STRONG VARIATIONAL AND JUMP INEQUALITIES
IN HARMONIC ANALYSIS

ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

ABSTRACT. We prove variational and jump inequalities for a large class
of linear operators arising in harmonic analysis.

1. INTRODUCTION

Variational and jump inequalities in probability, ergodic theory and har-
monic analysis have been the subject of many recent articles (see [32], [5],
[26], [27], [9], [10], and [28]). The purpose of this paper is to significantly
extend and generalize some of the results for families of integral operators in
harmonic analysis, and also to prove some previously open endpoint jump
inequalities.

To fix notation we denote by J a subset of R (or more generally an ordered
index set). We consider real or complex valued functions ¢ +— a; defined on
J and define their g-variation to be

L-1

1/q
) lalley = sup (3 lowss — aul?)

1 e L ezl

where the sup is taken over all finite increasing sequences {t; < --- < t1}
with ¢; € J.

Next we consider families of Lebesgue measurable functions F' = {F}; : t € J}
defined on R? and define the strong g-variation of F as the vg norm of
t — Fy(z); we denote it by V;(F')(x). If J is assumed to be a countable index
set then V,(F) is a Lebesgue measurable function. However this countability
assumption can be removed in many cases where the function ¢ — Fy(z) is
continuous on J for almost every x; this will always be the case in our
applications. Here of course J is endowed with the natural topology as a
subset of R.
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Strong variational bounds follow from estimates of a more fundamental ob-
ject, the A-jump function Ny(F'). One defines Ny(F)(x) to be the supremum
of all integers N for which there is an increasing sequence 0 < s; < t; <
So < tg < --- < sy <ty so that

|Fip () = Fs (2)] > A

for each £ = 1,...,N. It will sometimes be convenient to use a slight
modification of the A\-jump function, namely we define N)\(F)(z) as the
supremum of all nonnegative integers N for which there exist 0 < t; < t3 <
--» <ty with the property that |F},  (z) — Fy, ()| > A\ f=1,...,N -1 It
is easy to see that

(2) NA(F) () < NA(F)(2) < 2N 2(F)(2),

and thus we can pass from one definition to the other without difficulty. The
advantage of working with N, is that it is ‘effectively’ subadditive; that is,

(3) NA(F + G)(x) < Nyjo(F)(x) + Ny jo(G) ().

The advantage of N, is a pointwise comparison with the ¢g-variation, namely
NA(F) < A1V, (F)?, and from (2) we see that also

AINA(F) (@)]V4 < CgVy(F)(2)

holds for any ¢, uniformly in A, with C; = 21+1/4. An argument of Bourgain
allows us to often reverse this inequality in LP (see Lemma 2.1 below). For
example, for a family of operators A = {A;}; € J uniform a priori bounds

IANACADT 2 Lo < Cyll £l 1

in an open range pg < p < p1 containing p = 2 imply strong ¢-variational
bounds for ¢ > 2 in the same range,

IVa(ADzr < Cpg

fllzes po < p < p1.

Our attention therefore will be concentrated on establishing uniform LP
bounds for A\[Ny(Af)]*/? in some open range pg < p < p1. Such estimates
give us quantitative information on the rate of convergence of A,f(x) as t
tends to zero.

Lépingle’s inequality and applications. The main tool in proving vari-
ational inequalities is Lépingle’s result [32] for a general bounded martingale
sequence { fn}R_;; he proved LP,1 < p < oo and weak type (1,1) bounds
for V;(f«) whenever ¢ > 2. These estimates can fail for ¢ < 2, see ([37],
[29]).

Simple proofs of Lépingle’s inequality have been given by Pisier and Xu
[36] and by Bourgain [5], by reducing matters to jump inequalities for the



STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 3

family {fn} (see §2). As observed in [36] and [5], the jump inequalities for
martingales follow from the pointwise estimate

AMEI@ < (X Brale) = Se@))'"
k=1

here §x(x) = f-, (x) (x) defines the stopped martingale constructed from the
stopping times {7} where 74(z) is the k" time the sequence {fi(x)} has
jumped by at least X\. Then one can apply Burkholder’s result (see [6]) for
square functions of difference martingale sequences to the martingale {Fx}
in order to obtain the L? bounds, 1 < p < oo,

4) IMNACTYTL, < Coll Fllps 7 =2,
as well as weak type (1,1) bounds
(5) {2 : AN > a}| < Ca||flly, r 22

By (2), we have also have the L” and weak type (1,1) bounds for A\[Ny(f.)(x)]*/",
r > 2, uniformly in A.

In [5] Bourgain used Lépingle’s result for the classical martingale generated
by dyadic intervals to obtain similar variational estimates on L?(Z) for the
averages N~ 5" f(m +n). These L? estimates have been extended to
LP bounds for 1 < p < oo, and weak type (1,1) bounds (see [26]). One can
then transfer these estimates via Calderdn’s transference principle [7] to the
general setting of a dynamical system (X, pu,T') and obtain LP (and weak
type (1,1)) bounds for strong g-variations of the corresponding operators

1 N
Anf(@) = Y F(T7a),
n=1

where one is averaging over the orbit generated by the measure preserv-
ing automorphism 7. This gives an alternative proof of Birkhoff’s point-
wise ergodic theorem since for any x € X, if V,(Af)(x) is finite for some
finite ¢ then the limit of Ay f(z) exists as N tends to infinity. Tradition-
ally one first controls a smaller object, the corresponding maximal function
M f(x) = supysg|Anf(z)| in some LP, reducing the pointwise result to
proving convergence a.e. for some dense subclass of LP functions. Note the
comparison Voo (Af)(z) = 2M f (), yet M f(z) < Voo (Af)(x) + Ay, f (), for
any tg € J. Establishing pointwise convergence a.e. for a dense class may not
be straightforward in certain cases, and a variational V; (¢ < oco) estimate
shows almost everywhere convergence without this step, and, furthermore,
gives some information about the rate of convergence.

Bourgain’s work has inspired a number of authors to investigate variational
bounds for other families of averaging operators, and also for families formed
by truncating classical singular integral operators (see e.g., [1], [9], [10], [26],
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[27] and [28]). For example in [27], LP(R%),1 < p < oo, and weak type
(1,1) bounds were obtained for strong g-variations for the family of higher
dimensional averages over Euclidean balls

1

thereby improving on the well known estimates for the Hardy-Littlewood
maximal function.

f(y)dy;

To establish strong g-variational estimates for a family of linear operators
as in (6), the idea is to divide the analysis into short and long variations.
Effectively, the short variations are defined in the same way except that the
{t;} lie in some dyadic interval [2/,2/%1] whereas the long variations are
computed over the sequence of dyadic numbers {2/}. Known techniques
from harmonic analysis are used to estimate the short variations whereas
one compares the long variations with the variation along an appropriate
martingale sequence. For example with respect to the {A:} in (6), the
martingale sequence {fy} one takes is given by f_ny = Exf = E(f|Fn)
where the o-algebras F are generated from the usual (‘half-open’) dyadic
cubes in RY; specifically,

(7) Ex/(z) = @ /Q f

where @ is the unique dyadic interval of sidelength 2V containing z. Then
one can apply Lépingle’s inequality to obtain strong g-variational estimates
for ¢ > 2. The arguments in [37], [29] show that strong g-variational esti-
mates with respect to the martingale sequence in (7) fail whenever ¢ < 2
and hence there are no L” bounds for V (Af), A = {4;} with A; in (6),
whenever ¢ < 2. Thus, from now on we will restrict ourselves to the range
q> 2.

In this paper we develop a general method which will allow us to obtain
strong variational inequalities for a large class of averaging and truncated
singular integral operators arising in harmonic analysis. For example, be-
sides the family of linear operators in (6), we will consider more singular
variants such as spherical means (see (17)) or averages along curves (¢,t%) in
the plane (here a > 1). The latter operators exhibit some homogeneity with
respect to nonisotropic dilations and our definition of the appropriate mar-
tingale has to reflect this dilation structure. Thus if ¢ is an integer we may
work with the martingale sequence generated by rectangles (or generalized
dyadic cubes) of the form [j;2F, (j1 +1)2F) x [j229, (j2 +1)29) in the plane.
There is no obvious definition of ‘dyadic cubes’ compatible with the dilation
structure when a € R™ \ Z. However there is a construction due to Christ
[16] which shows that there is a family of suitable ‘dyadic cubes’ with all the
necessary properties in the general setting of a space of homogeneous type.
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This allows one to define martingales which are appropriate for a general
dilation structure

(8) tf = exp(Plogt);

here P is a real d x d matrix whose eigenvalues have positive real parts. Any
regular quasi-norm p which is homogeneous with respect to the dilations
(ie., p(tPz) = tp(x),t > 0) makes R?, together with Lebesgue measure and
the quasi-metric induced by p, into a space of homogeneous type (see [50] for

the existence of a p € C>°(R?\ {0}) and other properties of general dilations
tP).

Jump inequalities — dyadic dilations. We formulate two main results
for convolution operators whose formulation is motivated by the results on
maximal operators of Duoandikoetxea and Rubio de Francia [21]. Below we
shall discuss specific examples.

Let o be a compactly supported finite Borel measure on R¢. We consider
dilates o; of o defined with respect to a group of dilations {t’};~¢ as in (8)
with the dilate oy being defined by

9) (o0, f) = / f(t*z)do.

We assume a weak regularity condition on ¢ in terms of the Fourier trans-
form:

(10) |5(&)| < Cl¢]~b,  for some b > 0.

Under this assumption bounds in LP(R9),1 < p < oo, were derived for the
maximal operator defined by M f(x) = supycy |f * o9 (z)|. Moreover it is
well known that these LP estimates can be extended to weak type (1,1)
bounds under the stronger hypothesis that ¢ is absolutely continuous, with
L' density ® say, and

() [0y~ e@)]ds < Clyl
R
for some b > 0 (see e.g., [49], p. 72). Clearly (11) implies (10).

