THE HAAR SYSTEM AS A SCHAUDER BASIS IN SPACES
OF HARDY-SOBOLEV TYPE

GUSTAVO GARRIGOS  ANDREAS SEEGER  TINO ULLRICH

ABSTRACT. We show that, for suitable enumerations, the Haar system
is a Schauder basis in the classical Sobolev spaces in R? with integrability
1 < p < 0o and smoothness 1/p—1 < s < 1/p. This complements earlier
work by the last two authors on the unconditionality of the Haar system
and implies that it is a conditional Schauder basis for a nonempty open
subset of the (1/p,s)-diagram. The results extend to (quasi-)Banach
spaces of Hardy-Sobolev and Triebel-Lizorkin type in the range of pa-
rameters % < p < oo and max{d(1/p—1),1/p—1} < s < min{1,1/p},
which is optimal except perhaps at the end-points.

1. INTRODUCTION
We recall the definition of the (inhomogeneous) Haar system in R?. Con-
sider the 1-variable functions
O =145 and A =151 — L)

For every € = (£1,...,e4) € {0,1}¢ one defines

R (z1, ..., 2q) = KED) (@) - bl (zy).
Finally, one sets

W) (x) = h© 2k —0), keNy, L€z,
Denoting T = {0,1}%\ {0}, the Haar system is then given by

Hy = {hgfg}eezd U{nS) : kemo, tezt e}

Observe that supp h,(:g is the dyadic cube Iy := 27%(¢ + [0, 1]%).

In this paper we consider basis properties of Hy in Besov spaces By, and

Triebel-Lizorkin spaces Fj  in R?. We refer to [13], [14] for definitions and
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properties of these spaces and to [1] for terminology and general facts about
bases in Banach spaces.

In the 1970’s, Triebel [11, 12] proved that the Haar system Hgy is a
Schauder basis on B (R?) if

(1)ﬁ‘l1<p<oo, 0<q< oo, max{d(%—l),%—l}<s<min{1,%,

and that this range is maximal, except perhaps at the endpoints. Moreover,
the basis is unconditional when (1) holds; see [15, Theorem 2.21]. Concern-
ing F , spaces, however, in [15] it is only shown that Hy is an unconditional

basis for F;Q(Rd) when, besides (1), the additional assumption
(2) max{d(%—l),%—1}<s<%

is satisfied. Recently, two of the authors showed in [9, 10] that the additional
restriction (2) is in fact necessary, at least when d = 1. It was left open
whether suitable enumerations of the Haar system can form a Schauder basis
in F;  in the larger range (1). We shall answer this question affirmatively.

Given an enumeration {ui,ug,...} of the system Hy, we let Py be the

orthogonal projection onto the subspace spanned by ui,...,uy, i.e.
N

(3) PNf:ZHUan_2<f,Un>Un-
n=1

The sequence {uy};2; is a Schauder basis on Fy  if
(4) A}gnoo |1PNf— fllrs, =0, forall fek],.

In view of the uniform boundedness principle, density theorems and the
result for Besov spaces, (4) follows if we can show that the operators Py
have uniform F; — FJ  operator norms. Note, that the condition s < 1/p
is necessary since the Haar functions need to belong to £ . By duality, if
1 < p < oo, the condition s > 1/p — 1 becomes also necessary, so the range
in (1) is optimal in this case. If p < 1, then an interpolation argument shows
that (1) is also a maximal range, except perhaps at the end-points; see §4
below.

Definition. An enumeration Y = {uy,us,...} of the Haar system Hy is
admissible if the following condition holds for each cube I, = v+ [0,1]%, v €
72, 1f u, and u, are both supported in I, and |supp(uy,)| > |supp(u,/)|,
then necessarily n < n’.

The table in the figure shows how to obtain an admissible (natural) enumer-
ation of Hy via a diagonalization of the intervals I, versus the levels k. We
first label the set Z? = {v1,14,...}. Then, we follow the order indicated by
the table, where being at position (14, k) means to pick all the Haar func-
tions with support contained in I,, and size 27kd arbitrarily enumerated,
before going to the subsequent table entry.

Our main result reads as follows.
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NI | I, I, L, I, I,
0 |1 2 4 7 11

1 3 5 8 12
2 6 9 13

3 10 14

4 15

FIGURE 1. An admissible enumeration of Hj.

