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Abstract. We give an alternative proof of recent results by the authors
of uniform boundedness of dyadic averaging operators in (quasi-)Banach
spaces of Hardy-Sobolev and Triebel-Lizorkin type in the largest possible
range of parameters. The proof here is based on characterizations of the
respective spaces in terms of compactly supported Daubechies wavelets.

1. Introduction

Consider the dyadic averaging operators EN on the real line given by

condexpcondexp (1) ENf(x) =
∑
µ∈Z

1IN,µ(x) 2N
∫
IN,µ

f(t)dt

with IN,µ = [2−Nµ, 2−N (µ + 1)). ENf is the conditional expectation of f
with respect to the σ-algebra generated by the dyadic intervals of length
2−N . The following theorem on uniform boundedness in Triebel-Lizorkin
spaces F sp,q was proved by the authors in [6], and the purpose of the present
note is to give an alternative proof.

expthm Theorem 1.1. [6] Let 1/2 < p < ∞, 0 < q ≤ ∞, and 1/p − 1 < s <
min{1/p, 1}. Then there is a constant C := C(p, q, s) > 0 such that for all
f ∈ F sp,q

E_NE_N (2) sup
N∈N
‖ENf‖F sp,q ≤ C‖f‖F sp,q .

This result served as the main tool to establish that suitably regular
enumerations of the Haar system form a Schauder basis for the spaces F sp,q
in the parameter ranges of the theorem, see §3. The relation to the Haar
system is via the martingale difference operators DN = EN+1 − EN which
are the orthogonal projections to the spaces generated by Haar functions
with fixed Haar frequency 2N .
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In previous works stronger notions of convergence have been examined,
such as the validity of unconditional convergence in the martingale difference
series, i.e. the inequality

multmult (3)
∥∥∥∑

n

bnDnf
∥∥∥
F sp,q
. ‖b‖`∞(N)‖f‖F sp,q .

It follows from the results in Triebel [17] that inequality (3) holds when we
add the condition 1/q − 1 < s < 1/1 to the hypothesis in the theorem. For
the case q = 2 this corresponds to the shaded region in Figure 1.
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Figure 1. Unconditional convergence in Hardy-Sobolev spaces fig2

It was shown in [10], [11] that the additional restriction on the q-parameter
is necessary for (3) to hold. If we drop it then Theorem 1.1 implies that
(3) holds with the larger norm ‖b‖∞ + ‖b‖BV . It would be interesting to
show sharp results involving sequence spaces that are intermediate between
`∞(N) and BV (N).

In §2 we give a proof of Theorem 1.1 using wavelet decompositions. In
§3 we apply these methods to get an additional result needed to obtain the
Schauder basis property of the Haar system.

2. Proof of Theorems 1.1
proofsect

We start with some preliminaries on convolution kernels which are used
in Littlewood-Paley type decompositions. We use a characterization of the
Triebel-Lizorkin spaces via Littlewood-Paley operators defined by so-called
“local means”. Let ϕ0, ϕ be Schwartz functions on the real line, compactly
supported in (−1/2, 1/2) such that |ϕ̂0(ξ)| > 0 on (−1/2, 1/2) and |ϕ̂(ξ)| > 0
on {ξ ∈ R : 1/8 < |ξ| < 1}. Moreover ϕ has vanishing moments up to large
order M , i.e., ∫

ϕ(x)xn dx = 0 for n = 0, 1, ...,M .
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Let ϕj := 2jϕ(2j ·) and Ljf = ϕj ∗ f . We then have

‖f‖F sp,q �
∥∥∥( ∞∑

j=0

2jsq|(ϕj ∗ f)(·)|q
)1/q∥∥∥

p
.

This result is closely related to the classical theorem of Benedek, Calderón
and Panzone [1] on vector-valued singular integrals (at least for 1 < p, q <
∞). For the quasi-Banach case and further refinements we refer to Triebel’s
book [15, §2.4.6], Rychkov [9] and the references therein.

