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Abstra
t. We use s
aling properties of 
onvex surfa
es of �nite line type to derive new estimates for

two problems arising in harmoni
 analysis. For Riesz means asso
iated to su
h surfa
es we obtain sharp

L

p

estimates for p > 4, generalizing the Carleson-Sj�olin theorem. Moreover we obtain estimates for the

remainder term in the latti
e point problem asso
iated to 
onvex bodies; these estimates are sharp in

some instan
es involving suÆ
iently 
at boundaries.

1. Introdu
tion

Let 
 be a 
onvex domain in R

d

with smooth boundary. We assume that �
 is of �nite line

type, that is, at ea
h point ea
h tangent line has �nite order of 
onta
t.

We dis
uss two problems in this paper. Both problems have in 
ommon that progress 
an be

made using some approximate s
aling properties of �
. We derive an extension of the Carleson-

Sj�olin theorem 
on
erning L

p


onvergen
e results for Riesz means de�ned by a distan
e fun
tion

asso
iated to 
; we assume that 1 � p � 4=3. We also give asymptoti
s for the number of integer

latti
e points inside large dilates of 
; the bounds for the error terms are sharp in some 
ases where

there exist points with all lines tangent to the boundary having high order of 
onta
t with �
.

1.1. Riesz means. We assume that the origin belongs to the interior of 
. Let � : R

d

! [0;1)

be homogeneous of degree 1 be the Minkowski fun
tional asso
iated to 
; i.e. � is homogeneous of

degree one, so that �(�) = 1 if � 2 �
. The boundary �

�

:= �
 is then the unit sphere for the

generalized distan
e fun
tion �. The Bo
hner-Riesz operator asso
iated to � is de�ned by

\

S

�;�

f(�) = (1� �(�))

�

+

b

f(�); (1.1)

here our de�nition of the Fourier transform is

b

f(�) =

R

f(y)e

�{hy;�i

dy. It is well known that if

1 � p <1 the L

p

boundedness of the Bo
hner-Riesz operator implies L

p


onvergen
e of the Riesz

means F

�1

[(1� �=t)

�

+

b

f ℄ to the limit f if f 2 L

p

and t!1.

A ne
essary 
ondition for L

p

boundedness is

� > �(p) = dj1=p� 1=2j � 1=2 (1.2)

Indeed in view of the 
ompa
t support of the multiplier it is ne
essary for L

p

boundedness that the

inverse Fourier transform of (1� �)

�

+

belongs to L

p

. Using standard asymptoti
 expansions one 
an

show (working near points on �

�

where the 
urvature does not vanish) that (1.2) is ne
essary for

F

�1

[(1� �)

�

+

℄ 2 L

p

.
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It is known [9℄, [29℄ that the validity of an L

2

restri
tion theorem for the Fourier transform

implies the L

p

boundedness of the Bo
hner-Riesz operator. Sin
e �

�

is of �nite type, say � n, it

follows from [3℄ that the Fourier transform of




d�(�) of a smooth density 
arried by �

�

is O(j�j

��

) for

some � with � � (d� 1)=n. Using the appropriate versions of the Stein-Tomas restri
tion theorem

([10℄) one 
an show that L

p

boundedness holds for 1 � p � 2(�+1)=(�+2) and � > �(p) (
f. [29℄).

Note that 2(�+ 1)=(�+ 2) = (2n+ 2d� 2)=(2n+ d � 1) for the example x

d

=

P

d�1

i=1

x

n

i

with even

n, so that the range obtained in this way is small for large n.

Theorem 1.1. Suppose that d � 2, 1 � p � 4=3, � > d(1=p� 1=2)� 1=2 and that �

�

is of �nite

line type. Then S

�;�

is bounded on L

p

(R

d

).

It is 
onje
tured that L

p

boundedness holds for the same range of exponents as for the sphere.

The 
onje
ture for the sphere is that L

p

boundedness should hold for � > �(p) for p < 2d=(d+ 1).

This is 
urrently known only in two dimensions, see Carleson and Sj�olin [4℄. Sj�olin [28℄ extended

this result to arbitrary planar domains with smooth boundary, for some variants 
on
erning 
onvex

domains in the plane with nonsmooth boundary see also the more re
ent paper by Ziesler and the

third author [27℄. For partial results in higher dimensions, in the 
ase that the Gau� 
urvature of

�

�

does not vanish, we refer to Bourgain [1℄ and for ba
kground to [29℄. Our proof of Theorem 1.1

uses a variant of C�ordoba's geometri
al proof [6℄ of the Carleson-Sj�olin theorem and res
aling.

1.2 Multitype and an estimate for the Fourier transform of surfa
e 
arried measure.

A pre
ise estimate of the Fourier transforms of surfa
e 
arried measure is due to Bruna, Nagel

and Wainger [3℄. Let � = �
 and H

P

(�) the aÆne tangent plane at P 2 �, and let

B(P; Æ) = fy 2 � : dist(y;H

P

(�)) < Æg: (1.3)

Then

j




d�(�)j � C

�

jB(P

+

; j�j

�1

)j+ jB(P

�

; j�j

�1

)j

�

(1.4)

where P

�

are the points on � for whi
h � is a normal ve
tor and jBj denotes the surfa
e measure of

B. For many problems it is important to know not just the size of the balls but also the distribution

fun
tion of x 7! jB(x; Æ)j and how it relates to the notions of multitype and type. We review the

de�nition of multitype whi
h is impli
it in S
hulz [26℄, see also [17℄.

Consider a smooth real valued fun
tion � de�ned in a neighborhood of the origin in a d � 1-

dimensional Eu
lidean ve
tor spa
e E

d�1

so that �(0) = r�(0) = 0. We say that a ve
tor v in E

d�1

has 
onta
t of order at least n+ 1 if

�(sv) = O(s

n+1

) if s! 0:

The sets

S

n

= fv 2 E

n

: v has 
onta
t of order at least n+ 1g (1.5)

are linear subspa
es of E

d�1

and there are even integers m

1

; : : : ;m

k

so that m

1

< � � � < m

k

,

1 � k � d� 1 and m

0

:= m

1

� 1 � 1 and

0 = S

m

k

( � � � ( S

m

0

:= E

d�1

; (1.6)
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moreover the sequen
e is maximal, in the sense that S

n

= S

m

k

if m

k�1

< n � m

k

: De�ne

a

i

= m

j

if d� 1� dimS

m

j�1

< i � d� 1� dimS

m

j

; j = 1; : : : ; k: (1.7)

The d� 1-tuple a = (a

1

; : : : ; a

d�1

) is then 
alled the multitype of � at 0.

To illustrate the above de�nitions 
onsider a 
onvex body whose boundary passes through the

origin and nearby is given by the equation x

d

=

P

d�1

i=1

jx

i

j

a

i

where the a

i

are even integers, with

a

i

� a

i+1

, 1 � i � d � 2. In this 
ase the multitype is (a

1

; : : : ; a

d�1

) and the subspa
es S

m

above

are S

m

= span(fe

i

: a

i

> mg) (and S

m

= f0g if m � a

d�1

.)