Theorem 1.1. Let U = {u,}52; be an admissible enumeration of the Haar
system Hy. Assume that

(i) 795 < p < o0,

(77) 0 < g < o0,

(iii) max{d(% - 1), % -1} <s< min{l,% .
Then U is a Schauder basis in sz,q(Rd).

S S
1 1
1 1
27 1 2 1
1 1
1 1
' 1 / 1
P ) P
(N T 1 2gt et
_ 1] _ 1]
2 2

FicUrE 2. Unconditionality of the Haar system in Hardy-
Sobolev spaces in R and R¢

In the left part of Figure 2, the trapezoid is the parameter domain for
which the Haar system is a Schauder basis in the Hardy-Sobolev space H, (R)
(= F,5(R)) while the shaded part represents the parameter domain for
which the Haar system is an unconditional basis in H,(R). The right figure
shows the respective parameter domain for H;(}Rd).

The heart of the matter is a boundedness result for the dyadic averaging
operators Ey given by

(5) Enf(z) =Y 1ry,(z)2" f(t)dt
HeEZA INu
with
Ing=2"Nu+[0,1)%, pez N=0,1,2,...
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Note that Ex f is just the conditional expectation of f with respect to the
o-algebra generated by the set Dy of all dyadic cubes of side length 27,
There is a well known relation between the Haar system and the dyadic
averaging operators, namely for N =0,1,2,...

(6) Ensi1f —Enf = ZZW £ RIS

ecYT ueZd
i.e. Eny41—Ep is the orthogonal projection onto the space generated by the
Haar functions with Haar frequency 2V.

Now let 79 be a Schwartz function on R?, supported in {|¢| < 3/8} and
so that ng(§) =1 for || < 1/4. Let IIy be defined by

(7) TINF(€) = mo(2NE) F(£).

There is a basic standard inequality (almost immediate from the definition
of Triebel-Lizorkin spaces)

(8) SupHHNfHFs <Cqs)|flrs,

p,qa —

which is valid for all s € R and for 0 < p < 00, 0 < ¢ < co. Moreover, (8)
and the fact that ||IInyg — g||ps, — 0 for Schwartz functions g gives

) Jim [Ty f = fllrz, =0

if f € F,,and 0 < p,g < co. The main tool in proving Theorem 1.1
is a similar bound for the operators Enx which of course follows from the
corresponding bound for Ex — ITx. It turns out that the operators En — Iy
enjoy better mapping properties in Besov spaces.

Similar bounds are also satisfied by projection operators into sets of Haar

functions with fixed Haar frequency. Namely, for N € N and functions
a € £2(Z% x Y), we define

(10) Tn[f,a] = Z Z a2V, hg\?,)umg\?)u
eeY puezd

Observe that the choice a, e = 1 recovers the operator Enxy1 — Ey. Then,
we shall prove the following.

Theorem 1.2. Letd/(d+ 1) < p < o0, 0 < r < oo, and

(11) max{d(1/p—1),1/p—1} < s < min{1,1/p}.

Then there is a constant C' := C(p,r,s) > 0 such that for all f € B}
(12) SUPHENf HInfllB;, < Clfls;.,

Moreover,

(13) sup [|Tw(f allls;, S llalleollf 85, -
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We have the embedding F;, C Fj ,, C B, ., which we use on the func-
tion side. For r < p we have the embedding B, , C F}, (by Minkowski’s

inequality in v/ ") and if also r < ¢ we have F,, C F; . these two are used
for Enf — IINf, or Tn[f,a]. In particular we conclude from Theorem 1.2

that Ey — IIy is bounded on Fj  , uniformly in N. Hence

Corollary 1.3. Let p,s be as in (11) and 0 < ¢ < co. Then

(14) sup IEn £l Fsup sup TN (S, allleg, < I llEg,-

llallgoe <1

The proofs in this paper use basic principles in the theory of function
spaces, such as LP inequalities for the Peetre maximal functions. A different
approach to Corollary 1.3 via wavelet theory is presented in the subsequent
paper [3]. The main arguments and the proof of Theorem 1.2 are contained
in §2. In §3 we show how estimates in the proof of Theorem 1.2 are used to
deduce Theorem 1.1. Finally, in §4 we discuss the optimality of the results.