In addition to the characterization via “local means” we will use a char-
acterization via compactly supported Daubechies wavelets [2], [18, Sect. 4].
Let ψ0 and ψ be the orthogonal scaling function and corresponding wavelet
of Daubechies type such that ψ0, ψ being sufficiently smooth (CK) and ψ
having sufficiently many vanishing moments (L). We denote

ψj,ν(·) :=
1√
2
ψ(2j−1 · −ν) , j ∈ N, ν ∈ Z ,

and ψ0,ν(·) := ψ0(· − ν) for ν ∈ Z. Let 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R.
If K and L are large enough (depending on p, q and s) then we have the
equivalent characterization, see Triebel [16, Thm. 1.64] and the references
therein,

wave_charwave_char (4) ‖f‖F sp,q �
∥∥∥( ∞∑

j=0

2jsq
∣∣∣∑
ν∈Z

λj,ν(f)1j,ν(·)
∣∣∣q)1/q∥∥∥

p
,

where 1j,ν denotes the characteristic function of the interval
Ij,ν := [2−jν, 2−j(ν + 1)] and λj,ν(f) := 2j〈f, ψj,ν〉. A corresponding char-
acterization also holds true for Besov spaces Bs

p,q. Since we also deal with
distributions which are not locally integrable, the inner product 〈f, ψj,ν〉
has to be interpreted in the usual way. Clearly, f can be decomposed into
wavelet building blocks, i.e.

decompdecomp (5) f =
∑
j∈Z

fj :=
∑
j∈Z

∑
ν∈Z

λj,ν(f)ψj,ν ,

where we simply put f ≡ 0 if j < 0 . Note, that the fj represent K times
continuously differentiable functions due to the regularity assumption on the
wavelet.

qBcase

2.1. Proof in the case 1/2 < p ≤ 1. Now 1/p− 1 < s < 1.
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Step 1. Let {ϕj}j∈N denote the local mean kernels from above. Using the
decomposition (5) we can write with θ := min{1, p, q}

‖EN (f)‖F sp,q �
∥∥∥( ∞∑

j=0

|2jsEN (f) ∗ ϕj(·)|q
)1/q∥∥∥

p

.
(∑
`∈Z

∥∥∥( ∞∑
j=0

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p

)1/θ

.
(∑
`∈Z

∥∥∥( ∞∑
j+`≤N

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p
eq1_a (6)

+
∥∥∥( ∞∑

j+`≥N
|2jsEN (fj+`) ∗ ϕj(·)|q

)1/q∥∥∥θ
p

)1/θ
.eq1_a1 (7)

Let us estimate the p-norms in (6) and (7) via distinguishing several cases.
Step 2. Here we restrict to j + ` ≥ N . We deal with (7) and use that∥∥∥( ∞∑

j

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p
≤
∞∑
j

‖2jsEN (fj+`) ∗ ϕj‖θp .thetatriangthetatriang (8)

We continue estimating ‖2jsEN (fj+`) ∗ ϕj‖p. Note first that due to p ≤ 1

wav_redwav_red (9) ‖2jsEN (fj+`) ∗ ϕj‖p ≤
(∑
ν∈Z
|λj+`,ν(f)|p‖2jsEN (ψj+`,ν) ∗ ϕj‖pp

)1/p
.

So it remains to deal with ‖2jsEN (ψj+`,ν)∗ϕj‖p. Note, that due to j+` ≥ N
the function EN (ψj+`,ν) is a step function consisting of O(1) non-vanishing

steps. These steps have length 2−N and magnitude bounded by O(2N−(j+`)).
Case 2.1 Assume j ≥ N .

Due to the cancellation of ϕj and j ≥ N we have that |EN (ψj+`,ν) ∗ ϕj(x)|
is supported on a union of intervals of total measure O(2−j) and bounded

from above by O(2N−(j+`)). This gives

eq11eq11 (10) ‖2jsEN (ψj+`,ν) ∗ ϕj‖p . 2js2−j/p2N−(j+`) .