We now �x P 2 �, 
hoose a unit normal n

P

and parametrize � near P as a graph over its

tangent plane at P . Thus the parametrization is given by

v = �(v) 7! P + v +�(v)n

P

(1.8)

for v 2 T

P

�, and � is a 
onvex fun
tion vanishing of se
ond order at the origin. We perform the

above 
onstru
tion for �(v) de�ned on E

d�1

= T

P

� and obtain a 
ag of subspa
es

0 = S

m

k

P

( � � � ( S

m

0

P

= T

P

�: (1.9)

Let W

j

be the orthogonal 
omplement of S

m

j

P

in S

m

j�1

P

, j = 1; : : : ; k, then

T

P

� =W

1

� � � � �W

k

(1.10)

We denote by �

P

j

the orthonormal proje
tion on T

P

� to W

j

. We also have a similar de
omposition

and proje
tions �

P

j

to W

�

j

on T

�

P

�, here we let W

�

j

the spa
e of linear fun
tionals on W

j

extended

by 0 on the orthogonal 
omplement of W

j

. We 
an extend these proje
tions to linear maps on

T

�

P

R

d

' (R

d

)

�

by de�ning �

P

j

n

P

= 0.

On T

�

P

� we de�ne a nonisotropi
 distan
e fun
tion �

�

by

�

�

(�) =

k

X

j=1

j�

P

j

�j

m

j

m

j

�1

; (1.11)

here j � j denotes the Eu
lidean distan
e in W

j

. If � 2 T

�

P

R

d

is taken from a suitable 
oni
 neighbor-

hood of n

P

and �

P

denotes the proje
tion to T

�

P

� we de�ne

�

P

(�) = �

�

�

�

P

�

h�; n

P

i

�

: (1.12)

Finally we set for l � d� 2

�

l

(P ) =

d�1

X

i=l

a

�1

i

=

k

X

j=1

dimS

m

j�1

P

� dimS

m

j

P

m

j

(1.13)

and write �(P ) � �

1

(P ). An alternative des
ription of �(P ) (see [16℄) is

�(P ) = supfq : dist(�; H

P

�) 2 L

q

(�)g; (1.14)

in fa
t for q = �(P ) the fun
tion dist(�; H

P

�)

�1

belongs to the spa
e L

q;1

(�).

Our result for the Fourier transform of surfa
e 
arried measure is
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Proposition 1.2. Let P 2 �
. Then there is a neighborhood U of P and a 
oni
 neighborhood V

of f�n

P

g in R

d

so that for all � 2 C

1

0

(U) and all � 2 V with j�j � 1 we have

j

d

�d�(�)j . k�k

C

N minfj�j

��

; j�j

�

1

2

��

2

[�

P

(�)℄

���

2

�

1

2

g;

here k�k

C

N = max

��N

k�

(�)

k

L

1

(U)

and N is suÆ
iently large.

In this statement N > d+m

k

will suÆ
e. Note the proposition is an improvement over previous

results only in the 
ase where all the prin
ipal 
urvatures vanish (and thus a

1

> 2).

1.3. A latti
e point estimate.

Let

N




(t) = 
ard(t
 \ Z

d

): (1.15)

It is well known (and elementary) that N




(t) is asymptoti
 to t

d

vol(
) as t!1 and that the error

term

E




(t) = N (t) � t

d

vol(
) (1.16)

as O(t

d�1

). Moreover if �
 has suitable 
urvature properties then the error term improves; in

parti
ular if the Fourier transform of the surfa
e measure on the boundary satis�es




d�(�) = O(j�j

��

)

then the 
lassi
al method (see e.g. [11℄, [13, Theorem 7.7.16℄ and [24℄) yields E




(t) = O(t

d�1�

�

d��

).

This estimate however is not sharp, and several authors beginning with van der Corput have obtained

improvements for the 
ase of nonvanishing Gau� 
urvature; see the monographs by Kr�atzel [18℄ and

Huxley [14℄, and in parti
ular the papers by Kr�atzel and Nowak [20℄ and re
ent improvements by W.

M�uller [22℄ for results on general 
onvex bodies with nonvanishing 
urvature in higher dimensions.

In [24, I℄, [25℄ Randol obtained better estimates for the 
ase of 
onvex domains in the plane with

�nite type boundary; these are sharp for 
 = fx : x

k

1

+x

k

2

� 1g where k � 4 is even. See also Nowak

[23℄ for more re�ned results. Generalizations to domains of the form 
 = fx : x

k

1

+ :::+ x

k

d

� 1g are

in [24, II℄, [19℄.

Here we give a version for general 
onvex bodies with �nite type boundary in higher dimensions.

Let �(P ) = �

1

(P ) and �

2

(P ) as in (1.13) above.

Theorem 1.3. Let

� = min

P2�


�(P ); � =

1

2

+ min

P2�


�

2

(P ):

Then there is a 
onstant C depending on 
 so that

jE




(t)j � C




(1 + t

d�1��

+ t

d�1�

�

d��

): (1.17)

Spe
i�
ally, if � is the set of all points P 2 �
 at whi
h all prin
ipal 
urvatures vanish then

E




(t) =

X

P2�

t

d�1��(P )

G

P

(t) +O(t

d�1�

�

d��

) (1.18)

where G

P

(t) is bounded as t!1. If the normal line determined by n

P


oin
ides with Re

i

for some

i 2 f1; : : : ; dg then lim sup

t!1

jG

P

(t)j > 0.

We note that the number �=(d � �) is greater then (2d � 1)

�1

sin
e � > 1=2. In parti
ular

if the Gau� 
urvature only vanishes at one point at the surfa
e and if � < �=(d � �) then there
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is A 2 SO(d) so that lim sup

t!1

t

��d+1

jE

A


(t)j is positive (for other model 
ases 
ompare [19℄,

[23℄). Note that the sum in (1.18) over P 2 �, sin
e � is a dis
rete subset of �
 (as noted in [16℄,


f. the proof of Lemma 2.2. below). We remark that it is well known that for almost all rotations

A 2 SO(d) the error terms E

A


(t) improve, see [5℄, [31℄, [32℄, [23℄, [15℄ and [2℄.

We shall derive the estimate for the Fourier transform in Proposition 1.2 in the next se
tion. x3


ontains the appli
ation to the latti
e point problem. In x4 and x5 we prove results on Bo
hner-Riesz

multipliers; here we �rst 
onsider the 
ase of one nonvanishing prin
ipal 
urvature and then in x5

the 
ase of 
onvex domains.

Notation: Given two quantities A, B we write A . B if there is an absolute positive 
onstant C

so that A � CB. We write A � B if A . B and B . A.

A
knowledgement: We thank the referee for pointing out some misprints and for making a

suggestion 
on
erning the exposition.

2. An estimate for Fourier transforms of surfa
e 
arried measures

We begin by reviewing some fa
ts about 
lasses of 
onvex fun
tions in [3℄, [26℄, [16℄, [17℄.

Let B

T

� R

n

denote the open ball of radius T 
entered at 0; it is always assumed that T � 1.

Fix a 
ag V of subspa
es 0 = V

k

( � � � ( V

0

of E

d�1

, with V

0

= E

d�1

, and let m = (m

1

; : : : ;m

k

)

be a k-tuple of even positive integers with m

1

< � � � < m

k

. For 0 < b � M , N 2 Z

+

, N > m

k

, let

S

d�1

T

(b;M;V;m;N) be the 
lass of all C

N

(B

T

) fun
tions g with the property that

g(0) = rg(0) = 0

d

2

(dt)

2

g(x+ t�)

�

�

t=0

� 0 for all � 2 S

d�2

; x 2 B

T

max

2�j�m

l

�

�

�

�

d

dt

�

j

g(x+ t�)

�

�

t=0

�

�

�

� b for all � 2 S

d�2

\ V

l�1

; x 2 B

T

max

j�j�N

�

�

�

�

�

�x

�

�

g(x)

�

�

�

�M for all x 2 B

T

:

(2.1)

Here S

d�2

denotes the unit sphere in E

d

. We also de�ne a(V;m) = (a

1

(V;m); : : : ; a

l

(V;m)) by

a

i

(V;m) = m

j

(V;m) if d� 1� dimV

j�1

< i � d� 1� dimV

j

; (2.2)

in analogy to (1.7).

