A MIXED NORM VARIANT OF WOLFF'S INEQUALITY FOR PARABOLOIDS

GUSTAVO GARRIGÓS AND ANDREAS SEEGER

ABSTRACT. We adapt the proof for $\ell^p(L^p)$ Wolff inequalities in the case of plate decompositions of paraboloids, to obtain stronger $\ell^2(L^p)$ versions. These are motivated by the study of Bergman projections for tube domains.

1. INTRODUCTION AND STATEMENT OF RESULTS

For small $\delta > 0$, let Σ^{δ} denote a truncated δ -neighborhood of the paraboloid in \mathbb{R}^d ,

(1.1)
$$\Sigma^{\delta} \equiv \{\xi = (\xi', \xi_d) \in \mathbb{R}^d : |\xi_d - |\xi'|^2/2| \le \delta, |\xi'| \le 1\}.$$

Consider the usual covering of Σ^{δ} by $C(\delta^{1/2} \times {}^{(d-1)} \times \delta^{1/2} \times \delta)$ -plates, $\Pi_k^{(\delta)}$, subordinated to a $\sqrt{\delta}$ -separated sequence $\{y_k\} \subset \mathbb{R}^{d-1}$; namely $\operatorname{dist}(y_k, y_{k'}) \geq \sqrt{\delta}$ if $k \neq k'$, and

(1.2)
$$\Pi_k^{(\delta)} = \left\{ (\xi', \xi_d) \in \Sigma_\delta : |\xi' - y_k| \le C' \sqrt{\delta} \right\}.$$

Typically $y_k = k\sqrt{\delta}$ for $k \in \mathbb{Z}^{d-1}$ with $|k| \le \delta^{-1/2}$.

In this paper we are interested in the validity of the inequality

(1.3)
$$\begin{aligned} \left\|\sum_{k} f_{k}\right\|_{p} &\leq C_{\varepsilon} \,\delta^{-\beta(p)-\varepsilon} \left(\sum_{k} \|f_{k}\|_{p}^{2}\right)^{1/2}, \quad \text{for all } \{f_{k}\} \text{ with supp } \widehat{f}_{k} \subset \Pi_{k}^{(\delta)}, \\ \text{where } \beta(p) &= \frac{d-1}{4} - \frac{d+1}{2p}. \end{aligned}$$

Theorem 1.1. Let $d \ge 2$. Then, for all $\varepsilon > 0$ the mixed norm inequality (1.3) holds when $p \ge p_{d,*} = 2 + \frac{8}{d-1} - \frac{4}{d(d-1)}$.

The power $-\beta(p) - \varepsilon$ is best possible (except perhaps for $\varepsilon > 0$) but the range is not, indeed (1.3) is conjectured to hold for all $p \ge 2 + \frac{4}{d-1}$. The problem is motivated by questions on the Bergman projection for tube domains over light cones [1] where a similar inequality for plate decomposition of neighborhoods of cones plays a crucial role. This harder inequality is considered in [4].

Inequality (1.3) is a mixed norm variant of a *Wolff inequality for paraboloids* which itself can be considered as a model problem simplifying the corresponding harder problem for

Date: August 14, 2008.

First author partially supported by grant MTM2007-60952 and *Programa Ramón y Cajal* MCyT (Spain). Second author partially supported by NSF grant DMS 0652890.

decompositions of cone multipliers in \mathbb{R}^{d+1} (see [13], [7], [5], [4]). Let $\alpha(p) := d(\frac{1}{2} - \frac{1}{p}) - \frac{1}{2}$, the standard Bochner-Riesz critical index in d dimensions. Then Wolff's inequality for paraboloids asserts that for all $\varepsilon > 0$

(1.4)
$$\left\|\sum_{k} f_{k}\right\|_{p} \leq C_{\varepsilon} \,\delta^{-\alpha(p)-\varepsilon} \left(\sum_{k} \|f_{k}\|_{p}^{p}\right)^{1/p}$$
, for all $\{f_{k}\}$ with supp $\widehat{f}_{k} \subset \Pi_{k}^{(\delta)}$.

As before, the power $\alpha(p)$ is optimal for each p (except for $\varepsilon > 0$), and the inequality is conjectured to hold for all $p > 2 + \frac{4}{d-1}$. By an interpolation argument the inequality (1.4) for some \tilde{p} implies the mixed norm variant (1.3) in the smaller range $p > 2(\tilde{p}-1)$ only. On the other hand, inequality (1.4) for fixed p is implied by (1.4) for the same p, by Hölder's inequality, since $\alpha(p) - \beta(p) = \frac{d-1}{2}(\frac{1}{2} - \frac{1}{p})$. Theorem 1.1 states that the stronger mixed norm inequality holds in the same range as the currently known range for the Wolff inequality (1.4) (*cf.* [5]), that is for $p \ge 2 + \frac{8}{d-1} - \frac{4}{d(d-1)}$. We also remark that the resolution of the problem for the paraboloid is necessary for the corresponding problems for cones in \mathbb{R}^{d+1} .

By a randomization argument it is easy to see that the conjectured range $p \ge 2+4/(d-1)$ is sharp for (1.4) (and *a fortiori* for (1.3)). Let $\{r_k\}$ be the sequence of Rademacherfunctions on [0,1] and define h_k by $\hat{h}_k(\xi) = \varphi(\delta^{-1}(\xi - \omega_k))$ for a C^{∞} function φ supported in $\{|\xi| \le 1/10\}$, and where $\omega_k = (y_k, |y_k|^2/2)$. Let $h_{k,t}(x) = r_k(t)h_k(x)$ for $t \in [0,1]$. Then the validity of Wolff's inequality implies that

$$\left(\int_{0}^{1} \left\|\sum h_{k,t}\right\|_{p}^{p} dt\right)^{1/p} \lesssim \delta^{-\alpha(p)+\epsilon} \left(\sum_{k} \|h_{k}\|_{p}^{p}\right)^{1/p}$$

and by Fubini's theorem and the familiar inequality for Rademacher functions ([10])

$$\left\| \left(\sum_{k} |h_k|^2 \right)^{1/2} \right\|_p \lesssim \delta^{-\alpha(p)-\epsilon} \left(\sum_{k} \|h_k\|_p^p \right)^{1/p}$$

This leads to $\delta^{-(d-1)/4} \lesssim \delta^{-\alpha(p)-\varepsilon} \delta^{-(d-1)/(2p)}$ and consequently to the restriction $p \ge \frac{2(d+1)}{d-1}$.

