
MEAN LATTICE POINT DISCREPANCY BOUNDS, II:

CONVEX DOMAINS IN THE PLANE

ALEXANDER IOSEVICH ERIC T. SAWYER ANDREAS SEEGER

Abstract. We consider planar curved strictly convex domains with
no or very weak smoothness assumptions and prove sharp bounds for
square-functions associated to the lattice point discrepancy.

1. Introduction

This paper is a sequel to [15] in which the authors proved bounds for
the mean square lattice point discrepancy for convex bodies with smooth
boundary in Rd. Here we reconsider the case d = 2 but admit now domains
with rough boundary.

Let Ω be a convex domain in R2 containing the origin in its interior. Let

NΩ(t) = card(tΩ ∩ Z2),

the number of integer lattice points inside the dilate tΩ. It is well known
that NΩ(t) is asymptotic to t2area(Ω) as t→ ∞ and we denote by

(1.1) EΩ(t) = NΩ(t) − t2area(Ω)

the error, or lattice rest. A trivial estimate for the lattice rest is EΩ(t) ≤ Ct
which holds for any convex set. For the case that the boundary is smooth
and has positive curvature everywhere this estimate has been significantly
improved. It is conjectured that in this case EΩ(t) = O(t1/2+ε) for any ε > 0
but by the best result published at this time, due to Huxley [13], one only

knows that EΩ(t) = O(t131/208(log t)A) for suitable A.
On average however better estimates hold. We consider the mean-square

discrepancy of the lattice rest over the interval [R,R+ h] where h ≤ R and
R is large; it is given by

(1.2) GΩ(R,h) =
(1

h

∫ R+h

R
|EΩ(t)|2dt

)1/2
.

Provided that the boundary is smooth (say C4) and the Gaussian cur-
vature never vanishes it has been shown by Nowak [22] that GΩ(R,R) =

O(R1/2); later Huxley [11] showed that GΩ(R, 1) = O(R1/2 log1/2R). A
result which unifies both estimates is in the authors’ paper [15], namely
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GΩ(R,h) ≤ CR1/2 if logR ≤ h ≤ R. We note that Nowak [23] has inde-
pendently proved the same bound. Moreover he obtained asymptotics for
GΩ(R,H(R)) as R → ∞, provided that H(R)/ logR → ∞; see also earlier
asymptotics by Bleher [2] where essentially H(R) ≈ R.

The purpose of this paper is to prove versions of these estimates under
minimal (or no) smoothness assumptions on the boundary of the domain.
The main difficulty is that the oscillation of the Fourier transforms of den-
sities on the boundary cannot be used in a straightforward way as in [21],
[15], or [23], because of the lack of asymptotic expansions.

Our first result deals with domains for which the curvature is bounded
below with very weak regularity assumptions on the curvature. Here we
assume that Ω has C1 boundary, that the components of the tangent vec-
tors are absolutely continuous functions of the arclength parameter so that
the second derivatives of a regular parametrization are well defined as L1

functions on the boundary. The following theorem yields an analogue of
the above result with a slightly more restrictive assumption on these second
derivatives.

Theorem 1.1. Let Ω be a convex domain in R2 containing the origin in
its interior, and assume that Ω has C1 boundary and that the components
of the tangent vector are absolutely continuous functions. Suppose also that
curvature κ is bounded below, i.e. κ(x) ≥ a > 0 for almost every x ∈ ∂Ω
and that κ ∈ L log2+ε L(∂Ω), for some ε > 0. Then there is a constant CΩ

so that for all R ≥ 2

(1.3) GΩ(R,h) ≤ CΩR
1/2 if logR ≤ h ≤ R.

Of course this result applies to all convex domains with C2 boundary and
nonvanishing curvature; but it also applies to rougher domains, the simplest
examples are {x : |x1|a1 + |x2|a2 ≤ 1} when 1 < a1, a2 ≤ 2. Moreover if D is
a convex domain with smooth finite type boundary, containing the origin,
then the polar set Ω = D∗ = {x : supξ∈D〈x, ξ〉 ≤ 1} satisfies the assumptions
of Theorem 1.1. For these examples the second derivatives belong to Lp(∂Ω)
for some p > 1 (cf. the calculations in the proof of Lemma 5.1 in [15]).

An immediate consequence of (1.3) is Huxley’s bound ([11]) who proved
that GΩ(R, 1) = O(

√
R logR) under the assumption that Ω has C4 boundary

and the curvature is bounded below. We shall see (cf. Theorem 1.3 below)
that it is possible to prove this estimate for convex domains in which even
the weak regularity assumption of Theorem 1.1 is removed. Moreover in
this case we shall prove (cf. Theorem 1.2 below) that the optimal bound

GΩ(R,h) = O(R1/2) holds in the more restricted range of h’s R1/2 ≤ h ≤ R.
In this rough case the assumption of the curvature bounded below has to

be reformulated (as now we are not actually assuming that the curvature is
a well defined function). Let ρ∗ be the Minkowski functional of the polar
set Ω∗, i.e.

(1.4) ρ∗(ξ) = sup{〈x, ξ〉 : x ∈ Ω}
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so that Ω∗ = {ξ : ρ∗(ξ) ≤ 1}. For θ ∈ S1 and δ > 0 consider the arc (or
“cap”)

(1.5) C(θ, δ) ≡ CΩ(θ, δ) = {x ∈ ∂Ω : 〈x, θ〉 = ρ∗(θ) − δ}.
Let

(1.6) µ(θ, δ) = diam(C(θ, δ)).

We note that if dσ is the arclength measure on ∂Ω then
∑

± µ(±θ, δ) controls

the size of the Fourier transform d̂σ(±θ/δ), see [5] and also [4]. If the
curvature is absolutely continuous and bounded below then it is easy to
see that µ(θ, δ) = O(

√
δ) uniformly in θ ∈ S1, and in the general case we

shall simply assume the validity of this inequality. It is possible to show the
equivalence of this condition with with other natural definitions of bounded
below curvature for rough domains but we shall not discuss this here.

Theorem 1.2. Let Ω be a convex domain in R2 containing the origin in its
interior. Suppose that

(1.7) sup
θ∈S1

sup
δ>0

δ−1/2µ(θ, δ) <∞.

Then for R ≥ 2,

(1.8) GΩ(R,h) ≤ CΩR
1/2 if R1/2 ≤ h ≤ R.

If we admit an additional factor of
√

logR the range of h can be vastly
improved to obtain a version of Huxley’s theorem ([11]) for rough domains
with nonzero curvature (which is much more elementary than Theorem 1.2).

Theorem 1.3. Let Ω be as in Theorem 1.2 (satisfying (1.7)). Then for
R ≥ 2

(1.9) GΩ(R,h) ≤ CΩ(R logR)1/2 if 1 ≤ h ≤ R.

Remark. An examination of the proof of Theorem 1.3 shows that the con-
stants depend only on the bound in (1.7) and the radii of inscribed and
circumscribed circles centered at the origin. This uniform version of in-
equality (1.9) as well as the statement of Theorem 1.1 is close to sharp as
one can show that they fail for h ≤ (logR)−1. To see this one uses Jarńık’s
curve ([16]) to produce a sequence Rj → ∞ and domains Ωj, so that the
maximal inscribed and minimal circumscribed radii of Ωj are bounded above
and below, the curvature on the boundary is bounded above and below and

ERjΩj ≥ R
2/3
j ([16], [18]). By Huxley’s mean-max inequality ([12], p. 136)

(1

δ

∫ Rj+δ

Rj−δ
EΩj (s)

2ds
)1/2

≥ EΩj (Rj)/2

which holds under the assumptions that |EΩj (Rj)| ≥ 5(area(Ωj))δRj and

0 < δ ≤ Rj/2. We apply this for δ ≈ R
−1/3
j ≤ h to see that under the
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assumption of GΩj (Rj , h) . (Rj logRj)
1/2 we have 1

R
2/3
j . EΩj(Rj) . R

1/6
j h1/2GΩj (Rj , h) . R

2/3
j (h logRj)

1/2.

thus h & (logRj)
−1. Cf. also Plagne [25] for the construction of a single

strictly convex curve C and a sequence Rj so that RjC contains R
2/3
j w(Rj)

lattice points, with w(R) converging to zero at a slow rate.
It is certainly conceivable that the result of Theorem 1.2 may hold for

some h� R1/2. However this could not be established by simple extensions
of our method, see the discussion below and in §9.

Finally, if we consider arbitrary convex domains (dropping the curvature
assumptions on the boundary) then the estimate (1.9) may fail as does

the classical estimate EΩ(t) = O(t2/3) (cf. [27]). However for almost all

rotations A ∈ SO(2) it is still true that EAΩ(t) = O(t2/3 log1/2+ε t), see [3].
In fact for domains with smooth finite type boundary one has the better
estimate EAΩ(t) = O(t2/3−δ), for almost all rotations, for some δ > 0,
see Nowak’s article [22]. Likewise for such domains it is proved in [15]

that for almost all rotations A we have GAΩ(R,h) . R1/2 for all R ≥ 2,
logR ≤ h ≤ R. For arbitrary convex domains we can prove an analogous
result but lose an additional power of a logarithm.

Theorem 1.4. Let Ω be a convex domain in R2 containing the origin in its
interior. For ϑ ∈ [−π, π] denote by Aϑ the rotation by the angle ϑ and by
AϑΩ the rotated domain {Aϑx : x ∈ Ω}. Then for ε > 0, R ≥ 2,

(1.10) GAϑΩ(R,h) ≤ Cε,Ω(ϑ)R1/2(logR)1+ε if 1 ≤ h ≤ R

where Cε,Ω(ϑ) < ∞ for almost all ϑ ∈ [−π, π]; in fact the function Cε,Ω

belongs to the weak type space L2,∞.

Structure of the paper: The first parts of the proofs are identical for
Theorems 1.1–1.4. One uses essentially a “T ∗T -argument” to reduce to a
weighted estimate for lattice points in thin annuli formed by dilations of
the polar domain. This argument is straightforward in the smooth case
([15], [23]) but there are considerable technical complications in the rough
case. The relevant estimates are given in §2. One is led to the estimation of
quantities such as

(1.11) K(R,h) =
∑

(k,`)∈Z2×Z2

|k|,|`|≤R

|ρ∗(k)−ρ∗(`)|≤h−1

|k|−2µ( k
|k| ,

1
|k|R)µ( `

|`| ,
1

|`|R)

when h � 1, and some variants with tails. §3 contains further discussion
of these quantities in the case of curvature bounded below and the main
technical propositions needed for the proofs of Theorems 1.1, 1.2, and 1.3.

1Here, and in what follows we use the following notation: Given two quantities A, B

we write A . B if there is an absolute positive constant, depending only on the specific
domain Ω, so that A ≤ CB. We write A ≈ B if A . B and B . A.
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The estimation of (1.11) which is needed for Theorems 1.3 and 1.4 is
rather straightforward. For Theorem 1.3 one uses the bound µ(θ, δ) =

O(δ1/2) in conjunction with the trivial bound EΩ∗(t) = O(t). For Theo-
rem 1.4 one argues similarly but uses an averaged estimate for the size of
caps for the rotated domains. The proofs are contained in §3 and §4. The
mild regularity assumption in Theorem 1.1 can be used to improve on the
trivial bound for E∗

Ω(t). This leads to boundedness of K(R,h) for h ≥ logR
and then in this range to the optimal bound (1.3); the argument is carried
out in §5.

