here we prove the following variational and jump estimates for the family
of spherical means.

Theorem 1.4. Suppose d ≥ 2 and A = {At} are the spherical means defined
in (17).

(i) The a priori estimates

(18) ‖Vq(Af)‖Lp(Rd) ≤ Cp,q‖f‖Lp(Rd)

hold whenever d/(d − 1) < p ≤ 2d and q > 2. Furthermore for the range
p > 2d, if q > p/d, then (18) holds and conversely, if (18) holds, then we
necessarily have q ≥ p/d.

(ii) Suppose d ≥ 3, then for d/(d− 1) < p < 2d

(19)
∥∥λ√

Nλ(Af)
∥∥

p
≤ Cp‖f‖p.

(iii) Suppose d ≥ 3, then there is the restricted weak-type inequality

(20)
∥∥λ√

Nλ(Af)
∥∥

L
d

d−1
,∞ ≤ C‖f‖

L
d

d−1
,1 .
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Moreover, if q > 2 then Vq ◦ A maps L
d

d−1
,1 to L

d
d−1

,∞.

Remark. The maximal operator bounds of Stein and Bourgain were trans-
ferred to the setting of a dynamical system in [25] and [31] where pointwise
convergence results were established. These results follow at once from the
strong q-variational estimates in Theorem 1.4.

Another family of singular averaging operators is formed by taking averages
over curves in R2,

(21) Atf(x1, x2) =
1
t

∫ t

0
f(x1 − s, x2 − sa) ds.

This and related families have been extensively studied (see e.g., [50]).
For instance it is known that the associated maximal operator Mf(x) =
supt>0 |Atf(x)| is bounded on all Lp(R2), 1 < p ≤ ∞, [35]; however it re-
mains an open question whether weak type (1,1) bounds hold (see [17], [44]
for results near L1). We extend these estimates in the following way.

Theorem 1.5. Let A = {At} where At is defined in (21). Then for 1 <
p <∞ ∥∥λ√

Nλ(Af)
∥∥

p
≤ Cp‖f‖Lp(R2);

moreover Vq ◦ A is bounded on Lp for q > 2.

Remark. This result can be generalized to averaging operators along any
k-dimensional surface in Rd which possesses a certain amount of curvature,
namely, every hyperplane has a finite order of contact with the surface.
Specifically one can replace the curve {(s, sa)} in the plane with a k-surface
in Rd parameterized by Φ(s) = (sα1 , . . . , sαd) where s ∈ Rk and the mono-
mials defining the components of Φ are distinct. One considers the family
of averages Atf(x) = 1

$ktk

∫
|s|≤t f(x−Φ(s)) ds; here $k denotes the volume

of the unit ball in Rk and proves the above jump inequalities for this family.
See [49] for the related arguments for the maximal operator.

We now turn to families of operators defined by truncations of classical
singular operators. Let Ω ∈ L1(Sd−1) so that the cancellation condition

(22)
∫

Sd−1

Ω(θ)dσ(θ) = 0

holds, and define the family T = {Tt} by

(23) Ttf(x) = p.v.
∫
|y|>t

Ω(y/|y|)|y|−df(x− y)dy.



10 ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

It is known that under the condition Ω ∈ L logL(Sd−1) the operators Tt

are uniformly bounded (see [8]), moreover variational Lp(Vq) bounds and
consequently bounds for λ(Nλ(Tf))1/q, q > 2, have been obtained in [9],
[10]. Here we settle the jump inequalities for the endpoint case q = 2 which
had remained conjectural in these papers.

Theorem 1.6. Let Ω, T be as in (22), (23). Suppose that Ω ∈ Lr(Sd−1)
for some r > 1. Then for 1 < p <∞,∥∥λ√

Nλ(Tf)
∥∥

p
≤ Cp‖f‖p.

Remark. By extending arguments in [10] one can prove for the short-
variation S2(T f) a weak type (1,1) inequality provided that if d ≥ 2 then Ω
belongs to the Sobolev class L1

α(Sd−1) for some α > 0. Then by the weak-
type (1,1) version of Theorem 1.2 one also gets a weak type (1,1) endpoint
inequality for λ

√
Nλ(Tf). In one dimension we get a weak type (1,1) bound

for the truncation of the Hilbert transforms Ttf(x) =
∫
|y|>t f(x − y)y−1dy.

This weak type inequality implies

(24)
∣∣{x : Nλ(Tf) > n}

∣∣ ≤ Cn−1/2λ−1‖f‖1

for λ > 0, n = 1, 2, . . . . We note that [9], [10] contain similar weak-type
bounds for regular singular integrals but with n−1/2 replaced by nε−1/2,
ε > 0.

One can ask whether these jump inequalities hold without the additional
regularity assumption on Ω. It is known [42] (see also [18], [24], [52]) that
the operators T satisfy uniform weak-type (1,1) estimates if Ω ∈ L logL.
However weak type (1,1) inequalities for the jumps and Vq variations and
even for the maximal function supt>0 |Ttf | remain open for rough Ω.

We conclude by formulating a theorem for Hilbert transforms along the
plane curves {(s, sa)}. Define H = {Ht} by

(25) Htf(x1, x2) =
∫
|y|>t

f(x1 − s, x2 − sa)
ds

s
.

It is well known that the maximal function supt>0 |Htf(x)| defines a bounded
operator on Lp(Rd), see [50], [21].

Theorem 1.7. For 1 < p <∞ we have∥∥λ√
Nλ(Hf)

∥∥
p
≤ Cp‖f‖Lp(R2);

moreover Vq ◦ H is bounded on Lp, 1 < p <∞.

In the next section we discuss an argument by Bourgain which shows how
to obtain strong q-variational bounds from estimates on the corresponding
λ-jump function. In §3 we discuss Christ’s construction of dyadic cubes in
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the setting of a space of homogeneous type and use this in the proofs of
Theorems 1.1 and 1.2, given in §4 and §5 respectively. In §6 we discuss
how harmonic analysis techniques can be used in the study of the short 2-
variation operator. Then in §7 we give the proofs of the results for averages
and singular integrals associated to a parabola and in §8 we discuss spherical
means.

2. From λ-jumps to q-variations

We present here a slight generalization of Bourgain’s argument in [5] reduc-
ing variational inequalities to jump inequalities. Let (X, dµ) be a measure
space and consider a family of linear operators T = {Tt} where t is taken
from a finite collection F of positive numbers and Tt maps Lp(X) functions
to measurable functions.

Recall the definition of λ-jumps Nλ(T f)(x) and q-variation Vq(T f)(x) and
define for an integer m

V m
q (T f)(x) = sup

2m≤|Ttif(x)−Tti+1f(x)|≤2m+1

( ∑
i

|Ttif(x)− Tti+1f(x)|q
)1/q

so that now the supremum in the definition of Vq(T f)(x) is restricted to
those ti where 2m ≤ |Ttif(x)−Tti+1f(x)| ≤ 2m+1 (we define V m

q (T f)(x) = 0
if |Ttf(x)− Tt′f(x)| /∈ [2m, 2m+1] for any choice of t and t′).

In what follows we shall use the obvious inequalities

(26) |V m
s (T f)(x)|s ≤ 2msN2m(T f)(x)

for s > 0 and

Vs(T f)(x) ≤
( ∑

m∈Z
|V m

s (T f)(x)|s
)1/s

;

moreover Vs(T f)(x) increases when s decreases.

Lemma 2.1. Suppose that p0 < ρ < p1 and that for p0 < p < p1 the
inequality

sup
λ>0

‖λ[Nλ(T f)]1/ρ‖p ≤ C‖f‖p

holds for all f in (a dense subset of) Lp. Then we have for ρ < q

‖Vq(T f)‖p ≤ C(p, q)‖f‖p,

for f ∈ Lp, p0 < p < p1. In particular, if p is restricted to a compact
subinterval J = [pL, pR] of (p0, p1) we have the estimate C(p, q) ≤ CJ(q −
ρ)−1 for p ∈ J , q > ρ.
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Proof. It suffices to prove a restricted strong type estimate, i.e.,

‖Vq(T χA)‖p ≤ C(p, q)|A|1/p

for characteristic functions of measurable sets A, with finite measure (see
[51], ch. V.3).

We estimate

‖Vq(T f)‖p ≤
∥∥∥( ∑

m≤0

|V m
q (T f)|q

)1/q∥∥∥
p
+

∥∥∥( ∑
m≥0

|V m
q (T f)|q

)1/q∥∥∥
p

:= I + II.

Note that it suffices to obtain the bound for q > ρ and q close to ρ since the
expressions in q increase if q decreases.

In what follows we abbreviate N2m(T χA)(x) = Nm(x).

Estimation of I. Let r = pρ/q. We may assume that q > ρ is so small that
for p ∈ J we have r ≥ p0 + (pL − p0)/2 > p0. Now by (26) we have

I ≤
( ∫ ( ∑

m≤0

2mqNm(x)
)p/q

dx
)1/p

.

We distinguish the cases p ≥ q and p < q.

If p ≥ q we use Minkowski’s inequality (for the exponent p/q = r/ρ) to
dominate I by( ∫ ( ∑

m≤0

2m(q−ρ)Nm(x)2mρ
)p/q

dx
)1/p

≤
( ∑

m≤0

2m(q−ρ)
( ∫

Nm(x)p/q2mρp/qdx
)q/p)1/q

=
( ∑

m≤0

2m(q−ρ)‖N1/ρ
m 2m‖ρ

r

)1/q
≤ C|q − ρ|−1 sup

m
{‖N1/ρ

m 2m‖r/p
r }

≤C ′|q − ρ|−1|A|1/p.