Case 2.2. Assume j ≤ N .
Clearly, we have ` ≥ 0 since j + ` ≥ N . Since j ≤ N we can not make
use of the cancellation properties of ϕj . We still have that |EN (ψj+`,ν) ∗
ϕj(x)| is supported on an interval of size O(2−j). However, due to the fact
that EN (ψj+`,ν) consists of O(1) steps of length 2−N each and N ≥ j the

convolution produces an additional factor O(2j−N ). Hence,

eq12eq12 (11) ‖2jsEN (ψj+`,ν) ∗ ϕj‖p . 2js2−j/p2N−(j+`)2j−N .

Step 3. Let us consider j + ` ≤ N . In fact, we need a different strategy
to estimate (6).
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Case 3.1. Let us first deal with the case j ≤ N . We estimate as follows∥∥∥(∑
j

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p

.
∥∥∥(∑

j

|2js[EN (fj+`)− fj+`] ∗ ϕj(·)|q
)1/q∥∥∥θ

p

+
∥∥∥(∑

j

|2jsfj+` ∗ ϕj(·)|q
)1/q∥∥∥θ

p
.

eq31eq31 (12)

Similar as in (8) we estimate the first term on the right-hand side of (12)
via ∥∥∥( ∞∑

j

|2js[EN (fj+`)− fj+`] ∗ ϕj(·)|q
)1/q∥∥∥θ

p

≤
∑
j

‖2js[EN (fj+`)− fj+`] ∗ ϕj‖θp .
eq31aeq31a (13)

Again, analogously to (9) we have

‖2js[EN (fj+`)− fj+`] ∗ ϕj‖p

.
(∑
ν∈Z
|λj+`,ν(f)|p‖2js[EN (ψj+`,ν)− ψj+`,ν ] ∗ ϕj‖pp

)1/p
.

eq31beq31b (14)

Using the mean value theorem of calculus together with (1) we see for all
x ∈ R that

|(EN (ψj+`,ν)− ψj+`,ν)(x)| ≤ 2j+`−N .

Due to j + ` ≤ N , its support has length O(2−(j+`)) around ν2−(j+`). We
continue distinguishing two more cases.

Case 3.1.1. Let ` ≥ 0. Since j + ` ≥ j the convolution with ϕj gives an

additional factor 2−` and increases the support to an interval of size O(2−j).
Hence, we get

eq311eq311 (15) ‖2js[EN (ψj+`,ν)− ψj+`,ν ] ∗ ϕj‖p . 2js2j+`−N2−`2−j/p .

Case 3.1.2. Assume ` ≤ 0. This time the convolution with ϕj does not
give an extra factor and the support of [EN (ψj+`,ν)−ψj+`,ν ] ∗ϕj has length

2−(j+`). Thus, we have in this case

eq312eq312 (16) ‖2js[EN (ψj+`,ν)− ψj+`,ν ] ∗ ϕj‖p . 2js2j+`−N2−(j+`)/p .

It remains to deal with the second term on the right-hand side of (12). Since
ψj+`,ν and ϕj are sufficiently smooth and have sufficiently many vanishing
moments well-known convolution inequalities, see for instance [7, p. 466] for
the most general version or Frazier, Jawerth [4, Lem. 3.3], [5, Lem. B.1, B.2],
yield

convconv (17) |(fj+`∗ϕj)(x)| . 2−|`|M
∑
ν∈Z
|λj+`,ν(f)|(1+2min{j,j+`}|x−ν2−(j+`)|)−R ,
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where M depends on the number of vanishing moments of the wavelet ψ and
R can be chosen arbitrary large due to the compact support of ψj+` and ϕ.
Next we apply [8, Lem. 7.1] to (17) which yields that for any 0 < r < 1 and
R > 1/r∑

ν∈Z
|λj+`,ν(f)|(1 + 2min{j,j+`}|x− ν2−(j+`)|)−R

. 2|`+|/r
[
MHL

∣∣∣∑
ν∈Z

λj+`,ν(f)1j+`,ν

∣∣∣r]1/r
(x) , x ∈ R .

kyriaziskyriazis (18)