2. PROOF OF THEOREM 1.2

We start with some preliminaries on convolution kernels which are used in
Littlewood-Paley type decompositions. Let Gy, 5 be Schwartz functions on
R, compactly supported in (—1/2,1/2)% such that |Bo(¢)| > 0 when [¢] < 1
and |B(¢)] > 0 when 1/8 < |¢| < 1. Moreover assume f has vanishing
moments up to a large order

d
(15) M > — +|s],
p
that is,
(16) / Blx)x™ - x4de =0 when mi+...4+mg <M.
Rd

For k = 1,2,... let B := 2F3(2%.) and Lif = Bi * f. We shall use the
inequality

= ksr r r
(17) lollss, < (D 2" ILsglly)
k=0

and apply it to g = Exf — IIn f. Inequality (17) is of course just one part
of a characterization of By, spaces by sequences of compactly supported
kernels (or ‘local means’), with sufficient cancellation assumptions, see for
example [14, §2.5.3].
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Let 7o € C°(R?) be as in (7), that is, supported on {|¢| < 3/8} and such
that 70(§) = 1 when [¢| < 1/4. Define Ag, and Ay, for k > 1 by

Rof(e) = 1) f
0f(&) ﬁo(f)f(g)
o m(27F) —np(27F L)
Apf(§) = o) &), k>1

Then > 72, L;jA; = Id with convergence in &', and
sup 27°(|A; fllp S 1| fll ;.. -
j=0

Moreover IIy = Zj\]: o LjA;, and therefore

N

(18)  Enf—IINf=) (ExLiAf —LiAjf)+ Y EnLjA;f.
=0 j=N+1

If we use the convenient notation
Ey =1 —Ey,

then the asserted estimate (12) will follow from

o0

(19) ( Z oksr |

k=0 Jj=

0 r\ 1/7 .
LENLN S| ) S sup 27 A
N+1 p J
and
(20) (22’“
k=0

Below we shall use variants of the Peetre maximal functions, which are a
standard tool in the study of Besov and Triebel-Lizorkin spaces. We define

N 1 r\ 1/r o
> LERLAS| ) S sup 2 A
j=0 ’

(21a) Mjg(x) = sup |g(x+h)[,
|hfoo <27 H1
(21b) Mig(x) = sup |g(z + h)l,
|l <235
" z+h
(21¢) w.9(x) = sup AIET)

nerd (14 27[R[)A7

where |h|oo = max{|hi|,...,|ha|}, h = (h1,...,hq) € R% These different
versions are introduced for technical purposes in the proofs. They satisfy
obvious pointwise inequalities,

Mg(x) < Mig(z) < CAM 59(2),
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Mgle) <t Wl 1)

(22) | o
< (2<J—4>d/ g + h)rdh) " her<o
|hloo<2-0+4

Below we shall use Peetre’s inequality ([6], see also [13, §1.3.1])

(23) 1905 fllp < Cpallfllp, 0<p<oo, A>d/p,
for f € S'(R?) satisfying
(24) supp(f) C {&: |¢] < 27*1).

Throughout we shall assume that M > A; we require specifically
d/p< A<M —|s|.
The main estimates needed in the proof of (19) and (20) are summarized
in

Proposition 2.1. Let 0 < p < o0 and

(25)
oN—j 955 o(i=M)(d-1)(3-1)+ —
BN =L PN FI<N k>N+L
gk-Ngi-Np(N=Hi L if0<j k<N,

2k—j+%+[1\[—k+(i—k>(d_1)](%_1)+ ifj>N+1, k<N.

Then the following inequalities hold for all f € S'(RY) whose Fourier
transform is supported in {|¢| < 271},

(i) For j > N +1,

26 LiEN|L; < A
(ii) For 0 < j < N,

[B(j, ke, N) + 27 0=HO=D]) £ if k> N +1,

Lir.
27) [|LeEN[L;f]llp < {B(j, kN £l if0<k<N.

(iii) The same bounds hold if the operators Ey in (i) and E+ in (ii) are
replaced by Tn |-, a], uniformly in ||a|lc < 1.

We begin with two preliminary lemmata, the first a straightforward esti-
mate for LL;.