Next we consider the case p < q and apply the triangle inequality (a+ b)γ ≤
aγ + bγ for γ = p/q < 1. Now I is dominated by( ∫ ∑

m≤0

2mpNm(x)p/qdx
)1/p

=
( ∑

m≤0

2mp(1−ρ/q)‖N1/ρ
m 2m‖r

r

)1/p

which is again estimated by C|q − ρ|−1 supm{‖N
1/ρ
m 2m‖r/p

r } and thus by
C ′|q − ρ|−1|A|1/p.

Estimation of II. We now assume that p < r := p1 − (p1 − pR)/2 and set
s = pρ/r. In particular s < ρ < q and p0 < p < r < p1. Again we distinguish
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two cases, p ≥ s and p < s. If p ≥ s we use Minkowski’s inequality and (26)
to bound II by

II ≤
∥∥∥( ∑

m≥0

|V m
s (T f)(x)|s

)1/s∥∥∥
p

≤
( ∫ ( ∑

m≥0

2msNm(x)
)p/s

dx
)1/p

≤
( ∑

m≥0

2mp
( ∫

Nm(x)p/s
)s/p

dx
)1/s

=
( ∑

m≥0

2ms(1−r/p)
( ∫

2mrNm(x)r/ρ
)ρ/r

dx
)1/s

.

Since r > p we can dominate this by a constant times |A|ρ/(rs) = |A|1/p.

If p < s we use the triangle inequality (a + b)γ ≤ aγ + bγ for γ = p/s < 1
and dominate II by( ∫ ∑

m≥0

2mpNp/s
m dx

)1/p
=

( ∑
m≥0

2m(p−r)

∫
2mrN r/ρ

m dx
)1/p

≤
( ∑

m≥0

2m(p−r)|A|
)1/p

≤ CJ |A|1/p.

�

3. Dyadic cubes in spaces of homogeneous type

In the proofs of Theorems 1.1 and 1.2 we will compare the λ-jump functions
to the λ-jump function associated to a martingale sequence generated by
‘dyadic cubes’ adapted to the dilation group {tP }. More precisely for each
integer k ∈ Z, we shall partition Rd = ∪Qk

α such that for each α, the
diameter of Qk

α (measured with respect to a homogeneous quasi-norm ρ
which we fix once and for all) is roughly Ak for a fixed constant A > 1
depending only on the dilation group {tP }. Moreover, the family {Qk

α}
behaves like a collection of dyadic cubes in that if ` ≤ k, either Q`

β ⊂ Qk
α

or Q`
β ∩Qk

α = ∅. Also for each Q`
β and ` < k, there is a unique α such that

Q`
β ⊂ Qk

α. The martingale sequence is of the form Ekf = E(f |Fk) where Fk

is the σ-algebra generated by the ‘cubes’ {Qk
α}. That is,

(27) Ekf(x) =
1

|Qk
α|

∫
Qk

α

f

where Qk
α is the set in the partition Rd = ∪Qk

α containing x.
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The existence of the generalized dyadic cubes was shown by Christ [16]
who constructed them in the general setting of a space of homogeneous
type X. Here X is a space with a quasi-metric d; i.e., d satisfies all the
properties of a metric except the triangle inequality is relaxed to d(x, y) ≤
C0[d(x, z)+ d(z, y)] for some C0 ≥ 1 but we still require the associated balls
B(x, r) defined by d to be open sets. Furthermore X is equipped with a
positive finite Borel measure µ possessing the doubling condition

µ(B(x, 2r)) ≤ C1µ(B(x, r))

for all x ∈ X, r > 0. It is well known that a large part of the theory
of singular integrals and maximal functions can be carried out in such a
setting (X, d, µ); see e.g., [49]. In particular, the maximal operator

Mf(x) = sup
r>0

1
µ(B(x, r))

∫
B(x,r)

|f(y)| dµ(y)

is bounded on all Lp(X,µ), 1 < p ≤ ∞ and satisfies weak type (1,1) bounds.
In this setting we quote the following result of Christ.

Lemma 3.1. ([16]). There exists a collection of open sets {Qk
α : k ∈ Z, α ∈

Ik} and constants A > 1, a0, η > 0 and C2, C3 <∞ such that

(i) µ(X \ ∪αQ
k
α) = 0, for all k ∈ Z;

(ii) if ` ≤ k, then either Q`
β ⊂ Qk

α or Q`
β ∩Qk

α = ∅;

(iii) for each (`, β) and ` ≤ k, there exists a unique α such that Q`
β ⊂ Qk

α;

(iv) each Qk
α contains some ball B(zk

α, a0A
k) and diameter(Qk

α) ≤ C2A
k;

(v) µ({x ∈ Qk
α : d(x,X \Qk

α) ≤ tAk}) ≤ C3t
ηµ(Qk

α), ∀k, α, ∀t > 0.

Remarks.

(i) We will use Lemma 3.1 when X = Rd, µ is Lebesgue measure and
the quasi-metric is induced by a quasi-norm ρ which is homogeneous with
respect to the group of dilations {tP }, ρ(tPx) = tρ(x). In this case since
each cube Qk

α contains and is contained in a ball of radius about Ak, and
since the quasi-metric is translation-invariant, we see that the measure of
Qk

α is roughly A(trP )k for each α.

(ii) Property (v) in Lemma 3.1 says that the (characteristic functions of)
dyadic cubes possess some smoothness, as not too much mass accumulates
near the boundary. This will be essential for us in our analysis.
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(iii) David ([20]) had previously constructed dyadic cubes with all the prop-
erties (i)-(v) in the more restrictive setting of an Ahlfors regular measure-
metric space where one can take A = 2 in Lemma 3.1. For our purposes we
need the more general construction.

As an illustration of how we will use property (v) in Lemma 3.1 we prove
a basic L2 estimate with respect to the group of dilations {tP } in Rd (and
associated homogeneous quasi-norm ρ). We emphasize that very similar
arguments are in [26] and also in [23]. Lemma 3.1 gives us a family {Qk

α} of
dyadic cubes which have diameter ≤ C2A

k. For each integer k, let ` = `(k)
be the integer such that 2` ≤ Ak < 2`+1. Let φ be a Schwartz function with∫
φ = 1, and set φ`(x) = 2−(trP )`φ(2−`Px) so that ‖φ`‖1 = ‖φ‖1.

Lemma 3.2. Set Dkf = Ekf − Ek−1f where {Ekf} is the martingale se-
quence defined in (27). Then

(28)
∥∥φ`(k+m) ∗ Dmf − Ek+m(Dmf)

∥∥
2
≤ C2−δ|k|‖Dmf‖2

for some δ > 0.

Proof. Uniform L2 bounds without the extra decay in k clearly hold so we
may assume |k| � 1. We consider two cases; k positive and k negative.

When k ≥ 0 we have Ek+m(Emf) = Ek+mf from properties (i)-(iii) in
Lemma 3.1, and hence Ek+m(Dmf) = 0. In particular for all α we have∫
Qm

α
Dmf(y)dy = 0, and so

φ`(k+m) ∗ Dmf(x) =
∑
α

∫
Qm

α

[φ`(k+m)(x− y)− φ`(k+m)(x− zm
α )]Dm(y)dy.

By the mean value theorem we estimate

|φ`(k+m)(x− y)− φ`(k+m)(x− zm
α )|

(29) ≤ CN

[
ρ(2−(`(k+m))P (y − zm

α ))
]δ 2−(`(k+m))trP

[1 + 2−(`(k+m))ρ(x− y)]N
,

for any N . Here we have used a basic relationship between the Euclidean
norm and ρ;

(30) ρ(x) ≤ |x|α, ρ(x) ≥ 1, and ρ(x) ≤ |x|δ, ρ(x) ≤ 1

for some α, δ > 0. Therefore, as in the Euclidean case,

|φ`(k+m) ∗ Dmf(x)| ≤ CNA
−δk

∫
Rd

2−(`(k+m))trP

[1 + 2−(`(k+m))ρ(x− y)]N
|Dmf(y)|dy

≤ C 2−δ′kM(Dmf)(x),
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and so

‖φ`(k+m)∗Dmf − Ek+m(Dmf)‖2 = ‖φ`(k+m) ∗ Dmf‖2

≤ C2−δ′k‖M(Dmf)‖2 ≤ C2−δ′k‖Dmf‖2,

establishing (28) in this case.

When k ≤ 0, Ek+m(Emf) = Emf and so Ek+m(Dmf) = Dmf . Thus

φ`(k+m)∗Dmf(x)−Ek+m(Dmf)(x) =
∫

Rd

[Dmf(x−y)−Dmf(x)]φ`(k+m)(y)dy

=
∫

ρ(y)≤2`(k+m)

[Dmf(x− y)− Dmf(x)]φ`(k+m)(y)dy

+
∑
n≥1

∫
Ek,m,n

[Dmf(x− y)− Dmf(x)]φ`(k+m)(y)dy

:= I0(x) +
∑
n≥1

In(x)

where Ek,m,n = {y : 2`(k+m+n−1) ≤ ρ(y) ≤ 2`(k+m+n)}.

We first treat In(x) for n ≥ ε |k| where we use the bound

|φ`(k+m)(y)| ≤ CN2−(`(k+m))trP [(2−(`(k+m))ρ(y)]−N

≤ CNA
−Nn2−(`(k+m))trP

on Ek,m,n, for any N > 0, and Minkowski’s inequality to estimate

‖In‖2 ≤ CN2−N ′n‖Dmf‖2

∫
Ek,m,n

2−(`(k+m))trPdy ≤ CN2−(N ′−trP )n‖Dmf‖2.

