TWO PROBLEMS ASSOCIATED WITH CONVEX FINITE TYPE DOMAINS

ALEXANDER IOSEVICH ERIC SAWYER ANDREAS SEEGER

ABSTRACT. We use scaling properties of convex surfaces of finite line type to derive new estimates for
two problems arising in harmonic analysis. For Riesz means associated to such surfaces we obtain sharp
LP estimates for p > 4, generalizing the Carleson-Sjolin theorem. Moreover we obtain estimates for the
remainder term in the lattice point problem associated to convex bodies; these estimates are sharp in
some instances involving sufficiently flat boundaries.

1. Introduction

Let Q be a convex domain in R? with smooth boundary. We assume that 9% is of finite line
type, that is, at each point each tangent line has finite order of contact.

We discuss two problems in this paper. Both problems have in common that progress can be
made using some approximate scaling properties of 92. We derive an extension of the Carleson-
Sjolin theorem concerning L? convergence results for Riesz means defined by a distance function
associated to ; we assume that 1 < p < 4/3. We also give asymptotics for the number of integer
lattice points inside large dilates of (2; the bounds for the error terms are sharp in some cases where
there exist points with all lines tangent to the boundary having high order of contact with 9.

1.1. Riesz means. We assume that the origin belongs to the interior of 2. Let p : R? — [0,00)
be homogeneous of degree 1 be the Minkowski functional associated to ; i.e. p is homogeneous of
degree one, so that p(§) = 1 if £ € 0Q2. The boundary ¥, := O is then the unit sphere for the
generalized distance function p. The Bochner-Riesz operator associated to p is defined by

Sapf () = (1= p(€)X F(O); (1.1)

here our definition of the Fourier transform is f(f) = [f(y)e " dy. Tt is well known that if
1 < p < oo the LP boundedness of the Bochner-Riesz operator implies LP convergence of the Riesz
means F (1 — p/t)} f] to the limit f if f € L? and t — .

A necessary condition for LP boundedness is
A>Ap) =d|l/p—-1/2|—1/2 (1.2)

Indeed in view of the compact support of the multiplier it is necessary for L? boundedness that the
inverse Fourier transform of (1 — p) i belongs to LP. Using standard asymptotic expansions one can
show (working near points on ¥, where the curvature does not vanish) that (1.2) is necessary for
FA-p)] e L.
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It is known [9], [29] that the validity of an L? restriction theorem for the Fourier transform
implies the L” boundedness of the Bochner-Riesz operator. Since X, is of finite type, say < n, it
follows from [3] that the Fourier transform of C/l;'(f ) of a smooth density carried by £, is O(|¢|*) for
some p with g > (d — 1)/n. Using the appropriate versions of the Stein-Tomas restriction theorem
([10]) one can show that L? boundedness holds for 1 < p < 2(u+1)/(1+2) and A > A(p) (cf. [29]).
Note that 2(u +1)/(p +2) = (2n + 2d — 2)/(2n 4+ d — 1) for the example x4 = Z?z_ll x with even
n, so that the range obtained in this way is small for large n.

Theorem 1.1. Suppose thatd > 2,1 <p <4/3, A > d(1/p—1/2) —1/2 and that T, is of finite
line type. Then Sy, is bounded on LP(R?).

It is conjectured that LP boundedness holds for the same range of exponents as for the sphere.
The conjecture for the sphere is that L? boundedness should hold for A > A(p) for p < 2d/(d + 1).
This is currently known only in two dimensions, see Carleson and Sj6lin [4]. Sj6lin [28] extended
this result to arbitrary planar domains with smooth boundary, for some variants concerning convex
domains in the plane with nonsmooth boundary see also the more recent paper by Ziesler and the
third author [27]. For partial results in higher dimensions, in the case that the Gaufl curvature of
X, does not vanish, we refer to Bourgain [1] and for background to [29]. Our proof of Theorem 1.1
uses a variant of Cérdoba’s geometrical proof [6] of the Carleson-Sjolin theorem and rescaling.

1.2 Multitype and an estimate for the Fourier transform of surface carried measure.

A precise estimate of the Fourier transforms of surface carried measure is due to Bruna, Nagel
and Wainger [3]. Let ¥ = 0Q and Hp(X) the affine tangent plane at P € 3, and let

B(P,6) = {y € O : dist(y, Hp(X)) < 0}. (1.3)

Then
|do(&)] < C[|B(Py, ]|+ |B(P-, € 7)]] (1.4)

where Py are the points on ¥ for which £ is a normal vector and | B| denotes the surface measure of
B. For many problems it is important to know not just the size of the balls but also the distribution
function of « — |B(z,0)| and how it relates to the notions of multitype and type. We review the
definition of multitype which is implicit in Schulz [26], see also [17].

Consider a smooth real valued function ® defined in a neighborhood of the origin in a d — 1-
dimensional Euclidean vector space E?~! so that ®(0) = V®(0) = 0. We say that a vector v in F¢~!
has contact of order at least n + 1 if

®(sv) = O(s"™) if s—0.