Lemma 2.2. Let k,j > 0 and suppose that f is locally integrable. Let M
be as in (16) with M > A > d/p. Then

(28) |LiLjf()| S 2 W= Aapess G f ().
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If f € S'(RY) with f(£) =0 for €] > 291 then
1L L fllp S 27 £,
Proof. The second assertion is an immediate consequence of (28), by (23).

We have Ly L; f = v, * f where v, = Bi* ;. By symmetry we may assume
k < j. Using the cancellation assumption (16) on the §; we get

M-1
1 o
el = | [ 29[8(25 @ = 9) = Y -2 9)"8(2¢) | 2195(20 )|
m=0 ’
kd (1) 1 ok Mp ok k id (0]
=| [ [ e v et — st s
< olk— JMzkdﬂ[ 9k o k]d( ),
and thus
20y )| S 2 (G Bl dh
|hloo <27

2G-RA|f(z — h)
<2kd/ . dh < 20=RA My,
S e T2 i (@)

Hence (28) holds. O

Some notation. (i) Below, when j > N we use the notation
U -:{ R? :  min dist(y;,2 N7 <2*J'*1}.
NG = Ws--. ya) € g dis (yi ) <

That is, Uy ; is a 277~ L_neighborhood of the set Urep, O1.

(i) For a dyadic cube I of side length 2= and [ > N we shall denote by
D,[01] the set of dyadic cubes J € D; such that J NI # (.

(iii) For a dyadic cube I of side length 27" denote by Dy (1) the neigh-
boring cubes of I, that is, the cubes I’ € Dy with I NI’ # (.

Lemma 2.3. (i) Let k > N > 1 and g be locally integrable. Then
(29) Li(Eng)(z) =0, for allz € US ), =R\ Uy

(ii) Let 5 > N > 1, and f locally integrable. Then

(30) En[L;f] = En[L;(Luy , f)]-
Moreover,
(31) Bn (L )] S2VDEN" N || fllpeeq) 11

IeDN JeD;11[0]]
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Proof. (i) We use the support and cancellation properties of ;. Note that

Li(Eng)(x //Bk r—y)Eng(y) dy,

and supp By(z — ) C 2+ 27%[—1/2,1/2]% So,if I € Dy and z € Iﬁl/{][i,yk,
then supp i (z — ) C I, and hence

Li(Eng)(z) = (Exg), (z) /I Bu(x — ) dy = 0.

(ii) One argues similarly. First note that, changing the order of integration,

(32) N(Eif)= > /Rd /5] dx dy III

IeDyn
Now if J € Dy and y € JﬂZ/{]EVk then supp 3;(- — y) C J, and hence
J; Bj(z —y)dx = 0. Thus Ex[L;(1 us, f)] = 0. Finally, to prove (31) note
that, if I € Dy and x € I, then from (32) it follows

Ex(L@] = 17t Y /f /m_ )da] ay

JED]+1[81

< 2Nd Z HfHLoo(J)TdeHﬁjHla

JeD;1]01]

which gives the asserted (31). O
Proof of Proposition 2.1.

Proof of (26) in the case j,k > N + 1. By Lemma 2.3.i, LyEn[L; f](z) =0
ifxe L{]CV’K, so we assume that x € Uy N I, for some I € Dy. Recall that
Dy (I) consists of the neighboring cubes of I. Then (31) and the support
property of 5i give

LLEx[L;f)(x /wk 2 — )| [Ex(L;£)(y)| dy

Z Z £ Nl oo () 1Bk ]1-

I’EDN(I) JeDj_,_l[@I’]

Hence
ILENIL )l = [IGZDN / o ValENL ]
(33) S 2T (ST ) U]

IeDy JeD;41[01]
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Now, [I NUN | = 9—k9=N(d=1) "and card D 1[01] = 2U—N)(d=1) = Algo, if
we write J = 27771(¢; + [0,1]%), then
1
oy < inf  OMEF(Ly 4 h) < |274 M f(Ly+h)Pdh|”.
fliwn <, inf Mposm < 29 o

Therefore, using either Holder’s inequality (if p > 1), or the embedding
P — ¢* (if p < 1), we have

(YT W)

I1€DN JED;11[01]