Taking N ′ > trP allows us to sum in n so that

(31)
∥∥∥ ∑

n≥ε|k|

In

∥∥∥
2
≤ C2−ε′|k|‖Dmf‖2.

For each 0 ≤ n ≤ ε|k| and Qm−1
α , we consider those x ∈ Qm−1

α such that
dist(x,Rd \Qm−1

α ) ≥ Am+n+k and observe that for ρ(y) ≤ 2`(k+m+n), both
x and x− y remain in Qm−1

α and so Dmf(x− y) and Dmf(x) agree. Hence

‖In‖2
2 =

∑
α

∫
{x∈Qm−1

α :dist(x,Rd\Qm−1
α )≤Am+n+k}

|In(x)|2dx

≤
∑
α

sup
x∈Qm−1

α

|In(x)|2 |{x ∈ Qm−1
α : dist(x,Rd \Qm−1

α ) ≤ Am+n+k}|

≤ C2−η|k|
∑
α

|Qm−1
α | sup

x∈Qm−1
α

|In(x)|2
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for some η > 0 by property (v) in Lemma 3.1. However for x ∈ Qm−1
α ,

|In(x)| ≤ C sup
x∈B(zm−1

α ,C′Am)

|Dmf(x)|

for some C ′. Since the measure of any ball of radius Am is about A(trP )m

we see that the cardinality of

Nm,α = {β : Qm−1
β ∩B(zm−1

α , C ′Am) 6= ∅}

is uniformly bounded as well as the number, for each fixed β, of α such that
β ∈ Nm,α. Hence

‖In‖2
2 ≤ C2−η|k|

∑
α

∑
β∈Nm,α

∫
Qm−1

β

|Dmf(x)|2dx

≤ C ′2−η|k|
∑
β

∫
Qm−1

β

|Dmf(x)|2dx

= C ′2−η|k|‖Dmf‖2
2

which implies ∥∥∥ ∑
0≤n≤ε|k|

In

∥∥∥
2
≤ C 2−δ|k|‖Dmf‖2

for some δ > 0. Together with (31), this completes the proof of the lemma.
�

4. Proof of Theorem 1.1

We are trying to establish uniform Lp(Rd) bounds for λ-jump operator
λ[Nλ(Af)]1/2 for the discretely indexed family Af = {f ∗σ2k}k∈Z of convolu-
tion operators on Rd; here σt is the tP -dilate of a compactly supported finite
Borel measure σ satisfying either regularity condition (10) or condition (11).
We may assume

∫
dσ 6= 0 since λ2Nλ(Af)(x) is always pointwise dominated

by the square function
∑

k |f ∗ σ2k(x)|2, and if σ̂(0) = 0, known bounds
from [21] apply. Therefore we may normalize σ so that

∫
dσ = 1. Let φ be

a smooth function with compact support such that
∫
φ = 1 and decompose

σ = φ ∗ σ + (δ0 − φ) ∗ σ where δ0 is the Dirac mass at 0. This in turn de-
composes A into low and high frequency families L = {Lk} and H = {Hk}
where Lkf(x) = f ∗ (φ∗σ)2k(x) and Hkf(x) = f ∗ [(δ0−φ)∗σ]2k(x). By (3)
it suffices to bound λ[Nλ(Lf)]1/2 and λ[Nλ(Hf)]1/2 separately. Since the
compactly supported measure ν := (δ0 − φ) ∗ σ has vanishing mean value
and satisfies condition (10), we recall from [21] that the square function

g(f)(x) =
(∑
k∈Z

|Hkf(x)|2
)1/2
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satisfies ‖g(f)‖p ≤ Cp‖f‖p, for 1 < p < ∞. Furthermore, if σ satisfies
the stronger hypothesis (11), weak-type (1,1) bounds also hold. Since the
pointwise estimate

λ2Nλ(Hf)(x) ≤ 2[g(f)(x)]2

holds, matters are reduced to bounding λ[Nλ(Lf)]1/2.

We now introduce the dyadic martingale sequence E = {Ek} defined in (27)
with respect to the dilation group {tP }. As before we set ` = `(k) to be the
integer so that 2` ≤ Ak < 2`+1, and as in (3),

Nλ(Lf)(x) ≤ Nλ/2(Df)(x) +Nλ/2(Ef)(x)

where D = {Dk} is the family

Dkf(x) = (φ ∗ σ)2`(k) ∗ f(x)− Ekf(x).

For 1 < p <∞ we have the inequalities

(32)
∥∥λ√

Nλ(Ef)
∥∥

p
≤ Cp‖f‖p,

moreover we have weak-type (1,1) bounds. To obtain this result from (4)
we fix f ∈ Lp and observe that |Ekf | ≤ CA−k(tr(P )/p‖f‖p (cf. the re-
mark following the statement of Lemma 3.1. Fix λ and choose M so that
CA−k(tr(P )/p‖f‖p ≤ λ/3 for k ≥M . Let {QM

α } be the ‘grid’ of (generalized)
dyadic cubes defined in (27) any ν consider the martingale {FM,α

N }∞N=0 with
FM,α

N = χQM
α

EM−Nf . We apply (4) and sum the estimates

‖λ
√
Nλ(FM,α)‖p

Lp(Qν) ≤
∫

QM
α

|f(x)|pdx

in ν to obtain (32); similarly one gets weak-type (1,1) bounds from (5).
Next, observe λ2Nλ(Df)(x) ≤ 2[Sf(x)]2 where

Sf(x) =
(∑
k∈Z

|(φ ∗ σ)2`(k) ∗ f(x)− Ekf(x)|2
)1/2

,

and thus the proof of Theorem 1.1 reduces to bounding the square function
S. In fact, we will show that S is bounded on all Lp(Rd), 1 < p < ∞
and weak-type (1,1); the compactly supported measure σ no longer plays
any role since ψ := φ ∗ σ is a Schwartz function whenever φ is a Schwartz
function.

First we observe that L2 bounds for S follow quickly from Lemma 3.2. In
fact, setting ψ` = (φ∗σ)2` and decomposing f = −

∑
m Dmf for f ∈ L1∩L2,
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we have by (28)

‖Sf‖2 =
(∑
k∈Z

‖ψ`(k) ∗ f − Ekf‖2
2

)1/2

≤
(∑

k∈Z

(∑
m∈Z

‖ψ`(k) ∗ Dmf − Ek(Dmf)‖2

)2
)1/2

≤ C
(∑

k∈Z

(∑
m∈Z

2−δ|k−m|‖Dmf‖2

)2)1/2

≤ Cδ

(∑
m∈Z

‖Dmf‖2
2

)1/2
≤ C‖f‖2.

Next we establish weak-type (1,1) bounds for S, that is,

(33) |{x ∈ Rd : Sf(x) > α}| ≤ C

α
‖f‖1.

From this, interpolation and duality give us all the Lp bounds for 1 < p <∞.
To establish (33) we perform the Calderón-Zygmund decomposition of f at
height α using the dyadic cubes introduced in section 3. We therefore can
write f = g + b where ‖g‖∞ ≤ α, ‖g‖1 ≤ ‖f‖1 and b is supported on a
disjoint collection of dyadic cubes {Qj

β}(j,β)∈Λ whose union has measure at
most Cα−1 ‖f‖1. More precisely,

b(x) =
∑

(j,β)∈Λ

bj,β(x)

where bj,β = f − Ejf on its support Qj
β. Thus

∑
‖bj,β‖1 ≤ 2‖f‖1 and

Ekbj,β = 0 whenever k ≥ j.

As usual the L2 bounds for S allow us to handle the good function g:

α2 |{x : Sg(x) ≥ α}| ≤ C ‖Sg‖2
2 ≤ C‖g‖2

2 ≤ Cα‖f‖1.

For b, we need only make estimates away from the union of fixed dilates,
Q̃j

β, of Qj
β and then

α |{x /∈ ∪Q̃j
β : Sb(x) ≥ α}|

≤
∑

(j,β)∈Λ

∑
k

∫
Rd\ eQj

β

|ψ`(k) ∗ bj,β(x)− Ekbj,β(x)|dx

=
∑

(j,β)∈Λ

∑
k

∫
Rd\ eQj

β

|ψ`(k) ∗ bj,β(x)|dx.

The last equality holds since Ekbj,β is supported in Qj
β when k ≤ j, and as

we have already noted, Ekbj,β vanishes everywhere when k ≥ j. For k ≤ j
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we estimate∫
Rd\ bQj

β

|ψ`(k) ∗ bj,β(x)|dx

≤ CN

∫
|bj,β(y)|

∫
{x:ρ(x−zj

β)≥CAj}

A−(trP )k

[A−kρ(x− y)]N
dxdy

≤ CNA
−N(j−k) ‖bj,β‖1.

(34)

For k > j, we write

ψ`(k) ∗ bj,β(x) =
∫

[ψ`(k)(x− y)− ψ`(k)(x− zj
β)]bj,β(y) dy

which allows us to estimate, using (29),∫
Rd\ eQj

β

|ψ`(k) ∗ bj,β(x)|dx

≤ CNA
−δ(k−j)

∫
|bj,β(y)|

∫
A−(trP )k

[1 +A−kρ(x− y)]N
dxdy

≤ CNA
−δ(k−j) ‖bj,β‖1.

(35)

From (34) and (35), we obtain the desired bound

α |{x /∈ ∪Q̃j
β : Sb(x) ≥ α}| ≤ C

∑
(j,β)∈Λ

∫
|bj,β(x)|dx ≤ C‖f‖1,

finishing the proof of the weak-type (1,1) bound for S and therefore the
proof of Theorem 1.1.

