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Abstract. Endpoint estimates are proved for model cases of restricted X-ray transforms and singular
fractional integral operators in R4.

1. Introduction. Let G1,d be the Grassmannian of all lines in Rd passing through the origin. Let
H be a hyperplane in Rd and let Γ be a compact one-dimensional submanifold of G1,d consisting
of lines which do not lie in H. Let C be the d-dimensional line complex of all lines of the form
x′ + ℓ, where x′ ∈ H and ℓ ∈ Γ. We refer to C as a rigid line complex; it serves as a model case for
more general classes of line complexes, considered in [5], [8], [6], [7].

The restricted X-ray transform associated to C is defined by

(1.1) RCf(x′, ℓ) =

∫

x′+ℓ

f ds, ℓ ∈ Γ, x′ ∈ H.

We shall consider line complexes satisfying a curvature assumption. If Γ is parametrized by α →
Γ(α) then C is defined to be well-curved if Γ′(α), Γ′′(α), ..., Γ(d−1)(α) are linearly independent.
Note that this well-curvedness assumption does not depend on the specific parametrization of Γ.

We are interested in the Lp(Rd) → Lq(C) mapping properties of the X-ray transform; in
defining the space Lq(C) we use the measure dx′dσ on C = H × Γ, where dx′ is Lebesgue measure
on H and dσ may be any positive smooth density on Γ. Homogeneity considerations show that
the relation d/p− (d− 1)/q = 1 is necessary for Lp → Lq boundedness. Assuming this restriction
it is conjectured that Lp → Lq boundedness holds for 1 ≤ p ≤ d(d + 1)/(d2 − d + 2). The latter
restriction on p is necessary as can be seen by testing R on characteristic functions of rectangles
with dimensions (δ, δ2, . . . , δd−1, δ) (see [7]). The conjecture has been proved for not necessarily
rigid line complexes in R3 (see [6]); moreover partial results in higher dimensions, in the rigid case
for some local versions, have been obtained in [7], for the range p ≥ 2(d2 − d)/(d2 − d+ 2). During
the final stage of preparation of this paper we received the preprint [16] by Oberlin where another
partial result, namely a restricted weak type estimate for p = d/(d − 1), q = (d − 1)/(d − 2) is
proved.

Theorem 1.1. Let C = H × Γ be a rigid well-curved line complex in R4. Then the operator RC

is bounded from Lp(R4) to Lq(C) if 4/p− 3/q = 1 and 1 ≤ p < 10/7. Moreover RC is of restricted
weak type (10/7, 5/3), i.e. it maps the space L10/7,1(R4) to the space L5/3,∞(C).

Here Lp,q is the familiar Lorentz space (see e.g. [1], [19]). A consequence of Theorem 1.1 is of
course that RC maps Lp

comp into Lq
loc if and only if (1/p, 1/q) belongs to the triangle with vertices

(0, 0), (1, 1) and (10/7, 5/3), with the possible exception of the point (10/7, 5/3).
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We shall also consider a model case of translation invariant operators, namely integrals along
the curve

Γd(t) = (t, t2, . . . , td).

For any Schwartz-function f on Rd and 0 < β ≤ 1 define

(1.2) Aβf(x) =

∫ ∞

−∞

f(x− Γd(t))t
β−1dt;

where the case β = 1 is of particular interest. Homogeneity considerations, with respect to the
dilations δ → (δ, δ2, . . . , δd), show that the relation

(1.3)
1

p
−

1

q
=

2β

d(d+ 1)

is necessary for Lp(Rd) → Lq(Rd) boundedness. It is conjectured that Aβ maps Lp to Lq if and
only (1.3) is satisfied and (1/p, 1/q) belongs to the closed trapezoid Td = hull{A,B,Cd,Dd} where

A = (0, 0), B = (1, 1), Cd = ( d2−d+2
d2+d , d−1

d+1 ), Dd = ( 2
d+1 ,

2d−2)
d2+d ). Note that Cd = Dd ⇐⇒ d = 2.

M. Christ [4] found an argument (partially based on ideas in [12]) showing how Lp → Lq

estimates for the operator Aβ can be deduced from a local version, namely

(1.4) T0f(x) =

∫

1≤|t|≤2

f(x− Γd(t))dt.