The main technical estimate needed for the proof of Theorem 1.2 is stated
as Proposition 3.3. Here we need to efficiently estimate a weighted version
of the lattice point discrepancy for Ω∗ (cf. (3.3)), and we shall use a more

geometrical approach for which we need the assumption h ≥ R1/2. The
proof is carried out in §6-§8.

We do not know whether in the generality of Theorem 1.2 the assumption
h ≥ R1/2 is really necessary. In §9 we construct some examples of sets with
rough boundary (and curvature bounded below) which show that at least
for the estimation of K(R,h) the condition h ≥ R1/2 is necessary (which
only shows the sharpness of the method).

Finally, a short appendix (§A) is included which is not closely connected
to the rest of the paper but is relevant to our previous results in [15]. We
note that following the submission of the current paper the arguments in
this appendix have already been used again in subsequent work ([14]). Here
we discuss a connection between mean discrepancy results and generalized
distance sets for integer point lattices and by our previous results obtain
new lower bounds in three and higher dimensions.

2. The first step

Our purpose here is to show an estimate involving the quantities µ(θ, δ),
which holds without any regularity or curvature assumptions on the bound-
ary of the convex domain.

However we shall first make the a priori

Assumption: The boundary of Ω is a C1 curve and the components of the
outer unit normal vectors are absolutely continous.

This means we assume that the curvature is integrable. Below we shall
remove this a priori assumption by a limiting argument.

We now begin with a standard procedure using mollifiers to regularize
the characteristic function of Ω. Suppose that r1 < 1 < r2 and r1, r2 are the
radii of inscribed and circumscribed circles centered at the origin. Let ζ be
a smooth nonnegative radial cutoff function supported in the ball Br1/2(0)

so that
∫
ζ(x)dx = 1 and let ζε(x) = ε−2ζ(x/ε). Let

(2.1) Nε(t) =
∑

k∈Z2

χtΩ ∗ ζε(k)
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and

Eε(t) =
∑

k∈Z2

χtΩ ∗ ζε(k) − t2area(Ω).(2.2)

It suffices to estimate the modified square-function

(2.3) G(R,h) =
(1

h

∫ R+h

R
|E1/R(t)|2dt

)1/2

where h ≥ 1 since there is the elementary estimate (with E ≡ EΩ)

(2.4)
( 1

h

∫ R+h

R
|E(t)|2dt

)1/2
≤ G(R,h) + C(R/h)1/2,

valid for R−1 ≤ h ≤ R; see Lemma (2.2) of [15].

Basic decompositions. Fix a nonnegative η0 ∈ C∞(R) so that η0(t) = 1
for t ∈ [0, 1] and η0 is supported in (−1/2, 3/2) and let

(2.5) ηR,h(t) =
1√
h
η0(

t−R

h
).

Then

(2.6)
1

h

∫ R+h

R
|E1/R(t)|2dt .

∫
|E1/R(t)ηR,h(t)|2dt.

By the Poisson summation formula

E1/R(t) =
∑

k 6=0

(2πt)2χ̂Ω(2πtk)ζ̂(2πk/R)(2.7)

=
∑

0<|k|≤R2

(2πt)2χ̂Ω(2πtk)ζ̂(2πk/R) +O(R−10)

since always |χ̂Ω(2πtk)| . |tk|−1 and |ζ̂(2πk/R)| ≤ CN (1 + |k|/R)−N .
As in [9] and elsewhere we have by the divergence theorem χ̂Ω(ξ) =

−i∑2
i=1(ξi/|ξ|2)n̂idσ(ξ) where n denotes the unit outer normal vector. We

may assume that the boundary of Ω is parametrized by α 7→ x(α) where
x′(α) is a unit vector and x(α) = x(α+ L) if L is the length of ∂Ω.

Then n(α) = −x′⊥(α) where x⊥(α) = (x2(α),−x1(α)) and

(2.8) χ̂Ω(ξ) = −i
∫ L

0

〈ξ, x′⊥(α)〉
|ξ|2 e−i〈x(α),ξ〉dα.

Assuming that R/2 ≤ t ≤ 2R we shall now introduce a finer microlocal
decomposition of χ̂Ω(2πtk), depending on k and R and based on (2.8). This
is somewhat inspired by [5], [20] and in particular by [29] where a related
construction is used.

Suppose that β0 is an even function which is supported in (−3/4, 3/4)
and which is equal to one in [−1/2, 1/2]. Let β(s) = β0(s/2) − β0(s) and
let, for n ≥ 1, βn(s) = β(2−n(s)). Let
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Ψ(k, α) =
〈k, x′⊥(α)〉

|k|2 ×
(
1 − β0

(
2r−1

1 (〈 k
|k| , x(α)〉 − ρ∗( k

|k|))
)
− β0

(
2r−1

1 (〈−k
|k| , x(α)〉 − ρ∗(−k

|k| ))
))

and

Φ±
n (k, α) =

〈k, x′⊥(α)〉
|k|2 ×

βn

(
R(〈±k, x(α)〉 − ρ∗(±k)

)
β0

(
2r−1

1 (〈±k
|k| , x(α)〉 − ρ∗(±k

|k| ))
)
.

The cutoff function Φ+
n (k, ·) localizes to those points P on the boundary

for which the distance of P to the supporting line {x : 〈k, x〉 = ρ∗(k)} is small
and ≈ 2n(R|k|)−1 (or . (R|k|)−1 if n = 0). Also Φ−

n (k, ·) gives a localization
in terms of the distance to the supporting line {x : 〈−k, x〉 = ρ∗(−k)}. The
factors β0(2r

−1
1 (〈±k

|k| , x(α)〉−ρ∗(±k
|k| ))) are included in this definition to make

sure that the supports of Φ+
n and Φ−

n are disjoint.
Note that

Ψ(k, α) +
∞∑

n=0

Φ+
n (k, α) +

∞∑

n=0

Φ−
n (k, α) =

〈k, x′⊥(α)〉
|k|2

and also that Φ±
n (k, α) = 0 if 2n ≥ |k|R.

Define (for fixed R and h)

I±n (k, t) = 2πt ηR,h(t)

∫
Φ±

n (k, α)e−2πi〈x(α),tk〉dα(2.9)

II(k, t) = 2πt ηR,h(t)

∫
Ψ(k, α)e−2πi〈x(α),tk〉dα(2.10)

and

I±n (t) =
∑

2n

R
<|k|≤R2

ζ̂(2πk/R)I±n (k, t)(2.11)

II(t) =
∑

k 6=0

ζ̂(2πk/R)II(k, t),(2.12)

and set

(2.13) G±
n (R,h) =

( ∫
|I±n (t)|2dt

)1/2
.

Using the decay of ζ̂ we see that

(2.14) G(R,h) ≤
∑

±

∞∑

n=1

G±
n (R,h) +

( ∫
|II(t)|2dt

)1/2
+ CR−10.
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Pointwise bounds via van der Corput’s lemma. We start with a
simple pointwise estimate for the pieces In

± and II which just relies on van
der Corput’s lemma for oscillatory integrals (see [30], p. 334). We set

(2.15) ωR(ξ) = (1 + |ξ|/R)−N

Lemma 2.1. For n ≥ 0 we have

I±n (t) ≤ C2−nR|ηR,h(t)|
∑

|k|>2n/R

ωR(k)|k|−1µ( k
|k| ,

2n

|k|R)

and
II(t) ≤ C|ηR,h(t)| logR.

Let

(2.16) Γ±
n (R,h) := R

∑

|k|>2n/R

ωR(k)|k|−1µ( k
|k| ,

2n

|k|R).

Then

(2.17) G±
n (R,h) ≤ CΓ±

n (R,h);

moreover

(2.18)
( ∫

|II(t)|2dt
)1/2

≤ C logR.

Proof. We write down the argument for I+
n as the estimate for I−n is anal-

ogous. The estimate for n = 0 is immediate if we observe that length of the
support of Φ+

0 (k, ·) is ≤ µ(k/|k|, (|k|R)−1).
Fix θ ∈ S1 and choose αθ so that 〈θ, x(αθ)〉 = ρ∗(θ) and thus also n(αθ) =

θ. We first observe that if 〈θ, x(α)〉 − ρ∗(θ) > δ then tan ]
(
n(α), n(αθ)

)
≥

δ/µ(θ, δ).
We use this with δ = 2n(|k|R)−1 to get a lower bound for the derivative

of the phase function in the support of Φ∗
n(k, ·). This implies that for t ∈

supp ηR,h

(2.19) |〈x′(α), tk〉| ≥ 2n
(
µ( k

|k| ,
2n

|k|R)
)−1

if α ∈ supp Φ∗
n(k, ·).

and this derivative is monotone in α. Moreover

‖Φ+
n (k, ·)‖∞ + ‖∂αΦ+

n (k, ·)‖1 . |k|−1;

here we use our a priori assumption on the integrability of the second deriva-
tives of γ.

Consequently, by van der Corput’s lemma, we obtain

|I+
n (k, t)| . t|ηR,h(t)|ωR(k)|k|−1|2−nµ( k

|k| ,
2n

|k|R)

which yields the asserted bound for I+
n (t).

Similarly, |∂α〈tk, x(α)〉| ≥ c|k|R if α ∈ supp Ψ(k, ·) and ‖Ψ(k, ·)‖∞ and
‖∂αΨ(k, ·)‖1 are O(|k|−1). Thus

|II(k, t)| . |ηR,h(t)||k|−2(1 + |k|/R)−NωR(k)
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and summing in k yields the asserted bound for II(t). The bounds for the
square functions are immediate from the pointwise estimates. �

Square function estimates. We shall need to improve on the pointwise
estimates for G±

n (R,h) in Lemma 2.1 which will only be useful for 2n ≥ R.
We apply Plancherel’s theorem with respect to the t-variable and obtain

G±
n (R,h)2 = 2π

∫
|Î±n (λ)|2dλ

= 2π
∑

2n

R
<|k|≤R2

∑

2n

R
<|`|≤R2

ζ̂(2πk/R)ζ̂(2π`/R)

∫
Î±n (k, λ)Î±n (`, λ)dλ

where

(2.20) Î±n (k, λ) = 2π

∫∫
t ηR,h(t)Φ±

n (k, α)e−it(λ+〈x(α),2πk〉)dαdt.

The crucial estimate is

Lemma 2.2. Suppose that k ∈ Z2 and |k| > 2n/R. Then the following
inequalities hold.