5. Proof of Theorems 1.2 and 1.6

Proof of Theorem 1.2. Here we are looking at the family T = {Tk} of
truncated singular integral operators Tkf(x) =

∑
j≥k ν2j ∗ f(x) where ν

is a compactly supported finite Borel measure with cancellation ν̂(0) = 0,
and ν2j is the 2jP - dilate of ν. Our goal is to bound the λ-jump operator
f → Nλ(T f) under the regularity conditions (10) or (11) for ν.

To establish Lp, 1 < p < ∞, bounds under the weak regularity condition
(10), we begin in the same way as in [21] where the corresponding maximal
truncation operator, T∗f(x) = supk |Tkf(x)| was treated. Let φ be a smooth
function with compact support such that

∫
φ = 1. Writing Tf =

∑
j ν2j ∗f ,
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we decompose

Tkf = φ2k ∗
(
Tf −

∑
j<k

ν2j ∗ f
)

+ (δ0 − φ2k) ∗
∑
j≥k

ν2j ∗ f

= φ2k ∗ Tf −
[
φ ∗

∑
`≤0

ν2`

]
2k
∗ f +

∑
s≥0

(δ0 − φ2k) ∗ ν2k+s ∗ f

which divides T into three families

T 1f = {φ2k ∗ Tf},

T 2f = {[φ ∗
∑
`≤0

ν2` ]2k ∗ f},

T 3f = {(δ0 − φ2k) ∗
∑
s≥0

ν2k+s ∗ f}

and as in (3) it suffices to bound λ[Nλ(T if)]1/2, for each i = 1, 2, 3 sepa-
rately.

For T 3 we estimate

λ
[
Nλ(T 3f)(x)

]1/2 ≤ C
∑
s≥0

Gsf(x)

whereGsf(x) =
(∑

k∈Z |[(δ0−φ)∗ν2s ]2k∗f(x)|2
)1/2. Since for each s > 0, the

measure (δ0−φ)∗ν2s is supported in a fixed compact set with vanishing mean
value and also satisfying (10) uniformly in s, we see that Gs is bounded on
all Lp, 1 < p <∞, uniformly in s. Furthermore, using Plancherel’s theorem
and the estimate∑

k∈Z
[|1− φ̂(2kP ∗

ξ)||ν̂(2(k+s)P ∗
ξ)|]2 ≤ C2−δs

for some δ > 0 which follows from (10), we see that ‖Gsf‖2 ≤ C2−δs‖f‖2.
Interpolation and duality imply that the uniform Lp bounds for Gs extend
to ‖Gsf‖p ≤ Cp2−δps‖f‖p, 1 < p <∞, for some δp > 0, giving us the desired
Lp bounds for λ[Nλ(T 3f)]1/2.

The argument for T 2 is similar but easier since the compactly support mea-
sure φ ∗

∑
`≤0 ν2` has vanishing mean value with rapidly decaying Fourier

transform. Hence the pointwise estimate

(36) λ[Nλ(T 2f)(x)]1/2 ≤ C
(∑
k∈Z

∣∣[φ ∗∑
`≤0

ν2` ]2k ∗ f(x)
∣∣2)1/2

establishes the Lp bounds for λ[Nλ(T 2f)]1/2. Finally we can apply Theorem
1.1 to the family given by Akf = φ2k ∗ f to obtain

‖λ[Nλ(T 1f)]1/2‖p ≤ Cp‖Tf‖p ≤ C
′
p‖f‖p

for 1 < p <∞.
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Although it is true that under the stronger regularity condition for ν (that
is, dν(x) = Ψ(x)dx where Ψ is an L1 function satisfying the L1 smoothness
condition (11)) one can establish the weak-type (1,1) bounds

α |{x : Gsf(x) > α}| ≤ C2−εs‖f‖1

for some ε > 0 and similarly for the square function appearing in (36),
we are still left with the family {φ2k ∗ T} and T is not bounded on L1 in
general. Instead we take the direct approach used in establishing (33) and
perform the Calderón-Zygmund decomposition of f at height α, producing
a disjoint family of dyadic cubes {Q} with total measure

∑
|Q| ≤ C/α‖f‖1

and allowing us to write f = g + b with ‖g‖∞ ≤ Cα, ‖g‖1 ≤ C‖f‖1 and
b =

∑
Q bQ where each bQ is supported in Q and has mean value zero

such that
∑
‖bQ‖1 ≤ C‖f‖1. Since we already know that the L2 norm

of λ[Nλ(T g)]1/2 is uniformly controlled by the L2 norm of g, matters are
reduced in the usual way to estimating λ[Nλ(T b)]1/2 away from ∪Q̃ where
Q̃ is a fixed large dilate of Q. Using the pointwise estimate

λ[Nλ(T b)(x)]1/2 ≤
∑
k∈Z

|Tkb(x)− Tk+1b(x)| ≤
∑
k∈Z

|Ψ2k ∗ b(x)|

we see that

α |{x /∈ ∪Q̃ : λ[Nλ(T b)(x)]1/2 > α}| ≤
∑
Q

∑
k

∫
x/∈ eQ |Ψ2k ∗ bQ(x)|dx.

Since Ψ has compact support, Ψ2k ∗ bQ vanishes off Q̃ when k < k(Q) (here
2k(Q) is roughly the diameter of Q described in part iv) of Lemma 3.1 and
we are taking a large but fixed dilate in the definition of Q̃). Thus, using
the vanishing mean value of bQ, the right side of the above inequality is
dominated by∑

Q

∑
k≥k(Q)

∫
|bQ(y)|

∫
x/∈ eQ |Ψ2k(x− y)−Ψ2k(x− yQ)| dxdy

where yQ denotes the ‘center’ of Q as described in Lemma 3.1. This in turn,
using condition (11), is

≤ C
∑
Q

∑
k≥k(Q)

2−δ(k−k(Q))‖bQ‖1 ≤ C ′‖f‖1,

establishing the uniform weak-type (1,1) bound for f → λ[Nλ(Tf)]1/2 and
therefore finishing the proof of Theorem 1.2. �

Proof of Theorem 1.6. Define the measure ν by

〈ν, f〉 =
∫

1≤|y|≤2
Ω(y/|y|)|y|−df(y)dy.
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It is well known (see e.g. [21]) that under the assumption Ω ∈ Lr(Sd−1) the
Fourier transform

(37) ν̂(ξ) =
∫

Sd−1

Ω(θ)
∫ 2

1
e−i〈rθ,ξ〉r−1drdθ

decays; it satisfies

|ν̂(ξ)| ≤ C‖Ω‖Lr(Sd−1) min{|ξ|, |ξ|−
r−1
2r−1 }.

The bound for small ξ follows by the assumed cancellation of Ω. To see the
bound for |ξ| ≥ 1 we split the θ-integral in (37) and consider first the region
for 〈θ, ξ/|ξ|〉 ≤ a for small a; here we apply Hölders inequality. For θ in the
complementary region integrate by parts in r once to gain (|ξ|a)−1, then
optimize the two bounds with the choice a = |ξ|−r/(2r−1).

Now the Lp inequalities for Ndyad
λ (Tf) follow from Theorem 1.2. The full

claim follows by combining Lemma 1.3 and a result on the short-variation
operator. The relevant Lp bound for the short-variation (S2-)bound has
been proved for the Hilbert transform in [9], and the method of rotation
argument used for V q(T ) in [10] applies also to the short variation operator.
Thus one gets the Lp bounds for S2(Tf) under the weaker assumption Ω ∈
L logL(Sd−1) (and in fact Ω ∈ L1(Sd−1) for odd Ω). �

6. Prelude to short variations

For a general family of linear operators A = {At} indexed say by positive
t > 0, we have divided the λ-jumps Nλ(Af) into short and long jumps by
using inequality (16). We have already treated the dyadic λ-jumps Ndyad

λ

for a large class of convolution operators on Rd in Theorems 1.1 and 1.2 and
so we turn our attention to the short ρ-variation operators Sρ ◦A defined in
(15), (14) (we shall mostly assume ρ = 2).

As mentioned in the introduction known techniques from harmonic anal-
ysis can be used to treat S. In the early 1970’s Stein introduced square
function techniques to understand singular maximal functions such as those
arising from spherical means (17) or parabolic averages (21); these tech-
niques amount to essentially use a version of a Sobolev-imbedding theorem
in the t variable (see also [11], [12], [19], [39]). In fact viewing the value
of the maximal function Mf(x) = supt>0 |Atf(x)| as an L∞ norm on R+,
‖Af(x)‖L∞(R+) one can use the easy bound

(38) ‖a‖L∞(R+) ≤ ‖a‖1/ρ′

Lρ(R+)
‖a′‖1/ρ

Lρ(R+)
+ a(t0),

which holds by the fundamental theorem of calculus for any a. Using this
for ρ = 2 one brings L2 methods into play in a decisive way to study Mf .
However (38) remains valid if we replace the L∞ norm of a with the larger
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vρ norm (see (1)). This is most easily seen via the Besov space embedding
Ḃ

1/ρ
ρ,1 ⊂ vρ established by Bergh and Peetre [2],

(39) ‖a‖vρ ≤ C
∑
j∈Z

2j/ρ‖φj ∗ a‖ρ ≤ C‖a‖1/ρ′
ρ ‖a′‖1/ρ

ρ

where φj(x) = 2jφ(2jx) and φ is a Schwartz function such that supp(φ̂) ⊂
{1/2 ≤ |ξ| ≤ 2} and

∑
j∈Z φ̂(2−jξ) = 1 for ξ 6= 0. The middle expression in

(39) defines a norm, modulo constants, for Ḃ1/ρ
ρ,1 .