Returning to (1.3), there is a square-function variant with a larger exponent, (1.5)

$$\left\|\sum_{k}h_{k}\right\|_{L^{q}(\mathbb{R}^{d})} \leq C_{q,\varepsilon}\delta^{-(\varepsilon+\alpha(q)/2)}\left\|\left(\sum_{k}|h_{k}|^{2}\right)^{1/2}\right\|_{L^{q}(\mathbb{R}^{d})}, \quad \forall \{h_{k}\} : \text{ supp } \widehat{h_{k}} \subset \Pi_{k}^{(\delta)},$$

which is known to hold in some range of $q \leq 2(d+1)/(d-1)$. For $q \geq 2(d+1)/(d-1)$ inequality (1.5) with $\varepsilon = 0$ is a consequence of the Stein-Tomas adjoint restriction theorem as was shown by Bourgain [2]. In two dimensions the inequality in the optimal range $q \geq 4$, again with $\varepsilon = 0$, is due to Fefferman [3], and the proof of the crucial L^4 bound is based on the observation that in two dimensions the algebraic sums of plates $\Pi_k^{(\delta)} + \Pi_{k'}^{(\delta)}$ are essentially disjoint as (k, k') run over integers with $|k|, |k'| \leq \delta^{-1/2}$. In dimensions $d \geq 3$ it is conjectured, but not known, that (1.5) holds on $L^{q_0}(\mathbb{R}^d)$ with $q_0 = 2d/(d-1)$. Partial results in higher dimensions follow from the bilinear adjoint restriction theorem of Tao [11] using arguments in [8], [5]; indeed (1.5) is known to hold for q > 2 + 4/d.

By Minkowski's inequality the square function bound (1.5) also implies the weaker (and possibly non optimal)

(1.6)
$$\left\|\sum_{k} h_{k}\right\|_{L^{q}(\mathbb{R}^{d})} \leq C_{\varepsilon} \delta^{-(\alpha(q)+\varepsilon)/2} \left(\sum_{k} \left\|h_{k}\right\|_{L^{q}(\mathbb{R}^{d})}^{2}\right)^{1/2}, \quad \text{supp } \widehat{h_{k}} \subset \Pi_{k}^{(\delta)}$$

We use inequality (1.6) as a hypothesis:

Definition 1.2. Suppose $2d/(d-1) < q \le 2(d+1)/(d-1)$. We say that *Hypothesis* S(2,q) holds if (1.6) holds for all $\varepsilon > 0$.

Under this hypothesis we show

Theorem 1.3. Suppose $d \ge 2$ and $2d/(d-1) < q \le 2(d+1)/(d-1)$ and Hypothesis S(2,q) holds. Then the inequality (1.3) holds for all $p \ge p_d := q + 4/(d-1)$.

Theorem 1.1 follows from Theorem 1.3 since, as pointed out above, S(2,q) holds for q > 2 + 4/d. If one could prove the above square function estimate in the optimal range q > 2d/(d-1) (and therefore S(2,q) in the same range) then the range of (1.3) would improve to $p \ge 2 + 6/(d-1)$.

A reformulation. Let ζ be a function in $C_c^{\infty}(\mathbb{R}^{d-1})$ which is identically 1 in the cube $\{\xi': |\xi_i| \leq 1, i = 1, \ldots, d-1\}$, and let ζ_0 be a Schwartz function on \mathbb{R} with compact support in (-2, 2) so that $\zeta_0(\tau) = 1$ for $|\tau| \leq 1$. For $k \in \mathbb{Z}^{d-1}$, $|k| \leq \delta^{-1/2}$ define operators $P_k = P_k^{(\delta)}$ by

$$\widehat{P_k f}(\xi) = \zeta(\delta^{-1/2} \xi' - k) \zeta_0 \left(\delta^{-1} (\xi_d - |\xi'|^2 / 2) \right) \widehat{f}(\xi).$$

Note that with the choice of $y_k = \delta^{1/2}k$ the supports of the functions $\widehat{P_k f}$ are essentially the plates $\Pi_k^{(\delta)}$ (actually slightly expanded plates).

The operators P_k are uniformly bounded on all L^p (as long as $|k| \leq \delta^{-1/2}$) and (1.3) is equivalent with the statement that for all families of L^p functions $\{h_k\}$

(1.7)
$$\left\|\sum_{|k| \leq \delta^{-1/2}} P_k h_k\right\|_p \leq C_{\varepsilon} \delta^{-\beta(p)-\varepsilon} \left(\sum_k \|h_k\|_p^2\right)^{1/2}$$

For functions with Fourier transform supported in Σ^{δ} we may define a norm

(1.8)
$$||f||_{p,2;\delta} = \left(\sum_{k} ||P_k f||_p^2\right)^{1/2}$$

Note that if $f = \sum f_k$ with supp $\widehat{f}_k \subset \prod_k^{\delta}$ we have

(1.9)
$$||f||_{p,2;\delta} \approx \left(\sum_{k} ||f_k||_p^2\right)^{1/2}$$

More general surfaces. Theorem 1.1 may be extended to convex surfaces with nonvanishing Gaussian curvature, using arguments in §2 of [9]. Namely, one notes that on sets of diameter $\gamma^{1/3} \ll 1$ the surface can be approximated by paraboloids with accuracy $O(\gamma)$ and uses the scaled estimate in §5 below, together with an induction on scales argument. One could also modify the proof for paraboloids using arguments in [6] (which apply to more general situations).

Acknowledgements. The main ideas can be traced back to the pioneering work by Wolff [13], see also the subsequent articles [7], [9], [6], [5] and [4]. An earlier version of this paper was originally written as class notes intended to give an expository account of some of the material in [13] and [7]. For self-containedness and in order to retain the expository nature of the notes we have included in §4 material from Laba-Wolff [7] which could have been quoted. We are indebted to Wilhelm Schlag for comments and for collaboration on [4] and to Detlef Müller for useful remarks on an earlier version of this paper.

2. NOTATION AND BASIC DEFINITIONS

We note that because of the appearance of ε in (1.3) we may assume that $p > p_d = q + 4/(d-1)$ since we can then interpolate with a trivial $\ell^2(L^2)$ inequality to get the result for $p = p_d$.

Throughout we fix $p > p_d$. We also fix a positive but very small ε_0 , which may depend on p and q and will be determined later. We remark that for the proof of Theorem 1.3 in the range $p > p_d = q + 4/(d-1)$ the choice

(2.1)
$$\varepsilon_0 = 10^{-3} d^{-1} (d - 1 - 4/(p - q))$$

is admissible. Statements involving the parameter δ are assumed to hold for all $\delta \in (0, \delta_0]$, for some fixed $\delta_0 \ll 1$. For each such δ we set

(2.2)
$$N = 1/\delta$$
 and $t = \delta^{\epsilon_0} = N^{-\epsilon_0}$.