It is conjectured that T0 maps Lp → Lq if and only if (1/p, 1/q) ∈ Td. The necessity of this
condition is known and attributed to A. Carbery and M. Christ in [10]; one tests A on small
balls and on small rectangles with dimensions δ× · · · × δd. The conjecture is known in dimensions
d = 2, 3, see Strichartz [20], Littman [9] for the case d = 2, and Oberlin [13] for the case d = 3. The
latter case is accessible by T ∗T -arguments because of the critical exponent q = 2 for the vertex C3

of T3. Based on Oberlin’s result and the method in [4], S. Secco [18] established the conjectured
bounds for Aβ in three dimensions. Recently, Oberlin [15] showed that in four dimensions T0 maps
Lp → Lq whenever (1/p, 1/q) belongs to the interior of T4, or to the line joining E4 = (1/2, 2/5)
and F4 = (3/5, 1/2), a proper closed subset of the edge (C4,D4). Combining this result with
the method in [4] yields that the operator Aβ is Lp → Lq bounded if 1/p − 1/q = β/10 and if

10
10−3β

< p < 5
2β

, 0 < β < 1, or 5/3 ≤ p ≤ 2, β = 1.1

Theorem 1.2. Suppose d = 4 and Aβ is as in (1.2).

(i) Let 0 < β < 1. Then Aβ maps Lp(R4) boundedly to Lq(R4) if and only if 1/p−1/q = β/10
and 10

10−3β
≤ p ≤ 5

2β
; in fact Aβ maps then Lp(R4) to Lq,p(R4).

(ii) Let β = 1. The operator A1 is of restricted weak type (10/7, 5/3) and of restricted weak
type (5/2, 10/3). It maps Lp(R4) boundedly to Lq,p(R4) if 1/p− 1/q = 1/10 and 10/7 < p < 5/2.

For (1/p, 1/q) in any open line segment of the boundedness set, the Lp → Lq estimate implies
the sharper Lp → Lq,p ⊂ Lq estimate by real interpolation.

We use the following notation. A . B means that there is a constant C depending only on the
underlying geometry such that A ≤ CB. Lp norms will be denoted by ‖ · ‖p and Lq,r norms will
be denoted by ‖ · ‖q,r.

1After this paper had been submitted the authors received a preprint by Michael Christ entitled ‘Convolution,
Curvature and Combinatorics – A Case Study’ in which he shows by different methods that the operator T0 is of

restricted weak type at the endpoints Cd, Dd. This result, in conjunction with Proposition 4.1 can be used to prove
the analogue of Theorem 1.2 in higher dimensions.
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2. Restricted X-ray transforms. In this section we give a proof of Theorem 1.1. By a change
of variable we may assume that H = {(x′, 0) : x′ ∈ R3}. The assumption of rigidity means that the
set Cx′ is a translate of a fixed C0; Cx′ is given as a family of lines ℓx′,α where ℓx′,α = {(x′+tγ(α), t) :
t ∈ R}; here α is restricted to a compact interval I and γ : I → R3 satisfies

(2.1) ∆(α) := det
(
γ′(α) γ′′(α) γ′′′(α)

)
6= 0.

Without loss of generality we may assume that γ is a parametrization by arclength, i.e. |γ′(α)| = 1.

We consider the operator

Rf(x′, α) = χ(α)

∫ ∞

−∞

f(x′ − tγ(α), t)dt

where χ is a nonnegative smooth function supported in the interior of I. In view of the compactness
of Γ the Lp → Lq estimates for R immediately imply the same Lp → Lq estimates for RC as defined
in (1.1). We shall show that the adjoint R∗ maps L5/2,1(R3 × Γ) to L10/3,∞(R4), here

R∗f(x′, t) =

∫
f(x′ + tγ(α), α)χ(α)dα

and we may assume that χ has small support in I. The full result of Theorem 1.1 follows by duality
and interpolation.

Let η be an even Schwartz function on the real line with the property that η̂(τ) = 1 for |τ | ≤ 1/2
and η̂(τ) = 0 for |τ | ≥ 1. For L ∈ Z define

BLf(x′, t) =

∫∫
f(x′ + tγ(α) + uγ′(α), α)χ(α)2Lη(2Lu)dαdu;

note that limL→∞BL = R∗f . Our main estimates are

Proposition 2.1. For all L ∈ Z

‖R∗f − BLf‖L2(R4) . 2−L/2‖f‖L2(R3×Γ).

Proposition 2.2. For all L ∈ Z

‖BLf‖L6(R4) . 2L/3‖f‖L3(R3×Γ).