The second estimate in (39) is a standard interpolation inequality while the
first follows from the estimate ‖φj ∗ a‖vρ ≤ C2j/ρ‖φj ∗ a‖ρ which can be
proved by using the Plancherel-Polya inequality.

Although our main interest is to understand thoroughly the short 2-variation
operator in particular cases, we illustrate here how one can use (39) to extend
some results of Rubio de Francia [39] in the general context of convolution
operators Atf(x) = f ∗ σt(x) on Rd where σt is the tP -dilate of a compactly
supported finite Borel measure σ satisfying the weak regularity condition
(10). The proof of the following lemma is a straightforward adaptation of
the arguments in [39], using (39) at the appropriate places. We shall only
give the main points of the proof.

Lemma 6.1. Let A = {At} where Atf = f ∗ σt is described above. Suppose
that σ satisfies (10) for some b > 1/2, Then the a priori estimate

‖S2(Af)‖Lp(Rd) ≤ Cp‖f‖Lp(Rd)

holds for min(2d/(d+2b−1), (2b+1)/2b) < p < max(2d/(d−2b+1), 2b+1).

Remarks.

(i) It is understood that the lower bound p1 = min(2d/(d+2b−1), (2b+1)/2b)
is equal to 1 and the upper bound p2 = max(2d/(d− 2b+1), 2b+1) is equal
to ∞ when b ≥ (d+ 1)/2. If σ is absolutely continuous with L1 density the
characteristic function of the unit ball, then b = (d+ 1)/2.

(ii) As a consequence of (16) and Theorem 1.1 we obtain uniform Lp bounds
for λ[Nλ(Af)]1/2 in the same range of p. Therefore Lemma 2.1 implies that
these Lp bounds also hold for Vq(Af) whenever q > 2 since the open range
of p always contains p = 2. Interpolation with the trivial L∞ estimate for
the corresponding maximal operator shows that for p ≥ p2,

‖Vq(Af)‖p ≤ Cp,q‖f‖p

holds when q > 2p/p2.
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(iii) Applying Lemma 6.1 to the family of spherical means (17) gives strong
q-variational estimates for q > 2 only in the range d/(d − 1) < p ≤ d and
then only for d ≥ 3. The proof of Theorem 1.4 also uses square function
estimates but these estimates lie much deeper than those employed to prove
Lemma 6.1. Also the result stated in Theorem 1.5 is not covered by Lemma
6.1 since in this case, b = 1/2 and in fact we obtain Lp bounds for the full
range 1 < p <∞. The proof of Theorem 1.5 exploits the added feature that
the parabolic dilations flow along (not transversal to) the support of σ.

We now sketch the proof of Lemma 6.1, using the notation in [39]. We
begin by decomposing σ =

∑
k≥0 σ ∗ ψk where ψ0 is a Schwartz function

such that ψ̂0(ξ) = 1 if |ξ| ≤ 1 and ψ̂0(ξ) = 0 if |ξ| ≥ 2 and ψ̂k(ξ) =
ψ̂0(2−kξ)− ψ̂0(2−(k−1)ξ). Therefore

S2(Af)(x) ≤
∑
k≥0

S2(Akf)(x)

where Ak = {Ak
t } and Ak

t f = f ∗ (σ ∗ ψk)t. Using (39) we see that

[
S2(Akf)(x)

]2 ≤ C
∑

j

(∫ 2j+1

2j

|Ak
t f(x)|2dt

t

)1/2(∫ 2j+1

2j

|Ãk
t f(x)|2dt

t

)1/2

≤ C Gkf(x) G̃kf(x)

(40)

where Gkf(x)2 =
∫∞
0 |Ak

t f(x)|2dt/t is a square function associated to the
multiplier mk = ψ̂kσ̂ and G̃k is defined in the same way but with respect
to the multiplier m̃k = 〈P ∗ξ,∇mk(ξ)〉. Since ‖mk‖∞ ≤ C2−kb, ‖m̃k‖∞ ≤
C2k(1−b) and both mk, m̃k are supported where |ξ| ∼ 2k, we have by Plan-
cherel’s theorem

(41) ‖S2(Akf)‖2
2 ≤ C‖Gkf‖2 ‖G̃kf‖2 ≤ C2−(2b−1)k‖f‖2

2

which establishes the L2 bound for S2(Af) since b > 1/2.

Furthermore it was shown in [39] that for α > −b+d/2 we have the estimates

(42) ‖Gkf‖1 ≤ C2kα‖f‖H1 , and ‖Gkf‖BMO ≤ C2kα‖f‖∞
and

(43) ‖G̃kf‖1 ≤ C2k(1+α)‖f‖H1 , and ‖G̃kf‖BMO ≤ C2k(1+α)‖f‖∞.
Here H1 and BMO are defined with respect to the dilation group {tP }.
Defining

Nkf(x) = 2k/2Gkf(x) + 2−k/2G̃kf(x)
we can then estimate

‖N kf‖1 ≤ C2(1/2+s−b)k‖f‖H1

‖N kf‖BMO ≤ C2(1/2+α)k‖f‖∞
, α >

d

2
− b.



26 ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

Since (40) implies

S2(Akf)(x) ≤ C [Gkf(x) G̃kf(x)]1/2 ≤ CNkf(x),

we can interpolate with the L2 estimates in (41) to show that S2(Af) is
bounded on Lp for |1/p− 1/2| < b/d− 1/(2d) which establishes the lemma
except for the improved range when b < (d− 1)/2.

To achieve this improvement we use vector-valued singular integral theory
for the convolution operators {Tk,tf = f ∗Kk,t}t>0 where we view the kernel
Kk(x) = {Kk,t(x) = (σ ∗ ψk)t(x)}t>0 as having values in the Banach space

B = {a(t) : ‖a‖B := (
∑

j

‖a‖2
V2[2j ,2j+1])

1/2 <∞}

used in the definition of the short 2-variation operator S(Af). Then we
have the Lp estimates

(44) ‖S2(Akf)‖p ≤ Cp[Mk +Nk]‖f‖p

for 1 < p < ∞ where Mk = 2−(b−1/2)k is the already established L2 bound
(41) and Nk is any upper bound for

(45) sup
y∈Rd

∫
ρ(x)≥C0ρ(y)

‖Kk(x− y)−Kk(x)‖B dx

where ρ is homogeneous with respect to {tP } and C0 > 1 is some fixed large
constant; see e.g. [22]. To estimate this integral we simply use the fact that
the 2-variation norm is dominated by the 1-variation norm which gives us
the trivial estimate

‖a‖B ≤
∫ ∞

0
|a′(t)|dt

and therefore∫
ρ(x)≥C0ρ(y)

‖Kk(x− y)−Kk(x)‖B dx

≤
∫ ∞

0

∫
ρ(x)≥C0ρ(y)

|K̃k,t(x− y)− K̃k,t(x)|dx
dt

t

where K̃k,t is the convolution kernel for T̃k,t. In [39] it was shown that

(46)
∫ ∞

0

∫
ρ(x)≥C0ρ(y)

|K̃k,t(x− y)− K̃k,t(x)|dx
dt

t
≤ C‖σ‖ k2k

uniformly in y and so Nk = k2k is an upper bound for the integral in (45)
which gives us ‖S2(Akf)‖p ≤ Cpk2k‖f‖p for all 1 < p < ∞. Interpolating
these estimates with the L2 estimates in (41) shows that S2(Af) is bounded
on Lp in the range (2b+ 1)/2b < p < 2b+ 1, completing the main points in
the proof of Lemma 6.1. �
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7. Proof of Theorems 1.5 and 1.7

Proof of Theorem 1.5. Here we are considering the family of averaging oper-
ators A = {At} on R2 given by Atf = f ∗ σt where the measure σ is defined
on a test function φ by 〈σ, φ〉 =

∫ 1
0 φ(s, sa)ds and σt is the nonisotropic dilate

of σ given in (9) with tPx = (tx1, t
ax2) (i.e. P is the diagonal matrix with

eigenvalues 1 and a). In what follows we assume that a > 0, a 6= 1, since in
the case a = 1 we can apply results for the standard one-dimensional aver-
ages. We shall establish Lp(R2), 1 < p < ∞, bounds for the corresponding
short 2-variation operator,

(47) ‖S2(Af)‖p ≤ Cp‖f‖p,

from which uniform Lp, 1 < p < ∞, bounds for λ[Nλ(Af)]1/2 follow from
Theorem 1.1 and (16). Then Lemma 2.1 implies the desired result for the
strong q-variations Vq(Af) in Theorem 1.5.

The rough cutoff in the definition of σ causes some difficulties. If, instead,
we consider the family of convolution operators defined by f ∗ µt where the
measure µ on R2 is defined by

〈µ, f〉 =
∫
f(s, sa)ψ(s)ds

and ψ ∈ C∞
0 ((1/2, 4)), then the methods in the proof of Lemma 6.1 apply in

a straightforward fashion even though the optimal decay rate |µ̂(ξ)| ≤ |ξ|−1/2

prevents us from applying the lemma directly. Since the support of µ lies
along an orbit of {tP } we can improve the estimate |t(d/dt)µ̂t(ξ)| ≤ |tP ∗

ξ|1/2

used in the proof of Lemma 6.1 to |t(d/dt)µ̂t(ξ)| ≤ |tP ∗
ξ|−1/2 (this can be

verified by a direct computation, see (49) below; however without the smooth
cutoff ψ, one obtains only a uniform estimate with no decay in |tP ∗

ξ|). This
allows us to improve (41) to ‖S2(Akf)‖2 ≤ C2−k/2‖f‖2 and (46) to

(48)
∫ ∞

0

∫
ρ(x)≥C0ρ(y)

|K̃k,t(x− y)− K̃k,t(x)|dx
dt

t
≤ C‖µ‖ k.