Now if P 2 � (with � = �
 as in the introdu
tion) and E

d�1

= T

P

� then let V

j

= S

m

j

P

� T

P

�

as in (1.5). Let � be as in (1.8). Then there is T > 0 and a neigborhood U of 0 so that for all w 2 U

the fun
tions y 7! �(w+ y)�	(w)�hy;r

w

�(w)i belong to S

n

T

(b;M;V;m;N); moreover there are

positive 
onstants 


0

; C

0

; C

1

so that

B(w; Æ) = fy : j�(y)� �(w)� hr

w

�(w); y � wij � Æg (2.3)

belongs to B

T

if Æ � 


0

T

m

k

and satis�es

meas(B(w; Æ)) � CÆ

�

; (2.4)

see Proposition 2.1 in [17℄.
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Lemma 2.1. Suppose that � 2 S

d�1

T

(b;M;V;m;N) and suppose that a = (a

1

; : : : ; a

d�1

) is the mul-

titype at the origin. Let 	

w

(y) = �(y)��(w)�hr

w

�(w); y�wi and let a(w) = (a

1

(w); : : : ; a

d�1

(w))

be the multitype of 	

w

at the origin. Then there is a neighborhood U of the origin so that a

i

(w) � a

i

for i = 1; : : : ; d� 1 and all w 2 U .

Proof. Let S

m

i

be as in (1.5) and let ` > dimS

m

i

. Re
all that S

n

= S

m

j�1

for m

j

< n � m

j�1

.

Using 
ontinuity and 
ompa
tness arguments together with the de�nition of the spa
es S

m

i

we see

that there is a neighborhood U �

e

U of the origin so that for every w 2

e

U , every y 2 U and every

`-tuple of orthonormal ve
tors fu

1

; : : : ; u

`

g

`

X

i=1

X

s�m

j

�

�

(hu

i

;r

y

i)

s

	

w

(y)

�

�

� b

0

> 0: (2.5)

The result of the Lemma follows qui
kly from the de�nition of the multitype. �

We now let � denote the graph of �. On T

0

� = R

d�1

we de�ne a nonisotropi
 distan
e fun
tion

� by

�(y) =

k

X

j=1

j�

j

yj

m

j

; (2.6)

note that that the unit ball for �

�

in (1.11) is the polar set for the unit ball for �.

The following Lemma gives an improvement of estimates in [16℄ and [17℄. A res
aling argument

is used as in those papers; the present improvement is obtained using a more 
areful argument for

the res
aled pie
es.

Lemma 2.2. Let � be a 
onvex smooth fun
tion de�ned in a neighborhood of the origin in R

d�1

,

so that �(0) = r�(0) = 0. Let V be the 
ag of subspa
es fS

m

j

g de�ned as in (1.5). Let a be the

multitype of � near 0, B(w; Æ) as in (2.3) and � as in (2.6). Let � =

P

d�1

i=1

a

�1

i

, �

2

=

P

d�1

i=2

a

�1

i

.

Then there is a neighborhood U of the origin and Æ

0

> 0 so that for all 0 < Æ � Æ

0

and all w 2 U

meas(B(w; Æ)) � CÆ

�

[�(w)℄

���

; � � � �

1

2

+ �

2

:

Proof. We may assume that a

1

> 2 sin
e otherwise the theorem follows already from the estimate

(2.4). Let fu

1

; : : : ; u

d�1

g an orthonormal basis of R

d�1

so that

S

m

j

= spanfu

i

; d� 1� dimS

m

j

< i � d� 1g (2.7)

for j = 0; : : : ; k�1. By performing a rotation we may assume that the u

i

are the standard 
oordinate

ve
tors.

De�ne dilations A

t

by

A

t

x = (t

1

a

1

x; : : : ; t

1

a

d�1

x): (2.8)

A

ording to [26℄, [16℄ we may split

�(x) = Q(x) +R(x)

6



where Q is a 
onvex polynomial satisfying

Q(A

t

x) = tQ(x) (2.9)

and

0 < jQ(x)j � C

1

jxjjrQ(x)j � C

2

jxj

2

X

i;j

�

�

�

�

2

Q

�x

i

�x

j

(x)

�

�

�

: (2.10)

and the remainder term R satis�es

�

�

�

s

�1

�

j�j

�x

�

�

R(A

s

x)

�

�

�

�

. s

1=m

(2.11)

for jxj � T and all multiindi
es � = (�

1

; : : : ; �

d�1

) with j�j � N . Sin
e Q is positive away from the

origin and homogeneous with respe
t to dilations (A

t

) we have that

Q(y) � �(y)

where � is as in (2.6); in fa
t �(y) �

P

d�1

i=1

jhy; u

i

ij

a

i

:

Set �

`

(y) = 2

`

�(A

2

�`y) and note that �

`

(y) = Q(y) +R

`

(y) where R

`

and its derivatives tend

to zero uniformly on 
ompa
t sets, as `!1.

Denote by a(w) = (a

1

(w); : : : ; a

d�1

(w)) the multitype of Q at w. Then a(0) = a and by Lemma

2.1 there is M > 0 so that a

i

(w) � a

i

for 0 � �(w) � 2

�M+2

and, by (2.10/11), a

1

(w) = 2 for

0 < �(w) � 2

�M+2

; note that nothing is said about the position of the spa
es S

m

(w). Now for

any point w there is an open ball U(w) of radius T (w)=4 and a 
ag V(w) 
onsisting of l(w) nested

subspa
es and an l(w)-tuple m(w) so that for x 2 U(w) the fun
tions

h 7! Q

x

(h) = Q(x+ h)�Q(x)� hrQ(x); hi

belong to a 
lass S

d�1

T (w)

(b(w);M(w);V(w);m(w); N) so that a

i

(V(w);m(w)) � a

i

and

a

1

(V(w);m(w)) = 2.

By the metri
 property of the nonisotropi
 balls B(w; Æ) there are 
onstants C

2

� C

1

� 1 and

Æ

1

� 1 so that

B(y; Æ) � fx : C

�1

1

�(y) � �(x) � C

1

�(y)g if �(y) � C

2

Æ; (2.12)

we may assume that C

1

� 2

2M+4

.