The idea of using an L3 → L6 estimate for averages over two-dimensional surfaces is due
to Oberlin, and the proof of Proposition 2.2 will follow an analogous argument in [15, II], using
multilinear operators. Given Proposition 2.1 and 2.2 one can use an argument by Bourgain [2] to
complete the

Proof of Theorem 1.1. Let E be a measurable set in of finite measure in R3×Γ. Choose L such
that 2−L ≤ (|E|λ−4)1/3 < 2−L+1. Then by Tshebyshev’s inequality and Propositions 2.1 and 2.2

∣∣{x : |R∗χE(x)| > λ}
∣∣ ≤ ‖BLχE‖

6
6

(λ/2)6
+

‖R∗χE −BLχE‖
2
2

(λ/2)2

≤ C(22L|E|2λ−6 + 2−Lλ−2|E|) ≤ C ′|E|4/3λ−10/3 = C ′‖χE‖
10/3
5/2

λ−10/3.
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This is saying that R∗ is of restricted weak type (5/2, 10/3) which by duality implies the asser-
tion. �

Proof of Proposition 2.1. As pointed out above we may assume that χ is supported in the
interior of a small interval I0 ⊂ I. Let Bℓ = Bℓ+1 − Bℓ; since R∗

C
f − BLf =

∑∞
ℓ=L Bℓf for

Schwartz-functions f it is sufficient to show that B∗
ℓ is bounded on L2 with norm O(2−ℓ/2).

Following [11] we apply the partial Fourier transform of f with respect to the x′ variables,

denoted here by f̃ . Then define ζ by ζ̂(τ) = η(τ) − 2η(2τ); ζ is even and supported in ±[1/2, 2].
Then

B̃∗
ℓ f(ξ, α) = f̃(ξ, α)χ(α)

∫∫
eit〈γ(α)+uγ′(α),ξ〉2ℓζ̂(2ℓu)dudt

and therefore with χ0(α) = χ(α)χ(α)

‖B∗
ℓ f‖

2
2 = (2π)−3

∫∫ ∫∫
f̃(ξ, t)f̃(ξ, t′)ei(t′−t)〈γ(α),ξ〉|ζ(2−ℓ〈γ′(α), ξ〉)|2 dt′dt χ0(α)dαdξ

Let

(2.2) mℓ(σ, ξ) =

∫
χ0(α)|ζ(2−ℓ〈γ′(α), ξ〉)|2eiσ〈γ(α),ξ〉dα.

We shall show that

(2.3) |mℓ(σ, ξ)| . 2−ℓKℓ,ξ(σ) where sup
ℓ,ξ

‖Kℓ,ξ‖L1(R) <∞

The estimate (2.3) implies the asserted inequality since

‖B∗
ℓ f‖

2
2 . 2−ℓ

∫ ∫∫
|f̃(ξ, t)f̃(ξ, t′)|Kℓ,ξ(t− t′) dt′dt dξ . 2−ℓ‖f‖2

2.

Let
Σ = {ξ : 〈γ′(s), ξ〉 = 〈γ′′(s), ξ〉 = 0 for some s ∈ I0}

which is the cone of binormal lines. Let dΣ(ξ) denote the distance of ξ to Σ. (2.3) is a consequence
of the following inequality expressing the behavior of mℓ,ξ in terms of dΣ(ξ).

Lemma 2.3. For ξ ∈ R3

|mℓ(σ, ξ)| . 2−ℓ aℓ(ξ)

(1 + aℓ(ξ)σ)2
where aℓ(ξ) =

22ℓ

√
|ξ|(2ℓ + dΣ(ξ))

.

Proof. Denote by b = (γ′×γ′′)/|γ′×γ′′| the unit binormal vector (recall that we parametrized γ by
arclength). A conic neighborhood of the cone of binormal vectors is parametrized by ψ(ρ, s,w) =
ρ(b(s) + wγ′(s)), here ρ > 0, |w| small and s belongs to a small neighborhood of supp χ. One
computes |detψ′| = ρ2|τ −wκ|, where κ is the curvature and τ the torsion of the curve. This is a
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regular parametrization of the conic neighborhood of Σ; in this neighborhood ρw ≈ dΣ. We chose
ε > 0 so that the set {ξ : dσ(ξ) ≤ 2ε|ξ|} is contained in this neighborhood.