Interpolation gives us Lp estimates for all 1 < p <∞.

To overcome the difficulty of the rough cutoff at s = 0 and s = 1 in the
definition of σ we introduce a partition of unity by writing σ = σ0 + σ1 =∑

m>0 σ
0
m +

∑
n>0 σ

1
n with

〈σ0
n, f〉 =

∫
f(s, sa)χ̃(s)η(2ns) ds

〈σ1
m, f〉 =

∫
f(s, sa)χ(s)η(2m(1− s)) ds



28 ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

where χ, χ̃ are smooth and η is some smooth function supported in (1/2, 2).
As in the proof of Lemma 6.1 we introduce a Littlewood-Paley decomposi-
tion and form families Ak,m,1, Ak,n,0 where Ak,m,1

t f = f ∗ (ψk ∗ σ1
m)t and

Ak,n,0
t f = f ∗ (ψk ∗ σ0

n)t, and we need to be able to sum the estimates for
the corresponding short 2-variation operators S2 ◦ Ak,m,1 and S2 ◦ Ak,n,0 in
(k,m) and (k, n), respectively. Since

(49) t
d

dt
ei(ξ1ts+ξ2tasa) = s

d

ds
ei(ξ1ts+ξ2tasa)

we obtain by an integration by parts

t (d/dt)[σ̂1
m(tP

∗
ξ)] = t

d

dt

∫
ei(ξ1ts+ξ2tasa)χ(s)η(2m(1− s))ds

= −
∫
ei(ξ1ts+ξ2tasa) d

ds
[sχ(s)η((2m(1− s))]ds

and from van der Corput’s lemma we get

|σ̂1
m(tP ξ)| ≤ Cmin{2−m, |tP ∗

ξ|−1/2}

|t d
dt

[σ̂1
m(tP ξ)]| ≤ Cmin{1, 2m|tP ∗

ξ|−1/2}.

Therefore, arguing as in (40) and (41), we get

‖S2(Ak,m,1f)‖2 ≤ Cmin{2−m/2, 2m/22−k/4}‖f‖2

≤ C ′2−k/102−m/5‖f‖2.(50)

Similarly for σ0
n we have

t
d

dt

[
σ̂0

n(tP
∗
ξ)

]
=

∫
ei(ξ1ts+ξ2tasa) d

ds
[sχ̃(s)η((2ns)]ds

and we get the estimate

|σ̂0
n(tP

∗
ξ)|+

∣∣ d
dt

[
σ̂0

n(tP
∗
ξ)

]∣∣ ≤ C(a) min{2−n, 2(2−a)n/2|tP ∗
ξ|−1/2}.

Thus also

‖S2(Ak,n,0f)‖2 ≤ C(a) min{2−n, 2(2−a)n/22−k/2}‖f‖2

≤ C ′(a)2−(k+an)/4‖f‖2(51)

where C ′(a) <∞ for a 6= 1.

Using (49), one can argue as in (48) to estimate∫ ∞

0

∫
ρ(x)≥C0ρ(y)

|K̃1
k,m,t(x− y)− K̃1

k,m,t(x)|dx
dt

t
≤ C‖σm‖ 2mk ≤ C k∫ ∞

0

∫
ρ(x)≥C0ρ(y)

|K̃0
k,n,t(x− y)− K̃0

k,n,t(x)|dx
dt

t
≤ C‖σn‖ 2nk ≤ C k
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where K̃1
k,m,t = t d

dt [(ψk ∗ σ0
m)t], K̃0

k,n,t = t d
dt [(ψk ∗ σ0

n)t]. This gives us Lp

estimates
‖S2(Ak,m,1f)‖p + ‖S2(Ak,n,0f)‖p ≤ Cpk‖f‖p

for all 1 < p <∞ and interpolation with (50), (51) implies for 1 < p <∞,

‖S2(Ak,m,1f)‖p ≤ Cp 2−δpk2−δ′pm‖f‖p

‖S2(Ak,n,0f)‖p ≤ Cp 2−δpk2−δ′pn‖f‖p

for some δp, δ′p > 0. Summing in k and m,n ≥ 0 establishes (47), completing
the proof of Theorem 1.5. �

Proof of Theorem 1.7. Again we may assume a 6= 1 since for a = 1 one
can apply the one dimensional result for the Hilbert transform. Again, by
Theorem 1.2 we only have to show that

‖S2(T f)‖p =
∥∥∥( ∑

j∈Z
|V2,j(T f)|2

)1/2∥∥∥
p
≤ C‖f‖p.

Now let s ∈ [1, 2] and define ν0,s be the measure given by

〈ν0,s, f〉 =
∫

s≤|u|≤2
f(u, ua)

du

u
.

Define the dilate νj,s by 〈νj,s, f〉 = 〈ν0,s, f(2jP ·)〉. Finally for k ∈ Z let Πj,kf
be the rescaled Littlewood-Paley operator defined by

Π̂j,kf(ξ) = ϕ(|2jP ∗
2−kξ|)f̂(ξ)

where
∑

k∈Z ϕ(s2−k) ≡ 1 for all s > 0. We observe that V2,j(T f)(x) is just
the V2 variation of the family {νj,s ∗ f}s∈[1,2] and it suffices to establish for
1 < p <∞ the estimates∥∥∥( ∑

j∈Z
|νj,s ∗Πj,kf |2

)1/2∥∥∥
p
≤ Cp2−|k|ε(p)‖f‖p,

∥∥∥( ∑
j∈Z

| d
ds
νj,s ∗Πj,kf |2

)1/2∥∥∥
p
≤ Cp‖f‖p,

uniformly in s ∈ [1, 2]. The proof of these estimates is very much analogous
to the above estimates for the averaging operators, except we get decay also
as k → −∞ in view of the cancellation of the measures ν0,s. We omit the
details. �

Remark. Similar argument also applies for curves t 7→ γ(t) which are homo-
geneous with respect to nonisotropic dilations, with a nonsymmetric P , e.g
with

P =
(

1 1
0 1

)
, tP =

(
t t log t
0 t

)
.
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We choose u = (1, 1)t and γ(t) = tPu and define the maximal and sin-
gular integrals analogously to (21), (25). One still obtains the conclusions
of Theorem 1.5 and Theorem 1.7, the proofs above apply with only small
changes.

8. Proof of Theorem 1.4

As remarked earlier, Lemma 6.1 does not cover the full Lp range for strong
q-variations with respect to the family of spherical means Atf(x) = f ∗σt(x)
defined in (17). To obtain the first part of Theorem 1.4 it suffices by Theorem
1.1, (16) and Lemma 2.1 to bound the short q-variation operator Sq(Af)
and prove

(52) ‖Sq(Af)‖p ≤ Cp,q‖f‖p.

for d/(d− 1) < p < 2d, with q = 2 if d ≥ 3 and q > 2 if d = 2. Interpolation
with the trivial L∞ estimate for the corresponding maximal operator shows
that for p ≥ 2d, Lp estimates hold for strong q-variations whenever q >
p/d. To bound Sq(Af) we employ again the Littlewood-Paley decomposition
Ak = {Ak

t } as it appears in the proof of Lemma 6.1, thus for k > 0

Âk
t f(ξ) = σ̂(tξ)ψ(2−ktξ)f̂(ξ)

with the usual modification for k = 0. We estimate Sq(Af) ≤
∑∞

k=0 Sq(Akf)
as before. It suffices to consider the case k > 0 as the case k = 0 is certainly
covered by Lemma 6.1. We now formulate a lemma which is used together
with the 1-dimensional embedding (39) in the t variable (for ρ = 2) to
to estimate S2(Akf). The lemma is based on results for square-functions
associated to Bochner-Riesz operators in [11], [15], [40], see also [30], [34].

Lemma 8.1. Suppose that d ≥ 2 and p ≥ 2(d+1)/(d− 1), or d = 2, p ≥ 4.
Then∥∥∥(∫ 2

1
|Ak

t f |2dt
)1/2∥∥∥

Lp(Rd)
+ 2−k

∥∥∥(∫ 2

1
|(d/dt)Ak

t f |2dt
)1/2∥∥∥

Lp(Rd)

≤ Cp2k(d[1/2−1/p]−1/2+ε−(d−1)/2)‖f‖p.

Define the operators W±
k,t by

Ŵ±
k,tf = ak(|ξ|)e±i|ξ|tf̂(ξ).

where ak is a standard symbol of order 0 supported in (2k−2, 2k+2). Note
that Ak

t is a linear combination of operators of the form 2−k(d−1)/2W±
k,t with

suitable choices of the symbols (and (d/dt)Ak
t is a linear combination of

operators of the form 2−k(d−3)/2W±
k,t.
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Let I be a compact interval. We then have the inequality

(53)
∥∥∥( ∫

I
|W±

k,tf(x)|2dt
)1/2∥∥∥

p
. Cε2k(d(1/2−1/p)−1/2+ε)‖f‖p

for 4 < p <∞ and d = 2 and for 2(d+ 1)/(d− 1) < p <∞, d ≥ 3. This is
well known and closely related to the estimate

(54)
∥∥∥( ∫

s≈1

∣∣F−1
[
ζ(2k(1− |·|

s ))f̂
]∣∣2ds)1/2∥∥∥

p
≤ Cε(ζ)2k(d(1/2−1/p)−1+ε)‖f‖p

for ζ ∈ C∞
0 supported in, say (−1/4, 1/4). The latter inequality has been

shown by Carbery [11] when d = 2, p = 4 and by Christ [15] and one of
the authors [40] if p ≥ 2(d + 1)/(d − 1). We note that the assumption
of ζ ∈ C∞

0 (−1/4, 1/4) could be relaxed by assuming that ζ ∈ S(R) by
decomposing ζ into dyadic pieces. For the dependence on ζ we have

Cε(ζ) ≤ cε‖ζ‖∗

where the norm can be chosen to be ‖ζ‖∗ := sups

∑M
j=0 |ζ(j)(s)|(1 + |s|)M

for suitably large M = M(d).