If 2n ≤ R/h then

(2.21)
∣∣Î±n (k, λ)

∣∣ .
Rh1/2|k|−12−nµ(± k

|k| ,
2n

|k|R)

(1 + h|λ± ρ∗(±2πk)|)2N

and if 2n ≥ R/h, then

(2.22)
∣∣Î±n (k, λ)

∣∣ .
Rh1/2|k|−12−nµ(± k

|k| ,
2n

|k|R)

(1 +R2−n|λ± ρ∗(±2πk)|)2N

Proof. We prove the estimate for I+
n (k, λ); the estimate for I−n (k, λ) is

analogous.
We first consider the case n = 0. Interchange the order of integration

in (2.20) and perform 2N integrations by parts with respect to t. This,

together with the estimates Φ+
0 (k, α) = O(|k|−1), ηR,h(t) = O(h−1/2) yields

|Î+
n (k, λ)| . R|h|−1/2|k|−1

∫∫

t∈supp ηR,h

α∈supp Φ+
0

(k,·)

(1 + h|λ+ 〈x(α), 2πk〉|)−2N dtdα.

By definition we have |〈x(α), k〉−ρ∗(k)| . R−1 for α ∈ supp Φ+
0 (k, ·). Since

R ≥ h this implies

(2.23) (1 + h|λ+ 〈x(α), 2πk〉|) ≈ (1 + h|λ+ ρ∗(2πk)|).
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Also observe that the length of the support of ηR,h is O(h) and that the

length of the support of Φ+
0 (k, ·) is ≤ µ(k/|k|, (|k|R)−1). Thus

|Î+
0 (k, λ)| . R|h|−1/2|k|−1

∫∫

t∈supp ηR,h

α∈supp Φ+
0

(k,·)

(1 + h|λ+ ρ∗(2πk)|)−2Ndtdα

. R|h|1/2|k|−1µ( k
|k| ,

1
|k|R)(1 + h|λ+ ρ∗(2πk)|)−2N

which is the asserted estimate for n = 0.
We now suppose that n ≥ 1, and begin by performing an integration

by parts with respect to α in (2.20). Observe that 〈x′(α), k〉 6= 0 if α ∈
supp Φ+

n (k, ·). We obtain

I+
n (k, λ) = Fn,1(k, λ) + Fn,2(k, λ)

where

(2.24) Fn,1(k, λ) =

2π

∫∫
ηR,h(t)Φ+

n (k, α)
∂

∂α

( 1

i〈x′(α), 2πk〉
)
e−it(λ+〈x(α),2πk〉)dαdt,

and

(2.25) Fn,2(k, λ) = 2π

∫∫
ηR,h(t)

∂Φ+
n

∂α
(k, α)

e−it(λ+〈x(α),2πk〉)

i〈x′(α), 2πk〉 dαdt

As above we interchange the order of integration and integrate by parts
in t. This yields the estimate

|Fn,1(k, λ)| . R|h|−1/2|k|−1

×
∫∫

t∈supp ηR,h

α∈supp Φ+
n (k,·)

(1 + h|λ+ 〈x(α), 2πk〉|)−2N
∣∣∣ ∂
∂α

( 1

i〈x′(α), 2πk〉
)∣∣∣dαdt.

If 2n ≤ R/h then (2.23) is still valid if α ∈ supp Φ+
n (k, ·). Moreover we claim

that

(2.26)

∫

supp Φ+
n (k,·)

∣∣∣ ∂
∂α

( 1

〈x′(α), 2πk〉
)∣∣∣dα . R2−nµ( k

|k| ,
2n

|k|R).

To see this we choose αk so that 〈x(αk), k〉 = ρ∗(k) (this choice may not
be unique). The support of Φ+

n (k, ·) consists of two connected intervals (on
R/LZ with L = |∂Ω|) and on each of these the function α → 〈x′(α), k〉 is
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monotone; moreover this function vanishes for α = αk. Thus

2n−1R−1 ≤
∣∣〈x(α), k〉 − ρ∗(k)

∣∣

=
∣∣∣(α− αk)

∫ 1

0
〈x′(αk + τ(α− αk)), k〉dτ

∣∣∣(2.27)

≤ |α− αk||〈x′(α), k〉|.
Note that |α − αk| . µ(k/|k|, 2n/(|k|R)) for α ∈ supp Φ+

n (k, ·). Since
∂α((〈x′(α), 2πk〉)−1) is single-signed on the two components of supp Φ+

n (k, ·)
we can apply the fundamental theorem of calculus on these intervals and we
see that the left hand side of (2.26) is bounded by 4 sup |〈x′(a), 2πk〉|−1)
where the supremum is taken over all α ∈ supp (Φ+

n (k, ·)). But by (2.27)
this bound is O(R2−nµ(k/|k|, 2n/(|k|R))).

Combining (2.23) and (2.26) we obtain for 2n ≤ R/h

(2.28) |Fn,1(k, λ)|

. |h|1/2|k|−1(1 + h|λ+ ρ∗(2πk)|)−2N

∫

supp Φ+
n (k,·)

∣∣∣ ∂
∂α

( 1

〈x′(α), 2πk〉
)∣∣∣dα

. 2−nR|h|1/2|k|−1(1 + h|λ+ ρ∗(2πk)|)−2Nµ( k
|k| ,

2n

|k|R)

which is the estimate we were aiming for. Next we consider the term
Fn,2(k, λ) and arguing as above we see that
(2.29)

|Fn,2(k, λ)| . h1/2(1 + h|λ+ ρ∗(2πk)|)−2N

∫ ∣∣∣∂Φ+
n

∂α
(k, α)

∣∣∣
∣∣∣ 1

〈x′(α), 2πk〉
∣∣∣dα

and
∫ ∣∣∣∂Φ+

n

∂α
(k, α)

∣∣∣
∣∣∣ 1

〈x′(α), 2πk〉
∣∣∣dα

.

∫

supp Φ+
n (k,·)

|〈k, x′′⊥(α)〉|
|k|2

∣∣∣ 1

〈x′(α), 2πk〉
∣∣∣dα

+
1

|k|

∫

supp Φ+
n (k,·)

∣∣∂α

(
β(R2−n(〈x′(α), k〉 − ρ∗(2πk)))

)∣∣dα

+
1

|k|

∫

supp Φ+
n (k,·)

∣∣∂α

(
β0(2r

−1
1 (〈 k

|k| , x(α)〉 − ρ∗( k
|k|)))

)∣∣dα

:= A1(k) +A2(k) +A3(k).

We now use that by (2.26)

|〈x′(a), 2πk〉|−1 . R2−nµ(k/|k|, 2n/(|k|R))

on the support of Φ+
n (k, ·). Since 〈k, x′′⊥(α)〉 is single-signed on the compo-

nents we see that

A1(k) . R2−n|k|−1µ( k
|k| ,

2n

|k|R).
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Next

A2(k) . |k|−1R2−nmeas(supp Φ+
n (k, ·)) . |k|−1R2−nµ( k

|k| ,
2n

|k|R).

Finally, on the support of the derivative of the term β0(. . . ) we have the
better bound |〈x′(α), k〉|−1 = O((|k|)−1) so that

A3(k) . |k|−2meas(supp Φ+
n (k, ·))

. |k|−2µ( k
|k| ,

2n

|k|R) . |k|−1R2−nµ( k
|k| ,

2n

|k|R)

in view of our restriction k ≥ 2n/R. If we use these estimates in (2.29) then
we obtain the desired estimate for Fn,2(k, λ), at least for the case 2n ≤ R/h.

The estimates for Fn,1(k, λ) and Fn,2(k, λ) in the case 2n > R/h are
derived analogously. The only difference is that (2.23) does not hold in all
of the support of Φ±

n (k, ·). However we still have |ρ∗(2πk) − 〈x′(α), 2πk〉| .
2n/R in this set so that (2.23) is now replaced by

(2.30) (1 + h|λ+ 〈x(α), 2πk〉|)
. (1 +R2−n|λ+ 〈x(α), 2πk〉|) ≈ (1 +R2−n|λ+ ρ∗(2πk)|)

and the remainder of the above arguments applies without change to yield
the inequalities in (2.14) �

Lemma 2.3. Let

(2.31) Bn
±(R,h) := 2−nR×

( ∑

k∈Z2

2n
R

<|k|≤R2

∑

`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)

|k||`|
µ( k

|k| ,
2n

|k|R)µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k) − ρ∗(±`)|)N
)1/2

,

and

(2.32) B̃n
±(R,h) := 2−nR×

( ∑

k∈Z2

2n
R

<|k|≤R2

∑

`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)

|k||`|
µ( k

|k| ,
2n

|k|R)µ( `
|`| ,

2n

|`|R)

(1 +R2−n|ρ∗(±k) − ρ∗(±`)|)N
)1/2

.

Then for 1 ≤ h ≤ R, R ≥ 2,

G±
n (R,h) ≤ CB±

n (R,h) if 2n ≤ R/h,(2.33)

G±
n (R,h) ≤ CB̃±

n (R,h) if 2n > R/h.(2.34)

Proof. We observe that |ζ(k/R)| ≤ ωR(k) and use the elementary convolu-
tion inequality

(2.35)

∫
(1 + a|A+ λ)|)−2N (1 + a|B + λ)|)−2Ndλ . a−1(1 + a|A−B|)−N
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We use (2.35) for A = ρ∗(±2πk), B = ρ∗(±2π`) and a = h if 2n ≤ R/h and
a = R2−n if 2n > R/h. The estimates (2.33), (2.34) are now straightforward
from (2.21), (2.22) and (2.35). �

We shall now combine the previous lemmata to state the definitive result
of this section; here we abandon the a priori assumption that the outer unit
normals are absolutely continous functions.

Proposition 2.4. Let Ω be a convex domain containing the origin in its
interior, and suppose that r1 < 1 < r2 where r1, r2 are the radii of inscribed

and circumscribed circles centered at the origin. Let B±
n , B̃±

n and Γ±
n be as

in (2.31), (2.32) and (2.16).
There exists a constant C, depending only on r1, r2 and N , so that for

1 ≤ h ≤ R, R ≥ 2 we have the estimate

(2.36) GΩ(R,h) ≤ C
∑

±

[ ∑

2n≤R/h

B±
n (R,h) +

∑

R/h<2n≤R

B̃±
n (R,h)

+
∑

2n>R

Γ±
n (R,h)

]
+C[logR+ (R/h)1/2].

Proof. Under our previous a priori assumption on the boundary of Ω this
statement follows by simply putting together the estimates (2.4), (2.14),
(2.17), (2.18), (2.33), and (2.34). We note that all bounds just depend on
r1 ≤ 1 ≤ r2 and N , and that the L1 bound for the second derivatives does
not enter in the result.