The sets
S™ ={v € E" : v has contact of order at least n + 1} (1.5)

are linear subspaces of E?~! and there are even integers my,...,my so that m; < -+ < ny,
1<k<d-—1and mg:=my—12>1 and

0=8m C...C 8™ :=EI (1.6)
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moreover the sequence is maximal, in the sense that S™ = S™* if m;_1 < n < my. Define
a;=m; ifd-—1-dimS™ ! <i<d-—1-dimS™,6 j=1,... k. (1.7)

The d — 1-tuple a = (ay,...,aq—1) is then called the multitype of ® at 0.

To illustrate the above definitions consider a convex body whose boundary passes through the
origin and nearby is given by the equation x4 = Z?;ll |z;|** where the a; are even integers, with
a; < ai+1, 1 <i < d—2. In this case the multitype is (a1,...,a4—1) and the subspaces S above
are S™ = span({e; : a; > m}) (and S™ = {0} if m > aq_1.)

We now fix P € ¥, choose a unit normal np and parametrize ¥ near P as a graph over its
tangent plane at P. Thus the parametrization is given by

v=C(v)—»P+v+2)np (1.8)

for v € TpX, and @ is a convex function vanishing of second order at the origin. We perform the
above construction for ®(v) defined on E?~! = Tp¥ and obtain a flag of subspaces

0= STk Cor C S0 =Tp, (1.9)
Let W; be the orthogonal complement of Sp” in S3°~', j =1,...,k, then
TS =Wi -3 W, (1.10)

We denote by Hf the orthonormal projection on TpX to W;. We also have a similar decomposition
and projections Hf to W7 on ToX, here we let W) the space of linear functionals on W; extended
by 0 on the orthogonal complement of W;. We can extend these projections to linear maps on
THR? ~ (R)* by defining anp =0.

On T'5Y we define a nonisotropic distance function p, by

m;

s (1.11)

k
pe() = My
j=1

here | - | denotes the Euclidean distance in W;. If £ € THR? is taken from a suitable conic neighbor-
hood of np and ITI¥ denotes the projection to ThY we define

mre
Finally we set for { < d — 2
d—1 k . myj—1 . mj
_ dim S5’ ™" —dim S,”
I/[(P) = E ai 1 = E P o P (113)
i=l j=1 J

and write v(P) = v1(P). An alternative description of v(P) (see [16]) is
v(P) = sup{q : dist(-, HpX) € L1(Z) }; (1.14)

in fact for ¢ = v(P) the function dist(-, HpX) ! belongs to the space L?>°(Z).

Our result for the Fourier transform of surface carried measure is
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Proposition 1.2. Let P € 02. Then there is a neighborhood U of P and a conic neighborhood V
of {£np} in RY so that for all x € CC(U) and all £ € V with |€] > 1 we have

e H -V 7171/’) I/fl/f)*l
Ixdo(§)] 'S IIxller min{|¢]™", ]2 [Op (]2}
here ||x|lor = maxa<n ||X(a)||Loo(U) and N is sufficiently large.

In this statement N > d +my, will suffice. Note the proposition is an improvement over previous
results only in the case where all the principal curvatures vanish (and thus a; > 2).

1.3. A lattice point estimate.

Let
Na(t) = card(tQ N Z%). (1.15)

It is well known (and elementary) that Ng(t) is asymptotic to t4vol(f2) as t — oo and that the error
term
Eq(t) = N(t) — t%vol(Q) (1.16)

as O(t?~1). Moreover if OQ has suitable curvature properties then the error term improves; in
particular if the Fourier transform of the surface measure on the boundary satisfies c/l;(ﬁ ) =0(¢™)
then the classical method (see e.g. [11], [13, Theorem 7.7.16] and [24]) yields Eq(t) = O(t* '~ 7=).
This estimate however is not sharp, and several authors beginning with van der Corput have obtained

improvements for the case of nonvanishing Gauf} curvature; see the monographs by Krétzel [18] and
Huxley [14], and in particular the papers by Krétzel and Nowak [20] and recent improvements by W.
Miiller [22] for results on general convex bodies with nonvanishing curvature in higher dimensions.
In [24, I], [25] Randol obtained better estimates for the case of convex domains in the plane with
finite type boundary; these are sharp for Q = {x : 2§ + 25 < 1} where k > 4 is even. See also Nowalk
[23] for more refined results. Generalizations to domains of the form Q@ = {z : 2} + ... + 2% <1} are
in [24, 11}, [19].

Here we give a version for general convex bodies with finite type boundary in higher dimensions.
Let v(P) = v1(P) and v»(P) as in (1.13) above.

Theorem 1.3. Let

. 1 .
VSRR =gt )

Then there is a constant C' depending on Q so that

|Eq(t)] < Ca(1 + 4717 4 ¢4=1-77), (1.17)

Specifically, if U is the set of all points P € 0Q) at which all principal curvatures vanish then

Eq(t) = Yt WGp(t) + Ot~ 7) (1.18)
Pel

where G p(t) is bounded as t — oo. If the normal line determined by np coincides with Re; for some
i €{1,...,d} then limsup, . |Gp(t)] > 0.