In this setting we extend these estimates as follows.
Theorem 1.1. Let A = {Ay} where Ay f(x) = f * o9x(x) and oo are as in
(9).
(i) If o satisfies (10), then
H)‘\/WHLP(W) < Cpllfllppray, 1<p<oo,

uniformly in X > 0. Moreover Vo 2 is bounded on LP(R?) for 1 < p < oo,
q> 2.
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(ii) If o satisfies (11), then in addition we have

C
{z © AWVNA@RLS) > a}| < EHfHLl(Rd)v

uniformly in X > 0. Moreover V, o2 is of weak type (1,1), for ¢ > 2.

We now state a theorem on truncated singular integral operators in the
setting of convolution operators on R? which are homogeneous with respect
to a general group of dilations {tf'}.

We start with a compactly supported finite Borel measure v on R¢ with
mean zero,

(12) / dv = (0) = 0

and consider the singular integral operator defined by T'f(z) = > oy f *
vor (), and its family of truncations 7 = {7, } ez where

(13) Tf() = 3 f*vaea).

n<k

In [21], LP(RY) bounds (1 < p < 00) were obtained for T as well as for the
associated maximal truncated operator, T, f(z) = sup, | > ,,<p [ * Vor ()]
if v satisfies the weak regularity condition (10), and the same is true for
the square function g(f)(z) = (3, |f * vor(x)[?)1/2. In both cases, these
estimates can be extended to weak-type (1,1) bounds if v has an L' density
satisfying (11), see e.g., [22]. In the following theorem we give bounds for
the A-jump function Ny (7 f)(x) of the discretely indexed family 7.

Theorem 1.2. Let T = {T,} as defined in (13), with v satisfying (12).
(i) If v satisfies (10), then
H)‘\/ NA(Tf)HLp(Rd) < Cp”fHLP(Rd)a 1 <p<oo,

uniformly in A\ > 0. Moreover VyoT is bounded on LP(R?), for 1 < p < oo,
q> 2.

(ii) If v satisfies (11), then in addition we have

o s WIEN@ > o} < e,

uniformly in X > 0. Moreover V0T is of weak type (1,1) if ¢ > 2.

Dyadic jump functions and short variation operators. In order to
apply Theorems 1.1 and 1.2 we have to combine these results with certain



STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 7

square-function estimates. We now work with a family A = {A4;},cp+ and
split the analysis of N)(Af) into short and long A-jumps. Set

N-1
1) VoAn@={( s Y M f@) - A @)
t<..<ty (=1
[to,ter1]C[27,2711]
and let
(15) Sp(Af) (@) = O_[Vos(Af)(2)]7) /7

jEZ

be the short p-variation operator (we shall mostly use p = 2).

Define N;\iyad(Af)(x) to be the largest integer IV such that there is an in-
creasing sequence of integers j; < k1 < jo < kg < -+ < jny < kn over
which

| Agie f ) = Agi f()] > A
for each £ € {1,...,N}. Thus Ngyad(Af) is precisely the jump function for
the dyadic families {Agn },cz treated in Theorems 1.1 and 1.2.

One observes

Lemma 1.3.

(16)  ANAAN@)Y < C(S,(AS) + AINJEUAN @)]7).

Proof. To prove this lemma we begin by fixing a sequence s1 < t; < --- <
sy < tn such that |Ay, f(z) — As, f(z)| > X for each £ =1,..., N and then
separate the £ into two groups;

Js = {l: [se,ty] C [27,27T1) for somej € Z}
and ‘
Jp={l: s; <2 <t, for somej € Z}.
First of all,
#Js < Y Naj(Af)(z)
JEZ
where N ; is defined in exactly the same way as N\ except the sequence
51 <tp <+ < sy <Inis required to lie entirely in the dyadic interval
[27,27F1]. For ¢ € Jr, choose jy < kg so that 27671 < 5, < 27¢ and 2k < t, <
2kl Then
A< ‘Atzf(x) - AS(f(:E)|
< |Ag f(x) = Agig f ()| + [Agr [ () = Agip f ()] + | Agie f(2) — As, f ()]
implies
#JL <2 Nyys(Af@) + Ny (Af) (@),

JEZ
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and therefore
N=#Js+#JL < 3 Nysi(Af)@) + NGUAS) ().
JEL
Consequently we have
MINAAS @)]Y7 <3 (30 ANy (AN @) + NS AS) @)
JEZ
< CSy(Af)(@) + 2N (AS) (@),
establishing (16). O

Specific families of operators. We shall formulate some results for sin-
gular families of averages and singular integrals which follow from Theorems
1.1 and 1.2 and additional results for the short-variation operators.

We first consider the family of spherical means, defined by

(17) Aef(z) = » e —ty)do(y);

here do is the rotationally invariant measure on the unit sphere S?1, nor-
malized to have mass 1. The corresponding maximal operator is bounded
on LP(R?) if and only if p > d/(d — 1). This was shown by Stein [48] when
d > 3, the d = 2 case was established later by Bourgain [4]. In dimensions
d > 3 Bourgain [3] also established a restricted weak type inequality for the
endpoint p = d/(d — 1); i.e. the maximal operator maps the Lorentz space
LY/d=1).1 o [4/(d=1),20  The latter result fails in two dimensions (see [43]).
Here we prove the following variational and jump estimates for the family
of spherical means.

Theorem 1.4. Suppose d > 2 and A = {A;} are the spherical means defined
in (17).

(i) The a priori estimates

(18) IVa(AP)Leray < Cpgllfll e ey

hold whenever d/(d — 1) < p < 2d and q > 2. Furthermore for the range
p > 2d, if ¢ > p/d, then (18) holds and conversely, if (18) holds, then we
necessarily have ¢ > p/d.

(ii) Suppose d > 3, then for d/(d—1) <p < 2d
(19) [IAWNAAD], < CollFllp-

(i1i) Suppose d > 3, then there is the restricted weak-type inequality

(20) IMWNAAD o SCUFL a0
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d d
Moreover, if ¢ > 2 then V, o A maps Li1t to L1,

Remark. The maximal operator bounds of Stein and Bourgain were trans-
ferred to the setting of a dynamical system in [25] and [31] where pointwise
convergence results were established. These results follow at once from the
strong g-variational estimates in Theorem 1.4.

Another family of singular averaging operators is formed by taking averages
over curves in R2,

t
(21) Aif(x1,22) = 1/0 flxy —s,29 — s%) ds.

This and related families have been extensively studied (see e.g., [50]).
For instance it is known that the associated maximal operator M f(z) =
sup,q |A:f(x)| is bounded on all LP(R?),1 < p < oo, [35]; however it re-
mains an open question whether weak type (1,1) bounds hold (see [17], [44]
for results near L'). We extend these estimates in the following way.

Theorem 1.5. Let A = {A;} where A; is defined in (21). Then for 1 <
p < 0

H)‘ N/\(Af)Hp < Cpllf o (r2ys

moreover Vg o A is bounded on LP for q¢ > 2.

Remark. This result can be generalized to averaging operators along any
k-dimensional surface in R? which possesses a certain amount of curvature,
namely, every hyperplane has a finite order of contact with the surface.
Specifically one can replace the curve {(s,s%)} in the plane with a k-surface
in R? parameterized by ®(s) = (s°1,...,5%) where s € R* and the mono-
mials defining the components of ® are distinct. One considers the family
of averages A f(z) = ﬁ f|s‘<t f(x — ®(s)) ds; here wy, denotes the volume

of the unit ball in RF and proves the above jump inequalities for this family.
See [49] for the related arguments for the maximal operator.

We now turn to families of operators defined by truncations of classical
singular operators. Let Q € L'(S9~1) so that the cancellation condition

(22) /S QB)do(6) = 0

holds, and define the family 7 = {T;} by

(23) T,f(z) = pv. / Qy/ )y~ (= — y)dy.

ly|>t
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It is known that under the condition Q € Llog L(S%!) the operators T}
are uniformly bounded (see [8]), moreover variational LP(V;) bounds and
consequently bounds for A(Ny(7f))*/%, ¢ > 2, have been obtained in [9],
[10]. Here we settle the jump inequalities for the endpoint case ¢ = 2 which
had remained conjectural in these papers.

Theorem 1.6. Let Q, T be as in (22), (23). Suppose that Q € L"(S%1)
for some r > 1. Then for 1 < p < oo,

IAVNATA, < Coll llp-

Remark. By extending arguments in [10] one can prove for the short-
variation Sa(7 f) a weak type (1,1) inequality provided that if d > 2 then Q
belongs to the Sobolev class L (S9~!) for some o > 0. Then by the weak-
type (1,1) version of Theorem 1.2 one also gets a weak type (1,1) endpoint
inequality for A\\/Nx(7f). In one dimension we get a weak type (1,1) bound
for the truncation of the Hilbert transforms T} f(z) = f‘y|>t flx —y)y tdy.
This weak type inequality implies

(24) [{z : N\(Tf) > n}| < On 2N £l
for A > 0, n = 1,2,.... We note that [9], [10] contain similar weak-type
bounds for regular singular integrals but with n~/2 replaced by nf1/2,

e > 0.

One can ask whether these jump inequalities hold without the additional
regularity assumption on 2. It is known [42] (see also [18], [24], [52]) that
the operators 7 satisfy uniform weak-type (1,1) estimates if Q € LlogL.
However weak type (1,1) inequalities for the jumps and V, variations and
even for the maximal function sup;.q |7} f| remain open for rough 2.

We conclude by formulating a theorem for Hilbert transforms along the

plane curves {(s, s*)}. Define H = {H,;} by
ds
(25) Hif(x1,29) = fz1 —s,29 — s%) —.
ly|>t o

It is well known that the maximal function sup, |H f(z)| defines a bounded
operator on LP(R%), see [50], [21].

Theorem 1.7. For 1 < p < co we have

AWM, < Coll Fll oz

moreover Vg o H is bounded on LP, 1 < p < oo.

