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1. Introduction

The purpose of this paper is to investigate the behavior on L1(Rd), d ≥ 2, of
a class of singular convolution operators which are not within the scope of the
standard Calderón-Zygmund theory.

An important special case occurs if the convolution kernel K is homogeneous of
degree −d. Suppose that Ω ∈ L1(Sd−1) and

(1.1)

∫

Sd−1

Ω(θ)dθ = 0;

here dθ denotes surface measure on the sphere. Then it is easy to see that for
f ∈ C∞

0 (Rd) the principal value integral

(1.2) TΩf(x) = p.v.

∫
Ω(y/|y|)|y|−df(x− y) dy

exists for all x ∈ Rd. Calderón and Zygmund [1] used the method of rotations
to show that if Ω ∈ L1(Sd−1) and if the even part of Ω belongs to the class
L logL(Sd−1) then T extends to a bounded operator on Lp(Rd), 1 < p <∞.

Proposition. Suppose that Ω ∈ L logL(Sd−1) and suppose that the cancellation
property (1.1) holds. Then TΩ extends to an operator of weak type (1, 1).

In two dimensions this result was previously obtained by Christ and Rubio de
Francia [3], and, under a slightly stronger hypothesis, by Hofmann [6]. In [2], [3] a
weak type (1, 1) inequality was also proved for the less singular maximal operator

MΩf(x) = sup
r>0

r−d

∫

|y|≤r

∣∣Ω(y/|y|)f(x− y)
∣∣dy,

in all dimensions, again under the assumption Ω ∈ L logL. It is conceivable that
a variant of the arguments in [3] for the maximal operator could also work for the
singular integral operator; in fact, in unpublished work, the authors of [3] obtained a
weak type (1, 1) inequality in dimension d ≤ 7. However their arguments - if applied
to the singular integral operator - lead to substantial technical difficulties and no

Research supported in part by a grant from the National Science Foundation.

Typeset by AMS-TEX

1



proof has been known for the higher dimensional cases. In this paper we develop
a different and conceptually simpler method, based on a microlocal decomposition
of the kernel (cf. (2.2) below). Incidentally this method also gives a new proof of
the weak type bounds for MΩ.

The proposition is a special case of a more general theorem concerning translation
invariant operators T with rough convolution kernels K ∈ S ′. We assume that K
is locally integrable away from the origin, so that

(1.3) 〈Tf, g〉 =

∫∫
g(x)f(y)K(x− y) dy dx

for all f, g ∈ C∞
c (Rd) with disjoint supports. Clearly T extends to a bounded

operator on L2(Rd) if and only if the Fourier transform K̂ belongs to L∞(Rd).
Introducing polar coordinates x = rθ, r > 0, θ ∈ Sd−1 we shall assume a weak
regularity condition for r 7→ K(rθ). However only size conditions will be imposed
in the θ variable.

In order to formulate our assumptions let

(1.4) VR(θ) =

∫ 2R

R

|K(rθ)|rd−1 dr

and

(1.5) V (θ) = sup
R>0

VR(θ).

Moreover, for a ≥ 2 let

(1.6) η(a) = sup
R≥as

∫

Sd−1

∫ 2R

R

|K((r − s)θ)−K(rθ)|rd−1 dr dθ.

We shall always assume the Dini-condition

(1.7)

∫ ∞

2

η(a)
da

a
< ∞.

Theorem. Suppose that T is as in (1.3) and that K̂ ∈ L∞(Rd). Suppose that (1.7)
holds and that V ∈ L logL(Sd−1). Then T is bounded in Lp, 1 < p <∞; moreover
T is of weak type (1, 1).

Note that for the operators in (1.2) we have η(a) = O(a−1) and V = c|Ω|.
Therefore the Proposition follows from the Theorem.