< 2(j—N)(d71)(1*%)+[ Z Z \proo(J)F

IeDy JeD;41(0I]
< 20D [ 5 2jd/

34) < 9=N)(d=1)(1-1)4 52 Hgﬁ;fHLp(

1

M f(Ly + )P dh} v

Rd)
Finally, inserting (34) into (33), and using (23), yields

N(d—1)

VBN fll, S 20-9Ml=NME-10=3)s o8 | o1 0=5o-
N1 95 QUG g

using in the last step the trivial identity (1 — %)Jr = (% —1);— (% —1). This

establishes (26) for j,k > N + 1. O

Proof of (27) in the case j < N, k > N + 1. For w € I with I € Dy we
have

[Ex(L; f)(w)] = [EN[L; fl(w) — Lj f(w)]
=2 [ [ 50— 9) = B w ) fw)aya]|

1
:2(N+j)d‘/[/ﬂ§d/0 VB2 [(1 = tyw +tv —y]) - 27 (v — w) dt f(y) dy dv

1
(N+j)doj—N J _ _
< 9N+ /1/ /Rdmymvmz (1~ tyw + to — y])| dy dt do

since for fixed w,v,¢ the expression involving V5 is supported in the set
{y + |y —wlew < 27971 + 27N} Moreover, since k > N, when w € Iy,
and |z]oo < 2771 we have

1 . _ < Jj—N . * —N
(35) |EN[L; fl(w — 2)| < 2 \h|£lgfz—jmﬂf(2 p+h),
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and therefore,

LEVLA @] < [ Bhw- )] ds

(36) < 9i N [][ M f (27N + h)P dh] v
|h| oo <2—7
Now Lemma 2.3.i gives
12k (BN (L )],

SILRLifll o, ) [ D M EN LN oon worn “)]
HEZ

3 =

Using (36), the last term is controlled by

1

29~ N[Z 1IN NUN k| Emj-f(TNﬂ—kh)pdh}p
HeZ

< 277N 27k V@D 95 e p, < 277N 2

h|oo S27j

N—-k
7 llp-

Finally, the first term in (37) is controlled by Lemma 2.2, so overall one
obtains

1L ERIL )] < (27 VAW 423N 9550 | £

establishing (27) in the case j < N, k> N + 1. O
Proof of (27) in the case 0 < j,k < N. We use

BRI A =0, 1€ Dy,
to write

Lo (B (1; 1)) Z/ (Bele — y) - Bulw — 27 1)) ESIL,1(y) dy

For fixed x, we say that

(38) pe Az if |o— 27N p|p < 27N 42781

Observe that only these u’s contribute to the above sum. Notice also that
Bz —y) = Bz =27 V)| S 282N ify € Iy,

and since 7 < N, the estimate in (35) gives

Exn[L; fl(y)] S 277N ot M FNu+h), yeln,
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Combining all these bounds we obtain

1

L (B [L; 1) (2)] 5 20 M@ Dai=N 57 ( [ )
peh(z) Y v+l 5]

1

. _ _ 1 * D

< 2= M) 9i=NgW R+ (57 ;1)

1 11d
neA(z) 2N+[_ 27’ QJ]

using in the last step Holder’s inequality (or £7 < ¢! if p < 1) and the fact
that card A(z) ~ 2(N=F)4_ Observe also that the LP-quasinorm of the last
bracketed expression satisfies

/ ][NH d[zm* i

27 2] UEZA

< 9(N=K)d/p Hgm;fup_

(Cztf ;)"

NH*;; 57

\_/
S
Q

Thus, overall we obtain
ILENIL), S kPN @R e g0 g
p ~Y

kNN TR 5y,

after simplifying the indices in the last step. This establishes (27) in the
case 0 < j,k < N. O

Proof of (26) in the case j > N + 1, k < N. This condition and (30) in
Lemma 2.3 imply that Ex[L; f] = Ex[L;(f1yy ;)] For simplicity, we denote

f: J1uy ;, and write
(39) LyEN(L;f] = Le(EN[L; f] — Lif) + LiL; .
Observe that, by Lemma 2.2,

|Z4LsFllp S 27 A onsy (2|, S 27N ) 1,

~

So, we only need to estimate ||LiEx [Ljf]Hp. Proceeding as in the proof of
the case j,k < N, we write (with A(z) as in (38))

| Lk (Ex (L 1) ()]
e L R T

neA(z)