In the next section we discuss an argument by Bourgain which shows how
to obtain strong g-variational bounds from estimates on the corresponding
A-jump function. In §3 we discuss Christ’s construction of dyadic cubes in
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the setting of a space of homogeneous type and use this in the proofs of
Theorems 1.1 and 1.2, given in §4 and §5 respectively. In §6 we discuss
how harmonic analysis techniques can be used in the study of the short 2-
variation operator. Then in §7 we give the proofs of the results for averages
and singular integrals associated to a parabola and in §8 we discuss spherical
means.

2. FROM A-JUMPS TO ¢-VARIATIONS

We present here a slight generalization of Bourgain’s argument in [5] reduc-
ing variational inequalities to jump inequalities. Let (X, du) be a measure
space and consider a family of linear operators 7 = {T;} where ¢ is taken
from a finite collection F of positive numbers and 73 maps LP(X) functions
to measurable functions.

Recall the definition of A-jumps Nx(7 f)(z) and g-variation V(7 f)(z) and
define for an integer m

1/q
V' (T f)(x) = sup T3, f(x) — Ty, f ()]
! oM <[Ty, f(2)—Th, (o) <2+ (Z o )

so that now the supremum in the definition of V4 (7 f)(z) is restricted to
those t; where 2™ < |Ty, f(z) —Ty,, , f(2)| < 2™ (we define VT f)(x) =0
if |Tyf (x) — Ty f(z)| ¢ [2™, 2] for any choice of ¢ and t').

In what follows we shall use the obvious inequalities
(26) V(T f)(@)]” < 2™ Nom (T f) ()
for s > 0 and

TN < (Y vraner)’;

meZ
moreover V(7 f)(x) increases when s decreases.

Lemma 2.1. Suppose that pg < p < p1 and that for pg < p < py the
inequality

sup [|A[NA(T /)] *|lp < C|1 £l
A>0
holds for all f in (a dense subset of) LP. Then we have for p < q

IVa(THllp < Co, ) Fllps

for f € LP, po < p < p1. In particular, if p is restricted to a compact
subinterval J = [pr,pr] of (po,p1) we have the estimate C(p,q) < Cj(q —

p)~t forpeJ, q>p.
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Proof. 1t suffices to prove a restricted strong type estimate, i.e.,
IVe(Txa)llp < Clp, q)| AP

for characteristic functions of measurable sets A, with finite measure (see
[51], ch. V.3).

We estimate

TPl < | (X wirerne) |+ (3w )
0

m< m>0
=IT+1I

Note that it suffices to obtain the bound for ¢ > p and ¢ close to p since the
expressions in ¢ increase if g decreases.

7

In what follows we abbreviate Nom (7 x4)(z) = Np, ().

FEstimation of I. Let r = pp/q. We may assume that g > p is so small that
for p € J we have r > po + (pr. — po)/2 > po. Now by (26) we have

1< (/ (> 2qum(x)>p/qu)1/p.

m<0

We distinguish the cases p > ¢ and p < q.

If p > q we use Minkowski’s inequality (for the exponent p/q = r/p) to
dominate I by

(f (5 ooy )
m<0

S(mZS:OQm(qp)(/Nm(x)p/qupp/qdm)q/p>1/q

1/q
=( D 2o Nye2m ) T < Cla - ol sup{lINA/ 2" 17

m<0
<C'|q — p| | A['P.

Next we consider the case p < g and apply the triangle inequality (a+b)7 <
a” + b for y =p/q < 1. Now [ is dominated by

(f S 2mmtapiian) " = (3 2mwompgeony) ™
m<0 m<0

which is again estimated by Clq — p|~* Supm{||N,%1/p2m||:/p} and thus by
C'lg — pl M AP,

Estimation of II. We now assume that p < r := p; — (p1 — pr)/2 and set
s = pp/r. In particular s < p < gand py < p < r < p;. Again we distinguish
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two cases, p > s and p < s. If p > s we use Minkowski’s inequality and (26)
to bound I7 by

< (X wrner)”,
0

m>

([ (5wt i)
m>0
- ( Z 2mp</Nm(:U)p/5> S/pdas) 1/s

m2>0

_ ( T 2ms(1—r/p)</2mer(x)r/p) p/rdx>1/s’

m>0

Since r > p we can dominate this by a constant times |A|?/ (") = |A|'/P,

If p < s we use the triangle inequality (a + b)Y < a” 4+ b for v = p/s < 1
and dominate I by

(/ > 2N Sdfﬂ)l/p = (X2 / 2™ Ny de)” g
m>0 =

(5 o) < e

m>0

3. DYADIC CUBES IN SPACES OF HOMOGENEOUS TYPE

In the proofs of Theorems 1.1 and 1.2 we will compare the A-jump functions
to the A-jump function associated to a martingale sequence generated by
‘dyadic cubes’ adapted to the dilation group {¢’'}. More precisely for each
integer k € 7Z, we shall partition RY = UQ¥ such that for each a, the
diameter of Q¥ (measured with respect to a homogeneous quasi-norm p
which we fix once and for all) is roughly A* for a fixed constant A > 1
depending only on the dilation group {t’'}. Moreover, the family {QF}
behaves like a collection of dyadic cubes in that if ¢ < k, either Qg cQ*
or Q% NQk = 0. Also for each Qf; and ¢ < k, there is a unique « such that
Qf} C QF. The martingale sequence is of the form Ej f = E(f|F:) where Fy

is the o-algebra generated by the ‘cubes’ {Q*}. That is,
1
Q& Jox

where Q¥ is the set in the partition RY = UQ* containing z.

(27) Eyf(z) f
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The existence of the generalized dyadic cubes was shown by Christ [16]
who constructed them in the general setting of a space of homogeneous
type X. Here X is a space with a quasi-metric d; i.e., d satisfies all the
properties of a metric except the triangle inequality is relaxed to d(z,y) <
Cold(z, z) +d(z,y)] for some Cy > 1 but we still require the associated balls
B(xz,r) defined by d to be open sets. Furthermore X is equipped with a
positive finite Borel measure p possessing the doubling condition

p(B(x,2r)) < Crp(B(, 7))

for all x € X,r > 0. It is well known that a large part of the theory
of singular integrals and maximal functions can be carried out in such a
setting (X, d, u); see e.g., [49]. In particular, the maximal operator

1
MJ(x) = supTrpr =Sy /B(m

is bounded on all LP(X, 1), 1 < p < oo and satisfies weak type (1,1) bounds.
In this setting we quote the following result of Christ.

|f ()| dp(y)

Lemma 3.1. ([16]). There exists a collection of open sets {QF 1 k € Z,a €
I} and constants A > 1,a9,m > 0 and Co,C3 < 0o such that

(i) u(X\UaQY) =0, for all k € Z;

(ii) if £ <k, then either Qg c QF or Q% NQk = i;

(i1i) for each (¢,3) and £ < k, there exists a unique o such that Qg C QF;
(iv) each QX contains some ball B(2¥,agA¥) and diameter(QF) < Cy A¥;

(0) pl{x € Qb : d(z, X\ Q5) < tAF}) < Cutu(QY), Vk.a, Vt > 0.

Remarks.

(i) We will use Lemma 3.1 when X = RY y is Lebesgue measure and
the quasi-metric is induced by a quasi-norm p which is homogeneous with
respect to the group of dilations {t’}, p(t7z) = tp(z). In this case since
each cube QF contains and is contained in a ball of radius about A¥, and
since the quasi-metric is translation-invariant, we see that the measure of
QF is roughly AU P)¥ for each a.

(ii) Property (v) in Lemma 3.1 says that the (characteristic functions of)
dyadic cubes possess some smoothness, as not too much mass accumulates
near the boundary. This will be essential for us in our analysis.
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(iii) David ([20]) had previously constructed dyadic cubes with all the prop-
erties (i)-(v) in the more restrictive setting of an Ahlfors regular measure-
metric space where one can take A = 2 in Lemma 3.1. For our purposes we
need the more general construction.

As an illustration of how we will use property (v) in Lemma 3.1 we prove
a basic L? estimate with respect to the group of dilations {t’’} in R? (and
associated homogeneous quasi-norm p). We emphasize that very similar
arguments are in [26] and also in [23]. Lemma 3.1 gives us a family {Q*} of
dyadic cubes which have diameter < CoA*. For each integer k, let £ = £(k)
be the integer such that 2¢ < AF < 261 Let ¢ be a Schwartz function with
J ¢ =1, and set ¢y(z) = 27"PVp(27 ) so that [[¢elly = [|¢]1-

Lemma 3.2. Set Dy f = Exf — Ep_1f where {Exf} is the martingale se-
quence defined in (27). Then

(28) H¢£(k‘+m) * Dy, [ — Eker(Dmf)HQ < CQ?JIkIHDmﬂb
for some § > 0.

Proof. Uniform L? bounds without the extra decay in k clearly hold so we
may assume |k| > 1. We consider two cases; k positive and k negative.

When k£ > 0 we have Ex i, (Epf) = Egipnf from properties (i)-(iii) in
Lemma 3.1, and hence Ei,,(D,,f) = 0. In particular for all & we have
me Dmf<y)dy = 07 and so

Gu(rm) * D f(x) = /Qm [De(krm) (T — Y) — Porm) (T — 20) D (y) dy.

By the mean value theorem we estimate
|Pe(ktm) (T = Y) = Do) (T — 24")]
9—(L(k+m))trP

[1+ 27 kEm) p(z — y)|N

for any N. Here we have used a basic relationship between the Euclidean
norm and p;

(29) < Cn[p(2CHEmIP (i)

(30) p() < [2l%, p(z) > 1, and p(z) < |2, p(z) <1
for some «, § > 0. Therefore, as in the Euclidean case,

—(6(k-+m))rP
|De(km) * D f ()] < CNA_M/ 2
Ra [1 4 27 Ck+m) p(z — y)]

< C 27" M(Dp f) (),

Dy f()ldy
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and so

H¢£(k+m)*Dmf - Ek+m(Dmf)H2 = H¢€(k+m) * ]D)meQ
< C2 K MDf)l2 < C27 D ]2
establishing (28) in this case.