To relate the inequalities (53) and (54) we follow in spirit Kaneko-Sunouchi
[30] (see also [34] for related arguments). We choose χ ∈ S(R) so that the
Fourier transform of χ, henceforth denoted by χ0 is compactly supported in
[−1, 1] and χ(s) > 0 on [1, 2]. Then( ∫ 2

1
|W±

k,tf(x)|2dt
)1/2

.
( ∫ ∞

−∞
|χ(t)W±

k,tf(x)|2dt
)1/2

= c
( ∫ ∞

−∞

∣∣∣ ∫
χ(t)W±

k,tf(x)e−iτtdt|2dτ
)1/2

and ∫
χ(t)W±

k,tf(x)e−iτtdt = F−1[mτ (| · |)f̂ ]

where
mτ (s) = χ0(τ ∓ s)ak(s).

By scaling, the desired estimate follows from

∥∥∥( ∫
|τ |≈2k

∣∣F−1[χ0(τ − 2k| · |)ak(2k| · |)f̂ ]
∣∣2dτ)1/2∥∥∥

p

≤ Cε2k(d(1/2−1/p)−1/2+ε)‖f‖p

where η = ak(2k·) satisfies uniform estimates in k. After a change of variable
in τ we have reduced matters to the inequality
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(55)∥∥∥( ∫
1≤|σ|≤2

∣∣F−1[χ0(2k(σ − | · |))f̂ ]
∣∣2dσ)1/2∥∥∥

p
≤ Cε2k(d(1/2−1/p)−1+ε)‖f‖p.

The estimates needed to prove (55) are exactly the same as needed for (54).
However one can in fact deduce (55) from (54). Let η ∈ C∞

0 (R) so that
η(σ) = 1 on (1/2, 4) and η is supported on (1/4, 5). Let

u(s, σ) = η(σ)χ0(σs)

so that u is smooth and compactly supported in both variables. Let λ 7→
wλ(s) be the partial Fourier transform of u with respect to σ and write

u(s, σ) = (2π)−1

∫
wλ(s)eiλσdλ;

then w is compactly supported in the s variable and all derivatives decay
fast with respect to λ; i.e. ‖wλ‖∗ ≤ CN (1 + |λ|)−N . Now

η(σ)F−1[η(σ)χ0(2k(σ − | · |))f̂ ] = F−1[u(2k(1− |·|
σ ), σ)f̂ ]

= (2π)−1

∫
eiλσF−1[wλ(2k(1− |·|

σ ))f̂ ]dλ.

Thus by (54)∥∥∥( ∫
1≤|σ|≤2

∣∣F−1[χ0(2k(σ − | · |))f̂ ]
∣∣2dσ)1/2∥∥∥

p

.
∫

λ

∥∥∥( ∫
1≤|σ|≤2

∣∣F−1[wλ(2k(1− |·|
σ ))f̂ ]

∣∣2dσ)1/2∥∥∥
p

≤ C ′
ε

∫
‖wλ‖∗dλ 2k(d(1/2−1/p)−1+ε)‖f‖p

and the integral in λ converges. �

To bound ‖S2(Akf)‖p we need the following global version of Lemma 8.1.

Lemma 8.2. Suppose that d ≥ 2 and p ≥ 2(d+1)/(d− 1), or d = 2, p ≥ 4.
Then for k > 0∥∥∥(∫ ∞

0
|Ak

t f |2
dt

t

)1/2∥∥∥
Lp(Rd)

+ 2−k
∥∥∥(∫ ∞

0
|t(d/dt)Ak

t f |2
dt

t

)1/2∥∥∥
Lp(Rd)

≤ Cp,ε2k(d(1/2−1/p)−1/2+ε−(d−1)/2)‖f‖p.

To prove this we could use weighted norm inequalities as in [11], [15], or use
Lp-Calderón-Zygmund theory as in [40]. We simply quote a general version
of the latter, namely a vector-valued version of a result from [41] (cf. also
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[13]). Here one is given a family of Fourier multipliers ms, 1 ≤ s ≤ 2,
compactly supported in {ξ : 1/2 ≤ |ξ| ≤ 2} and it is assumed that∥∥∥( ∫ 2

1
|F−1[ms(2j ·)f̂ ]|2ds

)1/2∥∥∥
p
≤ A‖f‖p

for some p ∈ (1,∞), uniformly in j ∈ Z. One also assumes that

|∂α
ξ ms(ξ)| ≤ B, |α| ≤ d+ 1,

for some possibly very large constant B. The conclusion is that∥∥∥( ∑
j

∫ 2

1

∣∣F−1[ms(2j ·)f̂ ]
∣∣2ds)1/2∥∥∥

p
≤ CpA

(
log(2 +B/A)

)|1/p−1/2|‖f‖p.

We use this with B = O(2k(d+1)) and with A being the constant in Lemma
8.1. Thus we only get an irrelevant power of k when passing from Lemma
8.1 to Lemma 8.2. From (39) we obtain that if d ≥ 3 then

‖S2(Akf)‖p ≤ C2−ka(p)‖f‖p

with a(p) > 0 when 2(d + 1)/(d − 1) ≤ p < 2d which covers the range
d ≤ p < 2d that does not fall under the scope of Lemma 6.1. Thus we may
sum in k to obtain the claimed result for S2(Af).

In two dimensions the estimates for S2(Akf) do not sum and we obtain from
Lemma 6.1 and Lemma 8.1 only that

‖S2(Akf)‖p ≤ Cε2kε‖f‖p, 2 ≤ p ≤ 4, d = 2.

We also need to use a result from [33] on local smoothing which says that
for p > 2

(56)
∥∥∥(∫

I
|Ak

t f |p + |2−k(d/dt)Ak
t f |pdt

)1/p∥∥∥
Lp(R2)

≤ Cp2−k(1/p+δ(p))‖f‖p

with some δ(p) > 0 (the precise value is irrelevant for our purpose). Since
p > 2 the following global version follows immediately from a straightforward
application of the Littlewood-Paley theory.

Lemma 8.3. Suppose that d = 2, 2 < p <∞ and ε > 0. Then for k > 0∥∥∥(∫ ∞

0
|Ak

t f |p
dt

t

)1/p∥∥∥
Lp(Rd)

≤ Cp,ε2−k(1/p+δ(p)−ε)‖f‖p,∥∥∥(∫ ∞

0
|t d
dt
Ak

t f |p
dt

t

)1/p∥∥∥
Lp(Rd)

≤ Cp,ε2k2−k(1/p+δ(p)−ε)‖f‖p.

This lemma yields ‖Sp(Akf)‖p ≤ C2−kb(p))‖f‖p, 2 < p < ∞ and by inter-
polation with the Lp-estimate for S2(Akf) we also get

‖Sq(Akf)‖p ≤ C2−kb(p,q)‖f‖p,

with b(p, q) > 0 when 2 < p ≤ 4, q > 2. This implies the claimed result in
two dimensions. �
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Sharpness. We now turn to the second part of the statement in Theorem
1.4 and show that the a priori inequality

‖Vq(Af)‖p ≤ Cp‖f‖p

for p > 2d implies that q ≥ p/d. This shows that Theorem 1.4 is essentially
sharp. We shall test Vq(Af)(x) on the function fλ given by

f̂λ(ξ) = χ(λ−1|ξ|)ei|ξ|2/(2λ);

here χ ∈ C∞
0 is nonnegative, supported in [1/2, 3/2] and χ ≡ 1 on [3/4, 5/4].

When deriving a lower bound for Vq(Af)(x) we restrict x to a ball of radius
c0λ

−1, centered at the origin.

After a change of variable we may write

fλ(y) = (
λ

2π
)d

∫
χ(|η|)eiλ[|η|2/2+〈x,η〉]dη.

Clearly fλ decays rapidly when |y| ≥ 2 and by the method of stationary
phase we have |fλ(y)| ≤ Cλd/2, so that ‖fλ‖p = O(λd/2) for all p. Now
recall that

Âtf(ξ) = cd
Jα(t|ξ|)
(t|ξ|)α

f̂(ξ), α = (d− 2)/2

so that

c−1
d Atfλ(x) =

1
(2π)d

∫
χ(λ−1|ξ|)ei|ξ|2/(2λ)Jα(t|ξ|)

(t|ξ|)α
ei〈x,ξ〉dξ

= (
λ

2π
)d

∫
χ(r)rd−1eiλr2/2Jα(λtr)

(λtr)α
ϑ(λr|x|)dr

where ϑ(s) =
∫
θ∈Sd−1 e

is〈 x
|x| ,θ〉dσ(θ) is independent of x. Furthermore ϑ(s) =

$d + O(s) where $d is the total surface measure of the unit sphere Sd−1

and the derivatives of ϑ stay bounded if |s| ≤ 10.