< gkdgh-N Z / |En[L; 7l + |L;(f )\)

HEA(z

(40) = Ai(z) + A2(x ).
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Now, using again (31), we have

[A(z)] g 207NN 7 Yo Il

HEA(z) JED;11[0IN, ]
AR U I SN D SN T PP L
uEAN(z) JED;11[0IN,,]

since card A(z) ~ 2=k Taking the LP-quasinorm of the last bracketed
expression gives

[ S (% Wle)a]’

MEA(:E) JED;11[0IN,,]
1
<[t W)
IeDyn J€®j+1[aﬂ

G=B)d (A1) (1 1 .
(42) < 97 2(] N)(d=1)(1—3)+ HmijLP

~

3=

(RY) by (34).

Therefore, combining exponents in (41) and (42) one obtains
AL, < QkaQ(k—ﬂd gV =Rd(=)1 9 E58E (=N @=1)A=D)1 | g1

(43) _ ok—ig'm 2(N k) (5 =1+ 9 =k)(d=1)(;-1)+ 11l

Finally, we estimate the term As(z) in (40). First notice that
1Li(F)(y)] < /u 1Bi(y — )| f(2)| d= =0, ify € U 1,
N.j

since supp B(y —-) C y + 2773, %]d C Z/{R,’j. Moreover, if I € Dy, then
for every cube J € D, such that J C I NUy ;1 we have

1L (f |</|ﬁ] W — ) dz S I f ey iy €d
where J* = J +27/[—3, 2]%. Therefore,
/ LAOIS S 1wl
Jeﬂj[al]

and overall we obtain

| Ag(z)| S 2hdgk=N % S Al

neA(x) JGDJ;I [8IN,/.L]

But this is essentially the same expression we obtained in (41) for the term
|A1(x)], so the same argument will give an estimate of ||Az||, in terms of
the quantity in (43). This concludes the proof of (26) in the case j > N +1,
kE<N.

Finally, concerning (iii) in Proposition 2.1, we remark that the previous
proofs can easily be adapted replacing the operators Ey and E+ by T /[, al,
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keeping in mind that Ty [g, a] is now constant in cubes I € Dy 41, and enjoys
an additional cancellation, [ I Inlg,a](z)dz = 0, which simplifies some of
e

the previous steps. U

Proof of Theorem 1.2, conclusion. It remains to prove inequalities (19)
and (20). By the embedding properties for the sequence spaces ¢" it suffices
to verify both inequalities for very small r, say

(44) r < min{p, 1}.

In view of the embedding " < ¢' and Minkowski’s inequality (in LP/") it
suffices then to prove

[e’s) oo 1/ .
(5)  sup (D2 3 LBNLAf[]) S sup 2 £l
N k=0 j=N+1 !

and
. ksr Y 1 T 1/r s

(46)  sup (23 | LeERLA ) T S sup 2 A £l
k=0 j=0 J

If we apply Proposition 2.1 to each of the functions A; f, we reduce matters
to observe that

(47) SupZQkST Z [Z_st(j,k,N)]T < 00,
N o =0

with B(j,k, N) as in (25), and that

( i ﬁ} i i)z—li—kﬂM—Akoo

j=N+1k=0 k=N+1 ;=0

which is trivial. The verification of (47) under the assumptions in (11) is
also elementary, but we carry out some details to clarify how the conditions

on p and s are used.
1

.=k s
When j,k > N, we have B(j, k,N) = 2¥N=32"% 20=ME-DG=D+ 4pq
thus

> 2k N 2790 B(j,k, N)|”

k>N J>N
(48)

_ ( 3 z—krg—s)) ( 3 2—rj[s+1—§—(d—1)<§—1>+]) QNI =(d=1)(5=1)4]

k>N >N
and the series converge provided s < 1/p and
(49) s>%—1—|—(d—1)(%—1)+:max{d(%_l)é_l}'

Further, being geometric sums, the final outcome in (48) is bounded uni-
formly in V.
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Next assume j < N < k, then B(j,k,N) = 2¥2j_N and hence
Z oksr Z 2795 B(j,k, N)|" = ( Z 271@7"(%75)) ( Z er(ks)) 2Nr(%71),
E>N j<N E>N J<N
which are finite expressions provided s < min{1,1/p}.
Consider j, k < N, with B(j, k, N) = 2kNoi-NoN=k)dG,~1s pyep

> 2k N [279°B(j,k,N)| " =

E<N <N
_ ( Z 2kr[s+1fd(%fl)+]> ( Z 27"]'(173)) 27Nr[2fd(%fl)+},
k<N <N
which leads to uniform expressions in N under the assumptions s < 1 and
(50) s>d(3— 1)+ — 1,
the latter being weaker than (49).