We note that the number u/(d — p) is greater then (2d — 1)~! since g > 1/2. In particular

if the Gaufl curvature only vanishes at one point at the surface and if v < u/(d — p) then there
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is A € SO(d) so that limsup,_,. t* 1|Eaq(t)| is positive (for other model cases compare [19],
[23]). Note that the sum in (1.18) over P € I, since I' is a discrete subset of 09} (as noted in [16],
cf. the proof of Lemma 2.2. below). We remark that it is well known that for almost all rotations
A € S50(d) the error terms E4q(t) improve, see [5], [31], [32], [23], [15] and [2].

We shall derive the estimate for the Fourier transform in Proposition 1.2 in the next section. §3
contains the application to the lattice point problem. In §4 and §5 we prove results on Bochner-Riesz
multipliers; here we first consider the case of one nonvanishing principal curvature and then in §5
the case of convex domains.

Notation: Given two quantities A, B we write A < B if there is an absolute positive constant C
so that A < CB. We write A~ Bif A< B and B < A.

Acknowledgement: We thank the referee for pointing out some misprints and for making a
suggestion concerning the exposition.

2. An estimate for Fourier transforms of surface carried measures

We begin by reviewing some facts about classes of convex functions in [3], [26], [16], [17].

Let By C R denote the open ball of radius T centered at 0; it is always assumed that 7' < 1.

Fix a flag U of subspaces 0 = Vi, C - C Vg of E4~! | with Vo = E4~1 and let m = (my, ..., my)
be a k-tuple of even positive integers with m; < -+ < my. For 0 <b< M, N € Zt, N > my, let
6%71(b, M,%6,m, N) be the class of all Cy(Byr) functions g with the property that

g(0) =Vg(0)=0

d
—59(x +t0

@ >0foralld e S¥2% xeBp

)|t:0

(%)jg(x + t9)|t:0‘ >pforalld e S2NV,_1,z € Br

max

2<j<my

max ‘(i)ag(x)‘ < M for all x € By.

la|<N 10w -

Here S92 denotes the unit sphere in EY. We also define a(0,m) = (a1 (8, m), ..., a; (B, m)) by
a;(B,m) =m;(¥,m) ifd-1-dimV; 1 <i<d-1-dimV;, (2.2)

in analogy to (1.7).

Now if P € ¥ (with © = 99 as in the introduction) and E*~* = Tp¥ then let V; = S})" C TpZ
asin (1.5). Let ® be as in (1.8). Then there is T' > 0 and a neigborhood U of 0 so that for all w € U
the functions y = ®(w+y) — ¥(w) — (y, Vuw®(w)) belong to &7.(b, M,U, m, N); moreover there are
positive constants cg, Cy, Cy so that

B(w,6) ={y :|2(y) — ®(w) = (Vo ®(w),y —w)| < 6} (2.3)
belongs to By if § < ¢pT™* and satisfies
meas(B(w, 0)) < C6”; (2.4)

see Proposition 2.1 in [17].



Lemma 2.1. Suppose that ® € GdT_l(b, M,%,m,N) and suppose that a = (ay,...,a4—1) is the mul-
titype at the origin. Let ¥ (y) = ®(y) —P(w)— (Vo ®(w), y—w) and let a(w) = (a1 (w), ..., aq—1(w))
be the multitype of ¥ at the origin. Then there is a neighborhood U of the origin so that a;(w) < a;
fori=1,...,d—1 and oll w € U.

Proof. Let S™ be as in (1.5) and let £ > dim S™. Recall that S = S™i-! for m; < n < mj_;.
Using continuity and compactness arguments together with the definition of the spaces S we see
that there is a neighborhood U C U of the origin so that for every w € L~{, every y € U and every
(-tuple of orthonormal vectors {uy,...,us}

0
> 2 (s Vi) e ()] > bo > 0. (2.5)

The result of the Lemma follows quickly from the definition of the multitype. O

We now let & denote the graph of ®. On TpX = R4~ we define a nonisotropic distance function
p by

.
ply) = Z ITL;y|™ (2.6)

note that that the unit ball for p* in (1.11) is the polar set for the unit ball for p.

The following Lemma gives an improvement of estimates in [16] and [17]. A rescaling argument
is used as in those papers; the present improvement is obtained using a more careful argument for
the rescaled pieces.

Lemma 2.2. Let ® be a convex smooth function defined in a neighborhood of the origin in R~
so that ®(0) = V@®(0) = 0. Let U be the flag of subspaces {S™i} defined as in (1.5). Let a be the
multitype of ® near 0, B(w,d) as in (2.3) and p as in (2.6). Let v = Z?;ll a;t vy = Zf;zl a;t.

Then there is a neighborhood U of the origin and 69 > 0 so that for all 0 < 6 < &g and all w € U

1
meas(B(w,d)) < CO%[p(w)]’™*, v <a <5+

Proof. We may assume that a; > 2 since otherwise the theorem follows already from the estimate

(2.4). Let {uy,...,uq 1} an orthonormal basis of R¢~! so that

S™i = span{u;, d—1—dimS™ <i<d—-1} (2.7)
forj =0,...,k—1. By performing a rotation we may assume that the u; are the standard coordinate
vectors.