If the order of the Daubechies wavelet system (resulting in smoothness and
vanishing moments) is now chosen such that M in (17) is larger than 1/r+1
there is a positive δ > 0 such that∥∥∥(∑

j

|2jsfj+` ∗ ϕj(·)|q
)1/q∥∥∥

p

. 2−|`|δ
∥∥∥(∑

j

[
MHL

∣∣∣2(j+`)s
∑
ν∈Z

λj+`,ν(f)1j+`,ν

∣∣∣r]q/r(·))1/q∥∥∥
p
.

rtrickrtrick (19)

Choosing r < min{p, q, 1} we can apply Fefferman-Stein maximal inequality
[3] which, together with (4), yields

eq-fseq-fs (20)
∥∥∥(∑

j

|2jsfj+` ∗ ϕj(·)|q
)1/q∥∥∥

p
. 2−|`|δ‖f‖F sp,q .

Case 3.2. Assume j ≥ N ≥ j+` which means implicitly that ` ≤ 0. Using
(8) and (9) again we reduce everything to estimating ‖2jsEN (ψj+`,ν) ∗ϕj‖p.
Due to the step function EN (ψj+`,ν) and the cancellation of the ϕj we have
the following identity

2js‖EN (ψj+`,ν) ∗ ϕj‖p

. 2js
(∑
µ∈Z

∫
|x−2−Nµ|.2−j

|EN (ψj+`,ν) ∗ ϕj(x)|p dx
)1/p

. 2js
(∑
µ∈Z

∫
|x−2−Nµ|.2−j

|[EN (ψj+`,ν)− ψj+`,ν ] ∗ ϕj(x)|p dx
)1/p

+ 2js
(∑
µ∈Z

∫
|x−2−Nµ|.2−j

|ψj+`,ν ∗ ϕj(x)|p dx
)1/p

. 2js2j+`−N2[N−(j+`)−j]/p + ‖2jsψj+`,ν ∗ ϕj‖p ,

eq32eq32 (21)

where we took into account that the µ-sum consists of O(2N−(j+`)) sum-
mands. It remains to deal with the quantity ‖2jsψj+`,ν ∗ ϕj‖p in (21). By
the same convolution inequality as used in (17) we obtain ‖2jsψj+`,ν ∗ϕj‖p .
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2−|`|δ if the wavelet system has enough smoothness and vanishing moments.
Hence,

eqB.3eqB.3 (22) 2js‖EN (ψj+`,ν) ∗ ϕj‖p . 2js2j+`−N2[N−(j+`)−j]/p + 2−δ|`| .

Step 4. (Estimation of (7). Plugging (8), (9) and (10) into (7) yields

(∑
`∈Z

∥∥∥( ∞∑
j≥max{N−`,N}

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p

)1/θ

.
(∑
j≥N

2(N−j)θ
∑

`≥N−j
2θ`(1/p−1−s)

)1/θ
sup
j,`

(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
.

HoelNikHoelNik (23)

If 1/p− 1 < s < 1/p then the sums are uniformly bounded (in N). Further-
more,

sup
j,`

(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
= sup

j

∥∥∥2js
∑
ν∈Z

λj,ν(f)1j,ν(·)
∥∥∥
p

≤
∥∥∥ sup

j
2js
∣∣∣∑
ν∈Z

λj,ν(f)1j,ν(·)
∣∣∣∥∥∥
p

. ‖f‖F sp,q ,

supsup (24)

where we used (4) in the last estimate.
Plugging (8), (9) and (11) into (7) leads to a similar estimate as above,

only the sums over j and ` change to∑
j≤N

∑
`≥N−j

2θ`(1/p−1−s)

which is uniformly bounded (in N) if s > 1/p− 1 .

Step 5. (Estimation of (6)). Replacing (6) by (12) we observe (using
(20)) that the second summand in (12) after summing over ` already yields
the desired bound. It remains to deal with the first summand in (12).
Combining (13), (14), (15) and (24) we find

N∑
`=−∞

∥∥∥(min{N−`,N}∑
j=0

|2js[EN (fj+`)− fj+`] ∗ ϕj(·)|q
)1/q∥∥∥θ

p

.
(∑
j≤N

2(j−N)θ
N−j∑
`=−∞

2θ`(1/p−s)
)1/θ
‖f‖F sp,q .