When £ < N < j we have B(j,k,N) = 2k7j+%+[N*k+(j*k)(d71)](%71)*
and

> 2k N 27 B(j,k,N)| " =

k<N J>N
= (30 MG D) (30 e @G ) g NGl
k<N J>N

where in the first series we would use (50) and in the second series (49). We
have verified (47) in all cases. This finishes the proof of Theorem 1.2. O

3. SCHAUDER BASES

Let Py be defined as in (3). For the proof of Theorem 1.1 we need to
prove that ||[Pxf — fllgs, — 0 for every f € F, . with (p,s) as in (11)
and 0 < ¢ < co. We first discuss some preliminaries about localization and
pointwise multiplication by characteristic functions of cubes, then prove

uniform bounds for the Fj, — FJ  operator norms of the Py and then

establish the asserted limiting property.

Preliminaries. For v € Z% let x, be the characteristic function of v+ [0, 1),
Lemma 3.1. Assume that

(51) &L <p<oo, 0<g<oo, and max{d(%—l),%—1}<3<%.
Then, the following holds for all g, and f € Fj

p 1/p
| naly 5 (Sl
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and

1/p
O I 1 P

(3 1wl

vezd

Proof. Let ¢ € C2°(R?) so that supp(s) C (—1,1)% and Y, cpac(z —v) =1
for all € R%. Let ¢, = ¢(- — v). We have, for all s € R,

1/
(52) lalleg, = (D llsalh, )™

i)
Fq ’
see [14, 2.4.7]. Hence
. S(Z S Xul

H D x|, = HZWZXugu
l/EZd p,q v/ v p,q v/ |V—Vl|oo§1
1/p 1/p
p p
S(E X el ) S (el )
v

Vo lv—1' o<1

P )1/p
g

Here we have used that ¢,/ x, are pointwise multipliers of FJ , with uniform
bounds in (v,7), in the range given by (51); see [7, Thm. 4.6.3/1]. This
proves the first inequality.

For the second inequality we first observe that, by (52),

1/p
Ifxleg, S (Slfsl, )7 verd,
yl

which yields

/
(Sl ) < (S S hrwsy;,)
1/p
(XY sl

Vo v—1|0<1

1/p
S (DIl )™ S 1flls,
l//

where we have used the pointwise multiplier assertion [7, Thm. 4.6.3/1] and
then again (52) in the last step. O

Uniform boundedness of the Py. Observe that by the localization property
of the Haar functions we have P f = > 70 xo PN f = >, Xo PN[fXy]. Thus
by Lemma 3.1

p )1/p

Foq ’

Since the enumeration of the Haar system is assumed to be admissible we
have

(53) PN [le/] = ENV [fXI/] + TNV [fXI/7 U/N’V]

IPx S, S (3 Palfwll
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for some N, € N, with N, < N and appropriate sequences a’V*¥ assuming

only the values 1 and 0. We remark that for each v, N, = N, (N) with
(54) lim N,(N)=o00.
N—o0

By Theorem 1.2

(D lIPvir]
(Z IE, [
(XNl

where for the last inequality we have used Lemma 3.1 again.

)"
2 ) (z 1T, s ™[5

e )" < e,

)1/p

Proof of Theorem 1.1, conclusion. Let f € F;,, with (p,s) as in (11) and
0 < g <oo. Let C =max{l,supy || Pn[lFs, —~Fs, } Since Schwartz functions
are dense in F;, when 0 < p,q < oo there is f € S(R) such that |[f —
f||F;’q < (3C)7'e and hence ||Pyf — PNf”Fg@ < €/3. Choose s; so that
s < s1 < max{l/p,1} then f € Bjl — F; . Since the Haar system is
an unconditional basis on Byl ([15]) we have limy o || Py f — fHB;}q =0
and therefore limy o0 | Pnf — fllFs, = 0. Combining these facts we get

IPnf— fl Fs, < € for sufficiently large N which shows that Pyf — [ in
Fs . [l
P,

4. OPTIMALITY AWAY FROM THE END-POINTS

Proposition 4.1. Let 0 < ¢ < oo. Then, the Haar system Hg is not a
Schauder basis of sz’q(Rd) in each of the following cases:

(i)ifl<p<ooands>1/pors<1/p—1,
(i) if d/(d+1) <p<lands>1ors<dl/p—1),
(i17) if 0 < p <d/(d+1) and s € R.