We shall now show that there are 
onstants 


0

> 0, C

0

> 1 so that for 2

�`

� 


0

jB(y; Æ)j � Æ

�

2

`(���)

if 2

�l�M

� �(y) � 2

�l�M+1

; Æ � C

�1

0

2

�M�`

; 0 � � � �

2

+

1

2

: (2.13)

Let

W = fy : C

�2

1

2

�M�2

� �(y) � C

�1

1

2

�M+2

g (2.14)

whi
h be
ause of C

1

� 2

2M+4

is 
ontained in the open ball of radius 2

�M


entered at the origin. We

may 
over the 
ompa
t annulus W by �nitely many open balls U

i

with 
enter w

i

2 W and radius

T (w

i

)=4 so that Q

x

2 S

d�1

T (w

i

)

(b(w

i

);M(w

i

);V(w

i

);m(w

i

); N) provided that jx� w

i

j � T (w

i

)=2.
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Sin
e �

`


onverges to Q in the C

N

-topology uniformly on 
ompa
t sets. There is a positive


onstant 


0

so that for 2

�`

� 


0

the fun
tions

h 7! �

`

(x+ h)� �

`

(x)� hr�

`

(x); hi (2.15)

belong to S

d�1

T (w

i

)

(

b(w

i

)

2

; 2M(w

i

);V(w

i

);m(w

i

); N) if jx�w

i

j � T (w

i

)=2. By the �nite type property

there is a Æ

0

> 0 so that for 
 � Æ

0

and x 2 U

i

the 
aps

W

`

(x; 
) � fz : j�

`

(z)� �

`

(x)� hr�

`

(x); z � xij � 
g

are 
ontained in the double of U

i

; moreover we have

jW

`

(x; 
)j � C


1

2

+�

2

; 
 � Æ

0

; (2.16)

by the analogue of (2.4) with exponent 1=2 + �

2

; here C is independent of `.

Now in order to show that (2.13) holds we assume that C

�1

1

2

�l�M

� �(y) � C

�1

1

2

�l�M+1

and

observe that the image of B(y; Æ) under the linear transformation A

2

` is W

`

(A

2

`y; 2

`

Æ) whi
h is 
on-

tained in W , in fa
t in a U

i

if 2

`

Æ � Æ

0

. Sin
e detA

2

` = 2

`�

we have jB(y; Æ)j . 2

�`�

jW

`

(A

2

`y; 2

`

Æ)j

and (2.13) follows.

Finally if Æ � C

�1

0

2

�M�`

we use jB(y; Æ)j = O(Æ

�

) instead and observe that in this range

Æ

�

2

`(���)

. Æ

�

, provided that � � �. This together with (2.13) proves the asserted statement. �

Lemma 2.3. Let �, V, a, U be as in Lemma 2.2, N > d+ a

d�1

. For � 2 R

d

de�ne

F (�) =

Z

�(y)e

�{(h�

0

;yi+�

d

�(y))

dy:

There is a neighborhood

e

U � U of the origin and a 
oni
 neighborhood V of e

d

so that for � 2 V

jF (�)j � Ck�k

C

N j�j

��

�

X

j

h

�

j

�

j�

d

j

i

m

j

m

j

�1

�

���

; � � � �

1

2

+ �

2

; (2.17)

Proof. We may assume that (2.7) holds and that the u

i

's form the standard basis in R

d�1

. Observe

that then

X

j

j�

j

�j

m

j

m

j

�1

�

d�1

X

i=1

j�

i

j

a

0

i

with a

0

i

= a

i

=(a

i

� 1).

Assume that s=2 � �(x) � 2s and s is small. Then jA

1=s

xj � 1 and jQ

x

i

(A

1=s

x)j � C. But

Q

x

i

(A

1=s

x) = s

�1+1=a

i

Q

x

i

(x) so that jQ

x

i

(x)j . s

1�

1

a

i

: Similarly by (2.11) the remainder term R

x

i

satis�es the same estimate so that

j�

x

i

(x)j .

�

d�1

X

k=1

jx

k

j

a

k

�

1�

1

a

i

for small x and therefore

d�1

X

i=1

j�

x

i

(x)j

a

0

i

.

d�1

X

k=1

jx

k

j

a

k

:

Now let x(�) be the unique point at whi
h � is normal to the graph of �. By the Bruna-Nagel-Wainger

estimate for the Fourier transform (1.4) and Lemma 2.2 we have that

jF (�)j . j�j

��

�(x(�))

���

and sin
e x(�) is determined by �

i

=�

d

= ��

x

i

(x(�)) for i = 1; : : : ; d � 1, the estimate (2.17) fol-

lows. �
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3. Latti
e point estimates

In this se
tion we prove Theorem 1.3. We use a variant of the 
lassi
al proof (see Randol [24℄

for the two-dimensional 
ase). Choose � 2 C

1

0

(R

d

) so that � is nonnegative, �(x) = 0 if jxj � 1

and

R

�(x)dx = 1. De�ne �

"

(x) = "

�d

�("

�1

x). We work with the "-regularization �




� �

"

of the


hara
teristi
 fun
tion of 
 and de�ne

N

"

(t) =

X

k2Z

d

�

t


� �

"t

(k):

By the Poisson summation formula

N

"

(t) =

X

k2Z

d

t

d


�




(2�tk)

b

�(2�"tk)

= t

d

vol(
) +R

"

(t) (3.1)

where

R

"

(t) =

X

k 6=0

t

d


�




(2�tk)

b

�(2�"tk):

By the divergen
e theorem


�




(�) =

Z




e

�{hx;�i

dx = {

d

X

i=1

�

i

j�j

2

F

i

(�) (3.2)

where

F

i

(�) =

Z

�

n

i

(y)e

�{hy;�i

d�(y) (3.3)

and n

i

denotes the i

th


omponent of the outer normal ve
tor n

P

.

Let � be the set of points P 2 � at whi
h all prin
ipal 
urvatures vanish. As noti
ed in [16℄ it

follows from (2.10/11) that the set � is dis
rete, thus �nite by 
ompa
tness. For every P 2 � we


hoose a narrow 
oni
 symmetri
 neighborhood V

P

of the normals f�n

P

g, a small neighborhood U

P

of P in � and a C

1

0

fun
tion �

P

whose restri
tion to � vanishes o� U and so that �

P

equals one in a

neighborhood of P . We may arrange these neighborhoods so that the sets V

P

\ f� : j�j � 1g, P 2 �

are pairwise disjoint and that the normals to all points in a neighborhood of U

P

are 
ontained in

V

P

(thus the U

P

's are disjoint too).

De�ne

F

i;P

(�) =

Z

�

�

P

(y)n

i

(y)e

�{hy;�i

d�(y)

If the 
ones V

P

are 
hosen suÆ
iently narrow, we have

F

i;P

(�) .

(

minfj�j

��(P )

; �

�(

1

2

+�

2

(P ))

g�

P

(

�

P

�

hn

P

;�i

) if � 2 V

P

C

N

j�j

�N

if � =2 V

P

:

(3.4)

The estimate for � 2 V

P

follows from Proposition 1.2, and the estimate for � =2 V

P

follows by a

simple integration by parts; namely if t 7! 
(t) parametrizes � near P then jh


0

(t); �ij � j�j for


(t) 2 U

P

and � =2 V

P

.
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Moreover by the Bruna-Nagel-Wainger estimate we have

jF

i

(�)�

X

P2�

F

i;P

(�)j . j�j

��

; � =

1

2

+ inf

P2�

�

2

(P ) (3.5)

here we used the de�nition of � and the fa
t that �

P

equals one near P .