Define dilations A; by

1

A = (t7ra,. ..t 1), (2.8)

According to [26], [16] we may split



where @) is a convex polynomial satisfying

Q(Apr) = tQ(x) (2.9)
and
2 0°Q
0 < 1Q@)| < Cifel[VQ@)| < Calal* Y |5—=—(a)| (2.10)
= 102:0a;
and the remainder term R satisfies
-1 6‘04 A < Jl/m

‘s o (R( sx))‘ <s (2.11)
for |z| < T and all multiindices o = (aq,...,aq-1) with |a] < N. Since @ is positive away from the

origin and homogeneous with respect to dilations (A;) we have that

a;

where p is as in (2.6); in fact p(y) = Z?:_ll [{y, u;)

Set ®y(y) = 2°®(A, y) and note that ®,(y) = Q(y) + Re(y) where R, and its derivatives tend
to zero uniformly on compact sets, as { — oo.

Denote by a(w) = (a1 (w), ..., aq—1(w)) the multitype of @ at w. Then a(0) = a and by Lemma
2.1 there is M > 0 so that a;(w) < a; for 0 < p(w) < 27M+2 and, by (2.10/11), a;(w) = 2 for
0 < p(w) < 27M+2; note that nothing is said about the position of the spaces S™(w). Now for
any point w there is an open ball U(w) of radius T'(w)/4 and a flag U(w) consisting of I(w) nested
subspaces and an [(w)-tuple m(w) so that for z € U(w) the functions

h= Q%(h) = Q(z + h) = Q(z) = (VQ(x), h)

belong to a class GdTa) O(w), M (w), B(w), m(w), N) so that a;(B(w),m(w)) > a; and
ar (B(w), m(w)) = 2.
By the metric property of the nonisotropic balls B(w,d) there are constants Cy > C7 > 1 and
01 < 1 so that
B(y,0) C {z: C'ply) < plx) < Ciply)} if ply) > Cad; (2.12)

we may assume that ¢ > 22M+4,

We shall now show that there are constants c¢o > 0, Cp > 1 so that for 27¢ < ¢
1
IB(y, 0)| < 6928~ if 271 M < p(y) < 2717 MHL s < 0127 Mt o< a <wy + 5 (2.13)

Let
W ={y:C?27 M2 < py) < O t27MH2) (2.14)

which because of C; > 22M+4 is contained in the open ball of radius 2~ centered at the origin. We
may cover the compact annulus W by finitely many open balls U; with center w; € W and radius

T (w;)/4 so that Q% € GdTai)(b(wi),M(wi),%(wi),m(wi),N) provided that |z — w;| < T'(w;)/2.
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Since ®, converges to @ in the C'V-topology uniformly on compact sets. There is a positive
constant ¢ so that for 27¢ < ¢g the functions
h ®y(x+h) — ®p(x) — (VO,(x), h) (2.15)
belong to G%Y;i)(b(;“) ,2M (w;), B(w;), m(w;), N) if | —w;| < T'(w;)/2. By the finite type property
there is a dg > 0 so that for v < ¢y and = € U; the caps

Wiz, y) C{z: [Re(z) — Re(z) = (VPy(2),2 —2)| <7}
are contained in the double of U;; moreover we have
We(z,7)] < Cy2F2, v < b, (2.16)
by the analogue of (2.4) with exponent 1/2 + vo; here C is independent of £.

Now in order to show that (2.13) holds we assume that C;7'27/=M < p(y) < O7P2==M+1 and
observe that the image of B(y,d) under the linear transformation A, is Wy(Ayey, 26) which is con-
tained in W, in fact in a U; if 26 < &y. Since det A,e = 2% we have |B(y,0)| < 27%|Wy(Ayey, 2°0)]
and (2.13) follows.

Finally if § < C5'2 M=% we use |B(y,d)| = O(¢”) instead and observe that in this range
§e2te=v) < v provided that o > v. This together with (2.13) proves the asserted statement. [

Lemma 2.3. Let ®, U, a, U be as in Lemma 2.2, N > d+aq_1. For £ € R? define
F(§) = /X(y)e—l((ﬁ’,y>+£d<1>(y))dy'

There is a neighborhood Ucu of the origin and a conic neighborhood V of eq so that for £ € V

) < Clostel (S [ ™) veaggem (217
J

Proof. We may assume that (2.7) holds and that the u;’s form the standard basis in R?~!. Observe

that then

d—1
> Iy
i

m
—J ’
=T oy E :|£Z_|ai

=1

with a} = a;/(a; — 1).