The constants $C, c_0, c_1, ...$ appearing below may depend on $p, d, \varepsilon_0, \delta_0$ and also on other constants appearing below, but will be independent of δ , f_k , $\{y_k\}$, and parameters such as λ or ε . Otherwise we will indicate it by C_{ε} , etc... By $A \leq B$ we will mean $A \leq C B$ for some C as above, and by $A \leq B$ we mean $A \leq C (\log N)^C B$, for some C > 0. We shall write either card(\mathcal{P}) or $\#\mathcal{P}$ for the cardinality of a finite set \mathcal{P} , and meas (A) or |A| for the Lebesgue measure of a set in \mathbb{R}^d .

Plates and plate families. A rectangular box in \mathbb{R}^d of size $\sqrt{N} \times {}^{(d-1)} \times \sqrt{N} \times N$. will be referred to as an *N*-plate. We typically denote plates in *x*-space by π and plate families by \mathcal{P} . We shall always assume that *N*-plates are essentially dual to some $\Pi_k^{(\delta)}$. In this case we

use the notation

$$\pi \parallel k$$

to indicate that π is an N-plate, whose long side is parallel to $\mathbf{n}_k = (y_k, -1) = (k\sqrt{\delta}, -1)$. Observe that, for different k's, plate directions are $\sqrt{\delta}$ -separated, since so are the directions of $\{\mathbf{n}_k\}$. The integer vectors k will be taken in

$$\mathcal{Z}(\sqrt{N}) = \{k \in \mathbb{Z}^{d-1} : |k_i| \le \sqrt{N}, i = 1, \dots, d-1\}.$$

We shall also assume that families \mathcal{P} consist only of *separated* plates, meaning that for each $\pi \in \mathcal{P}$ at most C_1 plates from \mathcal{P} can be contained in a fixed dilate $C_2\pi$, where C_1 and C_2 are fixed universal constants. This means that for fixed k, plates $\pi || k$ are essentially disjoint.

We recall that the cardinality of $\mathcal{Z}(\sqrt{N})$, and thus the number of essentially different directions that plates can achieve at scale N, is approximately $N^{\frac{d-1}{2}}$. Finally, a σ -cube Δ is a cube of sidelength σ centered at some point of the grid $\sigma \mathbb{Z}^d$.

Localizing weight functions. Given a fixed large M we let

(2.3)
$$w(x) = (1+|x|^2)^{-M/2}$$

and given a rectangle R we denote $w_R = w \circ a_R^{-1}$, where a_R is an affine map taking the unit cube centered at 0 to the rectangle R. Thus w_R is roughly the characteristic function of R with "Schwartz tails" (with an abuse of language as for fixed M the function w is not a Schwartz-function).

We shall also use a fixed Schwartz function ψ , strictly positive in $B_2(0)$, with Fourier transform supported in $B_{\frac{1}{100}}(0)$, and so that $\sum_{n \in \mathbb{Z}^d} \psi^2(\cdot + n) = 1$. Again we set

(2.4)
$$\psi_R = \psi \circ a_R^{-1}.$$

In particular, if $\{\Delta\}$ is a tiling of \mathbb{R}^d by σ -cubes with centers c_Δ in $\sigma \mathbb{Z}^d$, then $\sum_\Delta \psi_\Delta^2 = 1$, where $\psi_\Delta(x) = \psi((x - c_\Delta)/\sigma)$.

Elementary properties of $\|\cdot\|_{p,2;\delta}$.

Lemma 2.1. Let $2 \le p \le \infty$ and \hat{f} be supported in Σ^{δ} . Then

(2.5)
$$||f||_{\infty,2;\delta} \lesssim N^{-(d+1)/2p} ||f||_{p,2;\delta}$$

(2.6)
$$||f||_{\infty} \lesssim N^{\beta(p)} ||f||_{p,2;\delta},$$

(2.7)
$$\|f\|_{p,2;\delta} \lesssim \|f\|_2^{2/p} \|f\|_{\infty,2;\delta}^{1-2/p}.$$

Proof. If \hat{g} is supported in $\Pi_k^{(\delta)}$ then by Young's inequality $||g||_{\infty} \leq N^{-(d+1)/2p} ||g||_p$; this yields (2.5). If $f = \sum f_k$ with \hat{f}_k supported in $\Pi_k^{(\delta)}$ then

$$\|f\|_{\infty} \lesssim \sum_{k} \|f_{k}\|_{\infty} \lesssim N^{\frac{d-1}{4}} \Big(\sum_{k} \|f_{k}\|_{\infty}^{2}\Big)^{1/2} \lesssim N^{\frac{d-1}{4} - \frac{d+1}{2p}} \Big(\sum_{k} \|f_{k}\|_{p}^{2}\Big)^{1/2}$$

which is (2.6). Inequality (2.7) follows from a corresponding interpolation inequality for the projection operators P_k , namely for $\vartheta = 1 - 2/p$,

$$\left(\sum_{k} \|P_{k}h_{k}\|_{p}^{2}\right)^{1/2} \lesssim \left(\sum_{k} \|h_{k}\|_{2}^{2}\right)^{(1-\vartheta)/2} \left(\sum_{k} \|h_{k}\|_{\infty}^{2}\right)^{\vartheta/2}.$$

This follows by convexity from the obvious cases p = 2 and $p = \infty$.

We also need the following localization estimate.

Lemma 2.2. Let \hat{f} be supported in Σ^{δ} . Let $\mathcal{Q} = \{Q\}$ be a grid of N-cubes and let ψ_Q be as in (2.4) (so that $\hat{\psi}_Q$ is supported in $|\xi| \leq (100N)^{-1}$). Then

(2.8)
$$\left(\sum_{Q} \|\psi_{Q}f\|_{p,2;2\delta}^{p}\right)^{1/p} \lesssim \|f\|_{p,2;\delta}.$$

Proof. Note that $\widehat{\psi_Q} * \widehat{f}$ is supported in $\Sigma^{2\delta}$. The case $p = \infty$ is immediate and the case p = 2 follows by orthogonality. One uses the projection operators P_k to set up an interpolation argument showing the inequality for 2 .

Packets.

Definition 2.3. (i) f is called an *N*-packet associated with $\Pi_k^{(\delta)}$ if it can be written as $f = \sum_{\pi \in \mathcal{P}} f_{\pi}$ for some family $\mathcal{P} = \mathcal{P}_k(f)$ of separated *N*-plates with $\pi \parallel k$, in such a way that every $f_{\pi}, \pi \in \mathcal{P}_k$, satisfies

(2.9)
$$|f_{\pi}| \leq c_1 w_{\pi}$$
 and $\operatorname{supp} \widehat{f_{\pi}} \subset c_2 \Pi_k^{(\delta)}$.

