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Abstract. We prove, for suitable values of p� 2, new mixed norm `s(Lp) versions

of an inequality introduced by Wolff in the context of local smoothing for the wave

equation. Moreover, we improve on their range of p, both in the original `p(Lp) and

also in the stronger `2(Lp) formulation, in all dimensions d ≥ 2. As a consequence

progress is made on a number of problems, including an L4 bound for the cone

multiplier operator in R3, as well as new inequalities on boundedness of Bergman

projections in tubes over light-cones.

1. Introduction

Wolff’s inequality for cone multipliers and its variants involve projection opera-

tors to spaces of functions which are frequency-supported in boxes adapted to thin

neighborhoods of light cones.

Let η ∈ C∞c (R) be supported in (−2, 2) and, for ω ∈ Sd−1 define a convolution

operator TN,ω on the Schwartz space S(Rd+1) by

(1.1) T̂N,ωf(ξ′, ξd+1) = η
(
N(1− |ξ

′|2

ξ2
d+1

)
)
η
(
N1/2(

ξ′

|ξ′|
− ω)

)
f̂(ξ′, ξd+1).

Note that the Fourier multiplier η(N(1− |ξ
′|2

ξ2
d+1

)) localizes the Fourier transform of f

to a neighborhood of the light cone which is of angular width CN−1. The multiplier

η(N1/2( ξ′

|ξ′| − ω)) localizes the Fourier transform to a sector in Rd, of angular width

≈ N−1/2, with trivial wedge extension to Rd+1. It is easy to see, by a nonisotropic

scaling and standard Calderón-Zygmund theory, that the operators TN,ω are bounded

on Lp, 1 < p <∞, with operator norm independent of ω and N . Let Ω be an N−1/2

separated subset of Sd−1. We are interested in efficiently bounding the Lp norm of∑
ω∈Ω Tω,Nfω by the `s(Lp) norm of {fω}ω∈Ω.
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The mixed norm variant of Wolff’s inequality, for suitably p < ∞, and suitable

ε > 0 states that

(1.2)
∥∥∥∑
ω∈Ω

Tω,Nfω

∥∥∥
p
≤ CεN

β(p,s)+ε
(∑
ω∈Ω

‖fω‖sp
)1/s

holds with the exponent

(1.3) β(p, s) =
d− 1

2s′
− d+ 1

2p
.

Here 1/s′ = 1 − 1/s. It is also possible to formulate this inequality in an equivalent

integral version, namely as

(1.4)
∥∥∥∫

Sd−1

Tω,Nfω dω
∥∥∥
p
≤ Cε,pN

εN−
d+1
2p

(∫
Sd−1

‖fω‖sp dω
)1/s

.

Here dω is the normalized rotation-invariant measure on the sphere. If in (1.4) we

replace N−(d+1)/2p with the larger N−(d−1)/2p then the resulting inequality is certainly

true for p = 2 and s = 2, and then, by standard arguments, also for 2 < p < ∞
and s = p′. However the corresponding inequality with the improved constant seems

quite deep.

For s = p, and functions whose Fourier transforms are supported in an annulus,

(1.2) was introduced by T. Wolff in his fundamental article [22]. He showed that in

this case the inequality can hold for for all ε > 0 only when p ≥ 2 + 4
d−1

which is

the conjectured range. The optimal exponent β(p, p) = d(1
2
− 1

p
)− 1

2
is the standard

Bochner-Riesz critical index in d dimensions. In [22], Wolff developed an induction

on scales method to prove such inequalities for large values of p, and obtained a

positive answer for s = p > 74 when d = 2. This method was extended to higher

dimensions in the paper by  Laba and Wolff [12], establishing the s = p case for

p > 2+min{ 32
3d−7

, 8
d−3
}. In both papers the authors state that improvements over these

indices should be possible, although perhaps still far from the conjectured exponents.

In fact, slightly better ranges for all d ≥ 2 were already presented by the first and third

authors in [7], based on the use of bilinear Fourier extension theorems in conjunction

with the original proofs.

The purpose of this paper is to (i) improve the range of Wolff’s original inequality,

and (ii) to further strengthen these results by proving better `s(Lp) results for the

same range of p but certain s < p. Note that, for given p, the validity of (1.2) for

some s0 and all ε > 0 implies the validity for s0 < s ≤ ∞, by Hölder’s inequality. We

note that the main motivation to consider these mixed norm improvements comes
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from complex analysis, namely from questions on the Bergman projection for tube

domains over light cones [2], [1]. See Corollary 1.6 below.

Our contribution to this problem is restricted to the case s ≥ 2. The main result

is in two dimensions. It implies that the original Wolff inequality in R2+1 holds for

p ≥ 20, and the sharp `2(Lp) inequality holds in a slightly smaller range.

Theorem 1.1. Let d = 2, s ≥ 2 and

(1.5) p2(s) =


20 if s ≥ 3− 3

13
,

5(11s−6+
√

65s2−76s+36)
6(s−1)

if 2 < s ≤ 3− 3
13
,

23 + 1
3

if s = 2.

Then, for all N ≥ 10 and all N−1/2-separated sets Ω ∈ Sd−1,

(1.6)
∥∥∥∑
ω∈Ω

Tω,Nfω

∥∥∥
p
≤ Cp,s(N)Nβ(p,s)

(∑
ω∈Ω

‖fω‖sp
)1/s

; p2(s) < p <∞

where

(1.7) log Cp,s(N) ≤ C(p, s)(logN)a(p,s) with a(p, s) < 1.

It is noteworthy that for 2 ≤ s ≤ 36/13 the range of p is better than what could

be obtained by interpolation between s = 2 and s = 36/13 (cf. the figure). Also note

that (1.7) implies that

Cp,s(N) ≤ Cε,p,sN
ε,

for any ε > 0.

In higher dimensions we obtain the sharp `2(Lp)-result in the same p-range as the

weaker `p(Lp)-result.

Theorem 1.2. Let d ≥ 3, s ≥ 2, and pd < p <∞, where

(1.8) pd := 2 +
8

d− 2

(
1− 1

2d+ 2

)
.

Then, for all N ≥ 10 and all N−1/2-separated sets Ω ∈ Sd−1,

(1.9)
∥∥∥∑
ω∈Ω

Tω,Nfω

∥∥∥
p
≤ C(N)Nβ(p,s)

(∑
ω∈Ω

‖fω‖sp
)1/s

where

(1.10) log Cp(N) ≤ Cd,p(logN)α(d,p) with α(d, p) < 1.
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Figure 1.1. New regions for the (p, s)-inequality for d = 2 and d ≥ 3

Remark 1.3. The argument also shows that α(d, p) ≥ c( 1
pd
− 1

p
)3 as p↘ pd. Choosing

p so that 1
pd
− 1

p
= c log log logN

log logN
one may interpolate this Lp estimate with a trivial L2

estimate. As a consequence one finds that that the inequality (1.9) holds for p = pd,

with

log Cpd(N) ≤ Cd
logN

(log logN)b

for some b > 0 (and N � e3). A similar statement applies to Theorem 1.1 for

p = p2(s).

As mentioned before, Theorems 1.1 and 1.2 can be proved by following the method

[22, 12]. Our contribution lies on three points: first, a packet decomposition adapted

to the `s(Lp) formulation of the problem. Secondly, a suitable iteration of the in-

duction on scales method from the original proof, leading in particular to a unified

exponent for all dimensions d ≥ 3. Third, in the special (and more difficult) case

d = 2 we additionally refine one of the combinatorial lemmas of Wolff, which in turn

improves and also somewhat simplifies the results in [22].

These methods, together with the use of bilinear restriction estimates as described

in [7], give the improved exponents in Theorems 1.1 and 1.2. We emphasize that the

main combinatorial arguments (and specially the very deep ones for d = 2 involving

circle tangencies) remain untouched and have been quoted from [22, 12].

We recall that the validity of (1.2) for p = s implies progress on various important

problems in harmonic analysis. The main original application concerns some (almost)
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sharp space time estimates for wave operators,

(1.11)
(∫ 2

1

∥∥eit√−∆f
∥∥p
Lp(Rd)

dt
)1/p

. ‖f‖Lpα(Rd),

where Lpα(Rd) is the standard Sobolev space. One aims to prove (1.11) in the range

(1.12) α > α(p) = (d− 1)(
1

2
− 1

p
)− 1

p

which is sharp (with the possible exception of the endpoint). Theorem 1.1 implies

improvements over known results on (1.11) in low dimensions.

Corollary 1.4. Suppose α > α(p). The inequality (1.11) holds for p ≥ 20 if d = 2

and p ≥ 8
d−2

(
1− 1

2d+2

)
if d ≥ 3.

We remark that a better result in higher dimensions was recently obtained in [9],

using different methods. There it is shown that (1.11) holds even with the endpoint

α = α(p) provided that d ≥ 4 and p > 2d−2
d−3

; this improves the p-range implied by

Corollary 1.4 in dimension d ≥ 5.

It turns out that the Wolff estimates can also be used to sharpen the known estimate

for the cone multiplier in R1+2 on the endpoint L4(R2) space. Recall that for d = 2,

p = 4 the inequality (1.11) is conjectured to hold for all α > 0 but this is very

much open. A number of substantial papers have been written to obtain nontrivial

ranges for the L4 bounds, with incremental improvements. The initial cone multiplier

result α > 1/8 by Mockenhaupt [14] and its extension [15] on (1.11) had been first

improved by Bourgain [4], using entirely new methods. Bourgain’s bounds were

further improved by Tao and Vargas, using bilinear Fourier extension theorems for

the cone [20]. In fact combining [20] with Wolff’s optimal L2 bilinear Fourier extension

results [23] one obtains L4 boundedness for α > 5/44. In [7] it was observed that the

use of the Wolff inequality in the method of Tao and Vargas yields a better range;

more precisely from Theorem 1.5 in [7] one gets α > 5
44

( p2−4
p2−41/11

) if (1.2) is known

for s = p > p2. Using Theorem 1.1 for p > 20 the range α > 445
3934

from [7] is thus

improved to α > 20
179

. However it is more efficient to use a mixed norm bound, namely

Theorem 1.1 for p near 20 and s = 4. This yields:

Corollary 1.5. Let α > 1/9. Then (1.11) holds for d = 2 and p = 4.

We shall now describe progress on a complex analysis problem, namely the Lp

boundedness of Bergman projections in tube domains over full light cones, see e.g.
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[2], [1]. Denote by Q(Y ) = y2
0 − |y′|2 the Lorentz form in Rd+1 and consider the

forward light cone on which Q is positive;

Λd+1 = {Y = (y0, y
′) ∈ R× Rd : y2

0 − |y′|2 > 0, y0 > 0}.

Let T d+1 ⊂ Cd+1 be the tube domain over Λd+1, i.e.

T d+1 = Rd+1 + iΛd+1.

Let wγ(Y ) = Q(Y )γ and consider the weighted space Lp(T d+1, wγ) with norm

‖F‖Lp(wγ) =
(∫∫

T d+1

|F (X + iY )|p∆γ(Y ) dY dX
)1/p

.

Let Pγ be the orthogonal projection mapping the weighted space L2(T d+1, wγ) to

its subspace Apγ consisting of the holomorphic functions. Only the case γ > −1 is

relevant since Apγ = {0} for γ ≤ −1. One is interested in the boundedness of Pγ in

Lp(T d+1, wγ). A known and trivial necessary condition is

(1.13) 1 +
d− 1

2(γ + d+ 1)
< p < 1 +

2(γ + d+ 1)

d− 1

(see e.g. [2]). In fact it has been conjectured that boundedness should hold in this

range (1.13), except d = 2 and γ ∈ (−1,−1/2), in which case there are additional

counterexamples for p ≥ 8 + 4γ (see [1]). Here we obtain

Corollary 1.6. Let d ≥ 2 and let p2 = 20 and pd = 2 + 8
d−2

(
2d+1
2d+2

)
if d ≥ 3. Then for

all

(1.14) γ ≥ max
{
−1 + d−1

4
(pd − 2(d+1)

d−1
), d−1

2
(pd − 2(d+1)

d−1
− 1)

}
,

the Bergman projection Pγ is a bounded operator in Lp(T d+1, wγ) in the sharp range

(1.13).

This will be a consequence of a more general mixed norm estimates stated in §7.

Remark. We point out that the range in Corollary 1.6 is a consequence of the stronger

`s(Lp) inequalities in Theorem 1.1 and 1.2, with s− 2 if d ≥ 3 and s = 3 with d = 2.

The weaker `p(Lp) estimates only imply a solution to the problem in the smaller range

γ ≥ d−1
2

(pd − 2(d+1)
d−1

) (see Corollary 1.4. in [7]).

Finally, in [17] Wolff’s `p(Lp) inequalities in R3 were employed to prove regularity

of averages

Atf(x) =

∫
I

f(x− tγ(s))ds
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and Lq boundedness for associated maximal functions. Here I is compact, γ is a

smooth parametrization smooth of a curve in R3, and γ is of type m ≥ 3. The result

in [17] in combination with Theorem 1.1 yields

Corollary 1.7. The operator At maps Lq(R3) to the optimal Sobolev-space Lq1/q(R
3)

for q > max{m, 11}. Moreover, the maximal function Mf(x) = supt>0 |Atf(x)|
defines an operator bounded on Lq(R3) for q > max{m, 11}.

Structure of the paper.

2. Notation and basic definitions

2.1. Plates and plate families. We recall the basic notation concerning plates

and tubes in [22, 12], which we write with the same scaling as in [11]. For N ≥
10d {1} and ω ∈ Sd−1, an (N,ω)-plate will be a rectangular box in Rd+1 of size

1×
√
N × (d−1)

...
×
√
N ×N , whose longest axis is parallel to (−ω, 1), whose shortest

axis is parallel to nω := (ω, 1); the midlength axes are parallel to (ei,ω, 0), where

i = 1, . . . , d − 1 and the unit-vecors ei,ω are mutually orthogonal and orthogonal to

ω. We shall typically denote plates in x-space by π and families of plates by P .
{2}

An (N,ω)-tube τ is a rectangular box of size
√
N × (d times )

...
×
√
N × N , whose

longest axis is parallel to (−ω, 1). For any (N,ω) plate we denote by τ(π) the (5N,ω)

tube whose axes are parallel to the axes of π and which has the same center as π.