In the general case we note that there is a sequence of convex domains Ωj

which contain the origin, such that Ωj ⊂ Ωj+1 ⊂ Ω and ∪jΩj = Ω and Ωj

has smooth boundary. Moreover, let µj(θ, δ) for fixed θ ∈ S1 and δ > 0 be
the quantity (1.6) but associated to the domain Ωj. Then µj(θ, δ) converges
to the corresponding quantity associated to Ω, µ(θ, δ). Moreover the square
functions defined by the smoothed errors E1/R associated to Ωj converge
to the corresponding expression associated to Ω and the same statement

applies to the expressions B±
n (R,h), B̃n

±
(R,h), Γ±

n (R,h). For one explicit
construction of the approximation see the proof of Lemma 2.2 in [29]. The
constant C in the statement of Lemmata 2.1 and 2.3 can be chosen uniformly
in j and the assertion follows. �

3. Estimates for the case of nonzero curvature

In this section we estimate the various quantities in (2.36) of Proposition
2.4, in the case of nonvanishing curvature and rough boundary; that is, we
assume inequality (1.7). Proposition 2.4 reduces matters to estimates for
lattice points in thin annuli

(3.1) A±(r, h) := {ξ ∈ R2 : |ρ∗(±ξ) − r| ≤ h−1};
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here r ≥ 2 and h ≥ 1. Let

(3.2) S±(r, h) := card(A±(r, h) ∩ Z2),

the number of lattice points in the annulus A±(r, h).
We also need to consider for δ ≤ r−1 the weighted sum

(3.3) S±(r, δ, h) =
∑

`∈Z2:
|ρ∗(±`)−r|≤h−1

µ(`/|`|, δ)√
δ

.

Notice that assuming (1.7) we have

(3.4) S±(r, δ, h) . S±(r, h);

however S±(r, δ, h) could be much smaller than S±(r, h). Indeed consider
the case that S±(r, h) contains a long line segment; then the boundary Ω∗

becomes nearly flat and by duality the curvature of Ω at the corresponding
points gets large causing µ( `

|`| , δ) to be smaller than δ1/2 for many ` on the

line segment. This phenomenon will be exploited in the proof of Theorem
1.2.

Proposition 3.1. Suppose that assumption (1.7) is satisfied and that R ≥ 2
and 1 ≤ h ≤ R/ log2R. Then

(3.5) GΩ(R,h) ≤ CR1/2

+CR1/2
∑

±

∑

0≤2n≤log R

2−n/2
( ∑

1≤l≤log R

2−l sup
2l−1≤r≤2l

S±
(
r, 2n

rR , h
))1/2

.

Proof. The proof relies on rather straightforward calculations used to
bound the expressions on the right hand side of (2.36). We shall employ the
bounds

µ( k
|k| ,

2n

|k|R) = O(2n/2(R|k|)−1/2)

(by (1.7)) and the definition of S±.
We now proceed to estimate the various terms in (2.36). First, in order

to bound the terms Γ±
n (R,h), in the range 2n ≥ R we get from (2.16)

Γ±
n (R,h) . 2−n/2R1/2

∑

|k|>0

|k|−3/2ωR(k) . R2−n;

Thus the contribution of
∑

2n≥R Γ±
n (R,h) is certainly covered by the first

term on the right hand side of (3.5).

Next we consider the terms B̃±
n (R,h) which were defined in (2.32). Now

R/h < 2n ≤ R, and in view of our assumption h ≤ R(logR)−2 this certainly
implies 2n ≥ logR. We compute from (2.32), using the assumption R2−n ≥
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1,

B̃±
n (R,h) . 2−n/2R1/2

( ∑

k∈Z2

2n
R

<|k|≤R2

∑

`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)(|k||`|)−3/2

(1 + |ρ∗(±k) − ρ∗(±`)|)N
)1/2

. h1/2 log1/2R, if R/h ≤ 2n ≤ R.

Therefore,
∑

R/h≤2n≤R

B̃±
n (R,h) . (h log(2 + h−1) logR)1/2 . R1/2

since we assume h ≤ R/ log2R. Thus these contributions are again sub-
sumed under the first bound in (3.5).

Next we bound B±
n (R,h), defined in (2.31), now considered for the range

2n ≤ R/h. The argument above for B̃±
n (R,h) also applies to B±

n (R,h) and

one gets B±
n (R,h) = O(2−n/2R1/2(logR)1/2) if R/h ≤ 2n ≤ R. Thus

∑

log R≤2n≤R/h

B±
n (R,h) . R1/2.

Note that if instead we summed over the range 1 ≤ 2n ≤ R/h then we would

only get the weaker bound O(R1/2(logR)1/2).
Finally we have to bound

∑
2n≤log R B±

n (R,h). To this end we observe

that the sum of the contributions of the terms in (2.31) which involve either

|k| ≥ R or |`| ≥ R or |ρ ∗ (±k) − ρ∗(±`)| ≥
√
ρ∗(±k) is easily recognized to

be O(R1/2).
Now let E±(k) denote the set of all ` ∈ Z2 which also satisfy 0 < |`| ≤

R and |ρ∗(±k) − ρ∗(±`)| <
√
ρ∗(±k). We use the bound µ( k

|k| ,
2n

|k|R) .

2n/2|k|−1/2R−1/2 and estimate

B±
n (R,h) ≤ C1R

1/2 +

C22
−n3/4R3/4

( ∑

k∈Z2

0<|k|≤R

|k|−5/2
∑

`∈E±(k,n)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k) − ρ∗(±`)|)N
)1/2

.

By the property µ(θ,Aδ) ≤ CAµ(θ, δ) we obtain

∑

`∈E±(k)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k) − ρ∗(±`)|)N

.
∑

|m|≤C|k|1/2

(1 + |m|)−N
( 2n

R|k|
)1/2

S±
(
ρ∗(±k) +m, 2n

|k|R , h
)
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and thus

2−3n/4R3/4
( ∑

k∈Z2

0<|k|≤R

|k|−5/2
∑

`∈E±(k)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k) − ρ∗(±`)|)N
)1/2

. 2−n/2R1/2
( ∑

k∈Z2

0<|k|≤R

|k|−3 sup
ρ∗(±k)

2
≤r≤2ρ∗(±k)

S±(r, 2n+1

rR , h)
)1/2

which is in turn bounded by a constant times

2−n/2R1/2
( ∑

1≤l≤2+log R

2−l sup
2l−1≤r≤2l

S±(r, 2n

rR , h)
)1/2

.

�
We now state the crucial propositions needed in the proof of Theorems 1.1

and 1.2. The mild regularity assumption in Theorem 1.1 gives us a favorable
estimate for S±(r, h) which will be proved in §5.
Proposition 3.2. Let Ω be as in the statement of Theorem 1.1, i.e. with
κ ∈ L log2+ε L and κ bounded below. Assume that 2 ≤ r and 1 ≤ h. Then

(3.6) S±(r, h) . r
[
h−1 + log−1−ε/2(2 + r)

]
.

If we only make the assumption that the curvature is bounded below (in
the sense of (1.7)) then there is no nontrivial pointwise bound for S±(r, h),
but we still have a favorable bound for the weighted sums S(r, (Rr)−1, h)
provided that h & R1/2, cf. the comment following (3.4). The bound for
these weighted sums is more difficult than Proposition 3.2 and the combi-
natorial proof of the following proposition will be given in §6-8. It may fail
for h < R1/2, see §9.
Proposition 3.3. Let Ω be as in the statement of Theorem 1.2, i.e. with κ
bounded below. Assume that R ≥ 10, 10 ≤ r ≤ R and R1/2 ≤ h ≤ R.

Then

(3.7)
√
RrS(r, 1

Rr , h) . r17/18 .

We finish this section by showing how the above propositions imply the
results stated in the introduction.

Proof of Theorem 1.3. For this result we just use the trivial estimate
S±(r, h) = O(r) if r ≥ 1, |h| ≥ 1. The bound GΩ(R,h) = O((R logR)1/2)
follows easily from a combination of Proposition 3.1 and (3.4). �

Proposition 3.2 implies Theorem 1.1. Now we still use (3.4) and ob-
serve that by Proposition 3.2

∑

1≤l≤log R

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

.
∑

1≤l≤log R

(h−1 + (1 + l)−1−ε/2) . (1 + h−1 logR)
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and thus we obtain the bound GΩ(R,h) = O(R1/2) from Proposition 3.1 if
h ≥ logR. �

Proposition 3.3 implies Theorem 1.2. We argue similarly but now
use the inequality (3.7) in the application of Proposition 3.1. Here (3.7) is
applied with R replaced by R2−n, and since 2n ≤ logR this application is
certainly valid for R1/2 ≤ h ≤ R/(logR)2. We obtain

(3.8)
∑

1≤l≤log(R2−n)

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

.
∑

1≤l≤log(R2−n)

(
2−l/18 + (log(R2−n))−1

)
≤ C;

moreover for the terms with log(R2−n) < l ≤ logR we simply use the trivial
bound S

(
r, 2n

rR , h
)

= O(r) and get

(3.9)
∑

log(R2−n)<l≤log R

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

. n+ 1.

We use (3.8) and (3.9) in the application of Proposition 3.1, and in view
of the exponential decay in n in (3.5) we obtain the bound GΩ(R,h) =

O(R1/2). �

4. Proof of Theorem 1.4

We follow the same setup as in the proof of Theorem 1.3 and use a crucial
fact from [3] according to which the maximal function defined by

µ∗(θ) = sup{δ−1/2µ(θ, δ) : δ > 0}

belongs to L2,∞(S1); i.e.

meas({θ ∈ S1 : µ∗(θ)2 > s}) ≤ C2/s

uniformly in s.
We now consider the sets AϑΩ and denote the quantities in (2.13) asso-

ciated to AϑΩ by G±
n (R,h, ϑ) etc. By averaging it suffices to assume h = 1.

We estimate G+
n (R, 1, ϑ).

From Lemma 2.3 we obtain in the range 2n ≤ R

G+
n (R, 1, ϑ) . 2−n/2R1/2

×
( ∑

0<|k|≤R2

0<|`|≤R2

µ∗(Aϑ
k
|k|)µ

∗(Aϑ
`
|`|)

|k|−3/2|`|−3/2

(1 + |ρ∗(Aϑk) − ρ∗(Aϑ`)|)N
)1/2

.
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By symmetry we may restrict the summation to those pairs (k, `) for which
µ∗( k

|k|) ≤ µ∗( `
|`|) and we thus have the estimate

G+
n (R, 1, ϑ) . 2−n/2R1/2

×
( ∑

0<|k|≤R2

0<|`|≤R2

µ∗(Aϑ
k
|k|)

2 |k|−3/2|`|−3/2

(1 + |ρ∗(Aϑk) − ρ∗(Aϑ`)|)N
)1/2

.

Now as above it is easy to see that for fixed k
∑

` 6=0

|`|−3/2(1 + |ρ∗(Aϑk) − ρ∗(Aϑ`)|)−N ≤ C|k|−1/2

where C is independent from ϑ. Thus

(4.1) G+
n (R, 1, ϑ) . 2−n/2R1/2

∑

0<|k|≤R2

µ∗(Aϑ
k
|k|)

2|k|−2(1 + |k|
R )−N ;

moreover

sup
j≥n

2−jj−(2+ε) sup
2j≤R≤2j+1

G+
n (R, 1, ϑ)2

. 2−n
∞∑

j=n

j−(2+ε)
∑

0<|k|≤22j

µ∗(Aϑ
k
|k|)

2|k|−2(1 + 2−j |k|)−N .(4.2)

In order to complete the proof we have to show that the expression (4.2) de-
fines a function in L1,∞([−π, π]). We apply a well known lemma by Stein and
N. Weiss [31] on adding functions in L1,∞ and the quasi- norm is bounded
by a constant times the square-root of

2−n
∞∑

j=n

j−(2+ε)
∑

0<k≤22j

|k|−2(log(1 + |k| + j))

. 2−n
∞∑

j=n

j−(1+ε) ≤ Cε2
−n.