Remarks.
(i) It may be more natural to impose an integrability condition on VR, uniformly

in R, rather than on the maximal quantity V . Indeed the hypothesis V ∈ L logL
can be replaced by

sup
R

∫

Sd−1

VR(θ)(1 + ∆(VR(θ)/‖VR‖1)dθ <∞
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for some nondecreasing function ∆ : [1,∞) → (0,∞) satisfying

∫ ∞

1

da

a∆(a)
<∞.

Typical choices for ∆ are ∆(t) = log1+ǫ(2+t), or ∆(t) = log(2+t) log(2+log1+ǫ(2+
t)) etc.

(ii) Without the assumption Ω ∈ L logL(Sd−1) even the L2 boundedness of
TΩ may fail. This was pointed out by Calderón and Zygmund [1]. However if
Ω ∈ L1(Sd−1) is odd then TΩ is bounded on Lp, 1 < p <∞, see [1]. Presently it is
not known whether a weak type (1, 1) inequality holds in this case.

In §2 we shall give the main estimates needed to prove the Theorem. The formal
proof is contained in §3.

The following notation is used: For a set E ⊂ Rd we denote the Lebesgue
measure of E by |E|. For a set A ∈ Sd−1 we also write |A| =

∫
A dθ. The Fourier

transform of f is denoted by f̂ , the inverse Fourier transform of f is denoted by
F−1[f ]. Given two quantities a and b we write a . b or b & a if there is a positive
constant C, depending only on the dimension, such that a ≤ Cb. We write a ≈ b if
a . b and a & b.

2. Main estimates

Let {Hj} be a family of functions with

supp Hj ⊂ {x : 2j−2 ≤ |x| ≤ 2j+2}.

We assume that the Hj are differentiable in the radial variable and that the esti-
mates

(2.1) sup
0≤l≤N

sup
j
rd+l

∣∣∣( ∂
∂r

)lHj(rθ)
∣∣∣ ≤ MN

hold uniformly in θ and r. Convolution kernels of this type come up in a dyadic
decomposition of the kernel of the operator defined in (1.2), if Ω ∈ L∞(Sd−1).

We shall be interested in estimates for Hj ∗
∑

Q bQ where each bQ is a building
block in a Calderón-Zygmund decomposition, supported in a cube Q, and where
the sidelength 2L(Q) of Q is small compared to the diameter of supp Hj ; say by a
factor of ≈ 2−s.

For s > 3 let Es = {esν} be a collection of unit vectors with mutual distance
> 2−s−10d−1 such that for each θ ∈ Sd−1 there is an esν with |θ − esν | ≤ 2−s−1.
It is easy to see that we may construct disjoint measurable sets Es

ν ⊂ Sd−1 with
esν ∈ Es

ν , diam(Es
ν) ≤ 2−s and ∪νE

s
ν = Sd−1. Then clearly

card(Es) ≈ 2s(d−1).

Let
Hs

jν(x) = Hj(x)χEs
ν
(x/|x|).
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A further decomposition will be based on the observation that the Fourier transform

Ĥs
jν is concentrated near the hyperplane perpendicular to esν .

Fix a parameter κ, such that 0 < κ < 1. Let ψ ∈ C∞
0 (R) be supported in [−4, 4]

such that ψ(t) = 1 for t ∈ [−2, 2]. Define P s
ν by

P̂ s
ν (ξ) = ψ(2s(1−κ)〈ξ, esν〉/|ξ|).

Our basic splitting is

(2.2) Hj = Γs
j + (Hj − Γs

j)

where
Γs
j =

∑

ν

P s
ν ∗Hs

jν .

Lemma 2.1. Let Q be a collection of cubes Q with disjoint interiors. Define
L(Q) = m if 2m−1 < sidelength (Q) ≤ 2m and let Qm = {Q ∈ Q : L(Q) = m}.
For each Q let fQ be an integrable function supported in Q satisfying

∫
|fQ(x)|dx ≤ α|Q|.