Separated plate families and tube densities.

Definition 2.1. A separated (N,ω) plate family is a family of parallel (N,ω) plates

with the following properties.

(i) The 10d-fold dilates of the plates are disjoint.

(ii) For each pair of plates (π, π′) we have that either both π ∈ τ(π′) and π′ ∈ τ(π)

hold or the 10d-fold dilates of the tubes τ(π), τ(π′) are disjoint.

For each π we also define µ(π) be the largest integer µ for which

µ ≤ log2

(
#{π′ ∈ P : π′ ⊂ τ(π)}

)
.

{1}modify
{2}parallel or point in

√
δ-separated directions. We shall also assume that families P consist only

of separated plates, meaning that for each π ∈ P at most C1 plates from P can be contained in a

fixed dilate C2π, where C1 and C2 are fixed universal constants.
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We note that if P is a separated (N,ω) then then µ(π) = µ(π′).

Definition 2.2. A separated (N,ω) plate family P is said to have tube constant tube

density if µ(π) = µ for all π ∈ P . We then refer to µ as the tube density of P .

Definition 2.3. (i) Given an N -cube Q and ω ∈ Sd−1 an (N,ω,Q) plate family is

an (N,ω) plate family consisting only of plates π with Q ∩ π 6= ∅.

(ii) Let E ⊂ Sd−1 be an N−1/2d-separated set of directions and let Q be an N -cube.

We say that P is an (N,E,Q) plate family if P = ∪ω∈EPω where each Pω is an

(N,ω,Q) plate family. We say that P has tube density µ if Pω has tube density µ

for every ω ∈ E. We say that P is a stable (N,E,Q) plate family if in addition

(2.1) |Pω| ≤ 2|Pω′ |, ∀ ω, ω′ ∈ E.

Condition (2.1) will be crucial when dealing with’ ‖ · ‖p,s;δ norms, as it implies that

the cardinalities of the Pω’s are comparable, for all ω ∈ E.

Lemma 2.4. (i) If P is a separated (N,ω) plate family P then one can find a family

T of disjoint (N,ω)-tubes so that each π ∈ P is contained in exactly one tube τ ∈ Ω.

(ii) Let P̃ be a family of (N,ω) plates with the property that each point in Rd+1

belongs to at most A plates in P̃. Then P̃ is a union of no more than A(10d)3d {3}

separated plate families.

(iii) P̃ is the union of no more than Cd logN separated (ω,N) plate families with

constant tube density.

We omit the proof.

An N -plate family with direction set Ω ⊂ Sd−1 is the union of plate families ∪ω∈ΩPω
where each Pω consists of (N,ω) plates. We say that P is separated if P = ∪ω∈ΩPω
and (i) the direction set is 10dN−1/2 separated, and (ii) each Pω is a separated (N,ω)

plate family.
{4}

{3}CHECK
{4}Tube families T will also be assumed to be separated. Finally, a σ-cube ∆ is a cube of

sidelength σ centered at some point of the grid σZd+1. By {∆} we denote the tiling of Rd+1 formed

by all such cubes. In general, given a rectangular box R (e.g., a cube, tube or plate), we denote by

cR the box obtained from R by dilating it by a factor c > 0 about its center.
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2.2. Bump functions. Set

(2.2) w(x) = (1 + |x|)−2d−4,

and given a rectangle R we define wR = w ◦ a−1
R , where aR is an affine map taking

the unit cube centered at 0 to the rectangle R. The function wR behaves ‘roughly’

like the characteristic function of R, with a fast decaying tail off R,

=================== We fix an even nonnegative Schwartz-function

ψ◦ on the real line whose Fourier transform is supported ψ̂◦ s supported in [−1, 1],

satisfies
∫
ψ̂◦(σ)dσ = 1. By [], Lemma , we can choose ψ◦ so that

We shall also use a fixed non-negative Schwartz function ψ, which is defined as a

tensor product ψ(ξ) =
∏d+1

i=1 ψ◦(ξi) with an even Schwartz function ψcirc, with the ad-

ditional property that the Fourier transform ψ̂circ is supported in [−(10d)−1, (10d)−1],

moreover ψ1 is even and
∫
|ψ̂◦(σ)|2dσ = 1.

We can also arrange that We apply the Poisson summation formula
∑

ν∈Z g(x+ν) =∑
k∈Z ĝ(2πk)e2πikx with g = |ψ0|2 (or use [?], p. 50) and obtain

(2.3)
∑
ν∈Z

|ψ◦(x+ ν)|2 =
∑
k∈Z

cke
2πikx with ck =

∫
ψ̂◦(2πk − y)ψ̂◦(−y)dy

and by our assumption on ψ̂◦ we see that c0 = 1 and ck = 0 for k 6= 0. Thus the right

hand side of (2.3) equals 1 everywhere and after taking tensor products we also get∑
n∈Zd+1

ψ(ξ + n)2 = 1, for all ξ ∈ Rd+1.

whose Fourier transform is supported in strictly positive in B2(0), with Fourier

transform supported in {ξ : |ξ| ≤ (10d)−2}, and so that

Again we set

(2.4) ψR = ψ ◦ a−1
R .

In particular, if {R} is a tiling of Rd+1 by rectangles (generally cubes, plates, or

tubes), then

(2.5)
∑
R

ψ2
R = 1.
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2.3. The norms ‖·‖p,s;N . Let η◦ ∈ C∞c (R) be supported in (−2, 2) so that η◦(s) = 1

for |s| ≤ 3/2. For ω ∈ Sd−1 define PN,ω by

(2.6) P̂N,ωf(ξ′, ξd+1) = η◦
(
N1/2(

ξ′

|ξ′|
− ω)

)
f̂(ξ′, ξd+1).

Let Ω be a maximal N−1/2 separated subset of Sd−1. It is easy to see that then∑
ω∈Ω η

2
◦
(
N1/2( ξ′

|ξ′| − ω)
)
≥ c > 0. Define QN,ω by

(2.7) Q̂N,ωf(ξ) =
η◦
(
N1/2( ξ′

|ξ′| − ω)
)∑

ω′∈Ω η
2
◦
(
N1/2( ξ′

|ξ′| − ω)
) f̂(ξ).

By a nonisotropic rescaling and standard singular integral theory it is easy to see that

PN,ω, QN,ω are bounded operators on Lp(Rd+1) for 1 < p < ∞. We also have the

reproducing formula

(2.8)
∑
ω∈Ω

Qω,NPω,N = Id

For 1 < p <∞ we define a norm on Lp by setting

(2.9) ‖f‖p,s;N =
(∑
ω∈Ω

∥∥PN,ωf∥∥sp)1/s

.

It is easy to check that (2.9) defines a norm on the space Lp, for 1 < p < ∞. The

definition depends on the choice of Ω and on the choice of the particular function η◦.

However different choices of Ω and η◦ produce equivalent norms where the constants

in the equivalences do not depend on N . This is easy to see using (2.8). Indeed if Ω̃

is another maximal N−1/2-separated set on the sphere, and if Q̃N,ω is defined as in

(2.7) but with respect to Ω̃ then the operators PN,ωQ̃N,ω′ are uniformly bounded on Lp

provided that |ω−ω′| ≤ CN−1/2. Also notice that PN,ωPN,ω′ = 0 if |ω−ω′| > 8N−1/2.

Thus (∑
ω∈Ω

∥∥PN,ωf∥∥sp)1/s

=
(∑
ω∈Ω

∥∥PN,ω ∑
ω′∈Ω′

|ω−ω′|≤8N−1/2

Q̃N,ω′P̃N,ω′f
∥∥s
p

)1/s

.
( ∑
ω′∈Ω′

∑
ω∈Ω

|ω′−ω|≤8N−1/2

P̃N,ωf
∥∥s
p

)1/s

.
( ∑
ω′∈Ω′

P̃N,ω′f
∥∥s
p

)1/s

,

and the opposite inequality follows by reversing the roles of Ω and Ω′. We also note

that the multiplier transformations defined for A ≥ 1, by

T̂NAf(ξ) = η(AN(1− |ξ′|
|ξd+1|

)f̂(ξ)
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behave nicely with respect to the (p, s;N)-norms; i.e., for 1 < p <∞,

(2.10) ‖TNAf‖p,s;N ≤ Cd,p(1 + A)
d−1

2 ‖f‖p,s;N .

Here is the exponent of 1+A is not sharp but this is irrelevant. For the proof of (2.10)

one notes that TNPN,ω is bounded on Lp(Rd+1 with operator norm . (1 +A)
d−1

2 ) and

thus

‖TNAf‖p,s;N .
(∑
ω∈Ω

∥∥ ∑
ω′∈Ω

|ω−ω′|≤8N−1/2

TPN,ωQN,ω′PN,ω′f
∥∥s
p

)1/s

. (1 + A)
d−1

2

(∑
ω′∈Ω

∥∥PN,ω′f∥∥sp)1/s

. (1 + A)
d−1

2 ‖f‖p,s;N .

2.4. Reformulation of the theorems. For each s the (p, s;N) norms are equiva-

lent to the Lp norm, with dependence on N in the sense that

‖f‖p,s;N . ‖f‖p . CN‖f‖p,s;N .

Our task is to prove nontrivial bounds for CN under the additional assumption that

the Fourier transforms of the functions are supported in

(2.11) Γ(N) =
{
ξ ∈ Rd+1 :

∣∣|ξ′| − ξd+1

∣∣ ≤ N−1|ξd+1|
}
.

By the considerations in the previous subsection it is now easy to see that Theorems

1.1 and 1.2 follow from the following statement using the (p, s;N)-norms.

Theorem 2.5. Suppose that supp f̂ ⊂ Γ(N). Then

(2.12) ‖f‖p ≤ C(N)Nβ(p,s)‖f‖p,s;N

holds with C(N) as in (1.7) if

either (i) d ≥ 2, s ≥ 2 and let p be is as in (1.5),

or (ii) d ≥ 3, s ≥ 2, pd < p <∞ with pd as in (1.8).

2.5. Elementary properties of the (p, s;N)-norms. In what follows we shall

often consider functions whose Fourier transform is supported in the truncated conical

set

Γh(N) = {ξ ∈ Γ(N) : h/2 ≤ |ξd+1| ≤ 2h},

and by scaling arguments we shall usually reduce to the case h = 1. We also notice

that for distributions f whose Fourier transforms are supported in a compact set

away from the origin it makes sense to extend the definition of the (p, s;N) norms to
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p =∞. Note that the operators PN,ω are uniformly bounded on the subspace of L∞

functions whose Fourier transform is supported in {ξ : h/4 ≤ |ξ| ≤ 4h}.
For ω ∈ Sd−1 let uω = (1, ω), which determines a line on the forward light cone.

Also let nω = (ω,−1)/
√

2 the outer unit normal vector at uω and let ℘ω be the

projection to the (d − 1)-dimensional plane orthogonal to uω and nω, i.e. ℘ω(η) =

η − 〈η, nω〉nω − η − 〈η, uω〉uω/2. We note that that the intersection of Γ1(N) with

the support of P̂N,ωf is contained in a “Fourier-plate” consisting of all ξ ∈ Rd+1 for

which

C−1 1

2
≤ 〈ξ, uω〉 ≤ 2C |℘ω(ξ − uω)| ≤ CN−1/2, |〈ξ − uω, nω〉| ≤ CN−1.

This is a slightly expanded versions of the region ΠN
ω which we define as the set of all

ξ = (ξ′, ξd+1) ∈ Rd+1 satisfying the inequalities

(2.13)
∣∣∣1− |ξ′|

ξd+1

∣∣∣ ≤ 1

10N
,

∣∣∣ ξ′|ξ′| − ω∣∣∣ ≤ 1

10
√
N
,

9

10
≤ ξd+1 ≤

11

10
.

The following elementary observation will be frequently used.

Lemma 2.6. Let f ∈ Lp with f̂ supported in Γ1(N), N ≥ 1010. Then there is a set

Gf consisting of no more than 100d functions, for which the following properties hold.

(i) For each function g ∈ Gf there is a 10N−1/2-separated subset Ωg of Sd−1 so that

ĝ is supported in
⋃
ω∈Ωg

ΠN
ω .

(ii) ‖g‖p,s;N . ‖f‖p,s;N for every g ∈ Gf .

(iii) For every g ∈ Gf there are τ1,g, τ2,g in (1/2, 2) so that for all x ∈ Rd+1

f(x′, xd+1) =
∑
g∈Gf

τ d1,gτ2,gg(τ1,gx
′, τ2,gxd+1).

(iii) so that

Proof. Let η be supported in (−1, 1) so that
∑

k∈Z η
2(s+ n) = 1 for all s ∈ R. Split

f =
∑

k=(k1,k2)∈Z×Z

fk where f̂k(ξ) = η(20N(1− |ξ′|
ξd+1

)− k2)η(20ξd+1 − k2)f̂ .

Since supp f̂ ⊂ Γ1(N) we see that only terms with |k1| ≤ 40 and with 1/4 ≤ k2/20 ≤ 3

contribute to the sum. We scale and see that for suitable (τ1,k, τ2,k) ∈ (1/2, 2) the

function ĝk(ξ) := f̂k(τ
−1
1,k ξ

′, τ−1
2,k ξd+1) is supported in the region where |1 − |ξ′|

ξd+1
| ≤

(10N)−1 and 9
10
≤ ξd+1 ≤ 11

10
. Moreover f(x) =

∑
k τ

d
1,kτ2,kgk(τ1,kx

′, τ2,kxd+1) .
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We now make a further spherical decomposition and let Ω̃ be a maximal 10−2N−1/2-

separated set. Define operators P̃ω, Q̃ω similarly as in (2.6), (2.7) (except that N is

replaced with 104N and the definition involves Ω̃).

Now split Ω̃ into O(1010d) disjoint families Ω̃ν of 10N−1/2 separated vectors and

define gk,ν =
∑

ω∈Ων
P̃ωQ̃ωgk. Then f(x) =

∑
k1,k2

∑
ν τ

d
1,kτ2,kgk,ν(τ1,kx

′, τ2,kxd+1) and

the family Gf consists of the functions gk,ν with |k1| ≤ 40 and 1/4 ≤ k2/20 ≤ 3.