Thus the function

(4.3) ϑ 7→ sup
R≥2n

R−1/2(log(2 +R))−1−εG+
I,n(R, 1, ϑ)

belongs to L2,∞ with norm O(2−n/2).
For R < 2n ≤ R3 we argue as in the proof of Theorem 1.2 and see that

the estimate (4.1) is replaced by

G+
n (R, 1, ϑ) .

∑

0<|k|≤R2

µ∗(Aϑ
k
|k|)

2|k|−2
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and thus

sup
j<n

2−jε sup
2j≤R≤2j+1

G+
n (R, 1, ϑ)2

.
∑

n/3<j≤n

2−jε
∑

2n−j<|k|≤22j

µ∗(Aϑ
k
|k|)

2|k|−2

and again this expression as a function of ϑ belongs to L1,∞ with quasi-norm
2−εn/3. Thus the function

ϑ 7→ sup
R<2n

R−ε/2G+
n (R, 1, ϑ)

belongs to L2,∞ with norm O(2−εn/3) (which is a better result than for
the function (4.3), as was to be expected). We may sum in n and get
the required assertion for ϑ 7→ ∑∞

n=0G
+
n (R, 1, ϑ) and the corresponding

assertion involving G−
n (R, 1, ϑ) follows in the same way. �

5. Bounds for the lattice rest associated to the polar set –

the proof of Proposition 3.2

We improve the trivial estimate EΩ∗(t) = O(t) under the given mild
regularity assumption on ∂Ω. Because of

S+(r, h) . rh−1 + sup
t≤r+h−1

EΩ∗(t)

(and a similar estimate for S−) Proposition 3.2 is an immediate consequence
of the following result.

Proposition 5.1. Let Ω be a convex domain with C1 boundary in R2 con-
taining the origin in its interior, and assume that the components of the
tangent vector are absolutely continuous. Suppose also that the curvature κ
is uniformly bounded below, i.e. |κ(x)| ≥ a > 0 for almost every x ∈ ∂Ω and
that κ ∈ L logγL(∂Ω), for some γ > 0. Let EΩ∗(t) = NΩ∗(t) − tdarea(Ω∗).
Then for t ≥ 2

(5.1) |EΩ∗(t)| ≤ Ct(log t)−γ/2

We need the following variant of van der Corput’s Lemma.

Lemma 5.2. Let f be a C1 function on the interval [a, b] and assume that
f ′ is absolutely continuous and monotone. Let γ > 0 and suppose that the
function t 7→ (log(2+ 1

|f ′′(t)| ))
γ belongs to L1,∞, with operator (quasi-) norm

bounded by A. Then
∣∣∣
∫ b

a
eiλf(t)χ(t)dt

∣∣∣ ≤ C(γ,A)
(
‖χ‖∞ + ‖χ′‖1

)
(log(2 + λ))−γ .

Proof. We may assume that λ ≥ 10. In view of the monotonicity of f ′

the set I = {t ∈ [a, b] : |f ′(t)| ≤ λ−1(log λ)γ} is an interval, I = [c, d]. The
set [a, b] \ I is a union of at most two intervals and on each of these we
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have |λf ′(t)| ≥ (log λ)γ . By the standard van der Corput Lemma with first
derivatives ([31]) it follows that

(5.2)
∣∣∣
∫

[a,b]\I
eiλf(t)χ(t)dt

∣∣∣ ≤ C
(
‖χ‖∞ + ‖χ′‖1

)
(log λ)−γ .

To complete the proof we have to show that

(5.3) |I| . (log λ)−γ .

Let E1 = {t ∈ I : |f ′′(t)| ≤ (log λ)2γλ−1} and E2 = I \ E1. On E1 we have

logγ(2 + 1
|f ′′(t)| ) ≥ logγ(2 + λ

log2γ λ
) ≥ c logγ(2 + λ);

here c depends only on γ. Thus by our L1,∞ assumption |E1| . (log(2 +
λ))−γ . By definition of I, and the a.e. nonnegativity of f ′′ we also have

2
(log λ)γ

λ
≥ |f ′(d) − f ′(c)| =

∣∣∣
∫

I
f ′′(s)ds

∣∣∣ ≥
∣∣∣
∫

E2

f ′′(s)ds
∣∣∣ ≥ |E2|

(log λ)2γ

λ

thus |E2| ≤ 2(log λ)−γ . Thus we have shown (5.3) and the proof is complete.
�

As a consequence we obtain

Lemma 5.3. Let Ω be as in Proposition 5.1. Then

(5.4)
∣∣χ̂Ω∗(ξ)

∣∣ ≤ C(1 + |ξ|)−1 log(2 + |ξ|)−γ

Proof. Let α 7→ x(α) be a parameterization of ∂Ω with |x′(α)| = 1. A
parametrization of ∂Ω∗ is then given by α 7→ x̃(α) = 〈x(α), n(α)〉−1n(α) but
this parametrization is not sufficiently regular. We compute

(5.5) x̃′ =
n′1n2 − n1n

′
2

〈x, n〉2 (x2,−x1)

and we observe that n′1n2 − n1n
′
2 = κ. Moreover, if r1 < r2 are the radii of

inscribed and circumscribed circles centered at the origin then for x ∈ ∂Ω

(5.6) 〈x, n〉 ≥ r1
2r2

|x| > r21
2r2

.

We introduce a new parameter τ = τ(α) =
∫ α
α0

κ(β)
〈x(β),n(β)〉2

dβ; then τ is

invertible with inverse τ 7→ α(τ), τ ∈ I. We work with the parametrization

τ 7→ x∗(τ) = x̃(α(τ))

and then
x′∗(τ) = (x2(α(τ))),−x1(α(τ)).

In view of an analogue of (2.8) it suffices to show that

(5.7)
∣∣∣
∫

I
e−i〈x∗(τ),ξ〉χ(τ)dτ

∣∣∣ . (log(2 + |ξ|))−γ

Let c0 = r1/2r2 and g(τ, ξ) = 〈 ξ
|ξ| ,

x′
∗

|x′
∗|
〉. Fix |ξ| ≥ 2. We split our interval I

into no more than 16 subintervals, where on each interval J either |g(τ, ξ)| ≥
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c0/4 for all τ ∈ J or |g(τ, ξ)| ≤ c0/4 for all τ ∈ J ; and τ 7→ g(τ, ξ) is
monotonic on J .

Suppose for all τ ∈ J we have |g(τ, ξ)| ≥ c0/4. Then |〈x′∗(τ), ξ〉| ≥ c1|ξ|
in J and by van der Corput’s Lemma we get

(5.8)
∣∣∣
∫

J
e−i〈x∗(τ),ξ〉χ(τ)dτ

∣∣∣ . |ξ|−1

which of course is much better then the desired estimate.
Now fix J ′ with the property that |g(τ, ξ)| ≤ c0/4 for all α ∈ J ′. Now

x(α(τ)) and x′∗(α(τ)) are orthogonal and thus |〈 x
|x| ,

ξ
|ξ|〉| ≥ (1 − c20/16)

1/2 ≥
1 − c0/4; moreover

∣∣〈n, ξ
|ξ|〉

∣∣ ≥
∣∣〈 x

|x| , n〉〈 x
|x| ,

ξ
|ξ|〉

∣∣ −
∣∣〈 x′

∗
|x′

∗|
, ξ
|ξ|〉

∣∣

≥ c0(1 − c0/4) − c0/4 ≥ c0/4.

Now for α ∈ J ′ we have n(α) = (x′2(α),−x′1(α)) and thus

|〈x′′∗(τ), ξ〉| = |〈n(α(τ)), ξ〉α(τ)| ≥ c0
4
|α′(τ)|.

Therefore∫

J ′

logγ(2 +
1

|〈x′′∗(τ), ξ/|ξ|〉|
)γdτ ≥ c1

∫

J ′

logγ(2 +
1

|α′(τ)|)dτ

= c1

∫

α(J ′)
logγ(2 + |τ ′(α)|)|τ ′(α)|dαdτ

where c1 is chosen independently of ξ. The latter expression is finite since
|τ ′(α)| ≈ |κ(α)| which is assumed to be in L logγL. Thus we may apply
Lemma 5.2 with λ = |ξ| and obtain

(5.9)
∣∣∣
∫

J ′

e−i〈x∗(τ),ξ〉χ(τ)dτ
∣∣∣ . (log(2 + |ξ|))−γ

and the assertion follows from combining the estimates (5.8) and (5.9) on
the various subintervals. �

Proof of Proposition 5.1. Given Lemma 5.3 this is just an application of
the standard argument. Let N∗

ε (t), E∗
ε (t) be defined as in (2.1) and (2.2),

but for the set Ω∗ in place of Ω. Then by Lemma 5.3 for t ≥ 2

|E∗
ε (t)| ≤ (2πt2)

∑

k 6=0

|χ̂Ω∗(2πtk)||ζ̂(2πεk)|

. t2
∑

k 6=0

(t|k|)−1 log(2 + |t|k|)γ(1 + ε|k|)−N . t(log t)−γε−1.

Also N∗
ε (t−Cε) ≤ N∗(t) ≤ N∗

ε (t+Cε) and applying the previous estimate
with t± Cε in place of t yields

|EΩ∗(t)| .
[
t(log t)−γε−1 + tε

]
.

Thus for the choice ε = (log t)−γ/2 we obtain the asserted estimate. �
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6. A weighted estimate for lattice points

on lines in thin annuli

The purpose of this section is to prove a bound for sums
∑

` µ( `
|`| ,

1
R|`|)

where the sum runs over the lattice points contained on a given line segment
in the ρ∗-annulus

(6.1) A (r, h) =
{
x ∈ R2 : r ≤ ρ∗ (x) ≤ r + h−1

}
.

It turns out that if h & R1/2 and the line segment is sufficiently long
then the trivial bound µ( `

|`| ,
1

R|`|) . (Rr)−1/2 may be substantially improved

for most of the lattice points on the line segment; i.e. the fact that the
thin ρ∗ annulus contains long line segments reflects a rather fast turning
of the normals for the original domain which may only happen if ∂Ω lacks
smoothness.

Throughout this and the next two chapters we shall adopt the following
notations. Given certain subsets A, B, G, I, J etc. we shall use blackboard
bold fonts to denote by A, B, G, I, J the intersections of these sets with
the integer lattice Z2 (the standard notation for the plane R2 remains an
exception to this convention). We shall adopt the convention that a line

segment I =
−−→
PQ is a nontrivial segment whose endpoints P,Q lie in the

lattice Z2. The corresponding collection I = I ∩Z2 of lattice points in I will
be called a lattice line segment.

If n is an odd natural number and J is a line segment, we let nJ denote
the line segment concentric with and parallel to J but with n times the
length. The distance between consecutive lattice points on the line segment
J is constant. Let d ≡ d(J) denote this distance; then d−1 = (card J−1)/|J |
is the density of lattice points on J .