In what follows choose the integer k so that 2k < |ξ| ≤ 2k+1. Note that then mℓ(σ, ξ) = 0 if
ℓ > k + C for suitable C independent of k.

We shall first assume that dΣ(ξ) ≥ ε|ξ|. Note that for fixed ξ the support of the cutoff
ζ(2−ℓ〈γ′(α), ξ〉) is contained in an interval of length ≈ 2ℓ−k. This gives the bound

|mℓ(σ, ξ)| . 2ℓ−k ≈ 2−ℓaℓ(ξ)

which is sufficient if |σ| ≤ 22ℓ−k. If |σ| > 22ℓ−k we integrate by parts twice and obtain the estimate

|mℓ(σ, ξ)| . 2ℓ−k(22ℓσ)−2

and the two previous estimates yield the assertion if dΣ(ξ) ≥ ε|ξ|.

From now on we assume that dΣ(ξ) ≤ ε|ξ|; then ξ = ρ(b(s) + wγ′(s)) where ρ ≈ 2k, |w| ≪ 1
and that ℓ≪ k. Observe that 〈γ′′(s), ξ〉 = 0 and expand

(2.4) 〈γ′(α), ξ〉 = 〈γ′(s), ξ〉 + (α− s)2G(s, ξ)

where G(α, s, ξ) = 〈ξ,
∫ 1

0
(1 − τ)γ′′′(s+ τ(α− s))dτ〉; hence |G(s, ξ)| ≈ |ξ| and

|〈γ′′(α), ξ〉| ≈ |ξ(α− s)|.

We first consider the case where dΣ(ξ) ≤ C2ℓ; then aℓ(ξ) ≈ 2(3ℓ−k)/2. Assuming that
|〈γ′(α), ξ〉| ≈ 2ℓ we find that this can only occur on an interval of length . 2(ℓ−k)/2 and that
on this interval |〈γ′′(α), ξ〉| . 2(ℓ+k)/2. (To see this let g(α) = ±〈γ′(α), ξ/|ξ|〉 and expand
g(α) = g(s) + g′′(α̃)(α− s)2/2 with |g′′(α̃)| ≈ 1 and |g(s)| ≈ 2ℓ−k.) We have to show that

|mℓ(σ, ξ)| . 2−ℓ 2(3ℓ−k)/2

(1 + 2(3ℓ−k)/2σ)2

or, equivalently, that |mℓ(σ, ξ)| . 2(ℓ−k)/2 if |σ| ≤ 2(3ℓ−k)/2 and |mℓ(σ, ξ)| . 2(k−5ℓ)/2σ−2 if
|σ| > 2(3ℓ−k)/2. The first estimate is immediate from the observation on the support, while the
second is obtained using integration by parts, taking into account the bounds for the second and
third derivatives.

Finally we consider the case dΣ(ξ) ≈ 2ℓ+n where 0 < n < k − l − c. We change variables

α̃ = (α− s)
√
|G(s, ξ/|ξ|)| and use that the inequality

∣∣∣dΣ(ξ)

|ξ|
− α̃2

∣∣∣ ≤ 2ℓ−k+1

can only hold for α̃ on a set of measure ≤ C2(ℓ−k−n)/2; the same restriction applies then to the
set where |〈γ′(α), ξ〉| ≈ 2ℓ. On this set we have the estimate |〈γ′′(α), ξ〉| . 2(ℓ+k+n)/2. Integration
by parts yields

|mℓ(σ, ξ)| . 2−ℓ 2(3ℓ−k−n)/2

(1 + 2(3ℓ−k−n)/2σ)2

and since now aℓ(ξ) ≈ 23ℓ−k−n this is the desired estimate. �
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Proof of Proposition 2.2. As in [15] we use the multilinear trick of [3]. Define

BL[f1, . . . , f6](x
′, t) =

6∏

i=1

∫∫

I×R

fi(x
′ + tγ(α) + uγ′(α), α)2Lη(2Lu)duχ(α)dα;

then ‖BLf‖
6
6 ≤ ‖BL[f, . . . , f ]‖1. We have to show that ‖BL[f1, . . . , f6]‖1 is dominated by

C22L
∏

‖fi‖
6
3. By symmetry and interpolation (see [3]) this follows from

‖BL(f1, . . . , f6)‖1 . 22L‖f1‖1

6∏

i=2

‖fi‖5,1

and it suffices to show this for f1 replaced by a Dirac measure δx0 at x0 ∈ R4. By translation
invariance in the x′ variables we may assume that x0 = (0, 0, 0, β) where β ∈ supp χ. Now