The inequality ‖gk,ν‖p,s;N . ‖f‖p,s;N follows quickly using the various separatedness

conditions, and the fact that the operators TNAP̃ωQ̃ω are uniformly bounded on Lp

(cf. also (2.10)). �

We first state an elementary Sobolev embedding result for the (p, s;N) norms.

Lemma 2.7. Let p ≥ 2, 1 ≤ s ≤ ∞ and let f̂ be supported in Γ1(N). Then

(2.14) ‖f‖∞,s;N . N−
d+1
2p ‖f‖p,s;N ,

and

(2.15) ‖f‖∞ . Nβ(p,s)‖f‖p,s;N .

Proof. Observe that, by Young’s inequality,

(2.16) ‖g‖∞ . N−
d+1
2p ‖g‖p , when supp ĝ ⊂ ΠN

ω .

This yields (2.14). If f =
∑

ω∈Ω fω with f̂ω supported in ΠN
ω , and Ω isN−1/2 separated,

then, using (2.14),

‖f‖∞ .
∑
ω

∥∥fω∥∥∞ . N
d−1
2s′
(∑

ω

∥∥fω∥∥s∞)1/s

. N
d−1
2s′ −

d+1
2p

(∑
ω∈Ω

∥∥fω∥∥sp)1/s

which gives (2.15). �

Lemma 2.8. Let p ≥ 2, s ≥ 2 and let f̂ be supported in Γ1(N). Then

(2.17) ‖f‖p,2;N . ‖f‖2/p
2 ‖f‖

1−2/p
∞,2;N .

Moreover, for every p ∈ (2,∞), s ∈ [2, p], we have

(2.18) ‖f‖p,s;N . ‖f‖2/p
2 ‖f‖

1−2/p
∞,r;N ,

where r = r(p, s) is defined by

(2.19)
2

r
=
(1

s
− 1

p

)/(1

2
− 1

p

)
.
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Proof. We fix 2 ≤ r ≤ ∞. Then by convexity of `s(Lp) norms(∑
ω∈Ω

‖fω‖sp
) 1
s ≤

(∑
ω∈Ω

‖fω‖2
2

) 1−ϑ
2
(∑
ω∈Ω

‖fω‖r∞
)ϑ
r

where 0 ≤ ϑ ≤ 1 and (1/p, 1/s) = (1− ϑ)(1/2, 1/2) + ϑ(0, 1/r). Thus ϑ = 1− 2/p.

If we let Ω to be an N−1/2 separated subset of Sd−1 and apply the last inequality

with fω = PN,ωf we have of course
∑

ω∈Ω ‖PN,ωf‖2 . ‖f‖2
2 and therefore we get

‖f‖p,2;N . ‖f‖2/p
2 ‖f‖

1−2/p
∞,r;N

for s−1 = p−1 + r−1(1 − 2p−1). For r = 2 this yields (2.17). For p > 2 the relation

between r and s is equivalent with (2.19) and thus (2.18) is proven. �

We shall also use the following localization estimate.

Lemma 2.9. Let 1 ≤ s ≤ p ≤ ∞ and let f ∈ Lp so that f̂ be supported in {ξ : 1/4 ≤
|ξ| ≤ 4}. Let Q = {Q} be a grid of N-cubes and ψQ be as in (2.4) (so that ψ̂Q is

supported in {|ξ| ≤ 10−2N−1}. Then

(2.20)
(∑
Q∈Q

‖ψQf‖pp,s;N
)1/p

. ‖f‖p,s;N .

Proof. Let Fω = QN,ω′PN,ω′f then by the support property of ψ̂Q and f̂

‖PN,ω(ψQf)‖p .
∑
ω′∈Ω

|ω−ω′|≤CN−1/2

∥∥PN,ω[ψQFω′ ]
∥∥
p
.

Thus by Minkowski’s inequality (since p/s ≥ 1) we obtain with Gω :=
∑

ω′∈Iω Fω(∑
Q

[∑
ω

∥∥PN,ω(ψQf)
∥∥s
p

] p
s

) 1
p ≤

(∑
ω

[∑
Q

∥∥PN,ω(ψQGω)
∥∥p
p

] s
p

) 1
s

.
(∑
om

[∑
Q

∥∥ψQGω

∥∥p
p

] s
p

) 1
s
.
(∑

ω

∥∥Gω

∥∥s
p

) 1
s
.

Note that the cardinality of Iω = {ω′ ∈ Ω: |ω − ω′| ≤ CN−1/2} is bounded above

independent of N . Thus the last expression is bounded by(∑
ω

( ∑
ω′∈Iω

∥∥Fω′∥∥p)s) 1
s
.
(∑

ω′

∑
ω:ω′∈Iω

∥∥Fω′∥∥sp) 1
s
.
(∑

ω′

∥∥PN,ω′f∥∥sp ) 1
s
.

which yields the assertion. �
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2.6. Packets. We shall define the concept of packets which are special cases of

“N -functions”, as defined in [22, 12] (however with the scaling used in [11].

Definition 2.10. (i) Let ω ∈ Sd−1 and let P ≡ Pω be a finite separated (N,ω)

plate family. f is called an (N,ω)-packet associated with P if it can be written as

f =
∑

π∈P fπ with functions fπ satisfying

(2.21) |fπ| ≤ wπ and supp f̂π ⊂ ΠN
ω .

If Pω is an (N,ω,Q) plate family then we refer to f as an (N,ω,Q)-packet.

(ii) Let E be an N−1/2d separated set of directions and let Q be an N -cube. We say

that f is an (N,E,Q)-packet if for every ω ∈ E there is a finite separated (N,ω) plate

family Pω consisting of plates intersecting Q so that f can be written as

(2.22) f =
∑
ω∈E

fω

where each fω is an (N,ω,Q)-packet.

If for every ω ∈ E the family Pω is of constant tube density µ then we refer to f

as an (N,E,Q)-packet with tube density µ. We also say that f is a stable (N,E,Q)-

packet if P is a stable (N,E,Q) plate family.

(iii) Let f be an (N,E,Q)-packet with plate family P = ∪k∈EPω and with the repre-

sentation (2.22). A subpacket of f is a function f̃ of the form

(2.23) f̃ =
∑
ω∈E

∑
π∈P̃ω

fπ,

where each P̃ω is a subset of Pω.

Observe that every subpacket of an (N,E,Q)-packet is again an (N,E,Q)-packet.

However, subpackets of stable (N,E,Q)-packets are not necessarily stable. Moreover

subpackets of [ackets with constant tube density do not necessarily have constant

tube density.

Lemma 2.11. Let f be an (N,E,Q)-packet with plate family P = ∪ω∈EPω. Then

(2.24) ‖f‖∞,r . |E|
1
r , 1 ≤ r ≤ ∞,

(2.25) ‖f‖∞ . |E| . N
d−1

2 ,

(2.26) ‖f‖2
2 . N (d+1)/2|P|,
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Moreover, if p ≥ 2 and 1 ≤ s ≤ p we also have

(2.27) ‖f‖p,s .
(
N

d+1
2 |P|

) 1
p |E|

1
s
− 1
p .

If in addition f is a stable (N,E,Q)-packet, then (2.27) holds for all p, s ≥ 1.

Proof. (2.24) and (2.25) are immediate. We next prove (2.27) and estimate

‖f‖p,s .
(∑
ω∈E

∥∥∥ ∑
π∈Pω

fπ

∥∥∥s
p

)1/s

.
(∑
ω∈E

∥∥∥ ∑
π∈Pω

wπ

∥∥∥s
p

)1/s

.
(∑
ω∈E

[
N

d+1
2 |Pω|

]s/p)1/p

.

If s ≤ p we have(∑
ω∈E

|Pω|s/p
)1/p

≤ |E|1/s−1/p
(∑

ω

|Pω|
)1/p

= |E|1/s−1/p|P|,

by Hölder’s inequality. If P is stable then the last inequality remains true (up to a

constant) for all p, s ≥ 1 since |Pω| ≈ |P|/|E| by (2.1).

Finally, to obtain (2.27) for general packets when p ≥ 2 and 1 ≤ s ≤ p, one uses

the interpolation estimate in (2.18), together with the previous (2.24) and (2.26):

‖f‖p,s . ‖f‖
2
p

2 ‖f‖
1− 2

p
∞,r .

(
N

d+1
2 |P(f)|

)1/p|E|(1−
2
p

) 1
r ,

where r = r(p, s) is defined in (2.19). However, from the definition of r(p, s) one sees

that (1− 2
p
)1
r

= 1
s
− 1

p
, which establishes (2.27). �

2.7. Decomposing functions into packets. The main lemma in this section con-

cerns decompositions of functions with Fourier support in Γδ(c) into stable N -packets.

The stability condition on the packets is crucial to obtain the inequality in (2.31) be-

low, which is a sort of converse to the inequality in (2.27). This estimate will be

strongly used in the proof of Proposition 3.3 and in the iteration process which starts

with Lemma 5.2.

Lemma 2.12. Let f =
∑
fk with f̂k supported in ΠN

ω and assume that

(2.28) sup
k
‖fk‖∞ ≤ A.

Then, for every N-cube Q, we may decompose

(2.29) f(x) =
∑

AN−10d≤2j.A

nj∑
`=1

2j f [j,`](x) + g(x), x ∈ Q

for some constant integers nj . logN , and where
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(i) for each j, `, the functions f [j,`] are stable (N,Ej,`, Q)-packets, for certain sets

of directions Ej,` ⊂ Ω. The corresponding plate families P [j,`] consist only of plates

π ⊂ 2N ε0Q. Also, we can write

f [j,`] =
∑
k∈Ej,`

∑
π∈P [j,`]

k

fπ,

for plate families P [j,`]
k consisting of plates ‖ k, and so that P [j,`] = ∪k∈Ej,`P

[j,`]
k .

(ii) The function g(x) satisfies

(2.30) ‖g‖L∞(Q) . N−8dA.

(iii) For every s, p ≥ 1 and every j, `

(2.31) 2j
(
N

d+1
2 |P [j,`]|

) 1
p |Ej,`|

1
s
− 1
p . ‖f‖p,s;δ .

Proof. Fix k, and consider a tiling {π} of Rd+1 by plates π ‖ k. Write

(2.32) fk =
∑
π‖k

fkψ
2
π =

∑
π‖k : π∩(Nε0Q) 6=∅

fkψ
2
π + gk.

For each j ∈ Z, let

P [j]
k =

{
π : π ‖ k, π ∩ (N ε0Q) 6= ∅ and 2j ≤ ‖fkψπ‖∞ < 2j+1

}
.

Observe that ‖fkψπ‖∞ . ‖fk‖∞ ≤ A, and therefore these plate sets are non-empty

only for 2j . A. Next, fix j, and for every positive integer ` define

Ej,` =
{
k : 2`−1 ≤ #P [j]

k < 2`
}
.

Since #P [j]
k ≤ #{π : π ⊂ 2N ε0Q} . N (d+1)(1+ε0)/N

d+1
2 , the sets Ej,` are non-empty

only for ` . logN .

Call fπ := 2−jfkψ
2
π, when π ∈ P [j]

k . Clearly, these are N -packets associated with

ΠN
ω . Define the functions

f [j,`] =
∑
k∈Ej,`

∑
π∈P [j]

k

fπ,

so that from (2.32) we see that

(2.33) f(x) =
∑
2j.A

2j
C logN∑
`=1

f [j,`](x) +
∑
k

gk(x).
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By construction it is easy to see that, for each j and `, the function f [j,`] is an

(N,Ej,`, Q)-packet. The stability condition in (2.1) is immediate since

|P [j]
k0
| < 2` ≤ 2 |P [j]

k1
|, ∀ k0, k1 ∈ |Ej,`|.

To pass from (2.33) to the decomposition in (2.29), define the function

g =
∑
k

gk +
∑

2j<AN−10d

2j
∑
`

f [j,`].

Observe that, from (2.32) and the Schwartz decay of ψ,∥∥∑
k

gk
∥∥
L∞(Q)

≤
∑
k

∑
π‖k : π∩(Nε0Q)=∅

∥∥fkψ2
π

∥∥
L∞(Q)

. N
d−1

2 sup
k
‖fk‖∞CLN−ε0L . N−9dA,

if we choose L sufficiently large (depending on ε0). On the other hand, using (2.25),∑
2j≤AN−10d

2j
∑
`

‖f [j,`]‖∞ . (logN)
∑

2j<AN−10d

2j N
d−1

2 . AN−9d.

Putting the last two estimates together we obtain (2.30).

Finally, we must verify (2.31), for every j, `. Fix k0 ∈ Ej,`, and use that |P [j]
k | ≈

|P [j]
k0
| ≈ 2`, for all k ∈ Ej,`, which implies

2jpN
d+1

2 |P [j,`]| ≤ 2jpN
d+1

2 |Ej,`| 2` . |Ej,`|
∑
π∈P [j]

k0

2jp |π|

. |Ej,`|
∑
π∈P [j]

k0

‖fk0ψπ‖p∞ |π|

. |Ej,`|
∑
π∈P [j]

k0

‖fk0ψπ‖pp . |Ej,`| ‖fk0‖pp ,

where in the last two inequalities we have used (2.16) and
∑

n∈Zd+1 ψ(· + n)ρ . 1.

Thus, we have

‖f‖p,s ≥
( ∑
k0∈Ej,`

‖fk0‖sp
) 1
s

&
( ∑
k0∈Ej,`

[2jpN
d+1

2 |P [j,`]|
|Ej,`|

]s/p ) 1
s

= 2j (N
d+1

2 |P [j,`]|)
1
p |Ej,`|

1
s
− 1
p ,

as we wished to prove. �



IMPROVEMENTS IN WOLFF’S INEQUALITY 19

3. Equivalent formulations of the problem

Definition 3.1. Given p ≥ 2, s ∈ [1, p] and γ > 0, we say that hypothesis Hstr(p, s, γ)

holds if there exists Cγ > 0 so that for any δ = N−1 ≤ δ0 and any f =
∑

k fk with

supp f̂k ⊂ Π
(δ)
k

(3.1) ‖f‖p ≤ CγN
β(p,s)+γ

(∑
k

‖fk‖sp
)1/s

,

where β(p, s) = d−1
2s′
− d+1

2p
.