Assume that s/2 < p(x) < 2s and s is small. Then |A;/,2| & 1 and |Q.,(A;/57)] < C. But
Qu, (41 /52) = s71H/%Q, (x) so that |Qq, (z)| < st Similarly by (2.11) the remainder term R,
satisfies the same estimate so that

d—1 1
@0, (@) S (D fanl™) ™
k=1

for small  and therefore

d—1 d—1

r
D 1Pa, @))% Sl
i=1 k=1

Now let z(£) be the unique point at which £ is normal to the graph of ®. By the Bruna-Nagel-Wainger
estimate for the Fourier transform (1.4) and Lemma 2.2 we have that

[F(O] S 1E17pla(€)" ™
and since x(§) is determined by &;/&q = £®,, (x(€)) for i = 1,...,d — 1, the estimate (2.17) fol-
lows. O



3. Lattice point estimates

In this section we prove Theorem 1.3. We use a variant of the classical proof (see Randol [24]
for the two-dimensional case). Choose ¢ € C$°(R?) so that ¢ is nonnegative, ((x) = 0 if |z| > 1
and [((x)dz = 1. Define (.(x) = e~9((¢~'x). We work with the e-regularization yq * (. of the
characteristic function of Q2 and define

No(t) = D xia # Gau(k).
kezd
By the Poisson summation formula
No(t) = >~ t95a(2mtk)C(2meth)

keZd
= tvol(Q) + R.(t) (3.1)

where

~

Re(t) =Y t'Xa(2mtk)((2metk).

k0
By the divergence theorem
d ¢
WO = [ 9= Y SR (32)
o 2T
where
F©) = [ (e 9ds(y) 33)
b

th

and n; denotes the i*® component of the outer normal vector np.

Let ' be the set of points P € ¥ at which all principal curvatures vanish. As noticed in [16] it
follows from (2.10/11) that the set IT" is discrete, thus finite by compactness. For every P € T we
choose a narrow conic symmetric neighborhood Vp of the normals {£np}, a small neighborhood Up
of P in ¥ and a C§° function xp whose restriction to X vanishes off I/ and so that xp equals one in a
neighborhood of P. We may arrange these neighborhoods so that the sets VpNn{¢:|¢| > 1}, P €T
are pairwise disjoint and that the normals to all points in a neighborhood of Up are contained in
Vp (thus the Up’s are disjoint too).

Define

Fop(6) = / P @)ns(y)e @ do(y)

If the cones Vp are chosen sufficiently narrow, we have

Fip(€) S

{ min{|¢[~(P), &G2PNep(LL)  ifgeVp 5

Cnlé=" if £ & Vp.
The estimate for £ € Vp follows from Proposition 1.2, and the estimate for & ¢ Vp follows by a

simple integration by parts; namely if ¢t — () parametrizes ¥ near P then |(v/(¢),£)| =~ || for
v(t) € Up and £ ¢ Vp.



Moreover by the Bruna-Nagel-Wainger estimate we have

1.
=2 Fp@ISIET™ p=g+ jnf (P (3.5)
Pell

here we used the definition of I' and the fact that yp equals one near P.

We now estimate the remainder term R.(t) where ¢ < 1/t will be suitably chosen. Let diste
denote the distance taken with respect to the ¢> metric in R?, or Z%. For P € I let

Ap ={k € VpNZI: k #0,disto (k, Rnp) < 3/4}
Bp ={ke€VpNZ: k#0,diste(k,Rnp) > 3/4}
C={ke VARE" #0,k & UperVp}.

Let
. ok,
le(t)z Z d<(2 Etk |2 k|2Fi7P(27Ttk)
keAp
. ks
BL(t)= >t ic2r stk)|2 k|2Fi,p(27rtk)
keBp
; ki
oty = > tiC(2r stk)|2 k|2F1p(27rtk)
keC
Di(t) = th<(2 5tk)|2 I;P (27tk) — > F; p(2ntk))
k#0 Per
then
d .
Re(t) =D (D) + D (Ap(t) + BH(t) + €h(1))). (3.6)
i=1 Pel’

When evaluating 2% we essentially sum over integers in a tubular neighborhood of a line and
by the estimate (2.4) we certainly get

A S 3 ¢tk S e, 3.7)
keAp

Next for the estimation of D% we use the rapid decay estimate in (3.4) to obtain

D] $ S ek S 1N (3.8)
k=0

and for €%, we use (3.5) which yields

(€L (6)] S Cow ST H(1 + [eth]) = (1 + |th]) 1 g i (3.9)
k#0
Finally
; 3
B ()] S S etk 30 p (k) (14 fetk])
k#0
keVp
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and we claim that for A > 1

Stk 2P 0p () (1 + Jetk]) N S AT E P min{1, (et) ) (3.10)

132N
keVp

which implies
B (1)] S et T (P)md g emldmtom), (3.11)

We verify (3.10). Let a = a(P) be the multitype at P. In view of dist(k,Rnp) > 3/4 it is
straightforward to check that

Op(fkts) ~ ep(@ff—g) if |€ — k|oo < 1/2, k € Bp.

Thus we may replace the sum in (3.10) by an integral. After performing a suitable rotation in this
integral we have to show that

B B | i\ v—r2(P)—% , de3 1o (P
g|=3/2ve( de'dey < Ndzmve(P) (3.12)
‘/|5de /|£'|9| | (Z & )

1

Now (Z?;11(|§Z-|/|§|)a§)V*Vri < (& l/IA) 1 (/e1=1/2) with @) (1/a; — 1/2) > —1, and therefore the
integral in (3.12) is bounded by

)\¢7173/27u2(13)/ (& |/ A/ m—1/2) g, < nd-3/2-va(P).
[€1[<A

This shows (3.10).
To finish the proof we note that

N:(t(1 = Ce)) < Nq(t) < N.(t(1 + C¢))

where C is a constant depending only on the geometry of ). Thus, by taking into account the
leading term in (3.1) we see that

Eq(t) < (177177 4 e 4 = (d=1-n)
and the desired estimate follows if we choose ¢ = t=%/(¢=#) This completes the proof of (1.17).