The sums are finite and uniformly bounded if 1/p− 1 < s < 1/p. Together
with (24) we obtain the desired bound in case ` ≥ 0 (see Case 3.1.1).

Combining (13), (14) and (16) leads to a similar calculation where the
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sums over j and ` change to∑
j≤N

2(j−N)θ
∑
`≤0

2θ`(1−s) ,

which is uniformly bounded if s < 1.

Finally, we combine (8), (9), (22) and (24) to obtain

(∑
`≤0

∥∥∥( N−∑̀
j=N

|2jsEN (fj+`) ∗ ϕj(·)|q
)1/q∥∥∥θ

p

)1/θ

.
(∑
j≥N

2(j−N)θ2θ(N−j)/p
N−j∑
`=−∞

2θ`(1−s) +
∑
j≥N

N−j∑
`=−∞

2−θδ|`|
)1/θ
‖f‖F sp,q ,

which is uniformly bounded if s < 1. This concludes the proof. �

2.2. Proof in the case 1 < p < ∞. We use the method in the proof of
§2.1 and follow that proof until (8) and (13), respectively. Then we have to
proceed differently.

Step 1. Assume N ≤ j, j + `. We replace (9) by

‖2jsEN (fj+`) ∗ ϕj‖pp

≤
∫ [∑

ν∈Z
|2jsλj+`,ν(f)| · |EN (ψj+`,ν) ∗ ϕj(x)|

]p
dx

.
∑
ν∈Z
|2jsλj+`,ν(f)|p2−j .

p>1p>1 (25)

Indeed, since EN (ψj+`,ν) = 0 if suppψj+`,ν ⊂ IN,µ the sum on the right-
hand side of (25) is lacunary and the appearing functions EN (ψj+`,ν)∗ϕj(x)
have essentially disjoint support. Hence, we get

‖2jsEN (fj+`) ∗ ϕj‖p

. 2−`s2[N−(j+`)]2`/p
(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
.

20_120_1 (26)

The sum over the respective range of j and ` is uniformly bounded if 1/p−
1 < s < 1/p.

Step 2. Let us now deal with j + ` ≥ N ≥ j. Here we estimate

20_220_2 (27) ‖2jsEN (fj+`) ∗ϕj‖p . ‖2js(EN (fj+`)− fj+`) ∗ϕj‖p + ‖2jsfj+` ∗ϕj‖p .

The second summand is estimated using (17) and (18). This results in

kyr2kyr2 (28) ‖2jsfj+` ∗ ϕj‖p . 2−δ`
(∑

ν

|2(j+`)sλj+`,ν(f)|p2−(j+`)
)1/p

.
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To estimate the first summand on the right-hand side of (27) we are going
to exploit the cancellation property

canccanc (29) 0 = EN (EN (f)− f)(x) =

∫
IN,µ(x)

EN (f)(y)− f(y) dy .

We continue estimating the first summand on the right-hand side of (27).
Using (29) we obtain the pointwise estimate∣∣∣2js ∫ ϕj(x− y)(EN (fj+`)(y)− fj+`(y)) dy

∣∣∣
=
∣∣∣2js ∑

µ:|2−Nµ−x|.2−j

∫
IN,µ

ϕj(x− y)(EN (fj+`)(y)− fj+`(y)) dy
∣∣∣

=
∣∣∣2js ∑

µ:|2−Nµ−x|.2−j

∫
IN,µ

(ϕj(x− y)− ϕj(x))×

× (EN (fj+`)(y)− fj+`(y)) dy
∣∣∣ .

mu-convmu-conv (30)