(ii) Let R be a cube of diameter $\geq N$ and let $E \subset \mathcal{Z}(\sqrt{N})$. An (N, R, E)-packet f is a function that can be written as

(2.10)
$$f = \frac{1}{\sqrt{\#E}} \sum_{k \in E} \sum_{\pi \in \mathcal{P}_k} f_{\pi}$$

where \mathcal{P}_k consists of plates $\pi \parallel k$ which have nonempty intersection with R, and f_{π} are functions so that (2.9) holds for all $\pi \in \mathcal{P}_k$ and all $k \in E$. We denote by $\mathcal{P}(f) = \bigcup_{k \in E} \mathcal{P}_k$ the plate family of f.

(iii) For f as in (ii), we say that g is a subpacket of f if $g = \frac{1}{\sqrt{\#E}} \sum_{k \in E} \sum_{\pi \in \mathcal{P}'_k} f_{\pi}$, with $\mathcal{P}'_k \subset \mathcal{P}_k$.

(iv) An (N, R, E)-packet f as in (2.10) is called *stable* if it satisfies

(2.11)
$$\frac{1}{2} \# \mathcal{P}_k \le \# \mathcal{P}_{k'} \le 2 \# \mathcal{P}_k \quad \text{whenever } k, k' \in E \,.$$

Elementary properties of packets are listed in

Lemma 2.4. Let f be an (N, Q, E)-packet. Then

$$(2.12) ||f||_{\infty,2;\delta} \lesssim 1,$$

(2.13)
$$||f||_{\infty} \lesssim \sqrt{\#E} \lesssim N^{(d-1)/4},$$

and, for $2 \leq p < \infty$

(2.14)
$$\|f\|_{p,2;\delta}^p \le C_p \frac{N^{(d+1)/2} \#\mathcal{P}(f)}{\#E} .$$

Proof. The bounds (2.12) and (2.13) are immediate. We can use the interpolation inequality $||G||_{\ell^2(L^p)} \leq ||G||_{\ell^2(L^2)}^{2/p} ||G||_{\ell^2(L^\infty)}^{1-2/p}$ to see that (2.14) follows from the (2.12) and the case p = 2 of (2.14). Observe that $||f||_{2,2:\delta}^2$ is dominated by

$$\sum_{k \in E} \left\| \sum_{\pi \in \mathcal{P}_k} \frac{f_{\pi}}{\sqrt{\#E}} \right\|_2^2 \lesssim \frac{1}{\#E} \sum_{k \in E} \left\| \sum_{\pi \in \mathcal{P}_k} w_{\pi} \right\|_2^2 \lesssim \frac{1}{\#E} \sum_{k \in E} N^{\frac{d+1}{2}} \#\mathcal{P}_k$$

and the last expression is equal to $N^{(d+1)/2} # \mathcal{P}(f) / # E$.

Another preparatory result concerns decompositions of functions with Fourier support in Σ^{δ} into (stable) *N*-packets. The stability property (2.11) gives estimate (2.18) in the following lemma (a sort of converse to (2.14)), which will be crucial in the induction on scales argument, *cf.* Lemma 6.1 below.

Lemma 2.5. Let \hat{f} be supported in Σ^{δ} and assume that

$$(2.15) ||f||_{\infty,2;\delta} \le A.$$

Let Q be an N-cube, let $0 < \varepsilon \leq 1$, and let R be the cube of sidelength $N^{1+\varepsilon}$ with the same center as Q. Then on Q we may decompose

(2.16)
$$f(x) = \sum_{AN^{-10d} \le 2^j \le C_{\varepsilon}A} 2^j \sum_{\ell=1}^{n_j} f_{j,\ell}(x) + g(x), \quad x \in Q,$$

for some integers $n_j \leq C_{\varepsilon}(\log N)^2$, and where

(i) the function g satisfies

(2.17)
$$\sup_{x \in Q} |g(x)| \le C_{\varepsilon} N^{-8d} A;$$

(ii) for each j, ℓ the function $f_{j,\ell}$ is a stable $(N, R, E_{j,\ell})$ -packet, for some subset $E_{j,\ell}$ of $\mathcal{Z}(N^{1/2})$, and with associated plate family $\mathcal{P}^{j,\ell}$ containing only plates π with $dist(Q, \pi) \leq N^{1+\varepsilon}$;

(iii) for every $2 \le p \le \infty$ and every j, ℓ it holds

(2.18)
$$2^{j} (N^{\frac{d+1}{2}} \# \mathcal{P}^{j,\ell})^{1/p} \lesssim \|f\|_{p,2;\delta} (\# E_{j,\ell})^{1/p}$$

Proof. We decompose $f = \sum_k f_k$ where \hat{f}_k is supported in $\Pi_k^{(\delta)}$. By a pidgeonhole argument we may immediately reduce to the case where the k are strongly separated, in the sense that, if k and k' occur in the sum and are different then $|k - k'| \ge 10d$. Note that then

$$||f||_{p,2;\delta} \approx (\sum_k ||f_k||_p^2)^{1/2}$$

Next, we fix k, and further decompose f_k as

$$f_k = \sum_{\pi \parallel k} f_k \psi_\pi^2$$

We let $\mathcal{P}_k \equiv \mathcal{P}_{k,R}(f)$ be the family of all π with $\pi \parallel k$ and which intersect R. Notice that there are at most $O(N^{d(1+\varepsilon)})$ in $\cup_k \mathcal{P}_{k,R}(f)$.

We first discard the terms involving plates that do not intersect R. Let

(2.19)
$$g_{compl}(x) = \sum_{k} \sum_{\substack{\pi \parallel k \\ \pi \cap R = \emptyset}} f_k \psi_{\pi}^2$$

Using the rapid decay of the functions w_{π} away from π we get

$$\|g_{compl}\|_{L^{\infty}(Q)} \lesssim N^{(d-1)/4} \|f\|_{\infty,2;\delta} \sup_{x \in Q} \Big(\sum_{k} \sum_{\substack{\pi \parallel k \\ \pi \cap R = \emptyset}} |w_{\pi}(x)|^{2} \Big)^{1/2} \le C_{\varepsilon} A N^{\frac{d-1}{2} - M\varepsilon}$$

and here M (in the definition of (2.3)) may be chosen so large that $M\varepsilon > 10d$.

Secondly we discard terms for which π intersects R but $||f_k\psi_{\pi}||_{\infty}$ is very small. Define

(2.20)
$$g_{small}(x) = \sum_{k} \sum_{\substack{\pi \in \mathcal{P}_{k,R} \\ \|f_k \psi_\pi\|_{\infty} \le AN^{-10d}}} f_k \psi_\pi^2$$

As the cardinality of all plates intersecting R is $O(N^{d(1+\varepsilon)})$ we trivially get

$$\|g_{small}\|_{L^{\infty}(Q)} \lesssim N^{2d} A N^{-10d}$$

and if we set $g = g_{small} + g_{compl}$ the bound (2.17) follows.