When k <0, Exyn(Enf) = Enf and so Egypy (D f) = Dy f. Thus

Po(ktm) *Dim f (@) = Egpomn (Do ) () = /Rd[Dmf(x—y)—Dmf(x)]¢z(k+m)(y)dy

— / D f(z = y) = Do f ()] e (erm) () dy

ply) <2tCetm)

£ [ Bt o) - D@l )iy

n>1 Ekmn

= Io(z) + Y In(x)

n>1
where Ej pn = {y: ol(k+m+n—1) < p(y) < 2Z(/€+m+n)}‘

We first treat Ip,(x) for n > €|k| where we use the bound
|Gty (y)| < O 27 CEFmDIE (= (Ehrm)) ()] =N
< CNAanzf(f(k:+m))trP

on Ej ., p, for any N > 0, and Minkowski’s inequality to estimate

HInH2 < CNQNI"HID)meQ/ 27(€(k+m))trde < CN27(N/7trP)nHDme2_

Ek,m,n

Taking N’ > trP allows us to sum in n so that

5 | X &, <2 ™ipnrls.

n>elk|

For each 0 < n < €|k| and QM !, we consider those z € Q™! such that
dist(z, RT\ Qm~1) > A™+7Hk and observe that for p(y) < 2¢k+m+n) hoth
x and z — y remain in Q! and so Dy, f(z — y) and D,,, f(z) agree. Hence

||In\|§ :Z / ’In(x)|2dﬂj
“ {xeQm ™ idist(z,RI\QT 1)< Am+n+k}

< Z Sup |I | |{x € leil : dist(ijd \ anfl) < Am+n+k}‘

a T€EQaT

<C2” ""‘“'Z\Qm osup |Ln(2)

ey



STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 17

for some 7 > 0 by property (v) in Lemma 3.1. However for x € Q7 1,

[In(z)] < C sup Dy, f ()]
zeB(zT"1,crAm)
for some C’. Since the measure of any ball of radius A™ is about At P)m
we see that the cardinality of

Npo={B: Q5 NBET™,C'A™) # 0}

is uniformly bounded as well as the number, for each fixed 3, of a such that
B € Ny,o. Hence

i< czMyY S [ D f)Pds

a BENn." 98
< C/2n|k|2/ |]D)mf(1:)\2da:
5 9

= C"27"M||Dy,, f|3
which implies
> If, =C2 M

0<n<e|k|

for some § > 0. Together with (31), this completes the proof of the lemma.
O

4. PROOF OF THEOREM 1.1

We are trying to establish uniform LP(RY) bounds for A-jump operator
AN (Uf)]'/2 for the discretely indexed family Af = {f %ok }pez of convolu-
tion operators on R%; here oy is the t*'-dilate of a compactly supported finite
Borel measure o satisfying either regularity condition (10) or condition (11).
We may assume [ do # 0 since A2N, (f)(z) is always pointwise dominated
by the square function Y, |f * ook (z)[?, and if 5(0) = 0, known bounds
from [21] apply. Therefore we may normalize o so that [do = 1. Let ¢ be
a smooth function with compact support such that [ ¢ =1 and decompose
o= ¢*x0+ (dp — @) * o where oy is the Dirac mass at 0. This in turn de-
composes 2 into low and high frequency families £ = {£;} and H = {H}
where Lif(z) = f*(¢p*0)qr(x) and Hy f(x) = f*[(d0 — @) * olox (z). By (3)
it suffices to bound A[Ny(Lf)]*/? and A\[Nx(Hf)]'/? separately. Since the
compactly supported measure v := (dy — ¢) * o has vanishing mean value
and satisfies condition (10), we recall from [21] that the square function

9(N@) = 3 Hef(@)?)

kEZ
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satisfies |g(f)llp < Cpllfllp, for 1 < p < oo. Furthermore, if o satisfies
the stronger hypothesis (11), weak-type (1,1) bounds also hold. Since the
pointwise estimate

N NA(HF) () < 2[g(f) ()]
holds, matters are reduced to bounding A[Ny(Lf)]"/2.

We now introduce the dyadic martingale sequence E = {E;} defined in (27)
with respect to the dilation group {t”'}. As before we set £ = £(k) to be the
integer so that 2¢ < A% < 241 and as in (3),

NA(LS)(w) < Nyjo(Df)(w) + Nyjo(Ef)(z)

where D = {Dy} is the family

Dy f(x) = (¢ % 0)gewy * f(z) — Ep f ().

For 1 < p < oo we have the inequalities

(32) IMWNAED]], < Coll Fllps

moreover we have weak-type (1,1) bounds. To obtain this result from (4)
we fix f € LP and observe that |Epf| < CA—RTP)/Pp| |l (cf. the re-
mark following the statement of Lemma 3.1. Fix A and choose M so that
C AR ®P)/p| £, < \/3 for k> M. Let {Q)} be the ‘grid’ of (generalized)

dyadic cubes defined in (27) any v consider the martingale {F ]]\\,4 IR with

F]J\\f’a = xXguEnm-nf. We apply (4) and sum the estimates

Mo\ ||P p
A NAE M2, 0 < /Q @

in v to obtain (32); similarly one gets weak-type (1,1) bounds from (5).
Next, observe A2Ny(Df)(x) < 2[Sf(x)]? where

Sf(x) = (Y |(@* o)y * f(z) — Brf(x)?) /2,

keZ

and thus the proof of Theorem 1.1 reduces to bounding the square function
S. In fact, we will show that S is bounded on all LP(R%),1 < p < oo
and weak-type (1,1); the compactly supported measure o no longer plays
any role since ¥ := ¢ * 0 is a Schwartz function whenever ¢ is a Schwartz
function.

First we observe that L? bounds for S follow quickly from Lemma 3.2. In
fact, setting ¢y = (¢p*0)ye and decomposing f = =" D, f for f € L'nL?,
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we have by (28)

15112 = (3 ey * £ — Exf13)"*

kEZ

< (Z(Z ey * D f — Ek(Dmf)||2)2>l/2

kEZ meZ

(X (3 2 D))

k€EZ meZ

/
< (X IpusB) " < Clifle

meZ

Next we establish weak-type (1,1) bounds for S, that is,

(33) o eR: 87() > a} < |/l

From this, interpolation and duality give us all the P bounds for 1 < p < oo.
To establish (33) we perform the Calderén-Zygmund decomposition of f at
height « using the dyadic cubes introduced in section 3. We therefore can
write f = g + b where ||g]lcc < a,]lg]l1 < ||f]l1 and b is supported on a

disjoint collection of dyadic cubes {Q]ﬁ}(] 3)ea Whose union has measure at
most Ca~! ||f||1. More precisely,

> bisx)

(7,8)eA

where bj3 = f — E;f on its support Q%. Thus > ||bjsll1 < 2[|f|l1 and
Exbj g = 0 whenever k > j.

As usual the L? bounds for S allow us to handle the good function g:
a?[{z: Sg(z) > o} < CISql3 < Cligl3 < Cal f]s-

For b, we need only make estimates away from the union of fixed dilates,
s of Q] and then

a{z ¢ UQ) : Sb(x) > a}|

> Z/ Ve * by p(x) — Exbj p(z)|dw

Goren & VRN

- Z Z/ Wﬂk)*bgg( x)|dx.

(J,B)eA K

IN

The last equality holds since Eb; g is supported in Q/JB when k£ < j, and as
we have already noted, Eib; g5 vanishes everywhere when k > j. For k < j
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we estimate

/ er (k) * bjg(x)|dz
RIG

(34) <c / b AR
Y
N ‘ ]ﬁ ‘ {z:p(z—=2 )>C’AJ} [A k ( y)]N
< CNATNUTR b g1
For k > j, we write
iy #bio() = [Ty (2 = ) = vy o~ )bia0) dy
which allows us to estimate, using (29),
ey * bjp(x)|de
/ 0 *biale)
(35) Stk Af(trP)k
< OnAT¢=D) / b; / dzd

< OnAT I lbj g1

From (34) and (35), we obtain the desired bound

al(o ¢ Ui Sha) zall < € Y [ yp(@lde < O],

(4,8)eA

finishing the proof of the weak-type (1,1) bound for S and therefore the
proof of Theorem 1.1.

5. PROOF OF THEOREMS 1.2 AND 1.6

Proof of Theorem 1.2. Here we are looking at the family 7 = {T}} of
truncated singular integral operators T} f(x) = > ;5jvas * f(z) where v
is a compactly supported finite Borel measure with cancellation 7(0) = 0,
and vy; is the 2/7- dilate of v. Our goal is to bound the A-jump operator
f — Nx(T f) under the regularity conditions (10) or (11) for v.

To establish LP,;1 < p < oo, bounds under the weak regularity condition
(10), we begin in the same way as in [21] where the corresponding maximal
truncation operator, T f(x) = supy, |1k f(x)| was treated. Let ¢ be a smooth
function with compact support such that [ ¢ = 1. Writing T'f = > j Vai * I,
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we decompose

Tif = ¢or % (T =D vy ) + (80 — don) # Y _ vy # f

i<k >k
= ¢2k *Tf— |:¢*Zl/2£:|2k *f—i—Z((So — ¢2k) * Vok+s *f
<0 5>0

which divides 7 into three families
TY = {pgr x Tf},
T ={[¢% > vorlor * f},

£<0

T3 = {(60 — por) * Y _ varrs x f}

s>0

and as in (3) it suffices to bound A[Ny(7?f)]/2, for each i = 1,2,3 sepa-
rately.