It is our objective to prove Hstr(p, 2, γ) for all γ > 0, in the asserted range of p’s in

(1.8) (and likewise for Hstr(p, s, γ) when d = 2 in the range in (??)). We formulate a

slightly weaker condition which can be seen as an analogue of a restricted weak type

inequality.

Definition 3.2. Given p ≥ 2, s ∈ [1, p] and γ > 0, we say that hypothesis H(p, s, γ)

holds if there exists Cγ > 0 so that for all δ = N−1 ≤ δ0, for all N -cubes Q, all E ⊂ Ω

and all stable (N,E,Q)-packets f with plate family P(f) the following estimate holds

(3.2)
∣∣{x ∈ Q : |f(x)| > λ}

∣∣ ≤ Cγ λ
−pN (β(p,s)+γ)pN

d+1
2 |P(f)| |E|

p
s
−1,

for all positive real number λ > 0.

The main result in this section is the following.

Proposition 3.3. Let p ≥ 2, s ∈ [1, p] and 0 < γ < γ1. Then

(3.3) Hstr(p, s, γ) =⇒ H(p, s, γ) =⇒ Hstr(p, s, γ1).

The first implication follows by Čebyšev’s inequality and the estimate (2.27) for

the (p, s)-norm of stable plates. The second implication is less trivial and will be

proved below. Observe that one always has the trivial bound Hstr(p, s, γ = d+1
2p

),

since ‖
∑

k fk‖p ≤
∑

k ‖fk‖p . N
d−1
2s′ ‖f‖p,s = Nβ(p,s)+ d+1

2p ‖f‖p,s. Thus, assuming

Proposition 3.3, Theorem 1.1 is reduced to prove the following

Theorem 3.4. Let p and s be as in (1.8) and (??). Then, there exists ε′0 = ε′0(p, s)

so that if hypothesis Hstr(p, s, γ0) holds for some γ0 > 0, then hypothesis H(p, s, γ)

holds for all γ > (1− ε′0)γ0.

Indeed, if Theorem 3.4 holds, then Proposition 3.3 together with an iteration gives

the validity of the strong type estimate Hstr(p, s, ε) for all ε > 0, thus establishing

Theorem 1.1.
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In the proof of Proposition 3.3 we shall also use the following localization lemma.

Lemma 3.5. Let 1 ≤ s ≤ p <∞ and α > 0. Assume that for all N-cubes Q and all

f =
∑

k fk with f̂k ⊂ ΠN
ω we have

(3.4) ‖f‖Lp(Q) ≤ C Nα ‖f‖p,s;δ.

Then,

(3.5) ‖f‖Lp(Rd+1) . C Nα ‖f‖p,s;δ.

Proof. Write f =
∑

Q∈Q ψ
2
Qf , where Q is a tiling of Rd+1 by N -cubes and ψQ is as in

(2.4). Then, using the Schwartz decay of ψ,

‖f‖p
Lp(Rd+1)

=
∑
Q′

∥∥∑
Q

ψ2
Qf
∥∥p
Lp(Q′)

.
∑
Q,Q′

∥∥ψ3/2
Q f

∥∥p
Lp(Q′)

.
∑
Q,Q′

∥∥ψQf∥∥pLp(Q′)

(
1 + dist (Q,Q′)/N

)−10d
.

Since each ψQfk has spectrum contained in Π
(2δ)
k , we can apply (3.4) with f replaced

by ψQf (and δ by 2δ) to obtain

‖f‖p
Lp(Rd+1)

. CpNαp
∑
Q,Q′

∥∥ψQf∥∥pp,s;2δ (1 + dist (Q,Q′)/N
)−10d

,

which by Lemma 2.9 is controlled by ‖f‖pp,s;δ. �

Proof of Proposition 3.3. We show the proof of the main implication

(3.6) H(p, s, γ) =⇒ Hstr(p, s, γ1), for γ1 > γ.

By the previous lemma it suffices to show

(3.7) ‖f‖Lp(Q) ≤ CεN
(β(p,s)+γ+ε)‖f‖p,s;δ

for all ε > 0, all N -cubes Q and all f =
∑

k fk with f̂k ⊂ ΠN
ω . To do so we may

assume

(3.8) ‖f‖p,s;δ = 1.

Fix an N -cube Q. Then

(3.9) ‖f‖pLp(Q) .
∑
m∈Z

2mp meas
(
{x ∈ Q : |f | > 2m}

)
.
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By Lemma 2.7 we have ‖f‖∞ . Nβ(p,s), and thus we may assume m . logN in

(3.9). Also, if 2m ≤ N−(d+1), then the right hand side of (3.9) is controlled by∑
2m≤N−(d+1)

2mp |Q| . N−(d+1)(p−1) ≤ 1.

Thus, only a logarithmic number of m’s are relevant in (3.9), so by a pigeonhole

argument we can find m∗ so that

(3.10) ‖f‖pLp(Q) . (logN) 2m∗p meas
(
{x ∈ Q : |f | > 2m∗}

)
+ 1.

Using supk ‖fk‖∞ . supkN
− d+1

2p ‖fk‖p ≤ N−
d+1
2p , we can apply to f the packet decom-

position in Lemma 2.12, with A = N−
d+1
2p and the N -cube Q fixed above. By (2.30),

the function g in (2.29) is then . N−8d which in turn is � 2m∗ . By the pidgeonhole

principle applied to the O((logN)2) terms in the sum in (2.29), there are integers

j∗ and `∗, so that the set of directions E∗ = Ej∗,`∗ and the stable (N,E∗, Q)-packet

f ∗ = f [j∗,`∗] satisfy

meas {x ∈ Q : |f | > 2m∗} . (logN)2 meas
({
x ∈ Q : 2j

∗ |f∗| > 2m∗

C(logN)2

})
.

By Hypothesis H(p, s, γ) the right hand side of (3.10) is then estimated by

Cγ (logN)3+2pN (β(p,s)+γ)p 2j∗pN
d+1

2 |P(f∗)| |E∗|
p
s
−1 / Cγ N

(β(p,s)+γ)p,

where the last inequality follows from the crucial estimate (2.31) and the assumption

‖f‖p,s;δ = 1. Since the powers of logN are controlled by CεN
ε, for any ε > 0, this

finishes the proof of (3.7) and thus the proposition. �

There are some situations in which the inequality in (3.2) is trivial to verify, namely

when either |E| or λ are sufficiently small.

Lemma 3.6. Let p > 2 and 1 ≤ s ≤ p. Then the inequality (3.2) is true for every

γ > 0 and every (N,E,Q)-packet when either

(3.11) λ ≤ N
β(p,s) p
p−2 |E|(

p
s
−1)/(p−2),

or when

(3.12) |E|
p
s′−1 ≤ Nβ(p,s) p.

Proof. By Čebyšev’s inequality and Lemma 2.11

meas
(
{x : |f(x)| > λ}

)
≤ λ−2‖f‖2

2 . λ−2N (d+1)/2 |P(f)| ,
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and therefore

(3.13) meas
(
{x : |f(x)| > λ}

)
≤ λ−pNβ(p,s) pN

d+1
2 |P(f)||E|

p
s
−1,

if λ−2 ≤ λ−pNβ(p,s) p|E| ps−1, which is easily seen to the same as (3.11). On the

other hand, for packets f we have ‖f‖∞ . |E| (by (2.25)), so that (3.2) only

needs to be verified when λ . |E|. But in this range (3.11) always holds if |E| .
Nβ(p,s)p/(p−2)|E|( ps−1)/(p−2), which is the same as (3.12). �

The previous lemma can be slightly improved using the following known (although

probably non optimal) square function estimate: for all f =
∑
fk with supp f̂k ⊂ ΠN

ω

and for all ε > 0 it holds

(3.14) ‖
∑
k

fk‖q ≤ CεN
d−1

4(d+3)
+ε
∥∥(∑

k

|fk|2
) 1

2
∥∥
q
, where q = 2(d+3)

d+1
.

This inequality follows from the bilinear methods of Tao and Vargas [20], combined

with Wolff’s bilinear restriction theorem for the cone [23]. See e.g. [7, Prop. 2.3] for

a detailed proof.

Lemma 3.7. Let q = 2(d + 3)/(d + 1), p > q and 1 ≤ s ≤ p. Then the inequality

(3.2) is true for every γ > 0 and every (N,E,Q)-packet when either

(3.15) λ / N (β(p,s)p− d−1
2(d+1)

)/(p−q) |E|(
p
s
− q

2
)/(p−q),

or when

(3.16) |E|
p
s′−

q
2 / Nβ(p,s) p− d−1

2(d+1) .

Proof. Using Chebichev’s inequality and (3.14) we see that

meas
(
{x : |f(x)| > λ}

)
≤ λ−q‖f‖qq ≤ Cε λ

−qN ( d−1
4(d+3)

+ε)q
∥∥(∑

k

|fk|2
) 1

2
∥∥q
q
.

Since q > 2, Minkowski’s inequality gives
∥∥(∑

k |fk|2
) 1

2
∥∥
q
≤ ‖f‖q,2;δ, while for (N,E,Q)-

packets we have ‖f‖qq,2;δ . N
d+1

2 |P(f)| |E| q2−1, by Lemma 2.11. Thus, choosing ε < γ,

(3.2) will hold for all λ so that

λ−qN
d−1

4(d+3)
q |E|

q
2 / λ−pNβ(p,s) p |E|

p
s ,

or equivalently when (3.15) holds. On the other hand, since we only consider λ ≤
‖f‖∞ . |E|, we see that (3.15) is always true when |E| /

(
Nβ(p,s)p− d−1

2(d+1) |E| ps− q2
)1/(p−q)

,

which after easy arithmetics gives the condition in (3.16). �
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Remark 3.8. Thus, in the proof of Theorem 3.4 below we only need to consider

the validity of (3.2) for (N,E,Q)-packets f whose associated direction sets E have

cardinality

(3.17) N (β(p,s) p− d−1
2(d+1)

)/( p
s′−

q
2

) (logN)C ≤ |E| . N
d−1

2 ,

and for real numbers λ in the range

(3.18) N (β(p,s)p− d−1
2(d+1)

)/(p−q) |E|(
p
s
− q

2
)/(p−q) (logN)C ≤ λ . |E|,

where C can be a suitably large constant.

4. Sufficient conditions for Theorem 3.4

The purpose of this section is identify properties of packets so that the improvement

in Theorem 3.4 holds. As in [22, 12] these can be phrased via localization of the

level sets {|f | > λ} using grids of slightly smaller cubes. Also, such localization

assumptions will hold when the cardinality of the involved plate families is suitably

controlled in terms of λ.

4.1. Localization. We begin with an easy (but crucial) localization estimate.

Lemma 4.1. Let f̂ be supported in Γδ(c), let R be a cube of diameter tN , where

t ≤ 1. Then

(4.1) ‖ψRf‖2 . t1/2‖f‖2

Proof. By Plancherel this is equivalent with a statement about the integral operator

TF (ξ) =
∫
Kδ(ξ, η)F (η)dη with kernel

Kδ(ξ, η) = ψ̂R(ξ − η)χΓδ(c)(η).

The L2 operator norm is ≤
√
A1A2 where

A1 = sup
ξ

∫
|Kδ(ξ, η)|dη

A2 = sup
η

∫
|Kδ(ξ, η)|dξ.

Now clearly A2 = O(1) while the smaller η-support yields A1 = O(t). This implies

the assertion. �

We shall also use the following result.
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Lemma 4.2. Let f =
∑

k fk with supp f̂k ⊂ ΠN
ω , t ∈ [

√
δ, 1] and R a tN-cube. Then

the function fψR has Fourier transform supported in Γδ/t(C) and{5}

(4.2)
∥∥fψR∥∥∞,r;δ/t . t−

d−1
2r′ ‖f‖∞,r;δ, ∀ r ≥ 1.

Proof. Since ψ̂R is supported in Bδ/(100t)(0), it follows immediately that f̂ψR = f̂ ∗ ψ̂R
is supported in Γδ/t(C), for a sufficiently large constant C > 0. Next, denote by

P
(δ/t)
k′ the projections adapted to the plates Π

(δ/t)
k′ as in (??), and for each k′ let

Ωk′ = {k :
(
Π

(δ)
k + Bδ/(100t)(0)

)
∩ Π

(2δ/t)
k′ 6= ∅}. Observe that t ∈ [

√
δ, 1] implies

#Ωk′ . t−(d−1)/2, ∀ k′, and #{k′ : k ∈ Ωk′} . 1, ∀ k. Also we have∥∥P (δ/t)
k′ (fψR)

∥∥
∞ =

∥∥P (δ/t)
k′ (

∑
k∈Ωk′

fkψR)
∥∥
∞ .

∑
k∈Ωk′

‖fk‖∞.

Then, (4.2) follows from the above observations and Hölder’s inequality. �

We now state a definition of λ-localization using tN -cubes. Below, Q(t) = {B}
denotes a fixed partition of Rd+1 by tN -cubes{6}.

Definition 4.3. Let f be an (N,E,Q)-packet, let λ > 0 and as before t = δε0 = N−ε0.

We say that f localizes at height λ if there are subpackets fB of f , where B

runs over tN-cubes in a grid Q(t), such that

(4.3)
∑
B

#P(fB) / #P(f)

and

(4.4) meas
(
{x : |f(x)| > λ}

)
/
∑
B

meas
(
B ∩ {x : |fB| ' λ}

)
.

The next lemma gives, under the localization assumption, the crucial gain in the

exponent γ asserted in Theorem 3.4. The statement is just a straightforward modifi-

cation of [12, Lemma 6.2], but we sketch the proof below for completeness.