Let Fm =
∑

Q∈Qm
fQ. Then for s > 3

∥∥∥
∑

j

Γs
j ∗ Fj−s

∥∥∥
2

2
≤ C[M0]

22−s(1−κ)α
∑

Q

‖fQ‖1.

In our application of Lemma 2.1 the functions fQ will be the basic building blocks
which arise in a Calderón-Zygmund decomposition at height cα. Note however that
for this part no cancellation condition for fQ is assumed.

Lemma 2.2. Let Q be a cube of sidelength 2j−s and let bQ be integrable and
supported in Q; moreover suppose that

∫
bQ = 0. Then for N ≥ d+ 1, 0 ≤ ε ≤ 1

‖(Hj − Γs
j) ∗ bQ‖1 ≤ CN

[
M02

−sε +MN2s(d+(ε−κ)N)
]
‖bQ‖1

where CN does not depend on j or Q.

It is important to keep track of how the estimates depend on MN since we
shall apply the lemmas in a situation where this norm is large and depends on s
itself. The bounds in Lemma 2.2 are not best possible, but this is irrelevant for our
purpose.

Proof of Lemma 2.1. We use an orthogonality argument based on the following
observation. Given s > 3, each ξ 6= 0 is contained in at most C2s(d−2+κ) of the sets

supp P̂ s
ν where C only depends on d. In fact by homogeneity it suffices to check

this for ξ ∈ Sd−1. If ξ ∈ supp P̂ s
ν ∩ Sd−1 and ξ⊥ is the hyperplane perpendicular

to ξ then

(2.3) dist(esν , ξ
⊥) ≤ c2−s(1−κ).
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Since the mutual distance of the esν is bounded below by c′2−s there are at most
c′′2s(d−2+κ) of the esν satisfying (2.3). This implies the observation.

We apply Plancherel’s theorem, the Cauchy-Schwarz inequality and then Plan-
cherel’s theorem again to obtain

∥∥∥
∑

j

Γs
j ∗ Fj−s

∥∥∥
2

2
= (2π)d/2

∥∥∥
∑

ν

P̂ s
ν

∑

j

Ĥs
jν F̂j−s

∥∥∥
2

2

≤ C2s(d−2+κ)
∑

ν

(2π)d/2
∥∥∥
∑

j

Ĥs
jν F̂j−s

∥∥∥
2

2

= C2s(d−2+κ)
∑

ν

∥∥∥
∑

j

Hs
jν ∗ Fj−s

∥∥∥
2

2
.(2.4)

For fixed ν write

∥∥∥
∞∑

j=−∞

Hs
jν ∗ Fj−s

∥∥∥
2

2
=

∞∑

j=−∞

∫
H̃s

jν ∗Hs
jν ∗ Fj−s(x)Fj−s(x) dx

+ 2

∞∑

j=−∞

j−1∑

i=−∞

∫
H̃s

jν ∗Hs
iν ∗ Fi−s(x)Fj−s(x) dx

where H̃s
jν(x) = Hs

jν(−x).

Next observe that H̃s
jν ∗Hs

iν is for i ≤ j supported in a rectangle Rs
jν centered

at 0 with d− 1 short sides of length 2j−s+10 and one long side of length 2j+10, the
long side being parallel to esν . Since the measure of Es

ν is bounded by C2−s(d−1)

we have
‖Hs

iν‖1 . M02
−s(d−1)

for all i and consequently

‖H̃s
jν ∗Hs

iν‖∞ ≤ ‖Hs
jν‖∞‖Hs

iν‖1 . M
2
02

−jd2−s(d−1).