Lower bounds. To show (1.18) we work with our choice ¢ = £(t) = t~%/(?=#), For (1.18) we simply

Ztu —d— 19[7, )

which we already showed to be bounded above. However we have to verify the claim that

set

limsup,c., |Gp(t)| > 0 in the case where np = *e;.

We now assume that np = ¢; (the case np = —e; is handled in the same way). Then define

Gp(t) = t"WH1=d N (om) =1l (2mt =/ 1) ke;)sign (k) k| L F p (2mtre;).
KEZ\{0}
11



We split this sum into parts Gp(t) = I(t) + 1I(t) where

Ip(t) = (2m) L (D)+ Z sign(k)|k| L F; p(2ntre;)
KEZ\{0}
IIp(t) = (2m) "1 (P)+1 Z (1- Z(Qﬂt_”/(d_“)l-@ei))sign(/@)|n|_1Fi7p(27rtl<oei).
KEZ\{0}

For the estimation of II we note that |(1 — E(27rt"‘/(‘i*“)mei))| < min{1, ¢t #/(4=1W%} with and
since F; p(2mtre;) = O((tk) " we get the estimate

11(0)] S 17
To examine I(t) we parametrize by our assumption on np = e;

FpCrtie) =P [ o)1+ V)P ey
yle I—1

where ® = ®F is convex, vanishes of second order at the origin of R¢~! and has multitype a(P)
there; xo is smooth, compactly supported and equal to one in a neighborhood of the origin. By
the convexity (P,np) = (P,e;) # 0. To examine the integral we may use an asymptotic expansion
derived in Schulz [26] (stated there for £ — oo, but the statement for kK — —oo follows similarly).
We obtain

F, p(2mtre;) = 6_2”’5“@’6’3)&_”60(P)eg_'jSign(“) + O™

where ¢o(P) > 0 and 7 is the reciprocal of the least common multiple of ay,...,a,. Thus

I(t) = Co(P)Tr_l Z |I€|_V_1 sin (271'I€t<P, €i> — 71-/(21/)) + O(K,_V_l_n).

x>0

The sum defines a periodic function which is not identically zero, by the uniqueness theorem
for Fourier series. Combining this with the estimation for the error term II(t) we see that
lim sup,_, . |Gp(t)| > 0.

Remark. For almost all rotations the estimates for the error term improves. There is r > 2 so that
|Eaq(t)] < C(A1 =5 logh" (2 + 1)
indeed C is in LY(S0O(d)) for ¢ < r. As in [2] this is proved using a result on the maximal function
g

M (8) = supr! D2 (g (r6)]

>0

which was shown by Svensson [30] to be in L% (S9! for some ¢y > 2 (under our assumption of
finite line type, see also Randol [25] for a similar result with additional real analyticity assumption).

~

Indeed, let R a(t) = 3, . Xa(2mtAk)((27etk) and

M;(A) = sup |Re; a(t)], withe;= 9=2jd/(d+1)
25 <t<2i+1
12



then for ¢ < qo

M5l

Laso@) < 24D (1 + |€j2jlk|)_N(2jIkl)_(d+1)/2(/IM(Aﬁ)quA)l/q
k0

S ]

La(Sd-1)
by the (standard) choice of ;. But

11 , —1 1/
[Baa(Ol 75105772 40) S 14 (30 1M, ()27 ED (4 ) o)

3>0
which is in L?(SO(d)) for r < go.

We remark that the methods in W. Miiller’s paper [22] could be used to improve the above
bound to |Eaq(t)] < C(A)tdflfg_jrifﬁ where = () > 0 and C is finite almost everywhere.

4. Bochner-Riesz multipliers - the case of one nonvanishing principal curvature

In this section we shall prove a general theorem concerning multipliers of Bochner-Riesz type
associated to surfaces with at least one nonvanishing principal curvature. Then, in the subsequent
section, we shall deduce Theorem 1.1 by rescaling arguments.

In what follows M, will be the space of Fourier multipliers on LP(R?); ||m||, is the operator
norm of the operator Ty, defined by T,, f(§) = m(f)f(f)

We split variables in R? as & = (Z, &4) and in the statement of the Proposition we further split

€= (&,¢) € R x RE2, The proof of the following result uses the ideas from the two-dimensional
case, see [9], [6].

Proposition 4.1. Lete >0, N > d+1+2/¢ and let g € CV(R4™L). Suppose that there is a cube
U centered at the origin and a > 0 so that

0? ,
a—g(glvf ) Z a

in U. Let x be supported in U and let ¢ be a smooth function supported in (1/2,2). Let 0 < § < 1
and

m;(€) = x()(6~ " (€a — 9(&1,"))).-

Then
_d-2_
lmsllar, < Ced™ 7 7%,

where C. depends only on a, €, U, the CN(U) norms of the functions g, x and the CL norm of ¢.