We continue estimating

. 2js
∑

µ:|2−Nµ−x|.2−j

∫
IN,µ

|(ϕj(x− y)− ϕj(x)) · EN (fj+`)(y)| dy

+
∣∣∣2js ∑

µ:|2−Nµ−x|.2−j

∫
IN,µ

(ϕj(x− y)− ϕj(x)) · fµ,1j+`(y) dy
∣∣∣

+
∣∣∣2js ∑

µ:|2−Nµ−x|.2−j

∫
IN,µ

(ϕj(x− y)− ϕj(x)) · fµ,2j+`(y) dy
∣∣∣

=: F0(x) + F1(x) + F2(x) ,

where

fµj+` :=
∑

ν:suppψj+`,ν∩IN,µ 6=∅

λj+`,ν(f)ψj+`,ν ,

fµ,1j+` :=
∑

ν:suppψj+`,ν⊂IN,µ

λj+`,ν(f)ψj+`,ν ,

fµ,2j+` := fµj+` − fµ,1j+`, and g1
j+` :=

∑
µ f

µ,1
j+`. The function F0(x) can be

pointwise estimated from above by

2js
∑

µ:|2−Nµ−x|.2−j

22j−2N sup
y∈IN,µ

∑
ν:suppψj+`,ν∩IN,µ 6=∅

|λj+`,ν(f)EN (ψj+`,ν)(y)| .

Here EN (ψj+`,ν) is mostly vanishing, namely if suppψj+`,ν ⊂ IN,µ. If it does

not vanish then IN,µ is contained in its support and |EN (ψj+`,ν)| . 2N−(j+`).
This happens only boundedly many times (indep. of j, `) with respect to ν.
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For a fixed y there are only finitely many coefficients contributing. Hence,
we have

F0(x) .2js22j−2N2N−(j+`)×

×
∑

µ:|2−Nµ−x|.2−j

sup
ν:suppψj+`,ν∩IN,µ 6=∅

|λj+`,ν(f)| .eq27aeq27a (31)

Taking the Lp-norm and using Hölder’s inequality with 1/p+1/p′ = 1 yields

‖F0‖p . 2−`s22j−2N2N−(j+`)2(N−j)/p′2`/p×

×
(∑

ν

|2(j+`)sλj+`,ν(f)|p2−(j+`)
)1/p

.
F0F0 (32)

To estimate F1(x) we observe

F1(x) =
∣∣∣2js ∫ ϕj(x− y)

( ∑
µ:|2−Nµ−x|.2−j

fµ,1j+`(y)
)
dy
∣∣∣ = |2jsϕj ∗ g1

j+`(x)| .

With a similar reasoning as in (28) and a monotonicity argument we achieve

‖F1‖p . 2−δ`
(

2(j+`)s
∑
ν∈Z
|λj+`,ν(f)|p2−(j+`)

)1/p
.

Finally, we deal with F2(x). Since to fµ,2j+` only a uniformly bounded number

of coefficients λj+`,ν contribute to the sum and the integrals are taken over

an interval of length O(2−(j+`)) we obtain, similar as above, by Hölder’s
inequality

F_3F_3 (33) ‖F2‖p . 2−`s2−2`2(N−j)/p′2`/p
(∑

ν

|2(j+`)sλj+`,ν(f)|p2−(j+`)
)1/p

.

Putting the estimates from (27) to (33) together we observe that the sum
over the respective range of j and ` (see (7)) is uniformly bounded with
respect to N if s > 1/p− 1.

Step 3. Here we deal with j + `, j ≤ N . We return to (12) and estimate
the first summand as done in (13). We continue similarly as after (29) and
obtain the pointwise estimate (30). Since j+ ` ≤ N there is only a bounded
number of coefficients λj+`,ν(f) contributing to fj+` on IN,µ. Using the
mean value theorem in both factors of the integral in (30) we obtain

|2js[EN (fj+`)− fj+`] ∗ ϕj(x)| .2js22j−2N2j+`−N×

×
∑

µ:|2−Nµ−x|.2−j

sup
|ν2−(j+`)−2Nµ|.1

|λj+`,ν(f)| ,

which yields

‖2js[EN (fj+`)− fj+`] ∗ ϕj‖p

. 2−`s2j+`−N22j−2N2(N−j)/p′2`/p
(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
.
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The sum over the respective j and ` is uniformly bounded in N whenever
−1 < s < 1 + 1/p. To estimate the second term on the right-hand side of
(12) we literally follow the arguments in (17) and below to end up with (20).

Step 4. Let us finally proceed with the case j + ` ≤ N ≤ j. Instead of
(21) we estimate as follows.