Therefore, since the cubes Q are disjoint,

|H̃s
jν ∗Hs

jν∗Fj−s(x)| + 2
∣∣∣H̃s

jν ∗
∑

i<j

Hs
iν ∗ Fi−s(x)

∣∣∣

. [M0]
22−jd2−s(d−1)

∫

x+Rs
jν

∑

i≤j

|Fi−s(y)|dy

. [M0]
22−jd2−s(d−1)

∑

i

∑

L(Q)=i−s
Q∩(x+Rs

jν) 6=∅

∫
|fQ(x)|dx

. [M0]
22−jd2−s(d−1)α

∑

i

∑

L(Q)=i−s
Q∩(x+Rs

jν) 6=∅

|Q|

. [M0]
22−jd2−s(d−1)α|x + 2Rs

jν |

. [M0]
22−s(2d−2)α
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for all x ∈ Rd. This finally implies that

∑

ν

∥∥∥
∑

j

Hs
jν ∗ Fj−s

∥∥∥
2

2
. [M0]

2α2−s(2d−2)card(Es)
∑

j

‖Fj−s‖1

. [M0]
2α2−s(d−1)

∑

j

‖Fj−s‖1

. [M0]
2α2−s(d−1)

∑

Q

‖fQ‖1

and the asserted inequality follows from (2.4).

Proof of Lemma 2.2. Let β ∈ C∞(Rd \ {0}) be supported in {ξ : 1/2 ≤ |ξ| ≤ 2}

such that
∑

k β
2(2−kξ) = 1 for all ξ 6= 0. Let Lk be defined by L̂k(ξ) = β(2−kξ).

Consider the multipliers

msk
jν(ξ) = β(2−kξ)(1− P̂ s

ν (ξ))Ĥ
s
jν (ξ);

then
Hj − Γs

j =
∑

ν

∑

k

F−1[msk
jν ] ∗ Lk.

Since diam(Q) . 2j−s and ‖∇Lk‖1 . 2k we obtain using the cancellation of bQ

(2.5) ‖F−1[msk
jν ] ∗ Lk ∗ bQ‖1 . ‖F−1[msk

jν ]‖1 min{1, 2k+j−s}‖bQ‖1.

Let ℓksν be the invertible linear transformation with ℓksνe
s
ν = 2k−s(1−κ)esν and ℓksνy =

2ky if 〈y, esν〉 = 0. It is straightforward to check that

‖∂αξ [L̂k(1− P̂ s
ν )(ℓ

k
sν ·)]‖2 ≤ Cα

for all multiindices α. Therefore L̂k(1− P̂ s
ν ) is an L

1 Fourier multiplier with norm
independently of k, s and ν. Consequently

(2.6) ‖F−1[msk
jν ]‖1 . ‖Hs

jν‖1 . 2−s(d−1)
M0.

In order to get a better bound for large k we estimate Ĥs
jν and its derivatives using

integration by parts. Note that 1 − P̂ s
ν (ξ) = 0 if |〈ξ, esν〉| ≤ 2−s(1−κ)|ξ|. Therefore

if θ ∈ Es
ν and if ξ ∈ supp (1− P̂ s

ν ) and |ξ| ≈ 2k then |〈θ, ξ〉| & 2−s(1−κ)2k. Now

Ĥs
jν(ξ) =

∫
χEs

ν
(θ)

∫
Hj(rθ)e

−ir〈θ,ξ〉rd−1 dr dθ

=

∫
χEs

ν
(θ)(i〈θ, ξ〉)−N

∫
∂Nr Hj(rθ)e

−ir〈θ,ξ〉rd−1 dr dθ.

Hence we obtain the size estimate

|msk
jν(ξ)| ≤ CNMN |Es

ν |2
[s(1−κ)−j−k)]N ,
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uniformly in ξ. A similar calculation applies to the derivatives of msk
jν . Differentiat-

ing Ĥs
jν yields additional factors of r ≈ 2j in the above integral and differentiating

β(2−k·)P̂ s
ν yields additional factors of 2s(1−κ)2−k. Since |Es

ν | ≤ C2−s(d−1) we see
that

‖∂αξ [m
sk
jν(2

k·)]‖2 ≤ CαMN2−s(d−1)(2s(1−κ) + 2j+k)|α|2−N(j+k−s(1−κ))

for all multiindices α with |α| ≤ N . Therefore if N ≥ N1 > d/2

‖F−1[msk
jν ]‖1 .