Proof. We may assume that U is the unit cube, and that the support of x has small diameter. We
decompose ms = ), msx where k = (ky, ..., kq—1) ranges over (d—2)-tuples of integers k; < co1/?
and

d—1
ms (&) =ms() [] (6726 — ki)
=2

13



for suitable ¢ € C§° satisfying S2°° __ (s —n) = 1, so that supp ¢ C [~1,1]. Let ¢ € C§°([-2,2))

n=—oo

so that zz is equal to 1 on the support of .

Denote by T}, the convolution operator with Fourier multiplier ms; and by R, the convolution
operator with Fourier multiplier ¢»(6='/2¢" — k). Note that |Rg||r—z» < C, 1 < p < 0o. Then for

2<p< o
’ 1/’
|3 o], < (S lowlly) ™
3 P &

which follows for p = oo from Minkowski’s inequality and for p = 2 by orthogonality; for 2 < p < o
one uses interpolation. Since T, = R Ty Ry, it follows that

|37
k

and therefore it suffices to show that

< Co~ 2 qup || Ty Lo 1o

L*— L4 k

I Twllpasrps SO7°. (4.1)

The estimate (4.1) is proved using arguments in Cérdoba [6] which we will sketch. For v € Z
we define operators T, , and S, by S/',,\f(g) = (671/2¢ —v) and T/k,,\f(f) = (612 — I/)m(f)
Then T}, = 3, Tk, S, f where the sum is extended over integers v with |v| K 6-1/2 gince we assume
that the support of y is small.

Now
IS 5] - | S50
< Y | X @uSn@uso)| (42)
0:2061/2L1 (v,v'):
lv—v' |~2*

It can be checked that the family of functions (T% .S, f)(Tk,.» S, f) has an orthogonality property
which implies that

| £ usnmoseo],s(Smosst) T, ®

|v—v'|~2t
The proof of (4.3) is based on an idea of C. Fefferman [9]; in higher dimensions one uses the following

Lemma 4.2. Suppose that a’ € R?2, |a'| < 1, and the vectors £, 7, C, @ satisfy
(i) €41 —C—B =0,
(i) & > G >0, m <wp <0,
(iii) |€], 17, <], [B] € [27161/2, 24181/,
(iv) &, ', ' and w' belong to the cube of sidelength 46'/% centered at a'.

Then

9(&) + g(iD) — 9(C) — 9(@) = 26" (|1 = G| + [m — ) (4.4)
14



In (4.4), ¢ depends only on the lower bound of ge,e, and the C* norm of g in supp x.

Sketch of Proof. A Taylor expansion about the origin yields

g&) +9() —g(Q) —g@) =TI+ 1T+ 11T +1V

where

1

I= 595151 (0)(€f + 77% - Clz - Wf)

Il = %(51 (9,167(0),€") + 11 (ge,¢7(0),1") — C1(ge,er(0), ¢') — wi{ge, e (0),w"))
I = %((5',95'5’ (0)E") 4+ (', gerer (0)n") = (¢, gerer (0)¢) — (W', gerer (0)w"))

IV =r(§) +r() —r(C) —r@)
where r vanishes of third order at the origin. (4.4) is proved by verifying

I 2550 2(160 = G| + i — wil)
I1<C2%
11 <C6
IV < C2%5(|&1 — G| + |m — wil).

The straightforward calculation is omitted; we note that formula (6.30) in [21] turns out to be useful
in order to carry it out. O

Proof of Proposition 2.1, cont. By (4.3) it remains to show that

|(Smeosore) ™|, s o1 43)

Let I'y(t) = (—Vgg(t, 6'/2k), 1) which gives a one parameter family of vectors normal to %,,.

For o > 2 let Ry, be the set of all cylinders whose base is a d — 2 dimensional ball of radius s
and whose height is s (any s > 0), so that the axis is parallel to T'y(¢) for some |¢| < 1.

Define the maximal function

1
Miof@) = sup — / 1F(9)ldy.
TER |R| R
RERK,»

Then arguing as in [6] and using standard estimates for the kernel of T}, ,, we see that
/Z|Tk7,,5,,f(x)|2w(x)dx < /Z|syf(x)|2Mk,5,l/2w(x)dx.

The L? norm of (3, ]S, f|*)*/? is bounded by the L” norm of f, for p > 2 (see [6]) and therefore
we can finish our proof by using duality and showing that

||M/»“,crf||2 < CEUE“f“? (4.6)
15



uniformly in k.

If we knew that for every £ the function ¢ — (£, T (¢)) changed sign at most M times then
it would follow from a result by Cérdoba [7] that (4.6) holds with o° replaced by C;M[logo]“?.
This hypothesis may not be satisfied, but we can get around this point by a simple approximation.
Namely devide [—1,1] into 0°/? intervals [a;, b;] of lengths 0=/, Let P ;(t) be the vector valued
Taylor polynomial of degree [2/¢] of Vgg(~, 6'/2k) expanded about a;, and let Ty ;(¢) = (=P ;(1),1).
Then |Tx(t) — Ty ;(t)] < Co™! for t € [aj, bj].