We now estimate the remainder term R

"

(t) where " � 1=t will be suitably 
hosen. Let dist

1

denote the distan
e taken with respe
t to the `

1

metri
 in R

d

, or Z

d

. For P 2 � let

A

P

= fk 2 V

P

\ Z

d

: k 6= 0; dist

1

(k;Rn

P

) � 3=4g

B

P

= fk 2 V

P

\ Z

d

: k 6= 0; dist

1

(k;Rn

P

) > 3=4g

C = fk 2 Z

d

: k 6= 0; k =2 [

P2�

V

P

g:

Let

A

i

P

(t) =

X

k2A

P

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

B

i

P

(t) =

X

k2B

P

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

C

i

P

(t) =

X

k2C

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

F

i;P

(2�tk)

D

i

(t) =

X

k 6=0

t

d

b

�(2�"tk)

2�k

i

j2�kj

2

(F

i

(2�tk)�

X

P2�

F

i;P

(2�tk))

then

R

"

(t) =

d

X

i=1

(D

i

(t) +

X

P2�

(A

i

P

(t) +B

i

P

(t) + C

i

P

(t))): (3.6)

When evaluating A

i

P

we essentially sum over integers in a tubular neighborhood of a line and

by the estimate (2.4) we 
ertainly get

jA

i

P

(t)j .

X

k2A

P

t

d

jtkj

�1��

. t

d�1��

: (3.7)

Next for the estimation of D

i

P

we use the rapid de
ay estimate in (3.4) to obtain

jD

i

P

(t)j .

X

k 6=0

t

d

jtkj

�N

. t

d�N

(3.8)

and for C

i

P

we use (3.5) whi
h yields

jC

i

P

(t)j . C

N

X

k 6=0

t

d

(1 + j"tkj)

�N

(1 + jtkj)

���1

. "

�+1�d

(3.9)

Finally

jB

i

P

(t)j .

X

k 6=0

k2V

P

t

d

jtkj

�

3

2

��

2

(P )

�

P

�

�

P

k

hk;n

P

i

�

(1 + j"tkj)

�N

10



and we 
laim that for � � 1

X

jkj��

k2V

P

t

d

jtkj

�

3

2

��

2

(P )

�

P

�

�

P

k

hk;n

P

i

�

(1 + j"tkj)

�N

. �

d�

3

2

��

2

(P )

minf1; (�"t)

�N

g (3.10)

whi
h implies

jB

i

P

(t)j . "

3

2

+�

2

(P )�d

. "

�(d�1��)

: (3.11)

We verify (3.10). Let a = a(P ) be the multitype at P . In view of dist(k;Rn

P

) � 3=4 it is

straightforward to 
he
k that

�

P

�

�

P

k

hk;n

P

i

�

� �

P

�

�

P

�

h�;n

P

i

�

if j� � kj

1

� 1=2, k 2 B

P

:

Thus we may repla
e the sum in (3.10) by an integral. After performing a suitable rotation in this

integral we have to show that

Z

j�

d

j��

Z

j�

0

j��

j�j

�3=2��

2

(P )

�

d�1

X

i=1

j�

i

j

a

0

i

j�j

a

0

i

�

���

2

(P )�

1

2

d�

0

d�

d

. �

d�

3

2

��

2

(P )

: (3.12)

Now (

P

d�1

i=1

(j�

i

j=j�j)

a

0

i

)

���

2

�

1

2

. (j�

1

j=j�j)

a

0

1

(1=a

1

�1=2)

with a

0

1

(1=a

1

� 1=2) > �1, and therefore the

integral in (3.12) is bounded by

�

d�1�3=2��

2

(P )

Z

j�

1

j��

(j�

1

j=j�j)

a

0

1

(1=a

1

�1=2)

d�

1

. �

d�3=2��

2

(P )

:

This shows (3.10).

To �nish the proof we note that

N

"

(t(1� C")) � N




(t) � N

"

(t(1 + C"))

where C is a 
onstant depending only on the geometry of 
. Thus, by taking into a

ount the

leading term in (3.1) we see that

E




(t) . (t

d�1��

+ t

d

"+ "

�(d�1��)

)

and the desired estimate follows if we 
hoose " = t

�d=(d��)

. This 
ompletes the proof of (1.17).

Lower bounds. To show (1.18) we work with our 
hoi
e " = "(t) = t

�d=(d��)

. For (1.18) we simply

set

G

P

(t) =

d

X

i=1

t

�(P )�d�1

A

i

P

(t)

whi
h we already showed to be bounded above. However we have to verify the 
laim that

lim sup

t21

jG

P

(t)j > 0 in the 
ase where n

P

= �e

i

.

We now assume that n

P

= e

i

(the 
ase n

P

= �e

i

is handled in the same way). Then de�ne

G

P

(t) = t

�(P )+1�d

X

�2Znf0g

(2�)

�1

t

d

b

�(2�t

��=(d��)

�e

i

)sign(�)j�j

�1

F

i;P

(2�t�e

i

):
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We split this sum into parts G

P

(t) = I(t) + II(t) where

I

P

(t) = (2�)

�1

t

�(P )+1

X

�2Znf0g

sign(�)j�j

�1

F

i;P

(2�t�e

i

)

II

P

(t) = (2�)

�1

t

�(P )+1

X

�2Znf0g

(1�

b

�(2�t

��=(d��)

�e

i

))sign(�)j�j

�1

F

i;P

(2�t�e

i

):

For the estimation of II we note that j(1�

b

�(2�t

��=(d��)

�e

i

))j . minf1; t

��=(d��)�

g with and

sin
e F

i;P

(2�t�e

i

) = O((t�)

��

we get the estimate

jII(t)j . t

�

�

d��

:

To examine I(t) we parametrize by our assumption on n

P

= e

i

F

i;P

(2�t�e

i

) = e

�{�hP;e

i

i

Z

y

0

2R

d�1

�

0

(y

0

)(1 + jr�(y

0

)j

2

)

1=2

e

{��(y

0

)

dy

0

where � � �

P

is 
onvex, vanishes of se
ond order at the origin of R

d�1

and has multitype a(P )

there; �

0

is smooth, 
ompa
tly supported and equal to one in a neighborhood of the origin. By

the 
onvexity hP; n

P

i = hP; e

i

i 6= 0. To examine the integral we may use an asymptoti
 expansion

derived in S
hulz [26℄ (stated there for � ! 1, but the statement for � ! �1 follows similarly).

We obtain

F

i;P

(2�t�e

i

) = e

�2�{t�hP;e

i

i

�

��




0

(P )e

�i

2�

sign(�)

+ O(�

����

)

where 


0

(P ) > 0 and � is the re
ipro
al of the least 
ommon multiple of a

1

; : : : ; a

n

. Thus

I(t) = 


0

(P )�

�1

X

�>0

j�j

���1

sin

�

2��thP; e

i

i � �=(2�)

�

+O(�

���1��

):

The sum de�nes a periodi
 fun
tion whi
h is not identi
ally zero, by the uniqueness theorem

for Fourier series. Combining this with the estimation for the error term II(t) we see that

lim sup

t!1

jG

P

(t)j > 0.

Remark. For almost all rotations the estimates for the error term improves. There is r > 2 so that

jE

A


(t)j � C(A)t

d�1�

d�1

d+1

log

1=r

(2 + t)

(indeed C is in L

q

(SO(d)) for q < r. As in [2℄ this is proved using a result on the maximal fun
tion

M(�) = sup

r>0

r

(d+1)=2

j
�




(r�)j

whi
h was shown by Svensson [30℄ to be in L

q

0

(S

d�1

) for some q

0

> 2 (under our assumption of

�nite line type, see also Randol [25℄ for a similar result with additional real analyti
ity assumption).