∑

|α|≤N1

‖∂αξ [m
sk
jν(2

k·)]‖2

. MN2−s(d−1)2−N(j+k−s(1−κ))(2(j+k)N1 + 2s(1−κ)N1).(2.7)

Finally by (2.5), (2.6)

(2.8)
∑

k≤−j+s(1−ε)

‖F−1[msk
jν ] ∗ Lk ∗ bQ‖1 . M02

−s(d−1+ε)‖bQ‖1

and by (2.7) with N1 = d, N ≥ d+ 1

(2.9)
∑

k>−j+s(1−ε)

‖F−1[msk
jν ] ∗ Lk ∗ bQ‖1

. MN2−s(d−1)2−s(κ−ε)N
[
2sd(1−ε) + 2sd(1−κ)

]
‖bQ‖1.

If we sum over ν and note that card(Es) . 2s(d−1) then (2.8) and (2.9) imply the
statement of the Lemma. �

3. Proof of the theorem

Clearly the Lp boundedness for 1 < p < ∞ follows from the weak-type (1, 1)
estimate and the assumed L2 boundedness, by a duality argument and the Mar-
cinkiewicz interpolation theorem (see [7]). Therefore given λ > 0 we have to verify
the inequality

(3.1)
∣∣{x ∈ Rd : |Tf(x)| > λ}

∣∣ . Aλ−1‖f‖1

where

A = ‖K̂‖∞ +

∫ ∞

2

η(a)
da

a
+

∫

Sd−1

V (θ)(1 + log+(V (θ)/‖V ‖1)) dθ

here log+ s = log s if s ≥ 1 and log+ s = 0 where 0 ≤ s < 1. Then by assumption
A <∞.

Given f ∈ L1(Rd) we shall use the Calderón-Zygmund decomposition of f at
height α = λ/A (see Stein [7]). We decompose

f = g + b = g +
∑

Q

bQ
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where ‖g‖∞ ≤ α, ‖g‖1 . ‖f‖1, each bQ is supported in a dyadic cube Q with

sidelength 2L(Q) and the cubes Q have disjoint interiors. Moreover ‖bQ‖1 . α|Q|
and

∑
Q |Q| . α−1‖f‖1. For each Q let Q∗ be the dilate of Q with same center

and L(Q∗) = L(Q) + 10, and let E = ∪Q∗. Then also

|E| . α−1‖f‖1 = Aλ−1‖f‖1.

Finally, for each Q, the mean value of bQ vanishes:
∫
bQ = 0. We shall use a variant

of Calderón-Zygmund theory due to Fefferman [5] and modified by Christ [2].
As in standard Calderón-Zygmund theory we have the estimate for the good

function g

‖Tg‖22 ≤ ‖T ‖2L2→L2‖g‖22 ≤ A2‖g‖1‖g‖∞ ≤ Aλ‖g‖1

and by Tshebyshev’s inequality

∣∣{x ∈ Rd : |Tg(x)| > λ/2}
∣∣ ≤ 4λ−2‖Tg‖22 ≤ 4Aλ−1‖g‖1 . Aλ−1‖f‖1.

Therefore the proof of the theorem is reduced to the estimate

(3.2)
∣∣{x ∈ Rd \ E : |Tb(x)| > λ/2}

∣∣ . Aλ−1‖f‖1.

Note that the expressions TbQ(x) are well defined for almost all x ∈ Rd \ E since
we assume that K is locally integrable away from the origin.

We now introduce a dyadic decomposition of the kernel. Let β ∈ C∞
0 (R+) be as

in the previous section (supp β ⊂ (1/2, 2),
∑

k β
2(2−kt) = 1 for all t > 0). Define

Kj(x) = β2(2−j|x|)K(x).