It remains to decompose the function

(2.21)
$$f - g_{small} - g_{compl} = \sum_{k} \sum_{\substack{\pi \in \mathcal{P}_{k,R} \\ \|f_k \psi_{\pi}\|_{\infty} > AN^{-10d}}} f_k \psi_{\pi}^2.$$

Note that $||f||_{\infty} \leq AN^{(d-1)/4}$ (by (2.6) for $p = \infty$) so that there are only $O(\log N)$ relevant dyadic scales for the possible size of $||f\psi_{\pi}||_{\infty}$.

For each k define

(2.22)
$$\mathcal{P}_{k,R}^{m} = \left\{ \pi \in \mathcal{P}_{k,R} : 2^{m} < \|f_{k}\psi_{\pi}\|_{\infty} \le 2^{m+1} \right\}.$$

Next, for i = 0, 1, 2, ..., define

(2.23)
$$E(i,m) = \left\{ k \in \mathcal{Z}(\sqrt{N}) : 2^{i} \leq \#\mathcal{P}_{k,R}^{m} < 2^{i+1} \right\};$$

clearly these sets are disjoint subsets of $\mathcal{Z}(\sqrt{N})$. Set

(2.24)
$$F^{i,m} = \sum_{k \in E(i,m)} \sum_{\pi \in \mathcal{P}_{k,R}^m} f_k \psi_{\pi}^2.$$

Notice that by definition the cardinalities of $\mathcal{P}_{k,R}^m$ are comparable for $k \in E(i,m)$. If we divide $F^{i,m}$ by $C2^m\sqrt{\#E(i,m)}$, for suitably large C, then the new function will be a *stable* (N, R, E(i, m)) packet.

Recall $AN^{-10d} \leq C2^m \sqrt{\#E(i,m)} \lesssim AN^d$. Now for each j with $AN^{-10d} \leq C2^j \lesssim AN^d$ there are $n_i = O((\log N)^2)$ pairs (i, m) with

(2.25)
$$2^{j-1} < C2^m \sqrt{\#E(i,m)} \le 2^j;$$

for these (i, m) the functions $2^{-j}F^{i,m}$ are also stable (N, R, E(i, m))-packets.

We relabel these n_j functions as $f_{j,\ell}$, $\ell = 1, \ldots, n_j$, the associated plate families as $\mathcal{P}^{j,\ell}$ and the associated sets E(i,m) of directions as $E_{j,\ell}$ and then obtain the decomposition
$$\begin{split} f &= \sum_{2^j \geq AN^{-10d}} \sum_{\ell=1}^{n_j} 2^j f_{j,\ell} + g, \text{ for } x \in Q. \\ &\text{ If } \mathcal{P}_k^{j,\ell} = \{ \pi \in \mathcal{P}^{j,\ell} : \pi \parallel k \} \text{ then by construction} \end{split}$$

$$#\mathcal{P}^{j,\ell} \approx (#E_{j,\ell})(#\mathcal{P}_k^{j,\ell}).$$

We use this to verify (2.18). Fix (j, ℓ) , and with the above notation assume $E_{j,\ell} = E(i, m)$. Then we observe

$$\begin{split} \|f\|_{p,2,\delta} \gtrsim \left(\sum_{k} \|f_{k}\|_{p}^{2}\right)^{1/2} \gtrsim \left(\sum_{k} \left(\sum_{\pi \parallel k} \|f_{k}\psi_{\pi}\|_{p}^{p}\right)^{2/p}\right)^{1/2} \\ \geq \left(\sum_{k \in E(i,m)} \left(\sum_{\pi \in \mathcal{P}_{k,R}^{m}} \|f_{k}\psi_{\pi}\|_{p}^{p}\right)^{2/p}\right)^{1/2} \gtrsim \left(\sum_{k \in E(i,m)} \left(\sum_{\pi \in \mathcal{P}_{k,R}^{m}} \|f_{k}\psi_{\pi}\|_{\infty}^{p} N^{(d+1)/2}\right)^{2/p}\right)^{1/2} \\ \gtrsim \left(\sum_{k \in E(i,m)} \left(2^{mp} \#\mathcal{P}_{k,R}^{m} N^{(d+1)/2}\right)^{2/p}\right)^{1/2} \geq \left(\sum_{k \in E_{j,\ell}} \left(2^{mp} \frac{\#\mathcal{P}^{j,\ell}}{\#E_{j,\ell}} N^{(d+1)/2}\right)^{2/p}\right)^{1/2} \\ \gtrsim 2^{m} (\#E_{j,\ell})^{1/2 - 1/p} (\#\mathcal{P}^{j,\ell})^{1/p} N^{(d+1)/2p}, \end{split}$$

and from (2.25) we obtain (2.18). We note that (2.18) for $p = \infty$ also shows that the sum in j in (2.16) is restricted to the range $2^j \leq C_{\varepsilon} A$.

3. Equivalent formulations of the problem

We continue to assume that always $p > \frac{2(d+1)}{d-1}$ and that S(2,q) holds for some $q \in [\frac{2d}{d-1}, \frac{2(d+1)}{d-1}]$.

Definition 3.1. Given p > 2 and $\gamma > 0$, we say that hypothesis $\mathcal{H}^{str}(p,\gamma)$ holds if there exists $C_{\gamma} > 0$ so that for any $\delta \leq \delta_0$ and any $f = \sum_k f_k$ with supp $\widehat{f}_k \subset \prod_k^{(\delta)}$

(3.1)
$$||f||_p \le C_{\gamma} N^{\beta(p)+\gamma} \Big(\sum_k ||f_k||_p^2\Big)^{1/2}.$$

It is our objective to prove this 'strong' inequality $\mathcal{H}(p,\gamma)$ for all $\gamma > 0$, in the asserted range $p \ge q + 4/(d-1)$. We formulate a weaker condition which can be seen as an analogue of a restricted weak type inequality.

Definition 3.2. Given p > 2 and $\gamma > 0$, we say that *hypothesis* $\mathcal{H}(p,\gamma)$ holds if there exists $C_{\gamma} > 0$ so that for all $\delta = N^{-1} \leq \delta_0$, for all pairs of N-cubes Q_0, Q'_0 , for all $E \subset \mathcal{Z}(\delta^{1/2})$, for all stable (N, Q_0, E) -packets f with plate family $\mathcal{P}(f)$, and for all $\lambda \in (N^{\frac{d-1}{4} - \frac{1}{2(p-q)}}, N^{\frac{d-1}{4}})$

(3.2)
$$\left| \{ x \in Q'_0 : |f(x)| > \lambda \} \right| \le C_{\gamma} \lambda^{-p} N^{(\beta(p)+\gamma)p} \frac{N^{(d+1)/2} \# \mathcal{P}(f)}{\# E}.$$

Proposition 3.3. Let $0 < \gamma < \gamma_1$. Then

(3.3)
$$\mathcal{H}^{str}(p,\gamma) \Longrightarrow \mathcal{H}(p,\gamma) \Longrightarrow \mathcal{H}^{str}(p,\gamma_1).$$

The *main task* in Wolff's bootstrapping procedure will then be to prove the following

Theorem 3.4. Let $d \ge 2$, $p > p_d = q + 4/(d-1)$ and $\gamma_0 > 0$. Let ε_0 be as in (2.1). If hypothesis $\mathcal{H}^{str}(p,\gamma_0)$ holds, then hypothesis $\mathcal{H}(p,\gamma)$ holds for all $\gamma > (1 - \frac{\epsilon_0}{4})\gamma_0$.