Lemma 4.4. Let p ≥ 2, s ∈ [1, p] and suppose that Hstr(p, s, γ0) holds for a fixed

γ0 > 0. Let λ > 0 and suppose that f is an (N,E,Q)-packet which localizes at height

{5}One could prove here a more general inequality ‖fψR‖p,s;δ/t . t−β(p,s)‖f‖p,s;δ, for 2 ≤ p ≤ ∞
and s ∈ [p′,∞]. However, this is not used later (except for a weaker version at the beginning of

Lemma 4.4).
{6}Below B will always denote a tN -cube, while we keep the notation Q for N -cubes, and ∆ for√
N -cubes.
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λ (with respect to tN-cubes). Then, the estimate (3.2), i.e.∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ Cγ λ

−pN (β(p,s)+γ)pN (d+1)/2|P(f)| |E|
p
s
−1

holds for such f , Q and λ, and for all γ > γ0(1− ε0/2).

Proof. For each tN -cube B ∈ Q(t), the function fBψB has Fourier transform sup-

ported in Γδ/t(C). We claim that

(4.5)
∥∥fBψB∥∥p,s;δ/t . t−β(p,s) ‖fB‖2/p

2 |E|
1
s
− 1
p .

Indeed, using the convexity inequality in (2.18) (with r = r(s, p) as in (2.19)), followed

by Lemmas 4.1 and 4.2, we have∥∥fBψB∥∥pp,s;δ/t . ∥∥fBψB∥∥2

2

∥∥fBψB∥∥p−2

∞,r;δ/t

. t
∥∥fB∥∥2

2
t−

d−1
2r′ (p−2)

∥∥fB∥∥p−2

∞,r;δ .(4.6)

Now, ‖fB‖∞,r . |E|1/r, while by the definition of r = r(s, p) in (2.19) we can write
p−2
r′

= p
s′
− 1 and p−2

r
= p

s
− 1. Inserting these estimates in the right hand side of

(4.6), the claimed inequality (4.5) follows easily.

Thus, using the localization condition and the hypothesis Hstr(p, s, γ0) (with δ

replaced by δ/t) we obtain∣∣{|f | > λ}
∣∣ / ∑

B

∣∣ { |fBψB| ' λ
} ∣∣ (by (4.4))

/ λ−p
∑
B

(tN)(β(p,s)+γ0)p ‖fBψB‖pp,s;δ/t

. λ−p
∑
B

N (β(p,s)+γ0)p tγ0p ‖fB‖2
2 |E|

p
s
−1,

where in the last step we have used (4.5). Since by (4.3)∑
B

‖fB‖2
2 . N

d+1
2

∑
B

#P(fB) / N
d+1

2 #P(f),

the lemma follows. �

4.2. Sufficient conditions for λ-localization. It is now important to identify sit-

uations in which the localization conditions of Definition 4.3 apply and thus the

improvement of Lemma 4.4 holds. In [22, 12] a number of sufficient conditions are

given, when the cardinality of P(f) is controlled by a power of λ. The simplest one

is the following.
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Proposition 4.5. [12, Lemma 5.2]. Let f be an (N,E,Q)-packet and λ > 0 such

that

(4.7) #P(f) ≤ t14d λ2 .

Then f localizes at height λ with tN-cubes. In particular, if p ≥ 2, s ∈ [1, p] and we

assume Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2), i.e.∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ C λ−pN (β(p,s)+γ)pN

d+1
2 |P(f)| |E|

p
s
−1

holds for such f , λ and Q, and for all γ > (1− ε0/2) γ0.

We refer to [12] for details about the proof, which involves only simple combinatorial

arguments.

I have included the proof in small print, since it is already written,

but we do not need to include it in the last version.

The main geometrical argument behind Proposition 4.5 is in the following result which (in a

slightly more complicated version) will be applied to W = {|f | > λ}. For a proof we refer to [12,

Lemma 4.2]. Below, Q(t) = {B} denotes a grid of tN -cubes, and for x ∈ Rd+1 we define B(x) as

the cube B in the grid containing x (which is well defined apart from a null set).

Lemma 4.6. Let W be a measurable subset of Rd+1 and let P be a plate family, whose elements are

contained in a fixed cube of diameter CN1+ε0 . As before, let t = δε0 = N−ε0 . Consider the following

relation “∼” between plates π ∈ P and3 cubes B ∈ Q(t): we say that π ∼ B if B intersects the

9-fold dilate of Bπ, where Bπ is a tN -cube in Q(t) for which the quantity |W ∩ π ∩Bπ| is maximal.

. Then

(4.8) #{B : π ∼ B} ≤ 10d, for every π ∈ P

and

(4.9) I :=

∫
W

∑
π∈P,π 6∼B(x)

χπ(x)dx / t−5d|W |
√

#P.

Proof. The condition that all plates in P are contained in a fixed CN1+ε0-cube, and the separation

property of the plates implies #P = O(t−d−1Nd). Note that (4.8) is trivial from the definition of

the relation. To prove (4.9) we first note that

I =
∑
π

ν(π)

where

ν(π) =
∣∣∣{x ∈W ∩ π : B(x) 6∼ π}

∣∣∣.
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There is the trivial estimate∫
W

∑
π∈P:π 6∼B(x)

ν(π)≤|W |N−d

χπ(x)dx . #P|W |N−d . t−d−1 |W |.

Thus we only need to bound

Ĩ =
∑
π∈P:

N−d|W |≤ν(π)≤|W |

ν(π)

As there are O(logN) dyadic intervals between N−d|W | and |W | we can use a pidgeonhole argument

to get a subfamily P ′ ⊂ P and a value of ν between N−d|W | and |W | so that

(4.10) |Ĩ| / ν card(P ′)

and

ν ≤ ν(π) ≤ 2ν for each π ∈ P ′.

Since every plate can be covered with O(t−1) cubes, for each π ∈ P ′ there must be a cube B′(π) not

related to π so that

|W ∩B′(π) ∩ π| & tν.

By the maximality condition in the definition of Bπ we must then also have

|W ∩Bπ ∩ π| & tν for each π ∈ P ′.

Clearly the number of all possible pairs of tN cubes is O(t−4(d+1)). This means that we can find

two tN -cubes B,B′ in Q(t) and a subfamily P ′′ of P ′ which has cardinality & t4(d+1)#P ′ so that

for all π ∈ P ′′ we have Bπ = B and B′(π) = B′.

We now fix these two tN -cubes B and B′ and consider the auxiliary expression

A =
∑
π∈P′′

|W ∩B ∩ π||W ∩B′ ∩ π|.

Then we have the lower bound

A & (tν)2card(P ′′) & t4d+6card(P ′)ν2.

We can also derive an upper bound by rewriting

A =

∫
W∩B

∫
W∩B′

∑
π∈P′′

χπ(x)χπ(x′)dxdx′

If π ∩B 6= ∅ and π ∩B′ 6= ∅ for some π ∈ P ′′ then π is related to B but not to B′, thus the distance

of B to B′ is at least tN . This means that for each pair of points (x, x′) ∈ B×B′ there are . t−d+1

separated plates which go to both x and x′. This means that the integrand
∑
π∈P′′ χπ(x)χπ(x) is

O(t−d+1) and hence we get the upper bound

A . t−d+1|W ∩B||W ∩B′| . t−d+1|W |2.

Comparing the upper and the lower bounds for A we find that

ν ≤ t−d−1(#P ′)−1/2
√
A ≤ t−5(d+1)/2|W |(#P ′)−1/2
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and thus using (4.10) (i.e. Ĩ / ν card(P ′)) and we obtain

Ĩ / t−5(d+1)/2|W |
√

#P ′.

�

For technical reasons Lemma 4.6 is not quite enough for us since we wish to replace the charac-

teristic functions χπ by the similar weights wπ with “Schwartz-tails”. This is fairly straightforward

and requires adjustments in the definition of the relation ∼ between plates and tN -cubes and some

additional pidgeonholing. We state the required estimate and refer to Lemma 4.3 in the paper by

 Laba and Wolff [12] for details of the proof.

Lemma 4.7. Let W be a measurable subset of Rd+1 and let P be a plate family, whose elements are

contained in a fixed cube of diameter CN1+ε0 . Let M0 be a large constant, and assume the constant

M in the definition of w (see (2.2)) is so large that M ≥ 10M0d. Let t = N−ε0 and Q(t) = {B}
be a grid of tN cubes as before. Then, there is a relation “∼” between plates in P and tN -cubes in

Q(t) so that

(4.11) #{B : π ∼ B} / 1, for every π ∈ P

and if

WP(x) =
∑
π∈P

π 6∼B(x)

wπ(x)

then ∫
W

WP(x) dx / t−5d |W |
√

#P + N−M0 |W |.

Proof of Proposition 4.5. We wish to apply Lemma 4.4 and therefore have to show that with P ≡
P(f) under the assumption #P ≤ t14dλ2 the localization condition in Definition 4.3 holds.

We proceed applying Lemma 4.7 to W = {x : |f | ≥ λ} and P, and let ∼ be the relation between

N -plates and tN -cubes from Lemma 4.7. Recall that

f(x) =
∑
π∈P

fπ

with |fπ| . wπ. For every tN -cube B ∈ Q(t) define

fB(x) =
∑
π∼B

fπ.

By condition (4.11) we have
∑
B |P(fB)| / |P(f)|, i.e. (4.3). Moreover with P ≡ P(f)∫

W

WP(x)dx / t−5d|W |
√

#P . t−5d|W |
√
t14d λ2 . t2d |W |λ .

This means that there is a subset W ∗ of W so that |W ∗| ≥ |W |/2 on which we have the pointwise

bound

WP(x) . tλ, x ∈W ∗
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Also if x ∈W ∗ ∩B we have

|f(x)− fB(x)| =
∣∣∣ ∑
π:π 6∼B

fπ(x)
∣∣∣ .WP(x) . tλ

and hence

|fB(x)| ≥ λ/2, x ∈W ∗ ∪B.

This implies the localization condition (4.4). �

A second sufficient condition, which also appears in [12] can be described as follows.

Following [12, §4], to every plate family P we can associate a (separated) N -tube

family T = T (P) of minimal cardinality so that each π ∈ P is contained in a 10-fold

dilate of some τ ∈ T . For each τ ∈ T (P) we call

P(τ) = {π ∈ P : π ⊂ 10τ}

and for every positive integer µ ∈ N we define a subfamily of P by

(4.12) P(µ) =
⋃

τ∈T (P)

{
P(τ) : 2µ−1 ≤ #P(τ) < 2µ

}
,

and a corresponding subfamily of tubes

(4.13) T (P(µ)) =
{
τ ∈ T (P) : 2µ−1 ≤ #P(τ) < 2µ

}
.

Observe that the families P(µ) are nonempty only for µ . logN , since we always have

#{π : π ⊂ 10τ} .
√
N, ∀ τ.

It is also clear that

(4.14) #T (P(µ)) .
#P
2µ

.

Definition 4.8. Given an (N,E,Q)-packet f =
∑

π∈P fπ and a real number λ > 0,

we define µ∗ = µ∗(f, λ) as a positive integer at random among those for which the

subpacket f ∗ =
∑

π∈P∗ fπ with plate family P∗ = [P(f)](µ∗) (defined as in (4.12)),

satisfies

(4.15)
∣∣{|f | > λ}

∣∣ ≤ C0 logN
∣∣{|f ∗| > λ

C0 logN

}∣∣,
for a fixed constant C0 > 0. Observe that by an elementary pigeonhole argument at

least one such µ∗ exists provided C0 is chosen large enough.

The second sufficient condition for λ-localization can now be written as follows (see

[12, Lemma 5.3]).
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Proposition 4.9. Let f be an (N,E,Q)-packet and λ > 0, and assume that for

µ∗ = µ∗(f, λ) defined as above we have

(4.16)
|P(f)|

2µ∗
≤ t14d λ2 .

Then, f localizes at height λ with tN-cubes. In particular, if p ≥ 2, s ∈ [1, p] and we

assume Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2), i.e.∣∣{x ∈ Q : |f(x)| > λ}
∣∣ ≤ C λ−pN (β(p,s)+γ)pN

d+1
2 |P(f)| |E|

p
s
−1

holds for such f , Q and λ, and for all γ > γ0(1− ε0/2).

Moreover, if (4.16) does not hold, then for every
√
N-cube ∆ the subpacket f ∗ in

Definition 4.8 satisfies

(4.17)
∥∥f ∗ψ∆

∥∥2

2
. t−14d |P(f)|

λ2
√
N
|∆||E|.

Proof. The first part of Proposition 4.9 is precisely the statement of [12, Lemma 5.3,

Case 1], so we refer to this paper for a detailed proof.

We now establish the second part of the proposition, that is the inequality (4.17).

Write f ∗ =
∑

k f
∗
k with supp f̂ ∗k ⊂ ΠN

ω . Since for each
√
N -cube ∆ the functions in

{f ∗kψ∆}k are essentially orthogonal, by Plancherel we have∥∥f ∗ψ∆

∥∥2

2
.
∑
k

∫
|f ∗k ψ∆|2 .

∫ ∑
π∈P∗

wπ w∆.

By Lemma 4.1 in [12], we can estimate∫ ∑
π∈P∗

wπ w∆ .
2µ∗√
N

∫ ∑
τ∈T (P∗)

wτ w∆ .
2µ∗ |E| |∆|√

N
.

Then, (4.17) follows using the upper bound for 2µ∗ obtained when (4.16) does not

hold. �

4.3. Sufficient conditions for d = 2. One cannot expect the sufficient conditions

(4.7) or (4.16) to hold for general packets f , since |P(f)| can be as large as Nd while

λ2 is at most Nd−1. As explained below, one can go over this difficulty localizing the

problem with
√
N -cubes, and reconsidering the above sufficient conditions at scale√

N . As noticed in [12], this idea turns out to work well for dimensions d ≥ 3,

but does not give anything when d = 2. Fortunately in the latter case much better

sufficient conditions hold, as was proved by Wolff in [22].
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Proposition 4.10. : [22, Lemma 3.1]. Let f be an (N,E,Q)-packet in R2+1 and

λ ≥ 1 so that

(4.18) |P(f)| ≤ t300 λ3 .

Then f localizes at λ with tN-cubes. In particular, if p ≥ 2, s ∈ [1, p] and we assume

Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2) holds for such f , Q and λ,

and for all γ > γ0(1− ε0/2).