For m ∈ Z let

Bm =
∑

L(Q)=m

bQ.

Then observe that the support of the functions Kj ∗Bj−s is contained in E if s ≤ 3.
Therefore, in order to verify (3.2), it suffices to prove that

(3.3)
∣∣∣{x ∈ Rd :

∣∣∑

s>3

∑

j

Kj ∗Bj−s(x)
∣∣ > λ/2}

∣∣∣ . Aλ−1‖f‖1.

We now decompose the kernels Kj in the spherical variables according to the size
of V ; moreover we introduce a regularization in the radial variable.

Let

δ = [100(d+ 2)]−1

and let

Ds = {θ ∈ Sd−1 : V (θ) ≤ 2δs‖V ‖L1(Sd−1)}.

Let φ ∈ C∞
0 (R) such that

∫
φ(t)dt = 1 and such that φ(t) = 0 if |t| ≥ 2−10. Then

(3.4) Kj = Hs
j +Rs

j + Ss
j
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where

Ss
j (rθ) = β2(2−jr)

[
K(rθ)−

∫
K(ρθ)2δs−jφ(2δs−j(r − ρ))dρ

]

Rs
j(rθ) = β2(2−jr)χSd−1\Ds(θ)

∫
K(ρθ)2δs−jφ(2δs−j(r − ρ))dρ

Hs
j (r, θ) = β2(2−jr)χDs (θ)

∫
K(ρθ)2δs−jφ(2δs−j(r − ρ))dρ.

Observe that Hs
j vanishes if |x| /∈ [2j−2, 2j+2] and that for 2j−2 ≤ r ≤ 2j+2, θ ∈ Ds,

rd+l
∣∣∣( ∂
∂r

)lHs
j (r, θ)

∣∣∣ ≤ Cl2
δs(l+1)

∫ 2r

r/2

|K(ρθ)|ρd−1dρ ≤ 2Cl2
δs(l+2)‖V ‖L1(Sd−1).

That is, for fixed s > 3 and for all N , the family {Hs
j } satisfies the assumption

(2.1) with

(3.5) MN = CN‖V ‖L1(Sd−1)2
δs(N+2)

where CN does not depend on V or s. We now decompose

Hs
j = Γs

j + (Hs
j − Γs

j)

exactly as in (2.2), except that this time the operator Hj itself depends on s. The
decomposition (2.2) depended on a parameter 0 < κ < 1; we may now choose
κ = 1/2.

We have split ∑

s>3

∑

j

Kj ∗Bj−s(x) = I(x) + II(x)

where
I(x) =

∑

s>3

∑

j

Γs
j ∗Bj−s(x)

and
II(x) =

∑

s>3

∑

j

[Hs
j − Γs

j +Rs
j + Ss

j ] ∗Bj−s(x).

Now by Tshebyshev’s inequality
∣∣∣{x ∈ Rd :

∣∣∑

s>3

∑

j

Kj ∗Bj−s(x)
∣∣ > λ/2}

∣∣∣

≤
∣∣{x ∈ Rd : |I(x)| > λ/4}

∣∣+
∣∣{x ∈ Rd : |II(x)| > λ/4}

∣∣
≤ 16λ−2‖I‖22 + 4λ−1‖II‖1.(3.6)

By Lemma 2.1 and (3.5) with N = 0 we have

‖I‖22 ≤
[∑

s>3

∥∥∥
∑

j

Γs
j ∗Bj−s

∥∥∥
2

]2

. ‖V ‖2L1(Sd−1)

[∑

s>3

(
2s(4δ+κ−1)α

∑

Q

‖bQ‖1

)1/2]2

. A2α
∑

Q

‖bQ‖1 . Aλ‖f‖1;(3.7)
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here we could sum the geometrical series since 4δ + κ− 1 < −1/4.
Next we apply Lemma 2.2 with N = 5(d+ 1), ε = 1/4 and obtain

∥∥∥
∑

s>3

∑

j

(Hs − Γs
j) ∗Bj−s

∥∥∥
1
.