‖BL(δx0 , f2, . . . , f6)‖1

≤

∫∫ 6∏

i=2

[ ∫∫

I×R

|fi(−tγ(β)− wγ′(β) + tγ(α) + uγ′(α), α)2Lη(2Lu)|duχ(α)dα
]
2L|η(2Lw)|dwdt

≤
6∏

i=2

( ∫∫
|BLfi(−tγ(β) − wγ′(β), t)|52L|η(2Lw)|dwdt

)1/5

.

Define an operator BL,β mapping functions defined in R4 to functions defined in R2 by

BL,βf(t, w) = 2L/5|η(2Lw)|BLf(−tγ(β)− wγ′(β), t)

In order to show the required estimate for BL we have to show that

(2.5) ‖BL,βf‖L5(R2) ≤ C22L/5‖f‖L5,1(R4)

where C does not depend on β. To prove (2.5) we use duality; let g ∈ L5/4(R2), so that ‖g‖5/4 ≤ 1.
Then

∣∣∣
∫
BL,βf(t, w)g(t, w)dtdw

∣∣∣

≤

∫∫ ∫∫

I×R

|f(φ(t, α, u,w))2Lη(2Lu)|du |χ(α)|dα |g(t, w)| dt 2L/5|η(2Lw)|dw

where
φ(t, α, u,w) = (−tγ(β) − wγ′(β) + tγ(α) + uγ′(α), α).

One computes that

|det(φ′)| = ∆(β)
(β − α)4

6
+O(|β − α|5)

for α, β ∈ supp χ and since we assume that χ has small support we have

|det(φ′)| ≈ |α − β|4 := Jβ(α).
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Since for fixed α the map (t, u,w) 7→ φ(t, α, u,w) is linear it follows that φ is injective in the regions
α > β and α < β (here α, β ∈ supp χ).

Now following [15] write

∣∣∣
∫
BL,βf(t, w)g(t, w)dtdw

∣∣∣

.

∫∫ ∫∫
|f(φ(t, α, u,w))|Gβ(t, w, u, α)Jβ(α)dudαdtdw(2.6)

where

Gβ(t, w, u, α) = 26L/5
∣∣∣g(t, w)

Jβ(α)
χ(2Lu)

∣∣∣.

Note that ‖f ◦φ‖L5,1(R4,Jβdm) ≤ 2‖f‖L5,1(R4) where dm denotes Lebesgue measure in R4. Therefore
the expression in (2.6) is dominated by C‖f‖L5,1(R4)]‖Gβ‖L5/4,∞(R4,Jβdm) and, in order to finish
the argument, one has to show that

(2.7) ‖Gβ‖L5/4,∞(R4,Jβdm) . 22L/5‖g‖L5/4(R2).

To see (2.7) let χL,0 be the characteristic function of the interval [−2−L, 2−L] and for n =
1, 2, . . . let χL,n(u) = 1 if 2−L+n−1 ≤ |u| ≤ 2−L+n and χL,n(u) = 0 otherwise. Then Gβ ≤∑∞

n=0Gβ,n where

Gβ,n(t, w, u, α) = CN2−nN26L/5
∣∣∣g(t, w)

Jβ(α)

∣∣∣χL,n(u).

But
∫

Gβ,n>λ

|Jβ(α)|dtdαdudw . 2−L+n+1

∫∫ ∫

|α−β|≤(CN 2−nN 26L/5|g(t,w)|λ−1)1/4

|α − β|4dαdtdw

. 2−L+n+1

∫∫
(CN2−nN26L/5|g(t, w)|λ−1)5/4dtdw;

hence
‖Gβ,n‖L5/4,∞(R4,Jβdm) . 22L/52−n(N−4/5)‖g‖L5/4(R2)

which implies (2.7). �

3. Integrals along curves. We sketch a proof showing that the operator defined by

Af(x) =

∫ ∞

−∞

f(x− Γ4(t))dt

maps L5/2,1(R4) to L10/3,∞(R4). By duality it then maps L10/7,1(R4) to L5/3,∞(R4). This implies
the estimates asserted for A1 in Theorem 2.2 as well as Lp → Lq boundedness of T0 in (1.4), for
(1/p, 1/q) ∈ T4 \ {C4,D4}. The estimates for Aβ, 0 < β < 1 will follow from these local estimates
and Proposition 4.1 below.