For R ≥ 1,

Jα(R) =

√
2
πR

cos(R− πα

2
− π

4
) +O(R−3/2).

Thus we have
c−1
d Atf(x) = [I + II + III](x, t)

where

I(x, t) = (
λ

2π
)dei(

πα
2

+π
4
)

∫
χ(r)rd−1(2πλrt)−1/2−αeiλ(r2/2−rt)ϑ(λ|x|r)dr

II(x, t) = (
λ

2π
)de−i(πα

2
+π

4
)

∫
χ(r)rd−1(2πλrt)−α−1/2eiλ(r2/2+rt)ϑ(λ|x|r)dr

III(x, t) = O(λd−α−3/2), t ∈ [1/2, 2].
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Notice that the phase for II(x, t) does not have any critical points if t > 0
and therefore II(x, t) can be subsumed under the error term. The asymp-
totics of the integral for I(x, t) are obtained by the method of stationary
phase; the phase has a nondegenerate critical point at r = t.

We get for t ≈ 1, |c| ≤ c0λ
−1,

I(x, t) = c̃dλ
d−α−1χ(t)td−2−2αe−iλt2/2ϑ(λ|x|r) +O(λd−α−3/2).

For 1 ≤ n ≤ λ/100, choose

tn =

√
2 +

2nπ
λ

;

then |e−iλt2n/2 − e−iλt2n+1/2| = 2 and |tn − tn+1| = O(λ−1). Therefore( ∑
1≤n<

λ
100

|I(x, tn)− I(x, tn+1)|q
)1/q

≥ λd−α−1+1/q(c− Cλ−1).

The corresponding expressions for I replaced by II and III have the upper
bound O(λd−α−3/2+1/q).

Now recall that α = (d − 2)/2. Combining the terms above yields for
|x| ≤ c0λ

−1, c0 small, the estimate

|Vq(Afλ)(x)| ≥ cλd/2+1/q

and consequently ‖Vq(Afλ)‖p ≥ c′λd/2+1/q−d/p. Since ‖fλ‖p ≤ Cλd/2 this
yields the restriction q ≥ p/d. �

Proof of the restricted weak type endpoint inequalities. As before, since the
dyadic jump inequalities hold for all 1 < p <∞ both the claimed jump and
variational restricted weak type inequalities for p = d/(d− 1), d ≥ 3 follow
from a short-variation result

‖S2(Af)‖Ld/(d−1),∞ ≤ C‖f‖Ld/(d−1),1 .

This in turn follows by a generalization of an argument by Bourgain [3] (see
the appendix of [14]) from the standard L2 bound

‖S2(Akf)‖2 ≤ C2−k(d−2)/2‖f‖2

and the Hardy-space bound

(57) ‖S2(Akf)‖L1 ≤ C2k‖f‖H1 ;

note that (57) is an improvement by a logarithmic factor of the result follow-
ing from (46). To show (57) we only need to check the estimate on atoms;
we use arguments from [45] (see also [17], [43]). By dilation invariance it
suffices to check that

‖S2(Akf0)‖1 = O(2k)
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for an atom f0 associated to the unit ball B0 centered at the origin; i.e. f0

is supported on B0, ‖f0‖∞ ≤ 1 and
∫
f0 = 0. It suffices to show∥∥∥( ∑

j

[ ∫ 2

1

∣∣ d
ds
Ak

2jsf0

∣∣ds]2)1/2∥∥∥
1
≤ C2k

which in turn follows from

(58)
∥∥∥( ∑

j

∣∣ d
ds
Ak

2jsf0

∣∣2)1/2∥∥∥
1
≤ C2k,

uniformly in s. For each s ∈ [1, 2], k > 0 let Uk,s be the set of all x for which
either |x| ≤ 2 or ||x| − 2js| ≤ 2 for some 0 < j ≤ k. Then the measure of
Uk,s is O(2k(d−1)). Now the inequality (58) follows from∥∥∥( ∑

j≤k+10

∣∣ d
ds
Ak

2jsf0|2
)1/2∥∥∥

L1(Uk,s)
≤ C2k(59)

∥∥∥ d

ds
Ak

2jsf0

∥∥∥
L1(Rd\Uk,s)

≤ C2j , j ≤ k(60) ∥∥∥ d

ds
Ak

2jsf0

∥∥∥
L1(Rd)

≤ C22k−j , j > k.(61)

To see (59) we apply the Cauchy-Schwarz inequality on the exceptional set
Uk,s and from the standard L2 estimates we get∥∥∥( ∑

j≤k+10

∣∣ d
ds
Ak

2jsf0|2
)1/2∥∥∥

L1(Uk,s)

≤ C2k(d−1)/2
∥∥∥( ∑

j≤k+10

∣∣ d
ds
Ak

2jsf0

∣∣2)1/2∥∥∥
2

≤ C2k(d−1)/22−k(d−3)/2‖f0‖2 ≤ C ′2k.

If Kk,j,s denotes the convolution kernel of (d/ds)Ak
2js

then

|Kk,j,s(x)|+ 2j−k|∇Kk,j,s(x)| ≤ CN22k
(
1 + 2k

∣∣ |x|
2js

− 1
∣∣)−N

and using this estimate for Kk,j,s away from the exceptional set implies (60).
Using the gradient estimate and the cancellation of f0 one obtains (61). For
more details see [45], [43]; we remark that the methods of these papers yield
in fact improved jump and variational inequalities for families of spherical
means with the dilation parameter restricted to subsets of R+. �

References

[1] M. Akcoglu, R.L. Jones and P. Schwartz, Variation in probability, ergodic theory and
analysis, Illinois J. Math., 42 (1998), 154-177.

[2] J. Bergh and J. Peetre, On the spaces Vp, 0 < p < ∞, Bollettino U.M.I., 10 (1974),
632-648.



STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 37

[3] J. Bourgain, Estimations de certaines fonctions maximales, C.R. Acad. Sc. Paris, 310
(1985), 499-502.

[4] , Averages in the plane over convex curves and maximal operators, J. Analyse
Math., 47 (1986), 69–85.

[5] , Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ.
Math. 69 (1989), 5–45.

[6] D.L. Burkholder, B. Davis and R. Gundy, Integral inequalities for convex functions of
operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist. Prob., 2 (1972),
223-240.

[7] A.P. Calderón, Ergodic theory and translation invariant operators, Proc. Nat. Acad.
Sci. USA, 59 (1968), 349-353.

[8] A.P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956),
289–309.

[9] J. Campbell, R.L. Jones, K. Reinhold and M. Wierdl, Oscillation and variation for
the Hilbert transform, Duke Math. J., 105 (2000), 59-83.

[10] , Oscillation and variation for singular integrals in higher dimensions, Trans.
Amer. Math. Soc., 35 (2003), 2115-2137.

[11] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on L4(R2), Duke
Math. J., 50 (1983), 409–416.

[12] , Radial Fourier multipliers and associated maximal functions, Recent
progress in Fourier analysis, ed. by I. Peral and J.L. Rubio de Francia, North Holland,
1985.

[13] , Variants of the Calderón-Zygmund theory for Lp-spaces, Rev. Mat.
Iberoamericana 2 (1986), no. 4, 381–396.

[14] A. Carbery, A. Seeger, S. Wainger, J. Wright, Classes of singular integral operators
along variable lines, J. Geom. Anal. 9 (1999), 583–605.

[15] M. Christ, On the almost everywhere convergence of Bochner-Riesz means in higher
dimensions, Proc. Amer. Math. Soc., 95 (1985), 16–20.

[16] , A T (b) theorem with remarks on analytic capacity and the Cauchy integral,
Coll. Math., 60/61 (1990), 601–628.

[17] , Weak type (1,1) bounds for rough operators, Ann. of Math., 128 (1988),
19-42.

[18] M. Christ and J.L. Rubio de Francia, Weak type (1, 1) bounds for rough operators.
II. Invent. Math. 93 (1988), no. 1, 225–237.

[19] H. Dappa and W. Trebels, On maximal functions generated by Fourier multipliers,
Ark. Mat., 23 (1985), 241–259.

[20] G. David, Morceaux de graphes Lipschitziens et integrales singulières sur une surface,
Rev. Mat. Iberoamericana, 4 (1988), 73-114.

[21] J. Duoandikoetxea and J.-L. Rubio de Francia, Maximal and singular integral opera-
tors via Fourier transform estimates, Invent. Math., 84 (1986), 541–561.

[22] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related
topics, North Holland, 1985.

[23] L. Grafakos and N. Kalton, The Marcinkiewicz multiplier condition for bilinear op-
erators, Studia Math. 146 (2001), 151-180.

[24] S. Hofmann, Weak (1, 1) boundedness of singular integrals with nonsmooth kernel,
Proc. Amer. Math. Soc. 103 (1988), 260–264.

[25] R.L. Jones, Ergodic averages on spheres, J. Anal. Math. 61 (1993), 29–45.
[26] R.L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory,

Erg. Th. & Dyn. Sys., 18 (1998), 889–936.
[27] R.L. Jones, J. Rosenblatt, and M. Wierdl, Oscillation inequalities for rectangles, Proc.

Amer. Math. Soc., 129 (2000), 1349-1358.
[28] , Oscillation in ergodic theory: higher dimensional results, Israel Journal of

Math., 135 (2003), 1-27.



38 ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

[29] R.L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels,
Trans. Amer. Math. Soc., 356 (2004), 4493-4518.

[30] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions
in higher dimensions, Tohoku Math. J. (2) 37 (1985), 343–365.

[31] M. Lacey, Ergodic averages on circles, J. Anal. Math. 67 (1995), 199–206.
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