Proposition 4.11. Let f be an (N,E,Q)-packet in R2+1 and λ ≥ 1, and assume

that for µ∗ = µ∗(f, λ) as in Definition 4.8 we have

(4.19)
|P(f)|

2µ∗
≤ t3000 δ1/4 λ3 ,

then f localizes at height λ. In particular, if p ≥ 2, s ∈ [1, p] and we assume

Hstr(p, s, γ0) for some γ0 > 0, then the inequality (3.2) holds for all γ > γ0(1− ε0/2).

Moreover, if (4.19) does not hold, then for every
√
N-cube ∆ we have

(4.20)
∥∥f ∗ψ∆

∥∥2

2
. t−C

N5/4

λ3
|P(f)||E|.

We refer to [22] for the deep proof of Proposition 4.10, which among other things

relies on combinatorial methods of Clarkson et al [5] for counting tangencies in ar-

rangements of circles.

Proposition 4.11 is new, and improves over Lemma 3.2 in [22], which (essentially)

requires the stronger sufficient condition

(4.21)
#P(f)

2r∗
≤ tC δ7/4 λ6.

It is straightforward to verify that (4.21) implies (4.19) since λ ≤ N
1
2 . We will give a

complete proof of Proposition 4.11 in §6.

5. The proof of theorem 3.4

5.1. A parabolic rescaling. The next lemma is an analogue and consequence of

Wolff’s inequality for Fourier plates contained in an angular sector of length
√
σ �√

δ.
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Lemma 5.1. Let δ < σ < 1 and consider a fixed σ-plate Π(σ) contained in Γσ(C).

Suppose that Hypothesis Hstr(p, s, γ) holds for some p, s ≥ 1 and γ > 0. Then

(5.1)∥∥∥ ∑
k:

Π
(δ)
k ⊂Π(σ)

P
(δ)
k (hk)

∥∥∥
p
. (δ/σ)−β(p,s)−γ

(∑
k

‖hk‖sp
)1/s

, ∀ {hk} ⊂ Lp(Rd+1).

Proof. The lemma follows by rescaling the problem with a suitable Lorentz transfor-

mation and using hypothesis Hstr(p, s, γ) (see e.g. [12, p. 167]). For completeness,

we describe the argument here.

Let {η1, . . . , ηd} be an orthonormal basis of Rd, where η1 is chosen so that (1, η1)

is the center of the plate Π(σ). Then {(1, η1), (−1, η1), (0, η2), . . . , (0, ηd)} is a basis of

Rd+1. Define a linear operator L ∈ Gld+1(R) preserving the cone and acting on this

basis by

L(1, η1) = (1, η1), L(−1, η1) = 1
σ

(−1, η1) and L(0, η`) = 1√
σ

(0, η`), ` = 2, ..., d.

Set fk = P
(δ)
k (hk), so that the functions fk ◦ L have now spectrum in (perhaps a

multiple) of the plates Π
(δ/σ)
k corresponding to the

√
δ/σ-separated centers {L(1, ωk)}.

Thus, hypothesis Hstr(p, s, γ) can be applied at scale δ/σ giving∥∥∑
k

fk ◦ L
∥∥
p
. (δ/σ)−β(p,s)−γ

(∑
k

∥∥fk ◦ L∥∥sp ) 1
s
,

which after a change of variables yields (5.1). �

5.2. The two main lemmas. To prove Theorem 3.4 we must show that for every

(N,E,Q)-packet f and λ as in (3.18) the inequality (3.2) holds in the improved range

γ > γ0(1− ε′0), under the assumption Hstr(p, s, γ0). This will be done by repeatedly

localizing at smaller scales, and then using the induction hypothesis at the lowest

scale. In this section we prove the main two lemmas which show how this process

works at each step. Proofs are similar to [12, Lemma 6.1].

Below, we let N1 =
√
N (hence δ1 =

√
δ) and denote by Q1 = {∆} a tiling of Rd+1

by N1-cubes. Then, for every (N,E,Q0)-packet f we can write

(5.2)
∣∣{x ∈ Q0 : |f(x)| > λ}

∣∣ ≤ ∑
∆⊂Q0

∣∣ {x ∈ ∆ : |fψ∆(x)| > cλ}
∣∣

for some constant c > 0. Observe that, for a fixed ∆, the function fψ∆ has Fourier

transform supported in Γδ1(C), but in general is not a packet. However, by Lemma
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2.12, fψ∆ can be decomposed on ∆ in terms of (N1, E1,∆) packets. Below we de-

note by Ω1 a
√
δ1-separated set in Sd−1, and by {Π(δ1)

k }k∈Ω1 the corresponding plate

decomposition of Γδ1(C).

Lemma 5.2. Let Q0 be an N-cube, f be an (N,E,Q0)-packet, and let λ ≥ 1. Then

there exists λ1 > 0 so that for every N1-cube ∆ ⊂ Q0 there is a plate family P(1,∆), a

set E(1,∆) ⊂ Ω1, and a stable (N1, E(1,∆),∆)-packet f(1,∆) with plate set P(1,∆) so that

(5.3)
∣∣{x ∈ Q0 : |f(x)| > λ }

∣∣ / ∑
∆⊂Q0

∣∣{x ∈ ∆ : |f(1,∆)(x)| ≥ λ1 }
∣∣

and

(5.4) |P(1,∆)| /
λ2

1

λ2

‖fψ∆‖2
2

N
d+1

2
1

/
λ2

1

λ2
N

d+1
2

1 |E|.

Moreover, for all p, s ≥ 1 we have

(5.5) |P(1,∆)| |E(1,∆)|
p
s
−1 /

λp1
λp
‖fψ∆‖pp,s;δ1
N

d+1
2

1

.

Proof. Fix ∆ ⊂ Q0 and let g∆ ≡ fψ∆, which has Fourier transform supported in

Γδ1(C) and satisfies

‖g∆‖∞,∞;δ1 . (N/N1)(d−1)/2 = N
d−1

2
1

(by Lemma 4.2). Applying Lemma 2.12 with A = N
d−1

2
1 and Q = ∆, we can write

(5.6) g∆(x) =
∑

N−10d
1 A.2j.ANd

1

2j
nj,∆∑
`=1

g∆
[j,`](x) + h∆(x), x ∈ ∆,

where

nj,∆ . logN1,(5.7)

sup
x∈∆
|h∆(x)| . N−8d

1 A ≤ N−7d
1 ;(5.8)

moreover, for each (j, `,∆) there is a subset E∆
j,` of Ω1 so that g∆

[j,`] is a stable

(N1, E
∆
j,`,∆)-packet, with associated plate family P∆

j,`, consisting only of N1-plates

π contained in 2N1+ε0
1 ∆, and more importantly satisfying

(5.9) 2jpN
d+1

2
1 |P∆

j,`| |E∆
j,`|

p
s
−1 . ‖fψ∆‖pp,s;δ1 , ∀ p, s ≥ 1.
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As there are only O(logN) values of j and O(logN) values of ` a simple pidgeonhole

argument and (5.8) show that, for λ ≥ 1,∣∣∣{x ∈ ∆ : |g∆| > cλ
}∣∣∣ ≤ ∣∣∣{x ∈ ∆ :

∣∣∑
N−10d

1 A.2j.Nd
1A

2j
∑nj,∆

`=1 g
∆
[j,`](x)

∣∣ > cλ
2

}∣∣∣
≤ C (logN)2

∣∣∣{x ∈ ∆ : |2j∆g∆
[j∆,`∆](x)

∣∣ > λ
C(logN)2

}∣∣∣
for some fixed j∆, `∆. Pigeonholing once again we can find, among the (j∆, `∆)’s, a

fixed pair j∗, `∗ ∈ Z (independent of ∆) so that∑
∆

∣∣∣{x ∈ ∆ : |g∆| > cλ
}∣∣∣ / ∑

∆

∣∣∣{x ∈ ∆ : |2j∗g∆
[j∗,`∗](x)

∣∣ > λ
C(logN)2

}∣∣∣.
Using (5.2) this means that (5.3) holds with λ1 = 2−j∗λ/(C logN)2 and f(1,∆) = g∆

[j∗,`∗]
,

and hence that E(1,∆) = E∆
j∗,`∗

and P(1,∆) = P(g∆
[j∗,`∗]

). Observe also that (5.5) follows

immediately from (5.9) and the definition of λ1.

The first inequality in (5.4) follows from the case p = s = 2 of (5.9) in the

same fashion. For the second inequality in (5.4) we observe that if f =
∑

k fk with

supp f̂k ⊂ Π
(δ)
k then the Fourier transforms f̂kψ∆ are supported in essentially disjoint

sets. Thus we have the crucial orthogonality estimate

(5.10) ‖fψ∆‖2
2 .

∑
k

‖fkψ∆‖2
2 . |∆|

∑
k∈E

‖fk‖2
∞ . Nd+1

1 |E|,

the last step following from the fact that ‖fk‖∞ . 1 for N -packets. This establishes

the second inequality in (5.4) and hence the lemma. �

Below we shall use the bound in (5.4) to argue that at least one of the sufficient con-

ditions, Proposition 4.5 or Proposition 4.9, can be applied to the triplet (f(1,∆), λ1,∆).

The next lemma, shows how to conclude the theorem for the original packet f in such

case.

Lemma 5.3. Let p ≥ 2, s ∈ [1, p] and assume that Hstr(p, s, γ0) holds for some

γ0 > 0. Consider an (N,E,Q0)-packet f and a real number λ ≥ 1. Suppose we are

given a number λ1 > 0 and a collection {f(1,∆)}∆, where ∆ runs over a grid of N1-

cubes contained in Q0, where each f(1,∆) is an (N1, E(1,∆),∆)-packet with plate family

P(1,∆) satisfying (5.3), (5.4) and (5.5) (e.g., when f(1,∆) are generated as in Lemma

5.2). Assume in addition that there is a real number α > 0 so that, for every ∆ ⊂ Q0,

the pairs (f(1,∆), λ1) satisfy the inequality:

(5.11)
∣∣{x ∈ ∆ : |f(1,∆)(x)| > λ1 }

∣∣ / N
(β(p,s)+α)p
1

λp1
N

d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1,
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Then, we also have

(5.12)
∣∣{x ∈ Q0 : |f(x)| > λ }

∣∣ / λ−pN (β(p,s)+γ)pN
d+1

2 |P(f)| |E|
p
s
−1,

with γ = (γ0 + α)/2.

In particular, (5.12) holds with γ = γ0(1− ε0/4) at least when one of the following

conditions is satisfied for every N1-cube ∆ ⊂ Q0:

(i) λ1 / N
(β(p,s)p− d−1

2(d+1)
)/(p−q)

1 |E(1,∆)|(
p
s
− q

2
)/(p−q);

(ii) |E(1,∆)|
p
s′−

q
2 / N

β(p,s) p− d−1
2(d+1)

1 ;

(iii) (f(1,∆), λ1) satisfies any of the sufficient conditions (4.7) or (4.16);

(iv) when d = 2, (f(1,∆), λ1) satisfies any of the sufficient conditions (4.18) or (4.19).

Remark 5.4. We observe that the previous two lemmas already give Theorem 3.4 for

p and d sufficiently large. For instance, to verify that (5.11) holds, say with s = 2,

by Proposition 4.5 we only need to check that the plate families P(1,∆) satisfy

|P(1,∆)| . t7dλ2
1.

By the inequality (5.4) and the fact that we only consider λ ≥ N
β(p,2) p
p−2 |E|1/2 (by

Lemma 3.6 with s = 2), we obtain (after some arithmetics)

(5.13) λ−2
1 |P(1,∆)| /

N
(d+1)/2
1 |E|
λ2

≤ N
d+1

4
− 2p β(p,2)

p−2 = N
2
p−2
− d−3

4 ,

which is . t7d = N−7dε0 if d > 3 and p > 2+ 8
d−3−4dε0

. Thus, choosing ε0 = ε0(p) small

we can exhaust the range p > 2 + 8/(d − 3), which is one of the indices obtained in

[12] for the validity of (??). To improve over this index one must iterate the process

with successive N1/4, N1/8,... localizations, as described in the next subsection.

Proof of Lemma 5.3. By (5.3) and (5.11) we have∣∣{x ∈ Q0 : |f | > λ }
∣∣ / ∑

∆⊂Q0

∣∣{x ∈ ∆ : |f(1,∆)| > λ1 }
∣∣

/
∑

∆⊂Q0

λ−p1 N
(β(p,s)+α)p
1 N

d+1
2

1 |P(1,∆)| |E(1,∆)|
p
s
−1.

Thus, the result will be established if we can show

(5.14)
∑

∆⊂Q0

N
d+1

2
1 |P(1,∆)| |E(1,∆)|

p
s
−1 .

λ1
p

λp
N

(β(p,s)+γ0)p
1 N

d+1
2 |P(f)| |E|

p
s
−1.



36 G. GARRIGÓS, W. SCHLAG AND A. SEEGER

To do so, recall that fψ∆ are functions with spectrum in Γδ1(C), and denote by

P
(δ1)
` the projections as in (??) associated with the usual partition of Γδ1(C) by

1× δ1 ×
√
δ1 × ...×

√
δ1 plates: {Π(δ1)

` }`. Then by (5.5) we have for each ∆,

N
d+1

2
1 |P(1,∆)| |E(1,∆)|

p
s
−1 /

λ1
p

λp
‖fψ∆‖pp,s;δ1

.
λ1

p

λp

(∑
`

∥∥P (δ1)
` (fψ∆)

∥∥s
p

)p/s
=

λ1
p

λp

(∑
`

∥∥∥P (δ1)
`

[
ψ∆ (

∑
k : Π

(δ)
k ⊂CΠ

(δ1)
`

fk)
] ∥∥∥s

p

)p/s
.
λ1

p

λp

(∑
`

∥∥∥ψ∆

( ∑
Π

(δ)
k ⊂CΠ

(δ1)
`

fk
)∥∥∥s

p

)p/s
.

We sum in ∆ and apply Minkowski’s inequality (since p ≥ s) to obtain

∑
∆

N
d+1

2
1 |P(1,∆)| |E(1,∆)|

p
s
−1 /

λp1
λp

∑
∆

(∑
`

∥∥∥ψ∆

( ∑
Π

(δ)
k ⊂CΠ

(δ1)
`

fk
)∥∥∥s

p

)p/s
.