The proof is quite close to the one in [15]; therefore we shall just sketch the argument. Define

ALf(x) =

∫∫
f(x− Γ4(t) − uΓ′′

4(t))2Lη(2Lu)dtdu.
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A modification of the multilinear argument in [15] yields that AL is bounded from L3 to L6 with
norm O(2L/3). Arguing as in the proof of Theorem 1.1 we have to show that Aℓ−Aℓ+1 is bounded
on L2 with norm O(2−ℓ/2). This in turn follows from the estimate

|mℓ(ξ)| ≤ C2−ℓ/2(3.2)

where mℓ(ξ) =

∫∫
ei(〈ξ,Γ(t)+uΓ′′(t)〉)(2ℓη(2ℓu) − 2ℓ+1η(2ℓ+1u))dtdu.

The proof of (3.2) is easier than the proof of the corresponding estimate in Proposition 2.1
since it can be deduced from known estimates for damped oscillatory integrals. Namely if

Jτ (ξ) =

∫ ∞

−∞

ei〈ξ,Γ(t)〉|〈ξ,Γ′′(t)〉|1/2+iτdt

then |Jτ (ξ)| . (1 + |τ |)M , for some M > 0, the bound is independent of ξ (see [14]). Now let

θ(v) =
η̂(ev) − η̂( 1

2e
v)

ev/2
;

then θ ∈ C∞
0 and a short computation using that η is even yields

mℓ(ξ) =

∫
ei〈ξ,Γ(t)〉

[
η̂(2−ℓ|〈ξ,Γ′′(t)〉|)− η̂(2−ℓ−1|〈ξ,Γ′′(t)〉|)

]
dt

=

∫
ei〈ξ,Γ(t)〉θ(log(2−ℓ|〈ξ,Γ′′(t)〉|))2−ℓ/2|〈ξ,Γ′′(t)〉|1/2dt

= 2−ℓ/2 1

2π

∫
θ̂(τ)e−iτℓ log2Jτ (ξ)dτ.

Using the rapid decay of θ̂ we see that the known estimate for Jτ yields the bound (3.1).

Remark. We note that one could also work with the operator

ÃLf(x) =

∫∫
f(x− Γ4(t) − uΓ′

4(t))2
Lη(2Lu)dtdu.

Then ÃL is bounded from L3 to L6 with norm O(22L/3) and the operator Ãℓ − Ãℓ+1 is bounded
on L2 with norm O(2−ℓ).

4. Estimates for fractional integral operators. Suppose in Rd dilations δt are given by δtx =
exp(P log t) where P is a symmetric matrix so that all eigenvalues are positive. Let ν = trace(P ).

For a bounded Borel measure µ define the dilate of µ by

(4.1) 〈µk, f〉 =

∫
f(δ2−kx)dµ(x).

Given the result of the previous section, the following proposition implies Theorem 1.2 concerning
the singular fractional integrals Aβ. The proof relies on an argument due to M. Christ [4]. In what
follows we denote by WF (µ) ⊂ Rd × (Rd \ {0}) the wavefront set of the measure µ.
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Proposition 4.1. Let µ be a positive finite Borel measure with compact support such that for all
x ∈ Rd, ξ 6= 0

(x, ξ) ∈ WF (µ) =⇒ ξ is not an eigenvector of P .

Let µk be defined by (4.1). Suppose 1 < p < q < ∞, p ≤ r, and suppose the validity of the
inequality

‖µ ∗ f‖q,r ≤ A‖f‖p.

Then the inequality
∥∥∥

N∑

k=−N

2−kν( 1

p− 1

q )µk ∗ f
∥∥∥

q,r
≤ C(1 + A)‖f‖p

holds with C independent of N .

Proof. The proof relies on the observation that for ξ ∈ WF (µ) the P -dilates of a suitable conic
meighborhood of ξ have finite overlap. Without loss of generality we may assume that P =

diag(a1, . . . , an), so that ν =
∑d

i=1 ai and δtx = (ta1x1, . . . , t
adxd).