Indeed, if Theorem 3.4 holds, then Proposition 3.3 together with an iteration gives the validity of the strong type estimate $\mathcal{H}^{str}(p,\epsilon)$ for all $\epsilon > 0$. The proof of Theorem 3.4 is given in §6, after preparation in §4 and §5.

Proof of Proposition 3.3. Note that implication $\mathcal{H}^{str}(p,\gamma) \implies \mathcal{H}(p,\gamma)$ is immediate by Čebyšev's inequality and the convexity bound (2.7) (together with Lemma 2.4). We now show the proof of the main implication $\mathcal{H}(p,\gamma) \implies \mathcal{H}^{str}(p,\gamma_1)$ for $\gamma_1 > \gamma$.

We first establish that the restriction on λ is superfluous. First, for an (N, Q_0, E) packet f we have $||f||_{\infty} \leq N^{(d-1)/4}$ and by decomposing into a bounded number of subpackets we may assume that $||f||_{\infty} < N^{(d-1)/4}$. In this case the set $\{x : |f(x)| > \lambda\}$ has measure zero if $\lambda \geq N^{(d-1)/4}$.

Next, by Čebyšev's inequality and hypothesis S(2,q)

$$\operatorname{meas}\left(\{x: |f(x)| > \lambda\}\right) \le \lambda^{-q} \|f\|_q^q \lesssim C_{\varepsilon} \lambda^{-q} N^{\left(\frac{\alpha(q)}{2} + \varepsilon\right)q} \|f\|_{q,2;\delta}^q$$

and by Lemma 2.4, we have $||f||_{q,2;\delta}^q \leq N^{(d+1)/2} \# \mathcal{P}(f) / \# \mathcal{E}$ since f is an (N, Q_0, E) -packet. Notice that $\lambda^{-q} N^{\frac{\alpha(q)}{2}q} \leq \lambda^{-p} N^{\beta(p)p}$ if $\lambda \leq N^{\frac{d-1}{4} - \frac{1}{2(p-q)}}$. Thus, under S(2,q), hypothesis $\mathcal{H}(p,\gamma)$ implies the inequality (3.2) for all $\lambda > 0$, provided γ is replaced by $\gamma + \varepsilon$ for any $\varepsilon > 0$.

We now argue that assuming $\mathcal{H}(p, \gamma)$ it suffices to show

(3.4)
$$\left(\int_{Q'} |f(x)|^p dx\right)^{1/p} \le C_{\epsilon} N^{\beta(p)+\gamma+\epsilon} ||f||_{p,2;\delta}$$

for all $\epsilon > 0$. Indeed once (3.4) is shown uniformly for all cubes we choose a grid \mathcal{Q} of *N*-cubes and decompose $f = \sum \psi_Q^2 f$. Notice that $\|\psi_Q f\|_{p,2;\delta} \lesssim \|f\|_{p,2;\delta}$. If $Q, Q' \in \mathcal{Q}$ for any $M_1 > 0$ then we use the estimate

$$\|f\psi_Q^2\|_{L^p(Q')} \le C(M_1) \big((1 + \operatorname{dist}(Q, Q'))^{-M_1} \|f\psi_{Q'}\|_p.$$

From this it is straightforward to deduce (with $N^{\varepsilon}Q$ denoting the cube dilated by N^{ε} with respect to its center) that

$$\left(\sum_{Q'} \left\| \sum_{Q \in \mathcal{Q}} f \psi_Q \right\|_{L^p(Q')}^p \right)^{1/p} \lesssim \left(\sum_{Q} \left\| f \psi_Q \right\|_{L^p(N^{\epsilon/2d}Q)}^p \right)^{1/p} + C(M_2, \epsilon) N^{-M_2} \|f\|_p$$

$$\leq \left(\sum_{Q} \sum_{\substack{Q' \\ \operatorname{dist}(Q,Q') \lesssim N^{1+\epsilon/3d}}} \|f\psi_Q\|_{L^p(Q')}^p \right)^{1/p} + C(M_2, \epsilon) N^{-\frac{M_2\epsilon}{2d} + d} \|f\|_{p, 2; \delta}.$$

We apply (3.4) to $\psi_Q f$ and cubes Q' with distance $\leq N^{1+\epsilon/2d}$ to Q and estimate the first term on the right hand side by a constant times

(3.5)
$$N^{\beta(p)+\gamma+\epsilon} \Big(\sum_{Q} \|f\psi_Q\|_{p,2;2\delta}^p\Big)^{1/p} \lesssim N^{\beta(p)+\gamma+\epsilon} \|f\|_{p,2;\delta}.$$

For the last estimate we have used Lemma 2.2.

We now proceed to show (3.4). To do this we may assume

(3.6)
$$||f||_{p,2;\delta} = 1.$$

Fix an N-cube Q. Then

$$\|f\|_{L^p(Q)}^p \lesssim p \sum_{\ell} 2^{\ell p} \text{meas } \left(\{ x \in Q : |f| > 2^\ell \} \right).$$

By (3.6) and (2.6) for $p = \infty$ we have that $||f||_{\infty} \leq N^{(d-1)/4}$ so that the set where $|f| > 2^{\ell}$ is empty when $2^{\ell} \gg N^{(d-1)/4}$. Moreover, as the measure of Q is $O(N^d)$ we have

$$\sum_{2^{\ell} \le N^{-d}} 2^{\ell p} \text{meas} \left(\{ x \in Q : |f| > 2^{\ell} \} \right) \lesssim N^{-d(p-1)};$$

thus only the $O(\log N)$ terms with $N^{-d} \lesssim 2^{\ell} \lesssim N^d$ have to be estimated.