For T3 we estimate

ANAT2H)(@)] 7 < 3 Guf(2)

s>0

where G, f(z) = (X 4ez [[(60—0)*vos|grx f () ?) 2 Since for each s > 0, the
measure (09— ¢)x*vas is supported in a fixed compact set with vanishing mean
value and also satisfying (10) uniformly in s, we see that G is bounded on
all LP|1 < p < oo, uniformly in s. Furthermore, using Plancherel’s theorem
and the estimate

3011 - B2 g)[pEIF )P < c270

kEZ

for some § > 0 which follows from (10), we see that ||Gsf|la < C27% f]|2.
Interpolation and duality imply that the uniform LP bounds for G extend
to |Gsfllpy < Cp27%%| f|lp, 1 < p < oo, for some , > 0, giving us the desired
LP bounds for A\[Ny(T3f)]'/2.

The argument for 72 is similar but easier since the compactly support mea-
sure ¢ Zego Vye has vanishing mean value with rapidly decaying Fourier
transform. Hence the pointwise estimate

(36) ANAT2N @2 < (3 [0+ S varlor + f(2) )2

keZ <0

establishes the LP bounds for A\[Ny(72f)]*/2. Finally we can apply Theorem
1.1 to the family given by i f = ¢y * f to obtain

IANAT T2l < CollTfllp < CLlLf L
for 1 < p < 0.
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Although it is true that under the stronger regularity condition for v (that
is, dv(x) = ¥(x)dr where ¥ is an L' function satisfying the L' smoothness
condition (11)) one can establish the weak-type (1,1) bounds

al{z: Gsf(z) > aj] <27/ f]h

for some € > 0 and similarly for the square function appearing in (36),
we are still left with the family {¢or * T} and T is not bounded on L! in
general. Instead we take the direct approach used in establishing (33) and
perform the Calderén-Zygmund decomposition of f at height «, producing
a disjoint family of dyadic cubes {Q} with total measure > |Q| < C/a]| f]1
and allowing us to write f = g + b with [|¢]|c < Ca, |lg]1 < C||f|l1 and

= ZQ bg where each bg is supported in () and has mean value zero
such that > [|bgll1 < C|/f|l1. Since we already know that the L? norm
of A[N\(Z7 ¢)]'/? is uniformly controlled by the L? norm of g, matters are
reduced in the usual way to estimating A\[Ny(7b)]!/?
@ is a fixed large dilate of ). Using the pointwise estimate

away from U@ where

AINATD)(@)]? < [Tib(x) — Thpab(z)] <Y [Won 5 b
keZ keZ

we see that

alfz ¢ UO : AINA(TB)(2)]Y2 > a}| < ZZ/ W % bo(a)|da
Q kK JrEQ

Since ¥ has compact support, Wyk * bg vanishes off @ when k < k(Q) (here
2k(Q) is roughly the diameter of Q described in part iv) of Lemma 3.1 and
we are taking a large but fixed dilate in the definition of @) Thus, using
the vanishing mean value of bg, the right side of the above inequality is
dominated by

> /\bQ / Uor (2 — y) — Uyu(z — yo)| dady
Q k>k(Q

where y¢g denotes the ‘center’ of @) as described in Lemma 3.1. This in turn,
using condition (11), is

<03 N 2R gl < ) £,
Q k>k(Q)

establishing the uniform weak-type (1,1) bound for f — A[N,(Zf)]'/? and
therefore finishing the proof of Theorem 1.2. O

Proof of Theorem 1.6. Define the measure v by

(v, ) = / Uy /)y F (4)dy
1<]y|<2
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It is well known (see e.g. [21]) that under the assumption Q € L"(S%™1) the
Fourier transform

2
(37) D(€) = / Q(6) / e 08 =1 drdg
Sd—1 1
decays; it satisfies

r—1
(O] < CllQ Lr(sa-1y min{[g], [§] 72T}
The bound for small £ follows by the assumed cancellation of 2. To see the
bound for || > 1 we split the #-integral in (37) and consider first the region
for (0,£/[£]) < a for small a; here we apply Holders inequality. For 6 in the
complementary region integrate by parts in r once to gain (|¢|a)"!, then
optimize the two bounds with the choice a = |¢|77/(?r=1),

Now the LP inequalities for Ngyad(’ff) follow from Theorem 1.2. The full
claim follows by combining Lemma 1.3 and a result on the short-variation
operator. The relevant LP bound for the short-variation (Ss-)bound has
been proved for the Hilbert transform in [9], and the method of rotation
argument used for V(7)) in [10] applies also to the short variation operator.
Thus one gets the LP bounds for S3(7f) under the weaker assumption € €
Llog L(S%1) (and in fact Q € L'(S%1) for odd Q). O

6. PRELUDE TO SHORT VARIATIONS

For a general family of linear operators A = {A;} indexed say by positive
t > 0, we have divided the A\-jumps N)(Af) into short and long jumps by
using inequality (16). We have already treated the dyadic A-jumps N;\iyad
for a large class of convolution operators on R¢ in Theorems 1.1 and 1.2 and
so we turn our attention to the short p-variation operators S, 0.4 defined in
(15), (14) (we shall mostly assume p = 2).

As mentioned in the introduction known techniques from harmonic anal-
ysis can be used to treat S. In the early 1970’s Stein introduced square
function techniques to understand singular maximal functions such as those
arising from spherical means (17) or parabolic averages (21); these tech-
niques amount to essentially use a version of a Sobolev-imbedding theorem
in the ¢ variable (see also [11], [12], [19], [39]). In fact viewing the value
of the maximal function M f(z) = sup,s(|Acf(z)| as an L norm on RT,
| Af ()] oo (m+) one can use the easy bound

(38) lall oo ery < llall gl + alto),

which holds by the fundamental theorem of calculus for any a. Using this
for p = 2 one brings L? methods into play in a decisive way to study M f.
However (38) remains valid if we replace the L> norm of a with the larger
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v, norm (see (1)). This is most easily seen via the Besov space embedding
Bﬁl){lp C v, established by Bergh and Peetre [2],

(39) lall, < C) 277|165 * all, < Cllall*lld'I/*
JEZ

where ¢;(x) = 2/¢(27z) and ¢ is a Schwartz function such that supp(¢) C
{1/2<[¢f <2} and 3,y #(279€) =1 for £ # 0. The middle expression in

BYr

(39) defines a norm, modulo constants, for o -

The second estimate in (39) is a standard interpolation inequality while the
first follows from the estimate [|¢; * all,, < C27/7||¢; * al|, which can be
proved by using the Plancherel-Polya inequality.

Although our main interest is to understand thoroughly the short 2-variation
operator in particular cases, we illustrate here how one can use (39) to extend
some results of Rubio de Francia [39] in the general context of convolution
operators A;f(x) = f*os(x) on R? where oy is the tF-dilate of a compactly
supported finite Borel measure o satisfying the weak regularity condition
(10). The proof of the following lemma is a straightforward adaptation of
the arguments in [39], using (39) at the appropriate places. We shall only
give the main points of the proof.

Lemma 6.1. Let A= {A;} where Ay f = f =0y is described above. Suppose
that o satisfies (10) for some b > 1/2, Then the a priori estimate

192 (ANl Lr(ray < Cpll fll o (ra
holds for min(2d/(d+2b—1),(2b+1)/2b) < p < max(2d/(d—2b+1),2b+1).

Remarks.

(i) It is understood that the lower bound p; = min(2d/(d+2b—1), (2b+1)/2b)
is equal to 1 and the upper bound py = max(2d/(d —2b+1),2b+1) is equal
to oo when b > (d + 1)/2. If o is absolutely continuous with L' density the
characteristic function of the unit ball, then b = (d + 1)/2.

(ii) As a consequence of (16) and Theorem 1.1 we obtain uniform LP bounds
for A[N\(Af)]'/? in the same range of p. Therefore Lemma 2.1 implies that
these LP bounds also hold for V,(Af) whenever ¢ > 2 since the open range
of p always contains p = 2. Interpolation with the trivial L°° estimate for
the corresponding maximal operator shows that for p > po,

Va(ADlp < Cogllfllp
holds when g > 2p/ps.
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(iii) Applying Lemma 6.1 to the family of spherical means (17) gives strong
g-variational estimates for ¢ > 2 only in the range d/(d — 1) < p < d and
then only for d > 3. The proof of Theorem 1.4 also uses square function
estimates but these estimates lie much deeper than those employed to prove
Lemma 6.1. Also the result stated in Theorem 1.5 is not covered by Lemma
6.1 since in this case, b = 1/2 and in fact we obtain LP bounds for the full
range 1 < p < co. The proof of Theorem 1.5 exploits the added feature that
the parabolic dilations flow along (not transversal to) the support of o.

We now sketch the proof of Lemma 6.1, using the notation in [39]. We
begin by decomposing o = Zkzoa x 1, where 1y is a Schwartz function

such that wo(f) -1 if [¢] < 1 and ¢o(€) = 0 if [¢] > 2 and 9y(€) =
wo( ke) — 1[10( ~D¢). Therefore

So(Af)(x) < Sa(AFf)

k>0
where AF = {AF} and AFf = f x (0 % ¢y);. Using (39) we see that
(40)
27 +1

k 2
[Sa(A) @) < 02(/

< CGpf(z)Grf()
where Gy f(z fo |AF f( f )|2dt/t is a square function associated to the

multiplier m; = wka and Gk is defined in the same way but with respect
to the multiplier my = (P*¢, Vmy(€)). Since |[mgllee < C27% |l 0o
C2F(1=%) and both my, my, are supported where |£] ~ 2%, we have by Plan—
cherel’s theorem

(41) 1S2 (A )13 < CIGRfl2 IGrfll2 < C2 DR £)13
which establishes the L? bound for So(Af) since b > 1/2.

dt AR dt
AEF@PD) ([ 1R @E D)

Furthermore it was shown in [39] that for @ > —b+d/2 we have the estimates
(42)  |Giflli < C2* fllr, and |GifllBro < C2%|f]loo

and

43)  [IGufll < C2X | fllgr, and  [|Grfllpao < O2"FY| fllc.