Let Ry,»,; be the set of all cylinders whose base is a d — 2-dimensional ball of radius s whose
height is s, so that the axis is parallel to I'; ;(¢) for some |¢| < 1. If M}, ; denotes the associated
maximal operator then it is immediate that My, f < >°; My, f where the sum contains only
O(0°/?) terms. Cérdoba’s result yields the L? bound C.[logo]“? for each My, ;. This finishes the
proof of (4.6). O

5. Proof of Theorem 1.1

The L' version of the theorem is well known, and therefore by an interpolation argument one
has to show the boundedness on L*/3(R?), or, equivalently, on L*(R%).

We split (1 — p(€))2 = ho(p(€)) + h1(p(€)) where ho is supported in {t: ¢ < 1 — €y} for suitable
small €y and h; is supported in {t : ¢ > 1 — 2¢p}. Then ho(p(€)) is a Fourier multiplier in M;; the
mild singularity at the origin can be handled e.g. by an averaging argument in [8, p. 248], replacing
p by p" for large N.

Let & € ¥,. It suffices to show that there exists a neighborhood V of £° (in R?) so that
hi(p(€))X is a multiplier on R? for A > (d — 2)/4 if Y € C* and supported in V. The multiplier
norm is invariant under rotations and we may assume that ¥, can be parametrized as a graph
€4 = G(E), € € R near €2, so that p(&) < 1if & > G(€). We write

_ = o 1T=p(&) \*
X (p(€)) = X(OH(€)(€a — G(E))  where H(f)—(m).

A Taylor expansion of p about {; = G(£) shows that H is smooth on supp x; therefore by the algebra
property of M, it suffices to show that X(&)(&q — G(fl,g’))i belongs to My if supp Y is sufficiently
close to £°.

Let a = (a1,...,aq—1) be the multitype of £, at £°, in the sense of §1.2. By an affine trans-
formation we may assume that & = 0, G(0) = VG(0) = 0 and that G = @ + R where ) and R

are as in the proof of Lemma 2.2: The function @ is mixed homogeneous of degree (as,...,aq—1),
~ 1 ~ ~

ie. if Ag(§) = (5%51, .o, 8%=1& 1) then @ satisfies Q(A45(€)) = sQ(§). The remainder term R

satisfies |s~ 1 glg (R(ASSN))‘ < Curns™/™ for small & and s and all multiindices a = (..., a4—1)

with || < N. In particular |[R(€)| < Q(£)/10 if Q(£) < 2=7F2 for suitably large ro.

Next we set R,.(§) = 2"R(A4y-+-§), so that G, = @ + R, tends to G in the C* topology, as

r — 00. Since the Hessian of @ has rank 1 where 1/4 < Q(£) < 4 (see (2.10)) the same is true for

" is bounded below

G, = Q + R, if r is large; we may assume that the matrix norm of (Q + R;)’
uniformly in r if r > rp.

16



Let ¢ be supported in (1/2,2) such that >, -, ¢1(2"s) = 1 for 0 < s < 1. Then we have to
show a bound for the My norm of

ki (€) = X(€)d1 (27 (€4 — G(E1,€))) (€a — G(E1, €M) -

Here we may assume that Y (£) = 0 when Q(g) > 2770,

We now perform a further decomposition in terms of G(£). Let n € C§°(R) so that n(s) = 1 if
|s| < 1/2and n(s) = 0if |s| > 1; also let 17 = n and for integer r > 0 let n,.(s) = (27 "s) —n(27"1s).
Let

Kjn(€) = 15 (E)na (2 G(E))

so that k;,, is supported where |&; — G(€)| ~# 277 and G(§) =~ 2" 7 if n > 0and G(§) <277 ifn =0.
Using the assumption on the support of the cutoff function X we see that ;, =0 for j <n +ro.

For the pieces &;, we employ a scaling argument (for a similar argument in two dimensions see

[12]). For the scaling we use the dilations & — (Ayn—;(€),2"7&,). Define for n > 0

Fin (€ €2) = 012" (Ea — Gi—n(€1,€)))(Ea — Gin(1,€))Am (G—n(€));

for n = 0 we use the same formula but with n; replaced by n =ny. Then
jn(Agn—3&,277€g) = 2N (Agu—i €, 27T E)R 0 (€, E0)

so that

Iknllag, S 20 Rjnllag,

It is now easy to see that the C* norm of %;¢ is < 277" and ;¢ is supported in a fixed ball
with diameter independent of j.

Therefore
1Fjollag, $277%, 1<p<oo.

P~

Note that for j — n > ro the multipliers K;, are supported where 1/4 < Q(§) < 4, and by
construction the matrix norm of G}’_n is in this region bounded above and below, for j —n > rg.
We may apply Proposition 4.1 (with § = 27"), to see that for 0 <n < j—rg

[Rjnllar, S 2007 n(A=55%)

and the assertion of Theorem 1.1 follows by summing over 0 <n < j—rg, j >0. O
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