The following result is the key for the proof of Proposition 3.3. We are
seeking to improve the bound from (1.7) (with δ = (R|`|)−1)

(6.2)
√
Rr

∑

`∈I

µ( `
|`| ,

1
R|`|) . card(I),

if card(I) is sufficiently large.

Lemma 6.1. Let Ω be an open convex bounded set in the plane R2, with
positive curvature, and containing the origin. Let 10 ≤ r ≤ R < ∞, and let
h ≥ R1/2. Let J be a closed line segment whose endpoints are contained in
Z2 and let J = J ∩ Z2. Assume that the ninefold dilate 9J is contained in
A(r, h) and that card(J) ≥ 10.

Let d = d(J) and

(6.3) T (J) ≡ T (R, J, h, r) := R3/4d(J)1/2h−1/2r−1/4.
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Then

(6.4)
√
Rr

∑

`∈J

µ( `
|`| ,

1
R|`|) .





(
Rr

h2d2

)1/4
if card(J) ≤ T (J),

(
rcard(J)

hd2

)1/3
if card(J) ≥ T (J).

Proof.

We begin by introducing some additional notation. For P ∈ R2, let n∗P
denote the unit outward normal to Ω∗ at the point P

ρ∗(P ) ∈ ∂Ω∗. Note that

this unit normal is uniquely determined since it is parallel to the uniquely

determined position vector
−−−→
OPP joining the origin O to the point PP ∈ ∂Ω

having P as one of its outward normal vectors.
We set I = 3J and let P , Q be the endpoints of I. Our first observation

is that the angle between the vectors n∗P and n∗Q (the nonnegative angle less

than π) satisfies

(6.5) ψ := ]
(
n∗P , n

∗
Q

)
≤ C1 arctan

(h−1

|I|
)
,

where |I| = |QP | is the length of the segment I and C1 is a constant depend-
ing only on Ω. To see this one notes that there is a rectangle of width ch−1

which contains the line segment 3I and which is contained in the annulus

A(r, h). If we had tan ]
(
n∗P , n

∗
Q

)
≥ C̃h−1|I|−1 for large C̃ then it is easy

to see that the triangle OPQ would contain points in the complement of
{ρ∗ ≤ r + h}. Thus we have (6.5).

For x ∈ I, define the collection Γ(x) of subsegments J ′ =
−−→
UV of I by

Γ(x) =
{
J ′ =

−−→
UV ⊂ I : x ∈ J ′, |J ′| ≥ d(J)

}
,

and the corresponding uncentered maximal function M on I by

M (x) = sup
J ′=

−−→
UV ∈Γ(x)

1

|J ′|]
(
n∗U , n

∗
V

)
.

Then M is in weak L1 on I by F. Riesz’s lemma ([28], ch. 1); it satisfies
the inequality

(6.6) |{x ∈ I : M(x) > λ}| ≤ 2ψ/λ.

We shall now consider a decomposition of the set I depending on a pa-
rameter q; we shall see that the choice

(6.7) q =





(
Rrd2

h2

)1/4
if card(J) ≤ T (J)

(
rd card(J)

h

)1/3
if card(J) ≥ T (J)

will be (essentially) optimal.
Let B ⊂ I := I ∩ Z2 denote the set

B =
{
` ∈ I : M(`) > q−1ψ

}
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to which, following the terminology in Calderón-Zygmund theory, we re-
fer as the set of bad lattice points. Let G = I \ B be the set of good
lattice points. Denote by u a unit vector parallel to I. Then the seg-

ments
−−−−−−−−−−−−−−−→
(`− du/2)(` + du/2) are pairwise disjoint and for each ` ∈ B, either−−−−−−−−→

(`− du/2)` or
−−−−−−−−→
`(`+ du/2) is contained in

{
x ∈ I : M(x) > ψ/q

}
.

Thus by (6.6) we have

card(B) = d−1
∣∣∣
⋃

`∈B

−−−−−−−−−−−−−−−→
(`− du/2)(` + du/2)

∣∣∣

≤ 2d−1
∣∣{x ∈ I : M(x) > ψ/q

}∣∣ . q/d.

By (1.7) we obtain

(6.8)
∑

`∈B

√
Rrµ( `

|`| ,
1

R|`|) . q/d

We shall now obtain an estimate for the sum over ` ∈ G ∩ J (rather than
over all of G). Note that if ` ∈ G ∩ J, then

]
(
n∗`−αdu, n

∗
`+αdu

)
≤ 2αdψ/q,(6.9)

] (`− αdu, `) , ] (`, `+ αdu) ≥ cαd/r(6.10)

for 1/2 ≤ α ≤ |J |/d upon using |`| ≈ r.
Passing to the dual set Ω∗∗ = Ω with defining Minkowski functional ρ,

we have that for α ≥ 0, the points A±
`,α =

n∗`±αdu

ρ(n∗`±αdu) in ∂Ω have unit normals

ν±`,α = `±αdu
|`±αdu| , and that

(6.11)

∣∣]
(
ν±`,α,

`
|`|

)∣∣ ≥ cαd/r

|]
(
A−

`,α,A+
`,α

)
| ≤ 2αdψ/q

for 1/2 ≤ α ≤ |J |/d.
Using this bound we derive a bound on the diameter of the cap CΩ( `

|`| ,
1

R|`|).

Let

D = 2C1d(h|I|q)−1,

where C1 is as in (6.5). Suppose that ∂Ω is parametrized in a neighborhood

of
n∗`

ρ(n∗`)
by t 7→ γ(t), |t| ≤ c′, with

〈γ(t) −A`,0,
`
|`|〉 = ϕ`(t);

here A±
`,0 =

n∗`
ρ(n∗`)

, and ϕ`(t) is convex and nonnegative with ϕ`(0) = 0,

ϕ′
`(0) = 0.
Now by (6.5) we have D ≥ 2dψ/q, and so (6.11) shows that

|ϕ′
`(αD)| ≥ |ϕ′

`(α2dψ/q)| ≥ cαd/r, 1/2 ≤ α ≤ |J |/d,
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and it follows that for D/2 ≤ |t| ≤ |J |d−1D,

(6.12) ϕ` (t) ≥
∫ t

D/2

cd

Dr
s ds =

1

2

cd

Dr

[
t2 − (D/2)2

]
.

Now assume |J |/d ≥ 1 and observe that then for t = D|J |/d, the upper
bound for |t|, we have by (6.12) and the definition of D and J

ϕ`

( |J |
d D

)
≥ c

2

dD

r

[
(|J |/d)2 − 1/4

]
≥ 3c|J |2D

8dr
=
cC1|J |
4rhq

.

Since h ≤ R and in view of h ≥ R1/2, 1 ≤ r ≤ R we see that the choice of q
in (6.7) certainly implies

ϕ`(
|J |
d D) ≥ c′(Rr)−1 ≥ c′′(R|`|)−1

This estimate and (6.12) imply that

µ( `
|`| ,

1
R|`|) ≤ C(c′′)µ( `

|`| ,
1

c′′R|`|) . ϕ−1
` ( 1

c′′R|`|)

. ϕ−1
` ( 1

R|`|) ≤ D + 2

√
2Dr

cd

1

R |`|
. (D + (D/dR)1/2),

and since D = 2C1d(h|I|q)−1 we then have

√
Rrµ( `

|`| ,
1

R|`|) .
R1/2

h

dr1/2

|I|q +
( r

h|I|q
)1/2

,

for ` ∈ G ∩ J. Since |I| ≈ d card(I) ≈ d card(J) we obtain

(6.13)
∑

`∈G∩J

√
Rrµ( `

|`| ,
1

R|`|) .
(Rr)1/2

hq
+

(rcard(J)

hdq

)1/2
.

Altogether (6.13) and (6.8) yield

(6.14)
∑

`∈J

√
Rrµ( `

|`| ,
1

R|`|) .
q

d
+

(Rr)1/2

hq
+

(rcard(J)

hdq

)1/2
.

We essentially choose q to minimize this expression. Its square is compa-
rable to d−2F (q) where

(6.15) F (q) = q2 + b1q
−2 + b2q

−1,

and the positive coefficients are given by

b1 = Rrd2h−2, b2 = rcard(J)dh−1.

In what follows we shall need the relation

b
4/3
2 /b1 =

(
card(J)/T

)4/3

where T is as in (6.3). To analyze (6.15) it is natural to distinguish two
cases, where in the first case the second term b1q

−2 dominates the third
term b2q

−1 and in the second case we have the opposite inequality.
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In the first case, q ≤ b1/b2, we have that F (q) ≈ q2 + b1q
−2 and the latter

expression has a local minimum where q = b
1/4
1 . This value b

1/4
1 belongs to

the currently relevant interval (0, b1/b2] when b2 ≤ b
3/4
1 which is equivalent

to card(J) ≤ T . In this case we thus make the choice q = b
1/4
1 (which is

the value (Rrh−2d−2)1/4 in (6.7)). Then the right hand side of (6.14) is
bounded by a constant times

(6.16) d−1

√
F (b

1/4
1 ) . d−1b

1/4
1 = (Rrd−2h−2)1/4.

In the second case, q ≥ b1/b2 we have F (q) ≈ q2 + 2b2q
−1 and the latter

expression has a local minimum at b
1/3
2 which lies in the interval [b1/b2,∞)

when b
4/3
2 ≥ b1; this condition is equivalent with card(J) ≥ T . Thus we now

make the choice q = b
1/3
2 = (rcard(J)dh−1)1/3. Now the right hand side of

(6.14) is bounded by a constant times

(6.17) d−1

√
F (b

1/3
2 ) . d−1b

1/3
2 = (rcard(J)h−1d−2)1/3

and the estimate (6.4) is established. �

7. An elementary lemma

We give a standard estimate on lattice points on convex polygons.

Lemma 7.1. Suppose we are given integer points F1, . . . , FJ in Z2, which
are vertices of a convex polygonal curve; i.e. the interiors of the line seg-

ments FiFi+1 are mutually disjoint and if
−−−−→
FiFi+1 = Li(cos βi, sin βi), i =

1, . . . , J − 1, then we have Li > 0 and βi+1 > βi. Suppose also that

βJ−1 − β1 ≤ 2π, and set L =
∑J−1

i=1 Li. Then

J ≤ 2 + (βJ−1 − β1)
1/3L2/3.

Proof. Let ∆(A,B,C) denote the triangle with vertices A,B,C. Then we
use again that the area of ∆(A,B,C) is at least 1/2 if A,B,C are non-
collinear lattice points. Thus

J − 2 ≤
J−2∑

j=1

(
2 area(∆(Fj , Fj+1, Fj+2))

)1/3

=

J−2∑

j=1

(
|−−−−→FjFj+1| |

−−−−−−→
Fj+1Fj+2| | sin(βj+1 − βj)|

)1/3

and thus by Hölder’s inequality

J − 2 ≤
( J−2∑

j=1

|−−−−→FjFj+1|
)1/3( J−2∑

j=1

|−−−−−−→Fj+1Fj+2|
)1/3( J−2∑

j=1

| sin(βi+1 − βi)|
)1/3

≤ L2/3(βJ−1 − β1)
1/3. �
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In particular if P is a convex polygon of length L whose vertices are
integer lattice points then the number of vertices of P is O(L2/3). This is a
special case of Andrews’ result [1].