Here H' and BMO are defined with respect to the dilation group {t}.
Defining

Nif(x) = 2"2G f (@) + 272G f(2)
we can then estimate

INFfln < C20/2Fs70k) £y o d
IN* £l Baso < C20/2+e)k) £ 2
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Since (40) implies
Sy (A" ) (@) < ClGrf(2) Grf ()] < CNif(x),

we can interpolate with the L? estimates in (41) to show that Sa(Af) is
bounded on L? for |1/p —1/2| < b/d — 1/(2d) which establishes the lemma
except for the improved range when b < (d —1)/2.

To achieve this improvement we use vector-valued singular integral theory
for the convolution operators {1}, f = f* K} }+>0 where we view the kernel
Ki(z) = {Kk(x) = (0 * ¥)¢(x) }+>0 as having values in the Banach space

B ={a(t) : [lal|p := (Z H@H%/Q[Qj,gﬁl])l/z < oo}
J

used in the definition of the short 2-variation operator S(Af). Then we
have the LP estimates

(44) 152 (A" f)llp < Cpl My + Nl 1l

for 1 < p < oo where M, = 2~ (=1/2k ig the already established L? bound
(41) and Ny is any upper bound for

(45) sup / IKu(e —y) — Ki(@)|p d
yeR Jp(x)>Cop(y)

where p is homogeneous with respect to {t£'} and Cy > 1 is some fixed large
constant; see e.g. [22]. To estimate this integral we simply use the fact that
the 2-variation norm is dominated by the 1-variation norm which gives us
the trivial estimate

lalls < /0 ! (£)]dt

and therefore

/ 1Kl — ) — Ki(o)|| s da
p(x)>Cop(y)

o ~ ~ dt
<[] Risl = y) = Rigl)|de
0 Jp(x)=Cop(y)

where K k¢ is the convolution kernel for T, Lt In [39] it was shown that
0 ~ _ dt )
(46) | K i(x —y) —Km(x)\dac? < C|lo] k2
0 Jp(z)2Cop(y)

uniformly in y and so Ny = k2¥ is an upper bound for the integral in (45)
which gives us ||S2(A¥f)||, < Cpk2*| f||, for all 1 < p < co. Interpolating
these estimates with the L? estimates in (41) shows that So(Af) is bounded
on LP in the range (2b+ 1)/2b < p < 2b+ 1, completing the main points in

the proof of Lemma 6.1. (|
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7. PROOF OF THEOREMS 1.5 AND 1.7

Proof of Theorem 1.5. Here we are considering the family of averaging oper-
ators A = {A4;} on R? given by A;f = f * 0; where the measure o is defined
on a test function ¢ by (o, ¢) = fol ¢(s,$%)ds and oy is the nonisotropic dilate
of o given in (9) with ¥z = (tx1,t%r3) (i.e. P is the diagonal matrix with
eigenvalues 1 and a). In what follows we assume that a > 0, a # 1, since in
the case a = 1 we can apply results for the standard one-dimensional aver-
ages. We shall establish LP(R?),1 < p < oo, bounds for the corresponding
short 2-variation operator,

(47) 1S2(AP)lp < Copll Fllps

from which uniform LP,1 < p < oo, bounds for A[Ny(Af)]"/? follow from
Theorem 1.1 and (16). Then Lemma 2.1 implies the desired result for the
strong g-variations V4 (Af) in Theorem 1.5.

The rough cutoff in the definition of o causes some difficulties. If, instead,
we consider the family of convolution operators defined by f * u; where the
measure g on R? is defined by

<mﬁ=/fw¢W@@

and 1 € C§°((1/2,4)), then the methods in the proof of Lemma 6.1 apply in
a straightforward fashion even though the optimal decay rate |fi(¢)| < |¢]~1/2
prevents us from applying the lemma directly. Since the support of u lies
along an orbit of {t'’} we can improve the estimate [t(d/dt) [ (€)] < |77 €|Y/?
used in the proof of Lemma 6.1 to [t(d/dt)f:(€)| < |77 €|71/? (this can be
verified by a direct computation, see (49) below; however without the smooth
cutoff 1, one obtains only a uniform estimate with no decay in [t ¢|). This
allows us to improve (41) to ||So(A* f)||2 < C27F/2| f||2 and (46) to

& ~ ~ dt
@ [ Rl — ) — Ria(@lde < Clull k.
0 Jp(x)=Cop(y)
Interpolation gives us LP estimates for all 1 < p < oo.

To overcome the difficulty of the rough cutoff at s = 0 and s = 1 in the
definition of o we introduce a partition of unity by writing o = 0% 4+ 0! =

Ym0 ol + Ym0 ol with
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where y, X are smooth and 7 is some smooth function supported in (1/2,2).
As in the proof of Lemma 6.1 we introduce a Littlewood-Paley decomposi-
tion and form families A®™! A*"0 where Af’m’lf = f* (Yp xo})¢ and
A,’f’n’of = f* (1 * 0V)s, and we need to be able to sum the estimates for
the corresponding short 2-variation operators Sp o A¥™1 and Sy 0 A*™0 in
(k,m) and (k,n), respectively. Since

4 ’L(flts-‘r{gt s ) — Z({lts-f—fgt s )
(49) t e 5 55¢

we obtain by an integration by parts

LIl = gy [T (21— o)

— [ et L s (1 - s))ds

and from van der Corput’s lemma we get
h(t7O)] < Cmin{27™, 7€ /%)
S o (7€) < Cmin{1, 276 €[ /2).
Therefore, arguing as in (40) and (41), we get
1S2 (A5 f)]l2 < Cmin{27/2, 2227k | £l
(50) < C'27H 1027 £l

Similarly for 69 we have

d =, p+ ; agay d .
GO )] = [ e L sy n((2's)ds

and we get the estimate
B )| + | % [ €)]| < Cla) minf2, 20~} e[ 112).
Thus also
152 (A5 )|z < C(a) min{27", 23722 k/2Y | £
(51) < O'(a)2 FHe Y £
where C’(a) < oo for a # 1.

Using (49), one can argue as in (48) to estimate

/ / e y) — KL (@)lde Y < Ollowl 27k < Ok
)>Cop(y T t

~ dt
/ / RO, (x—y) — RO, (@)ldz 2 < Cllonl| 2"k < CF
>Cop n Y t
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1
where Kk,m,t

estimates

= t%[(gbk * an)t}, IN(,g’nyt = t%[(q/)k * ag)t]. This gives us LP

1S2 (A= F)lp + [S2(APC )l < Cokl| £l
for all 1 < p < oo and interpolation with (50), (51) implies for 1 < p < o0,
[S2 (ARl < Cp 270 E2 ™ £l
[S2(AROf)lp < Gy 27k 270" £,

for some ¢, 61’, > 0. Summing in k and m,n > 0 establishes (47), completing
the proof of Theorem 1.5. O

Proof of Theorem 1.7. Again we may assume a # 1 since for a = 1 one
can apply the one dimensional result for the Hilbert transform. Again, by
Theorem 1.2 we only have to show that

1820y = [ (S vaanl) | <l
JEZ

Now let s € [1,2] and define 1 s be the measure given by

du
<V0,S7f> :/ f(u/ua)i'
s<|ul|<2

U

Define the dilate v; s by (vjs, f) = (vos, f(27F+)). Finally for k € Z let 11 1. f
be the rescaled Littlewood-Paley operator defined by
I f(€) = (127" 27"¢) £(6)

where Y, ., ¢(s27%) =1 for all s > 0. We observe that V5 (7 f)() is just
the V3 variation of the family {v; s * f}sc1,29) and it suffices to establish for
1 < p < oo the estimates

(3 b e mar) ™, < G2,
JEL

d 1/2
(1w s s ) | < ol
jez. *° P

uniformly in s € [1,2]. The proof of these estimates is very much analogous
to the above estimates for the averaging operators, except we get decay also
as k — —oo in view of the cancellation of the measures v ,. We omit the
details. ([l

Remark. Similar argument also applies for curves t — ~(¢) which are homo-
geneous with respect to nonisotropic dilations, with a nonsymmetric P, e.g

with
(11 p_ [t tlogt
S A
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We choose u = (1,1)! and (¢t) = tPu and define the maximal and sin-
gular integrals analogously to (21), (25). One still obtains the conclusions
of Theorem 1.5 and Theorem 1.7, the proofs above apply with only small
changes.

8. PROOF OF THEOREM 1.4

As remarked earlier, Lemma 6.1 does not cover the full LP range for strong
g-variations with respect to the family of spherical means A;f(z) = f*o(x)
defined in (17). To obtain the first part of Theorem 1.4 it suffices by Theorem
1.1, (16) and Lemma 2.1 to bound the short g-variation operator S,(Af)
and prove

(52) 1Sa(ANNe < Coall fllp-

ford/(d—1) < p < 2d, with ¢ =2 if d > 3 and ¢ > 2 if d = 2. Interpolation
with the trivial L estimate for the corresponding maximal operator shows
that for p > 2d, LP estimates hold for strong g-variations whenever ¢ >
p/d. To bound Sy(Af) we employ again the Littlewood-Paley decomposition
AF = [AF} as it appears in the proof of Lemma 6.1, thus for & > 0

AFF(€) = 3(t€)w (2 1e) F(©)

with the usual modification for k = 0. We estimate Sy(Af) < > 52, Sq(AFf)
as before. It suffices to consider the case k > 0 as the case k = 0 is certainly
covered by Lemma 6.1. We now formulate a lemma which is used together
with the 1-dimensional embedding (39) in the ¢ variable (for p = 2) to
to estimate So(A¥f). The lemma is based on results for square-functions
associated to Bochner-Riesz operators in [11], [15], [40], see also [30], [34].