Indeed, let R

";A

(t) =

P

k 6=0

�




(2�tAk)

b

�(2�"tk) and

M

j

(A) = sup

2

j

�t�2

j+1

jR

"

j

;A

(t)j; with "

j

= 2

�2jd=(d+1)
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then for q � q

0

kM

j

k

L

q

(SO(d))

� 2

jd

X

k 6=0

(1 + j"

j

2

j

jkj)

�N

(2

j

jkj)

�(d+1)=2

(

Z

jM(A

k

jkj

)j

q

dA)

1=q

. 2

j(d�1�

d�1

d+1

)

kMk

L

q

(S

d�1

)

by the (standard) 
hoi
e of "

j

. But

jE

A


(t)jt

�(d�1�

d�1

d+1

)

log

�1=r

(2 + t) . 1 +

�

X

j>0

jM

j

(A)2

�j(d�1�

d�1

d+1

)

(1 + j)

�1=r

j

q

�

1=q

whi
h is in L

q

(SO(d)) for r < q

0

.

We remark that the methods in W. M�uller's paper [22℄ 
ould be used to improve the above

bound to jE

A


(t)j � C(A)t

d�1�

d�1

d+1

��

where � = �(
) > 0 and C is �nite almost everywhere.

4. Bo
hner-Riesz multipliers - the 
ase of one nonvanishing prin
ipal 
urvature

In this se
tion we shall prove a general theorem 
on
erning multipliers of Bo
hner-Riesz type

asso
iated to surfa
es with at least one nonvanishing prin
ipal 
urvature. Then, in the subsequent

se
tion, we shall dedu
e Theorem 1.1 by res
aling arguments.

In what follows M

p

will be the spa
e of Fourier multipliers on L

p

(R

d

); kmk

M

p

is the operator

norm of the operator T

m

de�ned by

d

T

m

f(�) = m(�)

b

f(�).

We split variables in R

d

as � = (

e

�; �

d

) and in the statement of the Proposition we further split

e

� = (�

1

; �

0

) 2 R � R

d�2

. The proof of the following result uses the ideas from the two-dimensional


ase, see [9℄, [6℄.

Proposition 4.1. Let " > 0, N � d+ 1 + 2=" and let g 2 C

N

(R

d�1

). Suppose that there is a 
ube

U 
entered at the origin and a > 0 so that

�

2

g

��

2

1

(�

1

; �

0

) � a

in U . Let � be supported in U and let � be a smooth fun
tion supported in (1=2; 2). Let 0 < Æ � 1

and

m

Æ

(�) = �(�)�(Æ

�1

(�

d

� g(�

1

; �

0

))):

Then

km

Æ

k

M

4

� C

"

Æ

�

d�2

4

�"

;

where C

"

depends only on a, ", U , the C

N

(U) norms of the fun
tions g, � and the C

d+1

norm of �.

Proof. We may assume that U is the unit 
ube, and that the support of � has small diameter. We

de
omposem

Æ

=

P

k

m

Æ;k

where k = (k

2

; : : : ; k

d�1

) ranges over (d�2)-tuples of integers k

i

� CÆ

�1=2

and

m

Æ;k

(�) = m

Æ

(�)

d�1

Y

i=2

 (Æ

�1=2

�

i

� k

i

)
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for suitable  2 C

1

0

satisfying

P

1

n=�1

 (s�n) = 1, so that supp  � [�1; 1℄. Let

e

 2 C

1

0

([�2; 2℄)

so that

e

 is equal to 1 on the support of  .

Denote by T

k

the 
onvolution operator with Fourier multiplier m

Æ;k

and by R

k

the 
onvolution

operator with Fourier multiplier

e

 (Æ

�1=2

�

0

� k). Note that kR

k

k

L

p

!L

p

� C, 1 � p � 1. Then for

2 � p � 1










X

k

R

k

g

k










p

.

�

X

k







g

k







p

0

p

�

1=p

0

whi
h follows for p =1 from Minkowski's inequality and for p = 2 by orthogonality; for 2 < p <1

one uses interpolation. Sin
e T

k

= R

k

T

k

R

k

it follows that










X

k

T

k










L

4

!L

4

� CÆ

�(d�2)=4

sup

k

kT

k

k

L

4

!L

4

and therefore it suÆ
es to show that

kT

k

k

L

4

!L

4

. Æ

�"

: (4.1)

The estimate (4.1) is proved using arguments in C�ordoba [6℄ whi
h we will sket
h. For � 2 Z

we de�ne operators T

k;�

and S

�

by

d

S

�

f(�) =

e

 (Æ

�1=2

�

1

� �) and

\

T

k;�

f(�) =  (Æ

�1=2

�

1

� �)

d

T

k

f(�).

Then T

k

=

P

�

T

k;�

S

�

f where the sum is extended over integers � with j�j � Æ

�1=2

sin
e we assume

that the support of � is small.

Now










X

�

T

k;�

S

�

f










2

4

=










X

�;�

0

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)










2

�

X

`:2

`

Æ

1=2

�1










X

(�;�

0

):

j���

0

j�2

`

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)










2

(4.2)

It 
an be 
he
ked that the family of fun
tions (T

k;�

S

�

f)(T

k;�

0

S

�

0

f) has an orthogonality property

whi
h implies that










X

(�;�

0

)

j���

0

j�2

`

(T

k;�

S

�

f)(T

k;�

0

S

�

0

f)










2

.










�

X

�

jT

k;�

S

�

f j

2

�

1=2










2

4

: (4.3)

The proof of (4.3) is based on an idea of C. Fe�erman [9℄; in higher dimensions one uses the following

Lemma 4.2. Suppose that a

0

2 R

d�2

, ja

0

j � 1, and the ve
tors

e

�, e�,

e

�, e! satisfy

(i) � + � �

e

� � e! = 0,

(ii) �

1

> �

1

> 0, �

1

< !

1

< 0,

(iii) j

e

�j; je�j; j

e

� j; je!j 2 [2

`�1

Æ

1=2

; 2

`+1

Æ

1=2

℄,

(iv) �

0

, �

0

, �

0

and !

0

belong to the 
ube of sidelength 4Æ

1=2


entered at a

0

.

Then

g(

e

�) + g(e�)� g(

e

�)� g(e!) � 
2

`

Æ

1=2

�

j�

1

� �

1

j+ j�

1

� !

1

j

�

(4.4)
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In (4.4), 
 depends only on the lower bound of g

�

1

�

1

and the C

4

norm of g in supp �.

Sket
h of Proof. A Taylor expansion about the origin yields

g(

e

�) + g(e�)� g(

e

�)� g(e!) = I + II + III + IV

where

I =

1

2

g

�

1

�

1

(0)(�

2

1

+ �

2

1

� �

2

1

� !

2

1

)

II =

1

2

�

�

1

hg

�

1

�

0

(0); �

0

i+ �

1

hg

�

1

�

0

(0); �

0

i � �

1

hg

�

1

�

0

(0); �

0

i � !

1

hg

�

1

�

0

(0); !

0

i

�

III =

1

2

�

h�

0

; g

�

0

�

0

(0)�

0

i+ h�

0

; g

�

0

�

0

(0)�

0

i � h�

0

; g

�

0

�

0

(0)�

0

i � h!

0

; g

�

0

�

0

(0)!

0

i

�

IV = r(

e

�) + r(e�)� r(

e

�)� r(e!)

where r vanishes of third order at the origin. (4.4) is proved by verifying

I � 2

`

Æ

1=2

(j�

1

� �

1

j+ j�

1

� !