8. Proof of Proposition 3.3

In what follows we fix r,R, h with 10 ≤ r ≤ R, R1/2 ≤ h ≤ R. Let

Ω∗
± =

{
x ∈ R2 : ρ∗(x) < r ± h−1

}

and A = Ω∗
+ \ Ω∗

−. Denote by A = A ∩ Z2 the set of lattice points in the

annulus A. Let H be the convex hull of A and let E = {Ej}card(E)
j=1 be the

extreme points of H arranged in counterclockwise order around the origin.
First observe that from Lemma 7.1 we have

(8.1) card(E) . r2/3.

Recall our convention from the §6 that a line segment is a nontrivial
segment I whose endpoints lie in the lattice Z2. Our second observation
is that every lattice point in A \ E belongs to some line segment I that
contains an extreme point from E and lies entirely within the annulus A.
More precisely, let ` ∈ A and suppose that for some 1 ≤ j ≤ card(E), `
belongs to the closed triangular sector Sj = ∆ (Ej, Ej+1, 0) with vertices
Ej, Ej+1 and the origin. Then the convex set Ω∗

− cannot intersect both of

the line segments
−−→
Ej` and

−−−→
Ej+1`, and hence at least one of them must lie in

A.
Thus for 1 ≤ j ≤ card(E), Aj = A ∩ Sj is contained in the union Ij of

all maximal line segments I contained in A ∩ Sj having one endpoint that
is either Ej or Ej+1. We further distinguish the segments I in Ij by letting
{I−j,n}, n = 1, . . . N−

j be an enumeration of the line segments in Ij having
Ej as an endpoint, and arranged clockwise about Ej as n increases from
1 to N−

j . Similarly, {I+
j,n}, n = 1, . . . , N+

j is an enumeration of the line
segments in Ij having Ej+1 as an endpoint, and arranged counterclockwise
about Ej+1 as n increases from 1 to N+

j . Note that if the line segment
−−−−−→
EjEj+1 joining the consecutive extreme points Ej and Ej+1 is contained in

A then I+
j,N+

j

= I−
j,N−

j

=
−−−−−→
EjEj+1.

The next lemma implies that the total number of line segments in

I :=

card(E)⋃

j=1

Ij

still does not exceed Cr2/3 if we assume r ≤ R and h ≥ R1/2. For this we

define Lj = |−−−−−→EjEj+1| to be the length of the segment
−−−−−→
EjEj+1, and Θj to

be the (positive) change of angle for the normal direction to ∂Ω∗ across the
sector Sj (recall that every point in ∂Ω∗ has a unique normal since Ω has
positive curvature). Specifically
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Lemma 8.1. For each 1 ≤ j ≤ card(E), we have

N−
j +N+

j ≤ C
(
1 + area(A ∩ Sj) + L

2/3
j Θ

1/3
j

)
.

Proof. We will establish the indicated estimate for N+
j , the case for N−

j

being similar. Fix j and let the segment I+
j,n have endpoints Ej+1 and Fn

so that I+
j,n =

−−−−−→
Ej+1Fn. Consider the collection of segments {−−−−−→FnFn+1}

N+
j −1

n=1

and set

Tj =
{
n : 1 ≤ n < N+

j and
−−−−−→
FnFn+1 ⊆ A∩ Sj

}
,

Pj =
{
n : 1 ≤ n < N+

j and
−−−−−→
FnFn+1 * A∩ Sj

}
.

We first note that the triangles ∆(Ej+1, Fn, Fn+1) are pairwise disjoint
and contained in A∩ Sj for n ∈ Tj . As the corners of these triangles are in
Z2 the area of each triangle is at least 1/2 and we estimate

(8.2) card(Tj) ≤ 2
∑

n∈Tj

area
(
∆(Ej+1, Fn, Fn+1)

)
≤ 2 area(A ∩ Sj).

Now the integers in Pj can be written as a union of maximal chains Ci of
consecutive integers as follows:

Pj = ∪Mj

i=1Ci, Ci = {n}bi
n=ai

,

where ai ≤ bi and bi +2 ≤ ai+1. Note that the number of chains Mj satisfies

Mj ≤ 1 + card(Tj) ≤ 1 + 2 area (A ∩ Sj) .

For each n ∈ Pj we may write
−−−−−→
FnFn+1 = ρn(cosαn, sinαn) where ρn > 0

and αn > αm if m > n. In particular the lines associated to a fixed chain
form a convex polygon. To see this, let m > n and note that the convex set
Ω∗
− intersects both of the line segments FnFn+1 and FmFm+1, and that the

intersection with FmFm+1 occurs to the clockwise side of the intersection
with FnFn+1 (we adopt an obvious convention regarding the use of the
phrase ”to the clockwise side of”). Thus the angle αm of FmFm+1 is less than
the angle αn of FnFn+1. Moreover the sectors generated by {O,Fn, Fn+1}
and {O,Fm, Fm+1} have disjoint interior so that

∑

n∈Pj

∣∣−−−−−→FnFn+1

∣∣ . Lj.

See the following diagram for a somewhat artificial illustration with Pj =

{1, 2} and Tj = {3}. Note that the segment F2F3 lies to the clockwise side

of the segment F1F2, and that F4 = Ej. Realistic illustrations with actual
lattice points require extremely thin annuli and are difficult to draw.
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Now consider a chain Ci = {n}bi
n=ai

of length bi−ai+1 ≥ 3 and the associated

set of lattice points {Fn}bi
n=ai

. By Lemma 7.1, we have

bi − ai + 1 ≤ 2 +
( bi−1∑

n=ai

∣∣∣−−−−−→FnFn+1

∣∣∣
) 2

3 ( bi−1∑

n=ai

(αn+1 − αn)
) 1

3

for all chains of length bi − ai + 1 ≥ 3, and also trivially for chains of length
1 or 2 as well. Summing in i from 1 to Mj we thus obtain

card(Pj) =

Mj∑

i=1

(bi − ai + 1)

≤ 2Mj +

Mj∑

i=1

{( bi−1∑

n=ai

|−−−−−→FnFn+1|
) 2

3
( bi−1∑

n=ai

(αn+1 − αn)
) 1

3

}

and thus by Hölder’s inequality

card(Pj) ≤ 2Mj +
( Mj∑

i=1

bi−1∑

n=ai

∣∣−−−−−→FnFn+1

∣∣
) 2

3
( Mj∑

i=1

bi−1∑

n=ai

αn+1 − αn

) 1
3

≤ C
(
Mj + L

2/3
j Θ

1/3
j

)
≤ C ′

(
1 + area(A ∩ Sj) + L

2/3
j Θ

1/3
j

)
.

The Lemma follows by combining the inequalities for the cardinalities of Tj

and Pj . �

We now proceed with the proof of Proposition 3.3. First, by Lemma 8.1
and inequality (8.1) we can estimate the cardinality of I by
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card(I) ≤
card(E)∑

j=1

card(Ij) .

card(E)∑

j=1

{1 + area(A ∩ Sj) + L
2
3
j Θ

1
3
j }

.
(
card(E) + area(A) +

( card(E)∑

j=1

Lj

) 2
3
( card(E)∑

j=1

Θj

) 1
3

)

. (r2/3 + r/h) . r2/3(8.3)

since h ≥ R1/2 ≥ r1/2.
Now consider the lattice line segments I±j,n = I±j,n ∩ Z2 consisting of the

lattice points in I±j,n, and let Aj be the collection of lattice points which lie
in A∩ Sj . We then get for each j

(8.4) Aj = A∩Sj =
( N+

j⋃

n=1

I+j,n

)
∪

( N−
j⋃

n=1

I−j,n

)

where
∑card(E)

j=1 (N+
j +N−

j ) . card(I) . r2/3.
We now wish to apply Lemma 6.1, to the intervals in I; however the

assumption that the ninefold dilates are still contained in the annulus A may
not be satisfied. Therefore for every I ∈ I we decompose I in subintervals

I = ı+(I) ∪ ı−(I) ∪
N(I)⋃

m=−N(I)

ım(I)

where 9ım(I) ⊂ I. Moreover if ım(I) := ım(I)∩Z2, and ı±(I) := ı±(I)∩Z2,

and then card(ım(I)) . 2−|m|card(I), card(ı±(I)) = O(1) and N(I) ≤ C +
log2(card(I)).

We first have the trivial inequality

(8.5)
∑

I∈I

∑

±

∑

`∈ı±(I)

√
Rrµ( `

|`| ,
1

R|`|) . card(I) . r2/3.

Now let L denote the set of all lattice line segments {ım(I) : |m| ≤
N(I), I ∈ I}. We split L into three subfamilies (here T is as defined in

(6.3), i.e. T (J) = R3/4d(J)1/2h−1/2r−1/4).

(i) L1 consists of all J ∈ L which satisfy card(J) ≤ T (J)

(ii) L2 consists of all J ∈ L of the form ım(I) for suitable m, I, where

card(J) > T (J) and card(I) ≤ r1/3.

(iii) L3 consists of all J ∈ L of the form ım(I) for suitable m, I, where

card(J) > T (J) and card(I) > r1/3.

In our applications of Lemma 6.1 we shall ignore the possible nontrivial
size of d(J) and use the trivial bound d(J) ≥ 1.
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Notice that for all I we have N(I) . log r so that card(L) . r2/3 log r.
Thus from the first inequality in (6.4) of Lemma 6.1 (and d ≥ 1) we get

(8.6)
∑

J∈L1

√
Rr

∑

`∈J

µ( `
|`| ,

1
R|`|) . r2/3 log r(Rrh−2)1/4 . r11/12 log r

since h2 ≥ R ≥ r (from the hypothesis in Proposition 3.3).
Next we consider the lattice line segments in L2 and use the second in-

equality in (6.4) of Lemma 6.1. We obtain
∑

J∈L2

√
Rr

∑

`∈J

µ( `
|`| ,

1
R|`|)

.
∑

I∈I:

card(I)≤r1/3

∑
m:

ım(I)∈L2

(rh−1 card(ım(I))1/3

.
∑

I∈I:

card(I)≤r1/3

(
rh−1 card(I)

)1/3

. r1/3+1/9card(I)h−1/3 . r17/18(8.7)

since card(I) . r2/3 and h ≥ R1/2 ≥ r1/2.
Finally for the lattice line segments in L3 we use again the second in-

equality in (6.4) of Lemma 6.1 but estimate differently

∑

J∈L3

√
Rr

∑

`∈J

µ( `
|`| ,

1
R|`|)

.
∑

I∈I:

card(I)>r1/3

(
rh−1 card(I)

)1/3

.
∑

I∈I

(r/h)1/3 card(I)

r2/9

. r1/3−2/9h−1/3card(A) . r17/18(8.8)

since h ≥ r1/2 and card(A) . r.
We combine estimates (8.5), (8.6), (8.7), and (8.8) and deduce the asserted

bound. �

9. On the Sharpness of Proposition 3.3

Proposition 3.3 implies the estimate

(9.1) K(R,h) . R−1, h ≥ R1/2

for the quantity defined in (1.11). We show that the condition h ≥ R1/2 is
needed in (9.1).