Lemma 8.1. Suppose that d > 2 and p > 2(d+1)/(d—1), ord =2, p > 4.
Then

H</12|A§f|2dt)1/2HLp(Rd)+2—kH(/12|(d/dt)A{ff|2dt)1/2’LP(Rd)
< szk(d[l/%1/p]*1/2+6*(d*1)/2) [F

Define the operators W,ft by

WEf = ar(lehe= <L 7 o).

where aj, is a standard symbol of order 0 supported in (2k_2, 2k+2). Note
that A¥ is a linear combination of operators of the form 2-%(d=1)/ 2W,ft with
suitable choices of the symbols (and (d/dt)Af is a linear combination of
operators of the form 2*k(d*3)/2W§t.
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Let I be a compact interval. We then have the inequality

) ||([iwtswpa) | s corannamzay,

for4 < p<ooand d=2and for 2(d+1)/(d—1) < p < oo, d > 3. This is
well known and closely related to the estimate

o [|( [ 17 et a-thAPas) | < cugraaimiayg,

for ¢ € C§° supported in, say (—1/4,1/4). The latter inequality has been
shown by Carbery [11] when d = 2, p = 4 and by Christ [15] and one of
the authors [40] if p > 2(d + 1)/(d — 1). We note that the assumption
of ¢ € C§°(—1/4,1/4) could be relaxed by assuming that ( € S(R) by
decomposing ¢ into dyadic pieces. For the dependence on { we have

C:(Q) < cel[¢lls

where the norm can be chosen to be ||C||« := sup, Zj]\/io ICO(8)|(1 4 [s)M
for suitably large M = M(d).

To relate the inequalities (53) and (54) we follow in spirit Kaneko-Sunouchi
[30] (see also [34] for related arguments). We choose x € S(R) so that the

Fourier transform of y, henceforth denoted by xq is compactly supported in
[—1,1] and x(s) > 0 on [1,2]. Then

([ wtsera)” < ([ xowgswpa)”

— C</_oo ‘/X(t)Wg%tf(w)e_mthdT)1/2

[xOWE @t = F (|- )F

and

where

mz(s) = xo(T F s)ax(s).

By scaling, the desired estimate follows from

~ 1/2
[(f 17 ot =21 Dau2]- DA Par) ™|
ezt P
< C 2Md/2=1/p)=1/2%) | £

where n = a(2"-) satisfies uniform estimates in k. After a change of variable
in 7 we have reduced matters to the inequality
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(55)
I()] T D01 DAPde) | < cpaarimiay g,

The estimates needed to prove (55) are exactly the same as needed for (54).
However one can in fact deduce (55) from (54). Let n € C{°(R) so that
n(c) =1 on (1/2,4) and 7 is supported on (1/4,5). Let

u(s,0) = n(o)xo(os)

so that u is smooth and compactly supported in both variables. Let A —
wy(s) be the partial Fourier transform of u with respect to o and write

u(s,0) = (2m) 7! /w,\(s)e““’d}\;

then w is compactly supported in the s variable and all derivatives decay
fast with respect to A; i.e. [|wy|l+ < Cn(1+ [A])™V. Now

() Fn(0)x0 (250 — |- )] = F u(@*(1 — ), 0)f]
= (27T)1/6i)\0.7'_1[w)\(2k(1 B %))/\]d)\

Thus by (54)
([, 17 hote =1-nAfas) ],

A 1/2

SN[ 17 teta - dapae) |

AN Ji<lol<2 P
<c / s lsdA 2K@A/2=1D =140 £

and the integral in A converges. ([

To bound ||S2( A f)|l, we need the following global version of Lemma 8.1.
Lemma 8.2. Suppose thatd > 2 andp > 2(d+1)/(d—1), ord =2, p > 4.

Then for k >0
WA N R (AT S S R
< C’p7€2k( (1/2— l/p)*1/2+ef(d*1)/2)Hpr

To prove this we could use weighted norm inequalities as in [11], [15], or use
LP-Calderén-Zygmund theory as in [40]. We simply quote a general version
of the latter, namely a vector-valued version of a result from [41] (¢f. also
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[13]). Here one is given a family of Fourier multipliers mg, 1 < s < 2,
compactly supported in {¢ : 1/2 < |¢] < 2} and it is assumed that

1/2
([ 17 imatomieas) | < A,
for some p € (1,00), uniformly in j € Z. One also assumes that
[0gms(§)] < B, |a] <d +1,

for some possibly very large constant B. The conclusion is that
2 N 1/2
_ 2 1/p—1/2
[( [ 17 ma@APas) ™| < coa(ion+ ) 22 1),
J

We use this with B = O(2F(@+1) and with A being the constant in Lemma
8.1. Thus we only get an irrelevant power of k& when passing from Lemma
8.1 to Lemma 8.2. From (39) we obtain that if d > 3 then

12 (AR £)|lp < C27F @) 7|,

with a(p) > 0 when 2(d + 1)/(d — 1) < p < 2d which covers the range
d < p < 2d that does not fall under the scope of Lemma 6.1. Thus we may
sum in k to obtain the claimed result for Sp(Af).

In two dimensions the estimates for Sa(A* f) do not sum and we obtain from
Lemma 6.1 and Lemma 8.1 only that

1S2(A*f)llp < C2%Iflp, 2<p<4, d=2.

We also need to use a result from [33] on local smoothing which says that
for p > 2
_ 1/p
o) ([ 14k + 12 M apanagsran) < gy,
I LP(R?)
with some 0(p) > 0 (the precise value is irrelevant for our purpose). Since

p > 2 the following global version follows immediately from a straightforward
application of the Littlewood-Paley theory.

Lemma 8.3. Suppose that d =2, 2 <p < oo and e > 0. Then for k>0

() k)™
(] et )™

This lemma yields ||S,(A*f)|l, < C27*®)||f|,, 2 < p < oo and by inter-

polation with the LP-estimate for So(A* f) we also get

1S4 (A*f)]lp < C27R @D 7],

with b(p,q) > 0 when 2 < p <4, ¢ > 2. This implies the claimed result in
two dimensions. (|

< Cp 27 MW= 1|,

Lr(R4)

<G, 62k2—1<:(1/p+5(p)—6) [Fis

Lr(R4)
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Sharpness. We now turn to the second part of the statement in Theorem
1.4 and show that the a priori inequality

Va(AP)lp < Cpll fllp

for p > 2d implies that ¢ > p/d. This shows that Theorem 1.4 is essentially
sharp. We shall test V;(Af)(z) on the function fy given by

FA(€) = x(AHg))eller/ 2,

here x € C§° is nonnegative, supported in [1/2,3/2] and x = 1 on [3/4,5/4].
When deriving a lower bound for V;(Af)(z) we restrict « to a ball of radius
coA~ L, centered at the origin.

After a change of variable we may write

A 7 x
£50) = ()" [ X/ ey,

Clearly fy decays rapidly when |y| > 2 and by the method of stationary
phase we have |f(y)] < CA¥2 so that ||fall, = O(A\¥?) for all p. Now
recall that

RO = (sl FO. o= (=22
so that
1 o L 1y pilel?/ ey JaltlED) g
_ )\ 1 ,,,2/ Ja(AtT)
= ()" [t LS ol

where 9(s) = [pcga-1 eis(ﬁ’%da(ﬁ) is independent of z. Furthermore J(s) =
wy + O(s) where w, is the total surface measure of the unit sphere S !
and the derivatives of ¥ stay bounded if |s| < 10.

For R > 1,

2 T T _
Ja(R) = ,/ﬁ cos(R— — = 1)+ O(R 3/2).,

¢ Acf () = [T + 1T + IIT)(w,1)

Thus we have

where

I(x,t)

(2)‘)dei(ﬂza‘ﬂr)/X(T)Td_l(271')\7“15)_1/2_aei)‘(r2/2_rt)19()\|m|r)dr
™

[I(2,t) = (%)de‘“%%) / A 2t O V2N /200 g\ ) i

ITI(z,t) = O\ =3/2)  te[1/2,2).
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Notice that the phase for I1(z,t) does not have any critical points if ¢ > 0
and therefore I1(z,t) can be subsumed under the error term. The asymp-
totics of the integral for I(z,t) are obtained by the method of stationary
phase; the phase has a nondegenerate critical point at r = t.

We get for t ~ 1, |c|] < cpA7 1,
I(z,t) = éd)\dfaf1X(t>td7272a67i)\t2/219()\‘x’r) + O()\dfa73/2).

For 1 <n < \/100, choose
2nm
=24 73

then |e~*n/2 — e_i)‘t31+1/2\ =2 and |t, — tpr1| = O(A71). Therefore

1
(> 1tn) = I, ta)7) R e}

1§n<ﬁ

The corresponding expressions for I replaced by /1 and I11 have the upper
bound O(\4—a=3/2+1/a),

Now recall that o = (d — 2)/2. Combining the terms above yields for
|z| < coA™!, ¢o small, the estimate

Va(Af2) ()] = ext/2H1/a

and consequently ||V, (Afy)|l, > ¢A¥2H1/a=d/P Since || fi], < CA¥? this
yields the restriction g > p/d. O

Proof of the restricted weak type endpoint inequalities. As before, since the
dyadic jump inequalities hold for all 1 < p < oo both the claimed jump and
variational restricted weak type inequalities for p = d/(d — 1), d > 3 follow
from a short-variation result

1S2 (AN par@—1).00 < Cl fll pasa—1)1.