λp1
λp

(∑
`

[∑
∆

∥∥∥ψ∆

( ∑
Π

(δ)
k ⊂CΠ

(δ1)
`

fk
)∥∥∥p

p

]s/p)p/s
.

λp1
λp

(∑
`

∥∥∥ ∑
Π

(δ)
k ⊂CΠ

(δ1)
`

fk

∥∥∥s
p

)p/s
.

Now, we apply Hypothesis Hstr(p, s, γ0) in the rescaled version of Lemma 5.1 and

bound for each `∥∥∥ ∑
k:Π

(δ)
k ⊂CΠ

(δ1)
`

fk

∥∥∥
p
. (N/N1)β(p,s)+γ0

( ∑
k:Π

(δ)
k ⊂CΠ

(δ1)
`

‖fk‖sp
)1/s

.

This yields(∑
`

∥∥∥ ∑
Π

(δ)
k ⊂cΠ

(δ1)
`

fk

∥∥∥s
p

)p/s
/ N

(β(p,s)+γ0)p
1

(∑
`

∑
Π

(δ)
k ⊂cΠ

(δ1)
`

∥∥fk∥∥sp)p/s
. N

(β(p,s)+γ0)p
1

∥∥f∥∥p
p,s

. N
(β(p,s)+γ0)p
1 N

d+1
2 |P(f)| |E|

p
s
−1,

where the last inequality follows from (2.27). This proves (5.14) and establishes the

lemma. �
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5.3. Iteration. We are now ready to describe the iteration. Here we fix p > pd as in

(??) and s ∈ [1, p]. We let Nj = N1/2j for j = 0, 1, 2, . . . Starting with an (N,E,Q0)-

packet f = f0 and λ = λ0 as in (3.18), at step j we shall define, for each Nj−1-cube

∆j−1, a real number λj > 0 and a collection of functions {f(j,∆)}∆⊂∆j−1
, where ∆

runs in a grid Qj of Nj-cubes and each f(j,∆) is an (Nj, E(j,∆),∆)-packet with plate

family P(j,∆), and so that the pair (f(j,∆), λj) satisfies

(a)
∣∣{x ∈ ∆j−1 : |f(j−1,∆j−1)| > λj−1 }

∣∣ / ∑
∆∈Qj

∆⊂∆j−1

∣∣{x ∈ ∆ : |f(j,∆)| > λj }
∣∣

(b) |P(j,∆)| /
λ2
j

λ2
j−1

‖f(j−1,∆j−1)ψ∆‖2
2

N
d+1

2
j

;

(c) |P(j,∆)| /
λpj
λpj−1

‖f(j−1,∆j−1)ψ∆‖p,s;δj
N

d+1
2

j

.

It is clear from Lemma 5.2 that this is possible for j = 1. We next show how to pass

from step j to step j + 1.

Suppose we are at step j. Then we stop the process for the Nj-cubes ∆ ∈ Qj
for which the pair (f(j,∆), λj) already satisfies the improved inequality in (5.11); in

particular when at least one of the conditions (i)-(iv) in Lemma 5.3 holds (with

the subindex “1” replaced by “j”). Observe that when for all cubes ∆ ⊂ ∆j−1

the inequality (5.11) is satisfied, then a direct application of Lemma 5.3 gives the

improved estimate at the next scale, i.e.∣∣{x ∈ ∆j−1 : |f(j−1,∆j−1)| > λj−1 }
∣∣ / λ−pj−1N

(α+γ0(1− ε0
4

))p

j−1 N
d+1

2
j−1 |P(j−1,∆j−1)|

p
s
−1,

which after j − 1 more applications of the lemma leads to (5.12) with γ = γ0(1 −
ε0/2

j+1), hence establishing Theorem 3.4 with ε′0 = ε0/2
j+1.

Assume therefore that we are dealing with cubes ∆ ∈ Qj for which (f(j,∆), λj)

does not satisfy any of the conditions (i)-(iv) in Lemma 5.3. That is, we are only

considering

(5.15) λj ≥ (logN)CN (β(p,s)p− d−1
2(d+1)

)/(p−q) |E(j,∆)|(
p
s
− q

2
)/(p−q)

and

(5.16) |E(j,∆)| ≥ N (β(p,s) p− d−1
2(d+1)

)/( p
s′−

q
2

).
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Also, since (iii) fails, by Proposition 4.9, there must exist a subpacket f ∗(j,∆) of f(j,∆)

so that

(5.17)
∣∣{|f(j,∆)| > λj}

∣∣ / ∣∣{|f ∗(j,∆)| > cλj/ logN}
∣∣

and moreover, for every Nj+1-cube ∆j+1

(5.18)
∥∥f ∗(j,∆)ψ∆j+1

∥∥2

2
. t−14d

N
d/2
j

λ2
j

|P(j,∆)| |E(j,∆)|.

Then, we can replace the original (f(j,∆),P(j,∆), λj) by (f ∗(j,∆),P∗(j,∆), λ
∗
j = cλj/ logN),

which also satisfies (a), (b), (c) and (5.15), (5.16). Next, we apply Lemma 5.2 to each

pair (f ∗(j,∆), λ
∗
j) to obtain new quadruplets (f(j+1,∆j+1),P(j+1,∆j+1), E(j+1,∆j+1), λj+1)

with the required conditions, i.e.∣∣{x ∈ ∆ : |f ∗(j,∆)| > λ∗j }
∣∣ / ∑

∆j+1∈Qj+1
∆j+1⊂∆

∣∣{x ∈ ∆j+1 : |f(j+1,∆j+1)| > λj+1 }
∣∣

(5.19) |P(j+1,∆j+1)| /
λ2
j+1

λ2
j

‖f ∗(j,∆j)
ψ∆j+1

‖2
2

N
(d+1)/2
j+1

;

|P(j+1,∆j+1)| /
λpj+1

λpj

‖f ∗(j,∆j)
ψ∆j+1

‖pp,s;δj+1

N
(d+1)/2
j+1

.

Observe that, with this construction, if we combine (5.19) and (5.18) we obtain in

addition the inequality

(d) |P(j+1,∆j+1)| / t−14d
λ2
j+1

λ4
j

N
d−1

4
j |P(j,∆j)| |E(j,∆j)|, j = 1, 2, . . .

The case d ≥ 3 and s = 2.

Claim. If d ≥ 3, p > pd and s = 2, then the above process will stop after a finite

number of iterations. More precisely, there exists ` = `(p) ∈ N so that the quadruplets

(f(`,∆),P(`,∆), E(`,∆), λ`) satisfy the sufficient condition (4.7) in Lemma 4.5 for all

∆ ∈ Q`.

For simplicity, denote Aj = |P(j,∆j)| and Ej = |E(j,∆j)|. Then, from (d) above one

obtains

(5.20) λ−2
` A` / t−14d(`−1) E`−1 · · ·E1

λ2
`−1 . . . λ

2
2λ

4
1

(N`−1 . . . N1)
d−1

4 A1.



IMPROVEMENTS IN WOLFF’S INEQUALITY 39

Now, to estimate A1 we use (5.4), that is

(5.21) A1 /
λ2

1

λ2
N

d+1
4 E0.

Inserting this into (5.20) leads to

(5.22) λ−2
` A` / t−14d(`−1) E`−1 · · ·E1E0

λ2
`−1 . . . λ

2
1λ

2
(N`−1 . . . N1)

d−1
4 N

d+1
4 .

We need to show that the right hand side of this expression is smaller than t14d.

Observe that we can replace the symbol “/” in (5.22) by “≤ t−1”, provided N ≥
N0(ε0). Thus it will suffice to prove the inequality

(5.23)
(
N1− 1

2`−1
) d−1

4 N
d+1

4 ≤ t30d` λ
2
`−1

E`−1
. . .

λ2
1

E1

λ2

E0
.

By (5.15) (with s = 2) we know that

λj ≥ N (β(p,s)p− d−1
2(d+1)

)/(p−q) E
1/2
j = N

d−1
4
− q

4(p−q)
j E

1/2
j ,

and therefore it is enough to show that

(5.24) N
d−1

4 N
d+1

4 ≤ t30d`
(
N

d−1
2
− q

2(p−q)
)2− 1

2`−1 .

Since t = N−ε0 , the previous is equivalent to

(5.25) 2(1− 1
2`

)(d−1
2
− q

2(p−q))−
d
2
≥ 30d`ε0.

It is now easy to verify that this holds when p > pd, for a sufficiently large integer

` = `(p), and a suitable choice of ε0 = ε0(p). More precisely, condition p > pd (for

d ≥ 3) can be read as q
4(p−q) <

d−2
8

, which is equivalent to

εp := 2(d−1
2
− q

2(p−q))−
d
2
> 0.

Thus, we only need to choose ` = `(p) so that 2−`+1(d−1
2
− q

2(p−q)) < εp/2, and next

choose ε0 = ε0(`, p) = ε0(p) so that 30d`ε0 < εp/2. This will satisfy (5.25) and

establish the claim. Thus letting ε′0 = ε0/2
`+1, one obtains Theorem 3.4 for d ≥ 3.

Replace the previous argument by induction

We claim that for j = 1, . . . , `

(5.26)
|P(j,∆j)|
λ2
j

/ t−14d(j−1)N
q
p−q−

d−2
2 N

d−1
4
− q

2(p−q)
j−1

{7}

We first note that for j = 0, 1, . . .

{7}Since t could also be allowed to change with j we do not need that much powers ...
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Notice that

(5.27) λj ≥ N (β(p,s)p− d−1
2(d+1)

)/(p−q) E
1/2
j = N

d−1
4
− q

4(p−q)
j E

1/2
j . if s = 2.

For j = 1 this says
|P(1,∆1)|

λ2
1
/ N

q
2(p−q)−

d−3
4 . To see this we have by (5.4)

|P(1,∆1)|
λ2

1

≤ N
d+1

4 |E|λ−2

and since |E|λ−2 . N
q

2(p−q)−
d−1

2 the assertion holds for j = 1.

Assuming (5.26) for a j ≥ 1 we estimate

(5.28)
|P(j+1,∆j+1)|

λ2
j+1

/ t−14dN
d−1

4
j

|Ej,∆j
|

λ2
j

|P(j,∆j)|
λ2
j

by “(d)”. By (5.27) the right hand side of (5.28) is estimated by

t−14dN
d−1

4
j N

− d−1
2

+ q
2(p−q)

j

|P(j,∆j)|
λ2
j

By the induction hypothesis this is

/t−14dN
d−1

4
j N

− d−1
2

+ q
2(p−q)

j t−14d(j−1)N
q
p−q−

d−2
2 N

d−1
4
− q

2(p−q)
j−1

=t−14djN
q
p−q−

d−2
2 (Nj−1/Nj)

d−1
4
− q

2(p−q)

.t−14djN
q
p−q−

d−2
2 N

d−1
4
− q

2(p−q)
j .

The case d = 2. In this case the previous scheme does not give anything. One must

use in (5.18) above Proposition 4.11, rather than the weaker Proposition 4.9. In such

case the inequality in (5.18) can be replaced with the improved version

(5.29)
∥∥f ∗(j,∆)ψ∆j+1

∥∥2

2
/ t−C

N
5/4
j

λ3
j

|P(j,∆)| |E(j,∆j)|

(which follows from (4.20)). Thus (d) will take the form

(5.30) |P(j+1,∆j+1)| / t−C
λ2
j+1

λ5
j

Nj+1 |P(j,∆)| |E(j,∆j)|, j = 1, 2, . . .

Then calling Aj = |P(j,∆j)|, Ej = |E(j,∆j)| and iterating as in the proof of the claim

we are led to

λ−2
` A` ≤ t−C

E`−1 . . . E1

λ3
`−1 . . . λ

3
2λ

5
1

(
N` . . . N2

)
A1

(by (5.21)) ≤ t−C
E`−1

λ3
`−1

. . .
E1

λ3
1

E0

λ2

(
N` . . . N2

)
N

3
4 .(5.31)
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The lower bound for λj from (5.15) gives

|E|
λ2

≤ |E|1−2( p
s
− q

2
)/(p−q)

N2(β(p,s)− 1
6

)/(p−q)
=
|E|

2p
p−q

(
1
2
− 1
s

)
N

p
p−q

(
1
s′−

q
p

)
≤ N

p
p−q

(
1
2
− 1
s

)
N

p
p−q

(
1
s′−

q
p

) = N−
p−2q

2(p−q) ,(5.32)

where in the last inequality we have used that |E| . N1/2 (since we only consider

s ≥ 2). On the other hand the same bound for λj from (5.15) gives

(5.33)
Ej
λ3
j

≤
E

1−3( p
s
− q

2
)/(p−q)

j

N
3(β(p,s)− 1

6
)/(p−q)

j

=
E

3p
p−q

(
2p+q

6p
− 1
s

)
j

N
3p

2(p−q)

(
1
s′−

q
p

)
j

To estimate further this quantity we must distinguish cases.

Case 1: s ≥ 6p
2p+q

= 3 − 15
3p+5

. Then the exponent of Ej in (5.33) is positive and we

can use again the trivial bound Ej . N
1/2
j , which leads to

(5.34)
Ej
λ3
j

≤
N

3p
2(p−q)

(
2p+q

6p
− 1
s

)
j

N
3p

2(p−q)

(
1
s′−

q
p

)
j

= N
− 4p−7q

4(p−q)
j .

Inserting (5.32) and (5.34) into (5.31) we obtain

λ−2
` A` ≤ t−C N−

4p−7q
4(p−q) N−

p−2q
2(p−q) N1/2N3/4.

Since by Lemma 4.5 it suffices to show {8} that λ−2
` A` ≤ t28, we will be done when

5
4
< 4p−7q

4(p−q) + p−2q
2(p−q) = 6p−11q

4(p−q) ,

or equivalently when

p > 6q = 20.

This establishes Theorem 1.1 in this case.