The same result for the spaces Bj ,(R%) was proved by Triebel in [12]; see
also [15, Proposition 2.24]. Proposition 4.1 can be obtained from this and
Theorem 1.1 by suitable interpolation.

Indeed, assertion (i) was already discussed in the paragraph following (4),
so we restrict to p < 1. Assume next that ¥, is a basis for Fj for some
d/(d+1)<p<lands>1lors<d(l/p—1). By Theorem 1.1, Hy is also
a basis for F50 for any d(1/p — 1) < so < 1. By real m‘cerpolatlon7 see e.g.

P.a’
[13, Thm. 2.4.2(ii)], for all 0 < 6 < 1, the system Hy will then be a basis of

(F;%,FS ) = B,f, with sp = (1 —0)sp + 0s.
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But when 6 is close to 1 this would contradict Triebel’s result. The remaining
cases, p = 1 and p > d/(d + 1) can be proved similarly using complex
interpolation of F-spaces; see [14, 1.6.7].

We remark that, in the paper [12], the failure of the Schauder basis prop-
erty in the B-spaces is sometimes due to the fact that span J; fails to be
dense in By ;. This is the case, for instance, in the region

(55) (d—1)/d<p<1 and max{l,d(1/p—1)} <s<1/p;

see [12, Corollary 2]. Here we show that also a quantitative bound holds,
therefore ruling out the possibility that Hy could be a basic sequence.

Proposition 4.2. Let 0 < ¢ < 00, and (p, s) be as in (55). Then,

IEx|By, B3, 227DV,

Proof. Let n € C°(R?) such that n = 1 on [-2,2]¢, and consider the
Schwartz function f(z) = x1n(x). It suffices to show that

(56) [Exfllp, 2 2070%

Under (55) we have s > 0, := d(1/p — 1)4. Assume first that s < 2 (which
is always the case if d > 1). Then we can use the equivalence of quasi-norms

he gllp dh\1/a
Il e ~ ugup+z( / e

with the usual modification in the case ¢ = oo, see [14, 2.6.1]. In particular

- (/2 N-1 HAhe1(ENf)H%p([O,1]d) dh>1/q
B q ™ 0 :

(57) y

hsq h
Now, it is easily checked that, when x € [0, 1)d, one has

B k+1/2
Enf= D "3 Lk igxontn
0<k<2N

and likewise, if we additionally assume 0 < h < 27N=1 then

2N
—N-1
Ahe1 (ENf) = 2 Z ]]- LN 13N )X[O,l)dil
k=1
and
2N
—N-1
Afe, (Enf) =2 Z [ 2h, i —m)x[0,1)4-1 ~ Lk p (o, 1)a- 1}
Therefore,

N L e Y

which, inserted into (57), gives (56). If d = 1 and s > 2, one applies a similar
argument to the functions Aﬁel(ENf) with L = |s]+1land h <27 V/L. O
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By interpolation one obtains as well a quantitative bound for the relevant
cases in Proposition 4.1(ii).

Corollary 4.3. Let 0 < g < oo, d/(d+1)<p<1landl<s<1/p. Then,
for all e > 0,

(58) IEN|F; —rs, 2 ce 267179,

p,q "

Proof. If d(1/p — 1) < sp < 1 and 6 € (0,1), then the real interpolation
inequalities give

—0 0
HENH}?;%—>F5% HENHF;Q%FE’Q = HENHB;%—)B;?Q’

with sg = (1—0)sp+60s. By Proposition 4.2 the right hand side is larger than

a constant times 2N(59*1), while by Corollary 1.3 we have HIEN HFSO Lo N 1.
p,q p,q

Choosing 6 sufficiently close to 1 one derives (58). O
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