1

j)

II � C2

`

Æ

III � CÆ

IV � C2

2`

Æ(j�

1

� �

1

j+ j�

1

� !

1

j):

The straightforward 
al
ulation is omitted; we note that formula (6.30) in [21℄ turns out to be useful

in order to 
arry it out. �

Proof of Proposition 2.1, 
ont. By (4.3) it remains to show that










�

X

�

jT

k;�

S

�

f j

2

�

1=2










4

. Æ

�"

kfk

4

: (4.5)

Let �

k

(t) = (�r

e

�

g(t; Æ

1=2

k); 1) whi
h gives a one parameter family of ve
tors normal to �

�

.

For � � 2 let R

k;�

be the set of all 
ylinders whose base is a d� 2 dimensional ball of radius s

and whose height is �s (any s > 0), so that the axis is parallel to �

k

(t) for some jtj � 1.

De�ne the maximal fun
tion

M

k;�

f(x) = sup

x2R

R2R

k;�

1

jRj

Z

R

jf(y)jdy:

Then arguing as in [6℄ and using standard estimates for the kernel of T

k;�

we see that

Z

X

�

jT

k;�

S

�

f(x)j

2

w(x)dx .

Z

X

�

jS

�

f(x)j

2

M

k;Æ

�1=2

w(x)dx:

The L

p

norm of (

P

�

jS

�

f j

2

)

1=2

is bounded by the L

p

norm of f , for p � 2 (see [6℄) and therefore

we 
an �nish our proof by using duality and showing that

kM

k;�

fk

2

� C

"

�

"

kfk

2

(4.6)
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uniformly in k.

If we knew that for every � the fun
tion t 7! h�;�

k

(t)i 
hanged sign at most M times then

it would follow from a result by C�ordoba [7℄ that (4.6) holds with �

"

repla
ed by C

1

M [log�℄

C

2

.

This hypothesis may not be satis�ed, but we 
an get around this point by a simple approximation.

Namely devide [�1; 1℄ into �

"=2

intervals [a

j

; b

j

℄ of lengths �

�"=2

. Let P

k;j

(t) be the ve
tor valued

Taylor polynomial of degree [2="℄ of r

e

�

g(�; Æ

1=2

k) expanded about a

j

, and let �

k;j

(t) = (�P

k;j

(1); 1).

Then j�

k

(t)� �

k;j

(t)j � C�

�1

for t 2 [a

j

; b

j

℄.

Let R

k;�;j

be the set of all 
ylinders whose base is a d � 2-dimensional ball of radius s whose

height is �s, so that the axis is parallel to �

k;j

(t) for some jtj � 1. If M

k;�;j

denotes the asso
iated

maximal operator then it is immediate that M

k;�

f �

P

j

M

k;�;j

f where the sum 
ontains only

O(�

"=2

) terms. C�ordoba's result yields the L

2

bound C

"

[log�℄

C

2

for ea
h M

k;�;j

. This �nishes the

proof of (4.6). �

5. Proof of Theorem 1.1

The L

1

version of the theorem is well known, and therefore by an interpolation argument one

has to show the boundedness on L

4=3

(R

d

), or, equivalently, on L

4

(R

d

).

We split (1� �(�))

�

+

= h

0

(�(�)) + h

1

(�(�)) where h

0

is supported in ft : t � 1� �

0

g for suitable

small �

0

and h

1

is supported in ft : t > 1� 2�

0

g. Then h

0

(�(�)) is a Fourier multiplier in M

1

; the

mild singularity at the origin 
an be handled e.g. by an averaging argument in [8, p. 248℄, repla
ing

� by �

N

for large N .

Let �

0

2 �

�

. It suÆ
es to show that there exists a neighborhood V of �

0

(in R

d

) so that

h

1

(�(�))e� is a multiplier on R

d

for � > (d � 2)=4 if e� 2 C

1

and supported in V . The multiplier

norm is invariant under rotations and we may assume that �

�


an be parametrized as a graph

�

d

= G(

e

�),

e

� 2 R

d�1

near �

0

, so that �(�) < 1 if �

d

> G(

e

�). We write

�(�)h

1

(�(�)) = �(�)H(�)(�

d

�G(

e

�))

�

+

where H(�) =

�

1� �(�)

�

d

�G(

e

�)

�

�

:

A Taylor expansion of � about �

d

= G(

e

�) shows that H is smooth on supp �; therefore by the algebra

property of M

p

it suÆ
es to show that e�(�)(�

d

�G(�

1

; �

0

))

�

+

belongs to M

4

if supp e� is suÆ
iently


lose to �

0

.

Let a = (a

1

; : : : ; a

d�1

) be the multitype of �

�

at �

0

, in the sense of x1.2. By an aÆne trans-

formation we may assume that �

0

= 0, G(0) = rG(0) = 0 and that G = Q + R where Q and R

are as in the proof of Lemma 2.2: The fun
tion Q is mixed homogeneous of degree (a

1

; : : : ; a

d�1

),

i.e. if A

s

(

e

�) = (s

1

a

1

�

1

; : : : ; s

1

a

d�1

�

d�1

) then Q satis�es Q(A

s

(

e

�)) = sQ(

e

�). The remainder term R

satis�es

�

�

�

s

�1

�

j�j

��

�

�

R(A

s

e

�)

�

�

�

�

� C

M;N

s

1=m

for small x and s and all multiindi
es � = (�

1

; : : : ; �

d�1

)

with j�j � N . In parti
ular jR(

e

�)j � Q(

e

�)=10 if Q(

e

�) � 2

�r

0

+2

for suitably large r

0

.

Next we set R

r

(

e

�) = 2

r

R(A

2

�r

e

�), so that G

r

= Q + R

r

tends to G in the C

1

topology, as

r ! 1. Sin
e the Hessian of Q has rank 1 where 1=4 < Q(

e

�) � 4 (see (2.10)) the same is true for

G

r

= Q + R

r

if r is large; we may assume that the matrix norm of (Q + R

r

)

00

is bounded below

uniformly in r if r � r

0

.
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Let �

1

be supported in (1=2; 2) su
h that

P

k�0

�

1

(2

k

s) = 1 for 0 < s � 1. Then we have to

show a bound for the M

4

norm of

�

j

(�) = e�(�)�

1

(2

j

(�

d

�G(�

1

; �

0

)))(�

d

�G(�

1

; �

0

))

�

+

:

Here we may assume that e�(�) = 0 when Q(

e

�) � 2

�r

0

.

We now perform a further de
omposition in terms of G(

e

�). Let � 2 C

1

0

(R) so that �(s) = 1 if

jsj � 1=2 and �(s) = 0 if jsj � 1; also let �

0

= � and for integer r > 0 let �

r

(s) = �(2

�r

s)��(2

�r+1

s).

Let

�

j;n

(�) = �

j

(�)�

n

(2

j

G(

e

�))

so that �

j;n

is supported where j�

d

�G(

e

�)j � 2

�j

and G(

e

�) � 2

n�j

if n � 0 and G(

e

�) . 2

�j

if n = 0.

Using the assumption on the support of the 
uto� fun
tion e� we see that �

j;n

= 0 for j � n+ r

0

.