Case 2: 2 ≤ s ≤ 6p
2p+q

= 3− 15
3p+5

. Then the exponent of Ej in (5.33) is negative and

{8}We could also require the weaker estimate A` ≤ tC
′
λ3` |E`|

1
2 (by Lemma 4.10), but this makes

no difference at this point.
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we must use instead the lower bound Ej & N
(β(p,s) p− 1

6
)/( p

s′−
q
2

)

j in (5.16), which after a

simple but tedious computation leads to

(5.35)
Ej
λ3
j

≤ N
−( p

s′−q)/(
p
s′−

q
2

)

j .

Inserting this expression together with (5.32) in (5.31) we obtain

λ−2
` A` ≤ t−C N−( p

s′−q)/(
p
s′−

q
2

) N−
p−2q

2(p−q) N1/2N3/4,

so that we will have λ−2
` A` ≤ t28 at least when

(5.36) 5
4
< 2p−2s′q

2p−s′q + p−2q
2(p−q) .

When s = 2 this is easily seen to be equivalent to

p > 7q = 70
3

= 23.333...

as asserted in Theorem 1.1. When 2 < s < 3− 15
3p+5

, then solving for p in (5.36) leads

to the range

(5.37) p > p(s) =
(
11s− 6 +

√
65s2 − 76s+ 36

)
q/(4(s− 1)),

which therefore completes the proof of Theorem 1.1.

Remark 5.5. We point out that the range of p obtained in (5.37) when 2 < s < 3− 15
3p+5

and d = 2 is slightly better than the interpolated line between (1
p

= 3
70
, 1
s

= 1
2
) and

(1
p

= 1
20
, 1
s

= 13
36

) (see Figure 1.2).

Remark 5.6. One can do similar computations to establish a range for s < 2, however

the region that comes out corresponds precisely to interpolating the case s = 2 with

the trivial p =∞, s = 1, and therefore no new result appears in this case (again, see

Figure 1.2).

6. Proof of Proposition 4.11

The main result in this section is Lemma 6.2, which gives an improvement over

Lemma 2.5 in [22]. The rest of the proof of Proposition 4.11 follows from exactly

the same reasoning as in [22], replacing at each occurrence Wolff’s Lemma 2.5 by

its improved version; we sketch the argument in §6.2. Recall that throughout this

section d = 2.
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6.1. The combinatorial lemma. In this subsection it will be convenient to follow

the notation in [22, §2]. Namely, P = {π} will denote a collection of 1 ×
√
δ × δ

plates, and T = {τ} a collection of 1 ×
√
δ ×
√
δ tubes. As usual the longest axes

of π and τ point in
√
δ-separated light rays. We shall also use a collection P = {Π}

of much larger plates with dimensions 1 × δ
1
4 ×
√
δ, and longest axes pointing in

δ
1
4 -separated directions. All such families are assumed to consist of separated plates

or tubes, meaning that C1π contains less than C2 plates from P , and similarly with

T and P.

Fix t = δε0 and consider a tiling {B} of R3 by t-cubes. If w ∈ R3, we denote by

B(w) the t-cube containing w. Given a finite setW consisting of
√
δ-separated points

in R3 and a tube family T , we wish to define relations “∼” between tubes and t-cubes

which keep as small as possible the cardinality of the bad incidence set

Ib(W , T ) =
{

(w, τ) ∈ W × T : w ∈ τ, τ 6∼ B(w)
}
.

These relations will be admissible if they satisfy the property

(6.1) for every τ ∈ T Card {B : τ ∼ B} / 1.

One defines likewise the concept of admissible relation between t-cubes and P-plates,

as well as the bad incidence set Ib(W ,P).

As a special example consider the relation τ ∼ B if B is equal or adjacent to a

fixed cube maximizing |W ∩ τ ∩ B|, and likewise for P-plates. Using this relation,

Wolff proves the following result.

Lemma 6.1. : (see [22, Lemma 2.3]). Let W be a
√
δ-separated set in R3.

(i) Given a plate family P, there exists an admissible relation ∼ so that, for every

ε > 0

(6.2) Card Ib(W ,P) ≤ Cε δ
−ε t−6 |P|1/3 |W|.

(ii) Given a tube family T , there exists an admissible relation ∼ so that

(6.3) Card Ib(W , T ) / t−5 |T |1/2 |W|.

The statement in (i) is by far much deeper than its counterpart in (ii), relying

on highly non trivial bounds for circle tangencies. In his paper, Wolff improves the

bound in (6.3) by combining it with (6.2) (see [22, Lemma 2.5]). It seems, though,

that both his statement and proof can be simplified. Below, given a set T , we denote

by P(T ) a plate family of minimal cardinality so that each τ ∈ T is contained in

some Π ∈ P(T ) (as in [22, p. 1255]).
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Lemma 6.2. Let W be a
√
δ-separated set in R3, and T a tube family so that every

Π ∈ P(T ) contains at most m tubes. Then, there exists an admissible relation ∼ so

that, for every ε > 0

(6.4) Card Ib(W , T ) ≤ Cε δ
−ε t−11m1/6 |T |1/3 |W|.

Proof. Assume first that every plate Π ∈ P(T ) contains between m/2 and m tubes

from T . Given τ ∈ T , let Π be the plate in P(T ) containing τ , and TΠ the subset of

all tubes from T contained in Π. Define the relation τ ∼ B when one of the following

holds:

(a) Π ∼ B, as in (i) of Lemma 6.1, with respect to the set W and the plate family

P(T );

(b) τ ∼ B, as in (ii) of Lemma 6.1, with respect to the set W ∩Π∩ [∪B 6∼ΠB] and the

tube family TΠ.

More precisely, if we denote by BΠ the union of the t-cubes B which are equal or

adjacent to the cube maximizing |W ∩ Π ∩ B|, and denote by Bτ the union of the

t-cubes B which are equal or adjacent to the cube maximizing |[W ∩ Bc
Π] ∩ τ ∩ B|,

then

τ ∼ B iff B ⊂ BΠ ∪Bτ .

Clearly ∼ is an admissible relation. Moreover,

Card Ib(W , T ) =
∑
τ∈T

∣∣W ∩ τ ∩ [∪B 6∼τB]∣∣ =
∑

Π∈Π(T )

∑
τ∈T
τ⊂Π

∣∣W ∩ τ ∩Bc
Π ∩Bc

τ

∣∣
(by (6.3)) /

∑
Π∈Π(T )

t−5m1/2
∣∣W ∩ Π ∩Bc

Π

∣∣
(by (6.2)) ≤ Cε δ

−ε t−11m1/2
∣∣P(T )

∣∣1/3 ∣∣W∣∣
. Cε δ

−ε t−11m
1
2
− 1

3

∣∣T ∣∣1/3 ∣∣W∣∣,
since by assumption |P(T )| ≈ |T |/m. Finally, to remove the condition that each Π

contains at leastm/2 tubes, simply partition T into the subfamilies Tj = ∪{TΠ : 2j−1 ≤
|TΠ| < 2j}, and apply the above reasoning to each Tj. �

Remark 6.3. Observe that m in the statement of the lemma is always m . N
1
2 ,

since each Π may contain at most N
1
4 parallel tubes pointing in each of N

1
4 different

directions. In fact, below we shall only use (6.4) with m = N
1
2 .
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Remark 6.4. From Lemma 6.2 it is easy to derive a version with “Schwartz tails” as

in [22, Lemma 2.7]. Namely, letting

Ib(T ,W) =
∑
w∈W

∑
τ∈T

τ 6∼B(w)

wτ (w),

then with the same conditions as in Lemma 6.2 there is an admissible relation ∼ so

that for all ε > 0

(6.5) Ib(T ,W) ≤ Cε δ
−ε t−11N1/12 |T |1/3 |W| + δ100|W|.

Remark 6.5. We point out that, according to the scaling we have adopted in the

paper, we will use the results in this subsection with families T of N ×
√
N ×

√
N -

tubes and sets W of
√
N -separated points. Of course, all the results remain valid

with this scaling, by a simple change of variables.

6.2. Proof of Proposition 4.11. We only sketch the proof of Proposition 4.11, since

it is essentially the same as in [22, Lemma 3.2] or [12, Lemma 5.3].

We are given an (N,E,Q)-packet f , and consider the subpacket f ∗ =
∑

π∈P∗ fπ in

Definition 4.8 and λ ≥ 1 so that (4.19) holds. Reasoning as in [22, p. 1267] one can

find a finite set of N
1
2 -separated points W ⊂ {|f ∗| > cλ/ logN} and a real number

a = a(N) > 0 so that the set

W̃ :=
⋃
w∈W

∆(w) ∩
{
|f ∗| > cλ

logN

}
(with ∆(w) denoting the

√
N -cube containing w) satisfies

meas
{
|f ∗| > cλ/logN

}
/ meas (W̃ )

and

(6.6) meas
(
∆(w) ∩

{
|f ∗| > cλ

logN

})
≈ aN

3
2 , ∀ w ∈ W .

Let ∼ denote the equivalence relation relative to (W , T (P∗)) obtained in Remark

6.4, and given π ∈ P∗, define π ∼ B when the tube τ ∈ T (P∗) whose 10-fold dilate

contains π satisfies τ ∼ B. Define the plate families PB = {π ∈ P∗ : π ∼ B}, which

satisfy ∑
B

|PB| / |P∗|
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by property (6.1) from the previous subsection. By (4.15), to obtain the λ-localization

of f as in Definition 4.3 it suffices to show that

(6.7)
∣∣{|f ∗| > cλ/ logN}

∣∣ / ∑
B

∣∣B ∩ {|fB| ' λ}
∣∣,

where fB =
∑

π∈PB fπ. To prove (6.7) we use the crude estimate

|f ∗(x)− fB(x)| .
∑
τ 6∼B

wτ (x)

and show that the right hand side is � λ/ logN when x ∈ B ∩ W̃ . Indeed, by

Lemma 6.2 (in its version with Schwartz tails; see Remark 6.4) and the fact that wτ

is essentially constant in
√
N -cubes we have∫

W̃

∑
τ 6∼B(x)

wτ (x) dx . aN
3
2

∑
w∈W

∑
τ 6∼B(w)

wτ (w) = aN
3
2 Ib(T (P∗),W)

≤ CεN
ε t−11N

1
12

∣∣T (Pr)
∣∣ 1

3 #(W) aN
3
2

. CεN
ε t−11N

1
12

[
|Pf |
2µ∗

] 1
3 ∣∣W̃ ∣∣,

which is smaller than c|W̃ |λ/(4 logN) if the sufficient condition (4.19) holds (choosing

ε � ε0 and N ≥ N0(ε0)). Thus, there exists a subset W ∗ of W̃ with proportional

measure so that ∑
τ 6∼B(x)

wτ (x) < cλ/(4 logN), x ∈ W ∗.

Therefore, if x ∈ B ∩ W ∗ we have |f ∗(x) − fB(x)| ≤ cλ/(4 logN), which implies

|fB(x)| > cλ/(4 logN). Thus,∣∣{|f ∗| > cλ/ logN}
∣∣ / ∣∣W̃ ∣∣ . ∣∣W ∗∣∣ ≤ ∑

B

∣∣B ∩ {|fB| ' λ}
∣∣,

as we wished to prove. Finally, to obtain (4.20) when the condition (4.19) does not

hold, one repeats the same argument as at the end of the proof of Proposition 4.9.

We leave details to the reader.

7. Boundedness of Bergman projections

Corollary 1.6 follows from Theorem 1.1 and the arguments in [1, §5]. To be more

precise, one has the following (stronger) result:
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Proposition 7.1. Let 2 ≤ s ≤ w < ∞ and suppose that Hstr(w, s, ε) holds for all

ε > 0. Let

(7.1) γ(w, s) = −1 + 2sβ(w, s).

Then, for every γ > −1, the Bergman projection Pγ is bounded in the mixed-norm

space Lp,uγ (T d+1) = Lu(∆γ(Y )dY ;Lp(dX)) in the optimal range 2 ≤ u < ũγ,p =

(γ + d)/(d+1
2p′
− 1) whenever

(7.2) p ≥ pw,s,γ := w + w
s

(γw,s − γ)+

γ + 1
.

Proof. The result follows from [1, Prop. 5.5] by using a similar reasoning as in [1,

Corol. 5.11]. Namely, assuming first γ ≥ γ(w, s), then Hstr(w, s) implies [1, (5.6)]

for all p ≥ w and all µ > sβ(p, s), which in turn by [1, Prop. 5.5] implies (after some

arithmetics) the boundedness of Pγ in Lp,uγ (T d+1) in the optimal range 2 ≤ u < ũγ,p.

When γ < γ(w, s) one must find (ρ, σ) so that Hstr(ρ, σ) holds and γ = γ(ρ, σ).

By interpolation with the trivial (∞, 1)-estimate, Hstr(ρ, σ) holds when ρ ≥ w and

σ′ = s′ρ/w. Since with this choice γ(ρ, σ) ↘ −1 as ρ → ∞, one can always find a

(unique) ρ so that γ = γ(ρ, σ). In fact, a simple computation shows that ρ = pw,s,γ

as in (7.2). Thus, by the first part of the proof Pγ is bounded in Lp,uγ (T d+1) in the

optimal range 2 ≤ u < ũγ,p, for all p ≥ pw,s,γ. �

To obtain Corollary 1.6 from Proposition 7.1 one must specialize to the diagonal

case p = u. First, an easy computation shows that 2 ≤ p < ũγ,p is equivalent

to 2 ≤ p < 1 + 2(γ + d + 1)/(d − 1), which gives the conjectured range of Lpγ-

boundedness for Pγ in (1.13) (by duality); thus, it suffices to find all γ’s so that the

endpoint p = ũγ,p is ≥ pw,s,γ as in (7.2). Straightforward arithmetics show that this

is the case for

γ ≥ d− 1

2

(
w − 2(d+1)

d−1
− 1 + w

s

(γ(w, s)− γ)+

γ + 1

)
.

When d ≥ 3, we let w = pd and s = 2, so that considering the two cases γ > γ(w, s)

and γ ≤ γ(w, s), one obtains the conditions in (1.14). When d = 2, one may use

w = p2 = 20 and s = 3, which leads to the same conditions on γ (namely to

γ ≥ (w − 7)/2 = 6.5). This establishes Corollary 1.6.
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