This means that it suffices to show, for $N^{-d} \leq \lambda \leq N^d$,

(3.7)
$$\operatorname{meas}\left(\left\{x \in Q : |f| > \lambda\right\}\right) \lesssim \lambda^{-p} N^{(\beta(p) + \gamma + \varepsilon)p};$$

cf. the normalization (3.6). This normalization (together with (2.5)) also implies $||f||_{\infty,2;\delta} \lesssim N^{-(d+1)/2p}$. We now use the decomposition in Lemma 2.5 with $A \approx N^{-(d+1)/2p}$. The function g in (2.16) is then $\lesssim N^{-9d} \ll \lambda$. By the pidgeonhole principle applied to the $O((\log N)^3)$ terms in the sum in (2.16) there is a set $E_* \subset \mathcal{Z}(N^{1/2})$, a stable (N, Q, E_*) packet f_* , a number j_* with $N^{-11d} \lesssim 2^{j_*} \lesssim 1$ and a constant C so that $2^{j_*p}N^{\frac{d+1}{2}} \# \mathcal{P}(f_*) \lesssim \# E_*$, and

meas
$$\{x \in Q : |f| > \lambda\} \lesssim (\log N)^3 \max\left(\left\{x \in Q : 2^{j^*} |f_*| > \lambda (\log N)^{-3} C^{-1}\right\}\right).$$

By Hypothesis $\mathcal{H}(p,\gamma)$ (and our initial observation that the restriction on λ in this hypothesis is superfluous) the right hand side is estimated by a constant times

$$(\log N)^3 N^{(\beta(p)+\gamma)p} (\lambda 2^{-j_*} (\log N)^{-3})^{-p} \frac{N^{(d+1)/2} \# \mathcal{P}(f_*)}{\# E_*} \le C_{\varepsilon} \lambda^{-p} N^{(\beta(p)+\gamma+\varepsilon)p},$$

where in the last step we have used the key inequality (2.18) and $||f||_{p,2;\delta} = 1$. This finishes the proof of (3.7) and thus the proposition.

4. LOCALIZATION

This section is included for expository reasons; it is essentially taken from [7], with minor modifications. The purpose is to identify, for given λ , properties of specific plate families so that the improvement in Theorem 3.4 holds.

We begin with an easy localization estimate which will later give a crucial gain in the induction on scales argument.

Lemma 4.1. Let \hat{f} be supported in Σ^{δ} and let Q be a cube of diameter $\rho\delta^{-1}$ (here $\rho \leq 1$). Then

(4.1)
$$\|\psi_Q f\|_2 \lesssim \rho^{1/2} \|f\|_2$$

Proof. By Plancherel's theorem this is equivalent with a statement about the integral operator T with kernel $K_{\delta}(\xi,\eta) = \widehat{\psi}_Q(\xi-\eta)\chi_{\Sigma^{\delta}}(\eta)$. Let $A_1 = \sup_{\xi} \int |K_{\delta}(\xi,\eta)| d\eta$ and $A_2 = \sup_{\eta} \int |K_{\delta}(\xi,\eta)| d\xi$. Then the L^2 operator norm of T is $\leq \sqrt{A_1A_2}$. Now clearly $A_2 = O(1)$ while the smaller η -support yields $A_1 = O(\rho)$. This implies the assertion. \Box

We now state a definition of localization for packets.

Definition 4.2. Let R be an N-cube and let f be an (N, R, E)-packet and $t = \delta^{\varepsilon_0}$ with $0 < \varepsilon_0 \ll 1/2$. We say that f localizes at height λ (with respect to tN cubes) if there are

subpackets f^Q of f where Q runs over tN-cubes in a grid Q, such that

(4.2)
$$\sum_{Q} \# \mathcal{P}(f^{Q}) \lessapprox \# \mathcal{P}(f)$$

and

(4.3)
$$meas\left(\{x: |f(x)| > \lambda\}\right) \lessapprox \sum_{Q} meas\left(Q \cap \{x: |f^{Q}| \gtrsim \lambda\}\right).$$

Lemma 4.3. Let p > 2 and suppose that $\mathcal{H}^{str}(p, \gamma_0)$ holds. Let f be a stable (N, R, E)-packet and assume that f localizes at height λ (with respect to $tN = \delta^{\varepsilon_0 - 1}$ cubes), and let the f^Q be as in Definition 4.2. Then for any N-cube Q_0 the estimate (3.2), i.e.

$$\left| \left\{ x \in Q_0 : |f(x)| > \lambda \right\} \right| \le C_{\gamma} \lambda^{-p} N^{(\beta(p)+\gamma)p} \frac{N^{(d+1)/2} \# \mathcal{P}(f)}{\# E}$$

holds for this f, R and λ , and for all $\gamma > \gamma_0(1 - \varepsilon_0/2)$.

Proof. For each tN cube Q, the function $t^{\frac{d-1}{4}} f^Q \psi_Q$ has Fourier transform supported in $\Sigma^{\delta/t}$, and

$$\left\|t^{\frac{d-1}{4}} f^Q \psi_Q\right\|_{\infty,2;C\delta/t} \lesssim 1.$$

Thus, we may apply $\mathcal{H}^{str}(p, \gamma_0)$, with δ replaced by δ/t , and the convexity inequality (2.7) to obtain

(4.4)

$$\max \left(\{x : |f(x)| > \lambda \} \right) \lesssim \sum_{Q} \max \left(\{ |t^{\frac{d-1}{4}} f^{Q} \psi_{Q}| \gtrsim t^{\frac{d-1}{4}} \lambda \} \right) \quad (by (4.3))$$

$$\approx \sum_{Q} (t^{\frac{d-1}{4}} \lambda)^{-p} (tN)^{(\beta(p) + \gamma_{0})p} \|t^{\frac{d-1}{4}} f^{Q} \psi_{Q}\|_{2}^{2}$$

$$= \sum_{Q} \lambda^{-p} N^{(\beta(p) + \gamma_{0})p} t^{\gamma_{0}p} t^{-1} \|f^{Q} \psi_{Q}\|_{2}^{2}.$$

By Lemma 4.1 we have $t^{-1} \| f^Q \psi_Q \|_2^2 \lesssim \| f^Q \|_2^2 \lesssim N^{\frac{d+1}{2}} \frac{\#\mathcal{P}(f^Q)}{\#E}$, and therefore, summing in Q and using (4.2) we see that (4.4) $\lesssim \lambda^{-p} N^{(\beta(p)+\gamma_0(1-\varepsilon_0))p} N^{\frac{d+1}{2}} \#\mathcal{P}(f)/\#E$, which yields the assertion.

It is now important to identify situations in which the localization conditions of Definition 4.2 apply and thus the improvement of Lemma 4.3 holds. Such a situation is described in the following proposition.