More specifically we show that there are positive constants c and C such
that for every ε > 0 and R > C, there exists an open convex bounded
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set Ω with curvature bounded uniformly below (in the sense of any of
the equivalent definitions in the subsequent section) such that with h =

h(R) = R1/2 (logR)−ε and suitable C0 the quantity K(R,h) is at least
cεR−1 log logR.

In what follows we let r be a large integer satisfying

r . (logR)ε/3.

We will construct an open convex bounded set Ω, with curvature & 1/2
everywhere so that

(9.2) (R|(m,n)|)1/2µ( (m,n)
|(m,n)| ,

1
R|(m,n)|) = 1

for all (m,n) ∈ Z2 with 0 < |n| ≤ m ≤ r, and also so that

(9.3) |ρ∗ ((m,n1)) − ρ∗ ((m,n2))| ≤ 2R−1/2(logR)ε

for 0 ≤ |n1| , |n2| ≤ m ≤ r. With this achieved, we restrict k and ` in
the sum on the left side of (1.11) to lie in the triangle of lattice points
Tr = {(m,n) : 0 ≤ |n| ≤ m ≤ r}. Writing k = (m,n1) and ` = (m,n2), we

obtain that with h(R) = C−1
0 R

1
2 (logR)−ε,

∑

k,`∈Z2:|k|≤R,|`|≤R,

|ρ∗(`)−ρ∗(k)|≤h(R)−1

|k|−2µ
(

k
|k| ,

1
R|k|

)
µ
(

`
|`| ,

1
R|`|

)

≥ R−1
∑

k,`∈Tr:

|ρ∗(`)−ρ∗(k)|≤h(R)−1

|k|−3 ≥ R−1
∑

(m,n)∈Tr

m−2

≥ cR−1 log r = cR−1 ε

3
log logR,

the desired conclusion; here we have used (9.2) and (9.3), respectively, in
the first two inequalities above.

Now we give the details of the construction. Given ε > 0, r ∈ N large
and h > 1, denote by Rm,n the ray from the origin (0, 0) through the point
(m,n), and by K the circle of radius hr2 centered at

(
1 − hr2, 0

)
, so that K

passes through the point (1, 0). We order the set of rays {Rm,n : |n| ≤ m ≤
r,m > 0} by increasing slope (so that the positive slopes form the Farey
sequence of order r), and denote the resulting ordered sequence of rays by

{Lj}J
j=−J . Let Pj be the intersection of Lj and K.

We now define a preliminary domain D0 with partially polygonal bound-
ary, then smooth out the corners to get a domain D with bounded curvature,
and we shall then take Ω = D∗ so that Ω∗ = D∗∗ = D. The boundary of the
set D0 consists of the polygon in the sector S = {(x, y) : 0 ≤ |y| ≤ x} whose

edges are the segments
−−−−→
PjPj+1, −J ≤ j < J , together with a smooth curve

of bounded curvature in the closure of the complement of S. We note that
with Pj = (xj , yj), we have

(9.4) 1 − 1

2hr2
≤ xj ≤ 1
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by a straightforward application of Pythagoras’ theorem and the fact that
|Pj − (1, 0)| ≤ 1.

It follows that for this convex set D0, the defining functional ρ∗0 satisfies

(9.3) if h ≥ R1/2(logR)−ε. Indeed, if Rm,nσ = Ljσ for σ = 1, 2, then
(m,nσ) = m

xjσ
(xjσ , yjσ) and so by (9.4), we have

|ρ∗ ((m,n1)) − ρ∗ ((m,n2))| =
∣∣∣ m
xj1

− m

xj2

∣∣∣ =
m|xj1 − xj2|

xj1xj2

≤ 2m(hr2)−1 < 2(hr)−1.

We now smooth out the corners to define the domain D0. We modify ∂D0

in a small neighbourhood of each Pj by inscribing a circle of radius 1 to be
tangent to each edge incident with Pj , so that in this neighbourhood, ∂D is
an arc Γ∗

j of a circle of radius 1, where the arc Γ∗
j is centered about the ray

Lj and has diameter Mj, where

(9.5) c(hr3)−1 ≤Mj≤ C(hr2)−1,

where the proximity of Mj to the upper or lower bound depends on where in
the Farey sequence the slope of Lj occurs. The modification of the boundary
of D0 that is described above is possible for h ≥ C0, where C0 is a sufficiently
large constant, since by the second inequality in (9.5),

Mj� r−2 ≤
∣∣−−−−→PjPj+1

∣∣.
It is easy to see that inequality (9.3) persists for this modification.

Now define Ω = D∗ and let ρ be the Minkowski functional of Ω. Let
n∗(m,n) be the unit normal at the boundary point of D which lies on the ray

determined by (m,n). If Rm,n = Lj then the arc Γj = (Γ∗
j )

∗ in ∂Ω dual to

the circular arc Γ∗
j in D, is itself a circular arc centered at

n∗
(m,n)

ρ
“

n∗
(m,n)

” , with

curvature 1 and diameter Mj. Note that the point n∗(m,n)/ρ(n
∗
(m,n)) in ∂Ω

has Pj/|Pj | as unit normal. Thus by the first inequality in (9.5), the cap

C(Pj/|Pj |, δ) has diameter ≈ δ
1
2 for all 0 < δ ≤ c((hr3)−2 ≤ c′ M2

j , and so

(R|(m,n)|)1/2diam
(
C(

Pm,n

|Pm,n|
, 1

R|(m,n)|)
)
≥ c

if (R|(m,n)|)−1 ≤ c(hr3)−2, and in particular if R ≥ Ch2r6. Thus if we

choose r ≤ C1/6(logR)ε/3 and R1/2 (logR)−ε ≤ h ≤ (CR)1/2r−3, we have
both (9.2) and (9.3). �

Appendix A.
Generalized distances for lattice points in dimensions d ≥ 3

Let ρ be the norm associated to a convex symmetric domain containing
the origin, with smooth boundary and with the property that the Gaussian
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curvature of the boundary vanishes nowhere. Here we are interested in lower
bounds for the distance sets

∆K(E) = {ρ (x− y) :x, y ∈ E},
where E will be taken as E(R) = {k ∈ Zd, |k| ≤ R}.

This can be considered as an instance of a problem by Erdős [7] who
conjectured for K being the unit ball for the Euclidean metric that for any
finite set E ⊂ Rd (d ≥ 2) one should have the estimate

(A.1) card(∆K(E)) ≥ Cε(card(E))
2
d
−ε;

this conjecture makes also sense for the more general metrics as described
above and suggests the lower bound card(∆K(E(R))) & R2−ε in our special
case, for all metrics as described above. The general conjecture is open in
every dimension d ≥ 2. For some of the best currently known partial results
and a description of the relevant combinatorial techniques we refer to the
survey [24] and other articles in the same volume.

For the case of the Euclidean metric (i.e. K = {|x| ≤ 1}) the lower
bound R2−ε for ∆K(E(R)) is well known and follows from properties of the
number r(n) of representations of an integer n as a sum of two squares (see
Theorems 338 and 339 in [8]). For more general metrics we shall deduce the
lower bound for card(∆K(E(R))) from mean discrepancy results in [15] (see
also the previous work by W. Müller [19]). Unfortunately, in two dimen-
sions these results do not seem to yield anything nontrivial for the distance
problem.

Since the distance set ∆K(E(R)) contains the image of E(R) under ρ it
is sufficient to prove the lower bound card(ρ(E(R))) ≥ CεR

2−ε, ε > 0. We
have the following more precise estimate

Proposition A.1. Let d ≥ 3 and let Ω be an open convex bounded set in Rd

containing the origin in its interior. Suppose that the boundary ∂Ω is C∞,
with nonvanishing Gaussian curvature. Let ρ be the Minkowski-functional
associated to Ω, let

ER = {k ∈ Zd : R/2 ≤ |k| ≤ R}
and let ρ(ER) = {ρ(a) : a ∈ ER}. Then there exists a constant C0 so that
for all R ≥ C0 we have

card(ρ(ER)) ≥
{
R2 if d ≥ 4

R2/ logR if d = 3.

Proof. Let α ≥ 0. We define for a finite set A the quantity

mρ,α(A) = max{card(F ) : F ⊂ ρ(A), |s − t| > α} for all s, t ∈ F}.
In particular note that mρ,0(A) = ρ(A); in fact in view of the finiteness of
A we have ρ(A) = mρ,ε0(A) for some ε0 = ε0(A) > 0. Moreover we let for
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ε ≤ 1, R ≥ 1

S(ε, r;A) = card{k ∈ A; |ρ(k) − r| ≤ ε};
σ(A, ε) =

∑

k∈A

S(2ε, ρ(k);A).

We first observe that for any finite set A (later A = ER), and ε > 0

(A.2) card(A) ≤
√
mρ,ε(A)

√
3σ(A, ε).

Indeed if F is a subset of ρ(A) for which the maximum in the definition of
mρ,ε is attained then the Cauchy-Schwarz inequality gives

card(A) ≤
(
cardF

)1/2
( ∑

t∈F

(
S(ε, t;A)

)2
)1/2

.

Now for fixed k there are at most three intervals of the form [s − ε, s + ε],
s ∈ F to which ρ(k) can belong. Thus the right hand side of the last equation

is dominated by mρ,ε(A)1/2(3
∑

k∈A S(2ε, ρ(k);A))1/2 which yields (A.2).
By estimates from [15] (namely the argument on p. 218/219 and the

statement of Lemma 2.1 of that paper) we get for ε ≤ R−1

(
R−d

∑

k∈ER

S(2ε, ρ(k))2
)1/2

≤
(∑

k∈E

S(2/R, ρ(k))2
)1/2

≤ C1

(
R−1

∫ 4R

R/4
|E(t)|2dt

)1/2
+ C2R

d−2

where here of course E(t) = card(tΩ ∩ Zd) − tdvol(Ω). The results on the
mean square discrepancy in [15] imply that the first term is O(Rd−2) if d ≥ 4
and O(R logR) if d = 3.

Now σ(ER, ε) ≤ CRd(R−d
∑

k∈ER
S(2ε, ρ(k))2)1/2 and thus

σ(ER, ε) ≤ C

{
R2d−2 if d ≥ 4

R4 logR if d = 3
.

Since card(ER) ≈ Rd we may use (A.2) to obtain for all ε ∈ (0, 1/R) the
lower bound mρ,ε(A) & R2 if d ≥ 4 and mρ,ε(A) & R2/ logR if d = 3 and
this implies the asserted lower bounds for the cardinality of ρ(ER). �

Remark: For the Euclidean ball K = B3 in three dimensions one can use
the mean discrepancy result by Jarńık [17] to improve (in this very special
case) the lower bound R2/ logR in Proposition A.1 to R2/

√
logR.
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