∑

s>3

A2(N+2)δs(2−εs + 2s(d−(κ−ε)N))
∑

j

‖Bj−s‖1

. A‖f‖1;(3.8)

now we have used that (N+2)δ+d−(κ−ε)N < −(d+1)/4 and (N+2)δ−ε < −1/8.
It remains to estimate the sums involving Rs

j and Ss
j . Observe that

‖Rs
j‖1 ≤

∫

Sd−1\Ds

∫ 2j+1

2j−1

|K(rθ)|rd−1dr dθ .

∫

V (θ)>2δs‖V ‖1

V (θ)dθ

and therefore

∥∥∥
∑

s>3

∑

j

Rs
j ∗Bj−s

∥∥∥
1
.

∑

s>3

∑

j

‖Bj−s‖1

∫

V (θ)>2δs‖V ‖1

V (θ)dθ

.
∑

Q

‖bQ‖1

∫
V (θ) card({s ∈ N : 2δs ≤ |V (θ)|/‖V ‖1}) dθ

.

∫
V (θ)(1 + log+(V (θ)/‖V ‖1))dθ

∑

Q

‖bQ‖1

. A‖f‖1.(3.9)

Finally ‖Ss
j ‖1 . supR ‖VR‖1 and for s > 10/δ

‖Ss
j ‖1 ≤

∫ ∫ ∫ 2j+1

2j−1

|K((r−ρ)θ)−K(rθ)|rd−1dr dθ |2δs−jφ(2δs−jρ)|dρ . η(2δs−3).

Therefore
∥∥∥
∑

s>3

∑

j

Ss
j ∗Bj−s

∥∥∥
1

.
∑

0<s<10/δ

∑

j

‖Bj−s‖1 sup
R

‖VR‖L1(Sd−1) +
∑

s>10/δ

∑

j

‖Bj−s‖1η(2
δs−3)

.
[
sup
R

‖VR‖L1(Sd−1) +

∫ ∞

2

η(a)
da

a

]∑

Q

‖bQ‖1

. A‖f‖1.

(3.10)

Now by (3.8), (3.9) and (3.10)

(3.11) ‖II‖1 . A‖f‖1

and the desired weak type inequality (3.3) follows from (3.6), (3.7) and (3.11). �
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We conclude by proving the remark following the statement of the Theorem.
We have to change the definitions of the functions Hs

j and Rs
j in (3.4). Let C =

supR ‖VR‖1 and, for j ∈ Z

Ds
j = {θ ∈ Sd−1 : V2j−1 (θ) + V2j (θ) + V2j+1 (θ) ≤ 22+δsC}.

In the present setting we define Hs
j and Rs

j as before but with Ds replaced by
Ds

j . The estimate (3.9) is changed to

∥∥∥
∑

s>3

∑

j

Rs
j ∗Bj−s

∥∥∥
1

.
∑

s>3

∑

j

‖Bj−s‖1

1∑

σ=−1

∫

V
2j+σ (θ)>2δsC

V2j+σ (θ) dθ

. ‖f‖1
∑

s>3

sup
j

1∑

σ=−1

∫

V
2j+σ (θ)>2δsC

V2j+σ (θ) dθ

. ‖f‖1
∑

s>3

1

∆(2δs/C)
sup
j

sup
s

1∑

σ=−1

∫
V2j+σ (θ)∆(V2j+σ (θ)/C)dθ

. ‖f‖1

∫ ∞

1

da

a∆(a)
sup
R

∫
VR(θ)∆(VR(θ)/C)dθ.

The other estimates remain essentially unchanged; in various instances one replaces
‖V ‖1 by supR ‖VR‖1.
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