‖2jsEN (fj+`) ∗ ϕj‖p

≤ 2js
(∑
µ∈Z

∫
|x−2−Nµ|.2−j

|[EN (fj+`)− fj+`] ∗ ϕj(x)|p dx
)1/p

+ 2js
(∑
µ∈Z

∫
|x−2−Nµ|.2−j

|fj+` ∗ ϕj(x)|p dx
)1/p

.

finalfinal (34)

The second summand on the right-hand side can be estimated by

jgeqNjgeqN (35) 2−|`|δ
(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
,

whereas, similar to (21), the first summand in (34) is bounded by

firstfirst (36) 2−`s2j+`−N2(N−j)/p
(∑
ν∈Z
|2(j+`)sλj+`,ν(f)|p2−(j+`)

)1/p
.

Altogether we encounter the condition 1/p−1 < s < 1/p for any 0 < q ≤ ∞
for the uniform boundedness of EN : F sp,q → F sp,q in case 1 ≤ p <∞. �

3. On the Schauder basis property for the Haar system.
Schauder

Let {hN,µ : µ ∈ Z} be the set of Haar functions with Haar frequency 2−N

and define for N ∈ N and sequences a ∈ `∞(Z),

TNdefTNdef (37) TN [f, a] =
∑
µ∈Z

aµ2N 〈f, hN,µ〉hN,µ.

In particular for the choice of a = (1, 1, 1, . . . ) one recovers the operator
EN+1 − EN . It was shown in [6] that Theorem 1.1 together with the in-
equality

T_NT_N (38) sup
N∈N

sup
‖a‖∞≤1

‖TN [f, a]‖Bsp,q ≤ C‖f‖Bsp,∞ ,

1/2 < p ≤ ∞, 0 < q ≤ ∞, and 1/p− 1 < s < min{1/p, 1}.
implies Schauder basis properties for suitable enumerations of the Haar sys-
tem. We give a sketch of proof which relies on the arguments in the previous
section.

Proof of (38). The crucial modification of the proof of Theorem 1.1 is the
fact that, due to the cancellation properties of the Haar functions partici-
pating in (37), we do not need the splittings in (12), (21), (27), and (34) and
the subsequent considerations like (17) – (20). Therefore, we may start with
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a Besov norm ‖ ·‖Bsp,q on the left-hand side (see (6), (7), (8)) and always end

up with the Besov norm ‖ · ‖Bsp,∞ on the right-hand side, see (23), (26), (32)
and the comments below. Clearly, the described method allows for pulling
out the aµ on the expense of ‖a‖∞.

Step 1. Suppose j + `, j ≥ N . The estimates in (25), (26) apply almost
literally to ‖2jsTN [ψj+`,ν , a]∗ϕj)‖p producing the additional factor ‖a‖∞ on
the right-hand side. Note, that we did not yet need any cancellation of the
Haar functions.

Step 2. Suppose j + ` ≥ N ≥ j. The splitting in (27) is not necessary
anymore, we can work directly with ‖2jsTN [fj+`, a]‖p. An analogous iden-
tity to (30) holds true with EN (fj+`)− fj+` replaced by TN [fj+`, a] due to
the cancellation of the Haar functions hN,µ. In what follows we only have
to care for a counterpart of F0 since F1 and F2 do not show up. We end up
with a counterpart of (32) for ‖2jsTN [fj+`, a]‖p with an additional ‖a‖∞ on
the right-hand side.

Step 3. Suppose N ≥ j + `, j. Again, due to the cancellation of the Haar
function, a splitting as in (12) is not necessary and we obtain a version of
(30) as in Step 2. The mean value theorem applied to the first factor in
the integral gives the factor 22j−2N , whereas the cancellation of hN,µ gives

|TN (ψj+`,ν)(x)| . 2j+`−N . We continue as in the proof of Theorem 1.1.
Step 4. The remaining case j + ` ≤ N ≤ j goes analogously to Step 4 in

the proof of Theorem 1.1. Note, that also here the splitting in (34) and the
subsequent consideration for the second summand on the right-hand side is
not necessary. �
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