For the pie
es �

j;n

we employ a s
aling argument (for a similar argument in two dimensions see

[12℄). For the s
aling we use the dilations � 7! (A

2

n�j
(

e

�); 2

n�j

�

d

). De�ne for n > 0

e�

j;n

(

e

�; �

d

) = �

1

(2

n

(�

d

�G

j�n

(�

1

; �

0

)))(�

d

�G

j�n

(�

1

; �

0

))

�

+

�

1

(G

j�n

(

e

�));

for n = 0 we use the same formula but with �

1

repla
ed by � = �

0

. Then

�

j;n

(A

2

n�j

e

�; 2

n�j

�

d

) = 2

(n�j)�

e�(A

2

n�j

e

�; 2

n�j

�

d

)e�

j;n

(

e

�; �

d

)

so that

k�

j;n

k

M

p

. 2

(n�j)�

ke�

j;n

k

M

p

It is now easy to see that the C

4

norm of e�

j;0

is . 2

�j�

and e�

j;0

is supported in a �xed ball

with diameter independent of j.

Therefore

ke�

j;0

k

M

p

. 2

�j�

; 1 � p � 1:

Note that for j � n � r

0

the multipliers e�

j;n

are supported where 1=4 < Q(

e

�) < 4, and by


onstru
tion the matrix norm of G

00

j�n

is in this region bounded above and below, for j � n � r

0

.

We may apply Proposition 4.1 (with Æ = 2

�n

), to see that for 0 < n � j � r

0

ke�

j;n

k

M

4

. 2

(n�j)�

2

�n(��

d�2

4

)

and the assertion of Theorem 1.1 follows by summing over 0 < n � j � r

0

, j > 0. �

Referen
es

1. J. Bourgain, Besi
ovi
h-type maximal operators and appli
ations to Fourier analysis, Geom. and Fun
t. Anal. 1

(1991), 147{184.

2. L. Brandolini, L. Colzani, A. Iosevi
h, A. Podkorytov and G. Travaglini, Geometry of the Gauss map and Latti
e

points in 
onvex domains, Mathematika (to appear).

3. J. Bruna, A. Nagel and S. Wainger, Convex hypersurfa
es and Fourier transform, Ann. Math. 127 (1988), 333{

365.

4. L.Carleson and P. Sj�olin, Os
illatory integrals and a multiplier problem for the dis
, Studia Math. 44 (1972),

287{299.

17



5. Y. Colin de Verdi�ere, Nombre de points entiers dans une famille homoth�etique de domaines de R

2

, Ann. S
ient.

E
. Norm. Sup. 10 (1977).

6. A. C�ordoba, A note on Bo
hner-Riesz operators, Duke Math. J. 46 (1979), 505-511..

7. , Geometri
 Fourier analysis, Ann. Inst. Fourier 32 (1982), 215{226.

8. H. Dappa and W. Trebels, On maximal fun
tions generated by Fourier multipliers, Ark. Mat. 23 (1985), 241{259.

9. C. Fe�erman, A note on spheri
al summation multipliers, israel Math. J. 15 (1973), 44-52.

10. A. Greenleaf, Prin
ipal 
urvature in harmoni
 analysis, Indiana Math. J. 30, 519{537.

11. E. Hlawka,

�

Uber Integrale auf konvexen K�orpern I, Monatshefte Math 54 (1950), 1-36; II, Monatshefte Math 54

(1950), 81-99.

12. L. H�ormander, Os
illatory integrals and multipliers on FL

p

, Ark. Mat. 11 (1973), 1{11.

13. , The analysis of linear partial di�erential operators Vol. I, Springer-Verlag, New York, Berlin, 1983.

14. M. N. Huxley, Area, Latti
e Points, and Exponentials Sums, London Mathemati
al So
iety Monographs New

Series 13, Oxford Univ. PressI, 1996.

15. A. Iosevi
h, Latti
e points and generalized Diophantine 
onditions, Journal of Number Theory 90 no.1, 19-30.

16. A. Iosevi
h and E. Sawyer, Maximal averages over surfa
es, Adv. Math. 132 (1997), 46{119.

17. A. Iosevi
h, E. Sawyer and A. Seeger, On averaging operators asso
iated with 
onvex hypersurfa
es of �nite type,

Journal d'Analyse Math�ematiques 79 (1999), 159{187.

18. E. Kr�atzel, Latti
e points, Mathemati
s and its appli
ations, Kluwer, 1988.

19. E. Kr�atzel and S. H�oppner, The number of latti
e points inside and on the surfa
e t

k

1

+ � � �+ t

k

n

= x, Math. Na
hr.

163 (1993), 257{268.

20. E. Kr�atzel and W. G. Nowak, Latti
e points in large 
onvex bodies, Monatshefte Math. 112 (1991), 61{72; II,

A
ta Arithmeti
a 62 (1992), 285-295.

21. G. Mo
kenhaupt, A. Seeger and C.D. Sogge, Lo
al smoothing of Fourier integral operators and Carleson-Sj�olin

estimates, J. Amer. Math. So
. 6 (1993), 65{130.

22. W. M�uller, Latti
e points in large 
onvex bodies, Monatshefte Math. 128 (1999), 315{330.

23. W. G. Nowak, Zur Gitterpunktlehre in der Euklidis
hen Ebene, Indag. Math 46 (1984), 209-223; II,

�

Osterrei
h.

Akad. Wiss. Math. Natur. Kl. Sitzungsber. II 194 (1985), 31{37.

24. B. Randol, A latti
e point problem, Trans. Amer. Math. So
. 121 (1966), 257{268; paper II, Trans. Amer. Math.

So
. 125, 101{113.

25. , On the Fourier transform of the indi
ator fun
tion of a planar set, Trans. Amer. Math. So
. 139 (1969),

271{278; On the asymptoti
 behavior of the Fourier transform of the indi
ator fun
tion of a 
onvex set, Trans.

Amer. Math. So
. 139 (1969), 278{285.

26. H. S
hulz, Convex hypersurfa
es of �nite type and the asymptoti
s of their Fourier transforms, Indiana U. Math.

J. 40 (1991), 1267{1275.

27. A. Seeger and S. Ziesler, Riesz means asso
iated with 
onvex domains in the plane, Math. Z. 236 (2001), 643{676.

28. P. Sj�olin, Fourier multipliers and estimates of Fourier transforms of smooth measures 
arried by 
urves in R

2

,

Studia Math. 51 (1974).

29. E. M. Stein, Harmoni
 Analysis, Prin
eton University Press, 1993.

30. I. Svensson, Estimates for the Fourier transform of the 
hara
teristi
 fun
tion of a 
onvex set, Arkiv Mat. 9

(1971), 11-22.

31. M. Tarnopolska-Weiss, On the number of latti
e points in planar domains, Pro
. Amer. Math. So
. 69 (1978),

308{311.

32. A. Var
henko, Number of latti
e points in families of homotheti
 domains in R

n

, Fun
t. Anal. Appl. 17 (1983),

79{83.

A. Iosevi
h, Mathemati
s Department, University of Missouri, Columbia, MO 65211, USA

E-mail address: iosevi
h�wolff.math.missouri.edu

E. Sawyer, Department of Mathemati
s and Statisti
s, 1280 Main Street West, Hamilton, Ontario

L8S 4K1, Canada

18



E-mail address: sawyer�m
master.
a

A. Seeger, Department of Mathemati
s, University of Wis
onsin-Madison, Madison, WI 53706,

USA

E-mail address: seeger�math.wis
.edu

19