This in turn follows by a generalization of an argument by Bourgain [3] (see
the appendix of [14]) from the standard L? bound

1S2(AF f)ll2 < C27HE22) £
and the Hardy-space bound
(57) 182 (A" Pl < C2% fll s

note that (57) is an improvement by a logarithmic factor of the result follow-
ing from (46). To show (57) we only need to check the estimate on atoms;
we use arguments from [45] (see also [17], [43]). By dilation invariance it
suffices to check that

152 (A* fo)llr = O(2")
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for an atom fj associated to the unit ball By centered at the origin; i.e. fy
is supported on By, || folleo <1 and [ fo = 0. It suffices to show

H(zj: [/12 }%Agjsfo]dsr)l/?‘)l < Ok
which in turn follows from

(58) |14y ) ), < 02
J

uniformly in s. For each s € [1,2], k > 0 let Uy, 5 be the set of all z for which
either |z| < 2 or ||z| — 27s| < 2 for some 0 < j < k. Then the measure of
Uy s is O(2F4=1). Now the inequality (58) follows from

d 2\ 1/2 k
(59) (X [5Ab 5l ’Ll(u <02
§<k+10 ks
d )
60 LAk ‘ <CY, j<k
( ) ds 2.75f0 Ll(Rd\Z/{kYS) — ) J —
d i .
(61) £A'§jsfo‘ L1 () < 22k I i >k

To see (59) we apply the Cauchy-Schwarz inequality on the exceptional set
Uy s and from the standard L? estimates we get

(@ *00k
j<kt10
< CQk(d—l)/2H< Z ‘dAkjsf0|2>1/2H2

) ds
j<k+10

< CQk(d_l)/QQ_k(d_S)/2||f0H2 < C/2k.

Ll(uk,s)

If Kk j,s denotes the convolution kernel of (d/ ds)Agjs then
- —-N
K gl@)] + 2 M VKo (@)] < On2 (1428 L 1))
and using this estimate for Ky, j ¢ away from the exceptional set implies (60).
Using the gradient estimate and the cancellation of f one obtains (61). For
more details see [45], [43]; we remark that the methods of these papers yield
in fact improved jump and variational inequalities for families of spherical
means with the dilation parameter restricted to subsets of RT. O

REFERENCES

[1] M. Akcoglu, R.L. Jones and P. Schwartz, Variation in probability, ergodic theory and
analysis, Illinois J. Math., 42 (1998), 154-177.

[2] J. Bergh and J. Peetre, On the spaces V,,,0 < p < oo, Bollettino U.M.IL, 10 (1974),
632-648.



3]
(4]
(5]
(6]

(7l
(8]
(9]
[10]
(11]

(12]

[13)
[14]
[15]
[16]
17]
18]
[19]
[20]
21]
[22]
23]
[24]

[25]
[26]

27]

(28]

STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 37

J. Bourgain, Estimations de certaines fonctions mazimales, C.R. Acad. Sc. Paris, 310
(1985), 499-502.
, Averages in the plane over convex curves and maximal operators, J. Analyse
Math., 47 (1986), 69-85.
, Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Etudes Sci. Publ.
Math. 69 (1989), 5-45.
D.L. Burkholder, B. Davis and R. Gundy, Integral inequalities for convex functions of
operators on martingales, Proc. Sixth Berkeley Symp. Math. Statist. Prob., 2 (1972),
223-240.
A.P. Calderén, Ergodic theory and translation invariant operators, Proc. Nat. Acad.
Sci. USA, 59 (1968), 349-353.
A.P. Calderén and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956),
289-309.
J. Campbell, R.L. Jones, K. Reinhold and M. Wierdl, Oscillation and variation for
the Hilbert transform, Duke Math. J., 105 (2000), 59-83.

, Oscillation and variation for singular integrals in higher dimensions, Trans.
Amer. Math. Soc., 35 (2003), 2115-2137.
A. Carbery, The boundedness of the mazimal Bochner-Riesz operator on L* (RQ), Duke
Math. J., 50 (1983), 409-416.
,  Radial Fourier multipliers and associated mazimal functions, Recent
progress in Fourier analysis, ed. by I. Peral and J.L. Rubio de Francia, North Holland,
1985.

, Variants of the Calderon-Zygmund theory for LP-spaces, Rev. Mat.
Iberoamericana 2 (1986), no. 4, 381-396.

A. Carbery, A. Seeger, S. Wainger, J. Wright, Classes of singular integral operators
along variable lines, J. Geom. Anal. 9 (1999), 583-605.

M. Christ, On the almost everywhere convergence of Bochner-Riesz means in higher
dimensions, Proc. Amer. Math. Soc., 95 (1985), 16-20.

, A T(b) theorem with remarks on analytic capacity and the Cauchy integral,
Coll. Math., 60/61 (1990), 601-628.

, Weak type (1,1) bounds for rough operators, Ann. of Math., 128 (1988),

19-42.
M. Christ and J.L. Rubio de Francia, Weak type (1,1) bounds for rough operators.
II. Tnvent. Math. 93 (1988), no. 1, 225-237.
H. Dappa and W. Trebels, On mazimal functions generated by Fourier multipliers,
Ark. Mat., 23 (1985), 241-259.
G. David, Morceaux de graphes Lipschitziens et integrales singuliéres sur une surface,
Rev. Mat. Iberoamericana, 4 (1988), 73-114.
J. Duoandikoetxea and J.-L. Rubio de Francia, Mazimal and singular integral opera-
tors via Fourier transform estimates, Invent. Math., 84 (1986), 541-561.
J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted norm inequalities and related
topics, North Holland, 1985.
L. Grafakos and N. Kalton, The Marcinkiewicz multiplier condition for bilinear op-
erators, Studia Math. 146 (2001), 151-180.
S. Hofmann, Weak (1,1) boundedness of singular integrals with nonsmooth kernel,
Proc. Amer. Math. Soc. 103 (1988), 260—264.
R.L. Jones, Ergodic averages on spheres, J. Anal. Math. 61 (1993), 29-45.
R.L. Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory,
Erg. Th. & Dyn. Sys., 18 (1998), 889-936.
R.L. Jones, J. Rosenblatt, and M. Wierdl, Oscillation inequalities for rectangles, Proc.
Amer. Math. Soc., 129 (2000), 1349-1358.

, Oscillation in ergodic theory: higher dimensional results, Israel Journal of
Math., 135 (2003), 1-27.



38 ROGER L. JONES ANDREAS SEEGER JAMES WRIGHT

[29] R.L. Jones and G. Wang, Variation inequalities for the Fejér and Poisson kernels,
Trans. Amer. Math. Soc., 356 (2004), 4493-4518.

[30] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions
in higher dimensions, Tohoku Math. J. (2) 37 (1985), 343-365.

[31] M. Lacey, Ergodic averages on circles, J. Anal. Math. 67 (1995), 199-206.

[32] D. Lépingle, La variation d’order p des semi-martingales, Z. Wahrscheinlichkeitsthe-
orie verw. Gebiete, 36 (1976), 295-316.

[33] G. Mockenhaupt, A. Seeger and C.D. Sogge, Wave front sets, local smoothing and
Bourgain’s circular mazimal function, Ann. of Math., 136 (1992), 207-218.

, Local smoothing of Fourier integral operators and Carleson-Sjélin estimates,
J. Amer. Math. Soc., 6 (1993), 65-130.

[35] A. Nagel, N. Riviere and S. Wainger, A mazimal function associated to (t,t*), Proc.
Nat. Acad. Sci. USA, 73 (1976), 1416-1417.

[36] G. Pisier and Q. Xu, The strong p—variation of martingales and orthogonal series,
Prob. Theory, 77 (1988), 497-451.

[37] J. Qian, The p-variation of partial sum processes and the empirical process, Ann. of
Prob., 26 (1998), 1370-1383.

[38] G.C. Rota, An “Alternierende Verfahren” for general positive operators, Bull. Amer.
Math. Soc., 68 (1962), 95-102.

[39] J.L. Rubio de Francia, Mazimal functions and Fourier transforms, Duke Math. J.,
53 (1986), 395-404.

[40] A. Seeger, On quasiradial Fourier multipliers and their mazimal functions, J. reine
ang. Math., 370 (1986), 61-73.

34]

[41] , Some inequalities for singular convolution operators in LP-spaces, Trans.
Amer. Math. Soc. 308 (1988), no. 1, 259-272.
[42] , Singular integral operators with rough convolution kernels, J. Amer. Math.

Soc. 9 (1996), 95-105.

[43] A. Seeger, T. Tao and J. Wright, Endpoint mapping properties for spherical mazimal
operators, J. Inst. Math. Jussieu 2 (2003), 109-144.

, Singular mazimal functions and Radon transforms near L*, Amer. J. Math.,
126 (2004), 607-647.

[45] A. Seeger, S. Wainger and J. Wright, Pointwise convergence of spherical means, Math.
Proc.Cambr. Phil. Soc. 118 (1995), 115-124.

[46] E.M. Stein, Topics in Harmonic analysis related to the Littlewood—Paley theory,
Princeton University Press, Princeton, N.J., 1970.

,  Singular Integrals and Differentiability Properties of Function, Princeton

University Press, Princeton, N.J., 1971.

, Mazimal functions: Spherical means, Proc. Nat. Acad. Sci. USA, 73 (1976),

2174-2175.

, Harmonic Analysis: Real variable methods, orthogonality and oscillatory
integrals, Princeton University Press, Princeton, N.J., 1993.

[50] E.M. Stein, S. Wainger, Problems in harmonic analysis related to curvature, Bull.
Amer. Math. Soc., 84 (1978), 1239-1295.

[61] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Fuclidean Spaces, Princeton
University Press, Princeton, N.J., 1971.

[62] T. Tao, The weak-type (1,1) of Llog L homogeneous convolution operator, Indiana
Univ. Math. J. 48 (1999), 1547-1584.

(44]

[47]

(48]

(49]




STRONG VARIATIONAL AND JUMP INEQUALITIES IN HARMONIC ANALYSIS 39

R. JONES, DEPARTMENT OF MATHEMATICS, DEPAUL UNIVERSITY, CHICAGO, IL 60614,
USA

Current address: 2119 Plum Creek Ave., Saint Germain, WI 54558-8877, USA

E-mail address: rjones@condor.depaul.edu

A. SEEGER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, 480 LINCOLN
Drive, MaDIsoN, WI, 53706, USA

E-mail address: seeger@math.wisc.edu

J. WRIGHT, SCHOOL OF MATHEMATICS, UNIVERSITY OF EDINBURGH, JCMB, KING’S
BuILDINGS, MAYFIELD ROAD, EDINBURGH EH9 3JZ, SCOTLAND

E-mail address: wright@maths.ed.ac.uk