Note that if χ̂ ∈ L1 and if K is a convolution kernel so that f 7→ K ∗ f is bounded from Lp

to Lq,r (where 1 < p ≤ q) then the operator f 7→ (χK) ∗ f is also bounded from Lp to Lq,r. This
follows from K ∗ f =

∫
χ̂(ξ)Mξ[K ∗ (M−ξf)]dξ, where Mξf(x) = ei〈x,ξ〉f(x). Using nonnegative

cutoff functions χ and the compactness of supp µ we see that it is sufficient to prove that for every
x0 ∈ Rd there is a neighborhood Ux0 with compact closure such that the theorem holds for the
measure χµ, for all nonnegative C∞ functions χ supported in Ux0 .

We may assume that WF (µ) 6= ∅, since otherwise µ ∈ C∞. Indeed in this case∑N
k=−N 2−kν/sµk is pointwise dominated by cFs where the constant c does not depend on N

and

(4.2) Fs(x) =
( d∑

i=1

|xi|
1/ai

)−ν+ν/s

.

Now F ∈ Ls′,∞ and therefore the convolution operator f 7→ Fs ∗ f is bounded from Lp → Lq,p if
1 < p < q <∞ and 1/s = 1/p− 1/q.

Let E be the set of eigenvectors for P . Fix x0, then we can find Ux0
of X0 and open conic

neighborhoods V , W of E such that the closure of V ∩Sd−1 is contained in W ∩Sd−1 and χ̂µ(ξ) ≤
C(1 + |ξ|)−N for ξ ∈ W , for all χ ∈ C∞

0 (Ux0). It suffices to prove the assertion for µ replaced by
χµ.

First observe that there is ǫ > 0 such that for every u = (u1, . . . , ud) ∈ Sd−1 \ V we have

(4.3) max{min(|ui|, |uj |) : ai 6= aj} > ǫ.

Therefore we may introduce a finite partition of unity {ηm}M
m=1 of Sd−1 \W where each ηm is

smooth on the sphere, extended as a smooth homogeneous function of degree 0 in Rd \ {0} so that∑M
m=1 ηm(ξ) = 1 for ξ in an open neighborhood of Sd−1 \W and the following two properties are

satisfied.

(4.4) There is um ∈ Sd−1 \ V such that the restriction of ηm to the unit sphere is supported in
Bm = |ξ/|ξ| − um| < εm, with 0 < εm < ε/4, here εm is chosen so that |ξ/|ξ| − um| < 2εm implies
ξ /∈ V .

(4.5) There are two indices i(m), j(m) such that ai(m) > aj(m) > 0 and |um
i(m)| ≥ ǫ, |um

j(m)| ≥ ǫ.
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Suppose that
∣∣ξ/|ξ| − um

∣∣ < 2εm. Since 2εm < ε/2 we have

(4.6)
ǫ

2(1 + ε)
≤

|ξi(m)|

|ξj(m)|
≤ 2

1 + ε

ǫ

Define η̃m as a smooth homogeneous function of degree 0 so that η̃m(ξ) = 1 for 0 6= ξ ∈ supp ηm

and such that the restriction of η̃m to the unit sphere is supported where |ξ/|ξ| − um| < 2εm.

Let Φ0 be smooth, compactly supported in {|ξ| ≤ 2} so that Φ0(ξ) = 1 if |ξ| ≤ 1. We define
operators Pk, Sk, Lm

k by

P̂kf = Φ0(δ2−kξ)f̂(ξ)

L̂m
k f = ηm(δ2−kξ)f̂(ξ)

Ŝkf = (1 − Φ0(δ2−kξ))(1−
M∑

m=1

ηm(δ2−kξ))f̂(ξ)

then I = Pk + Sk +
∑

m(I − Pk)Lm
k . Define

Tkf(x) = 2−kν(1/p−1/q)µk ∗ f

By assumption and scaling each operator Tk is bounded from Lp → Lq,r, with uniform operator
norm A.

If 1/s = 1/p−1/q then the convolution kernels of
∑N

k=−N TkPk and
∑N

k=−N TkSk are pointwise
bounded by Fs in (4.2), with 1/s = 1/p−1/q; therefore those operators map Lp to Lq,p (and hence
to Lq,r since r ≥ p).

We now estimate the main terms
∑N

k=−N (I−Pk)Lm
k Tk. It is clear a priori that these operators

map Lp to Lq,p with operator norm O(N). In what follows let BN denote the Lp → Lq,r operator

norm of the operator
∑N

k=−N Tk. Following [4] we wish to show that BN = O(1).

Define L̃m
k by

̂̃
Lm

k f = η̃m(δ2−kξ). In view of (4.4), (4.6) we may use the Marcinkiewicz multiplier

theorem to see that
∑

k bkL
m
k and

∑
k bkL̃

m
k are bounded operators on Lp, 1 < p < ∞, uniformly

for all sequences b with ‖b‖ℓ∞ ≤ 1. Using a familiar argument involving Rademacher functions and
real interpolation we see that the Littlewood-Paley inequalities

∥∥∥
∑

L̃m
k fk

∥∥∥
p1,p2

.
∥∥∥
(∑

k

|fk|
2
)1/2∥∥∥

p1,p2

(4.7)

∥∥∥
( ∑

k

|Lm
k f |

2
)1/2∥∥∥

p1,p2

. ‖f‖p1,p2
(4.8)

hold for 1 < p1 <∞, 1 ≤ p2 ≤ ∞. By (4.7) and L̃m
k L

m
k = Lm

k we have

(4.9)
∥∥∥

N∑

k=−N

(I − Pk)Lm
k Tkf

∥∥∥
q,r

.
∥∥∥
( N∑

k=−N

|(I − Pk)TkL
m
k f |

2
)1/2∥∥∥

q,r
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We shall use complex interpolation observing that [Lp,s(A0), L
p,s(A1)]θ = Lp,s([A0, A1)]θ) for a

couple (A0, A1) of compatible Banach-spaces. In particular

(4.10) [Lp,s(ℓp), Lp,s(ℓ∞)]θ = Lp,s(ℓ2) if (1 − θ)/p = 1/2.

Since p < q, p ≤ r, we may also use that

(4.11)
∥∥∥
( ∑

k

|gk|
p
)1/p∥∥∥

q,r
.

( ∑

k

‖gk‖
p
q,r

)1/p

;

this is of course also true (with equality) if p = q = r. To see (4.11) observe that

‖h‖q,r ≈
(∫ ∞

0

[
α (meas{x : |h(x)| > α})1/q

]r dα

α

)1/r

=
(1

p

∫ ∞

0

[
β (meas{x : |h(x)|p > β})p/q

]r/p dβ

β

)1/r

(4.12)

by a change of variable, hence ‖h‖q,r ≈ ‖|h|p‖
1/p
q/p,r/p. Now Lq/p,r/p is a normed space when q/p > 1

and r/p ≥ 1, see [19], and therefore (4.11) follows by applying (4.12) to h = (
∑

k |gk|
p)1/p and by

applying the triangle inequality in Lq/p,r/p.

We use (4.11) with gk = (I − Pk)Tkfk to obtain

∥∥∥
( N∑

k=−N

|(I − Pk)Tkfk|
p
)1/p∥∥∥

q,r
.

( ∑

k

∥∥(I − Pk)Tkfk

∥∥p

q,r

)1/p

.
( ∑

k

∥∥Tkfk

∥∥p

q,r

)1/p

. A
( ∑

k

‖fk‖
p
p

)1/p

= A
∥∥∥
( ∑

k

|fk|
p
)1/p∥∥∥

p
(4.13)

In view of the positivity and uniform Lq,r boundedness of the operators and the Lq,r bound-
edness of the Hardy-Littlewood maximal operator M we also have that

∥∥ sup
−N≤k≤N

|(I − Pk)Tkfk|
∥∥

q,r
.

∥∥M( sup
−N≤k≤N

|Tkfk|)
∥∥

q.r
.

∥∥ sup
−N≤k≤N

|Tkfk|
∥∥

q,r

.
∥∥∥

N∑

k=−N

Tk(sup
l∈Z

|fl|)
∥∥∥

q,r
. BN

∥∥ sup
l∈Z

|fl|
∥∥

p
.(4.14)

We interpolate (4.13) and (4.14) using (4.9) and obtain

(4.15)
∥∥∥
( N∑

k=−N

|(I − Pk)Tkfk|
2
)1/2∥∥∥

q,r
. Ap/2B

1−p/2
N

∥∥∥
( ∑

k

|fk|
2
)1/2∥∥∥

p

We use this for fk = Lm
k f and apply the Littlewood-Paley inequalities (4.9), (4.8). These,

together with (4.14) yield after summing the terms with m = 1, . . . ,M ,

BN ≤ (C1 + C2A
p/2B

1−p/2
N )

and consequently BN ≤ C(1 +A). �
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