Proposition 4.4. Let $p \ge 2$ and assume $\mathcal{H}(p, \gamma_0)$. Let f be a stable (N, R, E)-packet so that for some $\lambda > 0$

(4.5)
$$\#\mathcal{P}(f) \le t^{10d} \lambda^2 \#E$$

Then f localizes at height λ to tN-cubes and hence (3.2) for any N-cube Q_0 , i.e.

$$\left| \left\{ x \in Q_0 : |f(x)| > \lambda \right\} \right| \le C \lambda^{-p} N^{(\beta(p)+\gamma)p} \frac{N^{\frac{d+1}{2}} \# \mathcal{P}(f)}{\# E}$$

holds for such f and λ , and all $\gamma > \gamma_0(1 - \varepsilon_0/2)$.

It will be clear from the proof that the exponent 10d of t in (4.5) may be substantially lowered; this however seems to be of no consequence to the range of p in Theorem 1.1.

The main geometrical argument behind Proposition 4.4 is in the following result from [7] which (in a slightly more complicated version) will be applied to $W = \{x : |f(x)| > \lambda\}$.

Lemma 4.5. Let \mathcal{P} be a family of N-plates intersecting a fixed cube of diameter CN and let W be a measurable subset of \mathbb{R}^d . Let $t = \delta^{\varepsilon_0}$ and let \mathcal{Q} be a grid of tN-cubes; we write Q = Q(x) if $x \in Q$ (this is well defined apart from a set of measure 0). For each $\pi \in \mathcal{P}$ choose a tN-cube $Q_{\pi} \in \mathcal{Q}$ for which the quantity $|W \cap \pi \cap Q|$ is maximal. For a plate π and a cube $Q \in \mathcal{Q}$ we say that $\pi \sim Q$ if Q intersects the 9-fold dilate of Q_{π} . Then

(4.6)
$$\#\{Q: \pi \sim Q\} \le 10^d \text{ for every } \pi \in \mathcal{P}$$

and for $\mathcal{I} = \int_W \sum_{\pi \in \mathcal{P}, \pi \not\sim Q(x)} \chi_{\pi}(x) dx$ there is the estimate

(4.7)
$$\mathcal{I} \lessapprox t^{-3d} |W| \sqrt{\#\mathcal{P}}$$

Proof. The condition that all plates in \mathcal{P} intersect a fixed N cube, and the separation property of the plates implies $\#\mathcal{P} = O(N^d)$.

Note that (4.6) is trivial from the definition of the relation. To prove (4.7) we first note that $\mathcal{I} = \sum_{\pi} \nu(\pi)$ where $\nu(\pi) = \left| \{ x \in W \cap \pi : Q(x) \not\sim \pi \} \right|$. We only need to bound

(4.8)
$$\widetilde{\mathcal{I}} = \sum_{\substack{\pi \in \mathcal{P}:\\ N^{-d}|W| \le \nu(\pi) \le |W|}} \nu(\pi)$$

since the analogous sum involving plates $\pi \in \mathcal{P}$ with $\nu(\pi) \leq |W| N^{-d}$ is trivially bounded by $\#\mathcal{P}|W|N^{-d} \leq |W|$.

In (4.8) there are $O(\log N)$ relevant dyadic scales between $N^{-d}|W|$ and |W| and thus we can use a pidgeonhole argument to get a subfamily $\mathcal{P}' \subset \mathcal{P}$ and a value of ν between $N^{-d}|W|$ and |W| so that

(4.9)
$$|\widetilde{\mathcal{I}}| \lesssim \nu \operatorname{card}(\mathcal{P}') \text{ and } \nu \leq \nu(\pi) \leq 2\nu \text{ for each } \pi \in \mathcal{P}'.$$

Hence for each $\pi \in \mathcal{P}'$ there is a cube $Q'(\pi)$ not related to π so that

$$|W \cap Q'(\pi) \cap \pi| \gtrsim t\nu.$$

By the maximality condition in the definition of Q_{π} we must then also have

$$|W \cap Q_{\pi} \cap \pi| \gtrsim t\nu$$
 for each $\pi \in \mathcal{P}'$

Clearly the number of all possible pairs of tN cubes is $O(t^{-2d})$. This means that we can find two tN cubes Q, Q' in Q and a subfamily \mathcal{P}'' of \mathcal{P}' which has cardinality $\gtrsim t^{2d} \# \mathcal{P}'$ so that for all $\pi \in \mathcal{P}''$ we have $Q_{\pi} = Q$ and $Q'(\pi) = Q'$.

We now fix these two tN cubes Q and Q' and consider the auxiliary expression

$$\mathcal{A} = \sum_{\pi \in \mathcal{P}''} |W \cap Q \cap \pi| |W \cap Q' \cap \pi|.$$

Then we have the lower bound

$$\mathcal{A} \gtrsim (t\nu)^2 \operatorname{card}(\mathcal{P}'') \gtrsim t^{2d+2} \operatorname{card}(\mathcal{P}')\nu^2$$

We can also derive an upper bound by rewriting

$$\mathcal{A} = \int_{W \cap Q} \int_{W \cap Q'} \sum_{\pi \in \mathcal{P}''} \chi_{\pi}(x) \chi_{\pi}(x') dx dx'$$

If $\pi \cap Q \neq \emptyset$ and $\pi \cap Q' \neq \emptyset$ for some $\pi \in \mathcal{P}''$ then π is related to Q but not to Q', thus the distance of Q to Q' is at least tN. This means that for each pair of points $(x, x') \in Q \times Q'$ there are no more than Ct^{-d+1} separated plates which go through both x and x'. Therefore the integrand $\sum_{\pi \in \mathcal{P}''} \chi_{\pi}(x) \chi_{\pi}(x)$ is $O(t^{-d+1})$, and hence we get the upper bound

$$\mathcal{A} \lesssim t^{-d+1} |W \cap Q| |W \cap Q'| \lesssim t^{-d+1} |W|^2.$$

Comparing the upper and the lower bounds for \mathcal{A} we find that

$$\nu \le t^{-d-1} (\#\mathcal{P}')^{-1/2} \sqrt{\mathcal{A}} \le t^{-(3d+1)/2} |W| (\#\mathcal{P}')^{-1/2}$$

and thus using (4.9) we obtain

$$\widetilde{\mathcal{I}} \lesssim t^{-(3d+1)/2} |W| \sqrt{\#\mathcal{P}'}.$$

Unfortunately, for technical reasons Lemma 4.5 is not quite enough since we need to replace the characteristic functions χ_{π} by the similar weights w_{π} with "Schwartz-tails"). This is fairly straightforward and requires adjustments in the definition of the relation ~ between plates and tN-cubes and some additional pidgeonholing. We state the required estimate and refer to Lemma 4.4 in the paper by Laba and Wolff [7] for the details of the proof.

Lemma 4.6. Let \mathcal{P} be a family of N-plates intersecting a fixed cube of diameter CN and let W be a measurable subset of \mathbb{R}^d . Let M_0 be a large constant and assume that the constant M in the definition of w(x) is large (see (2.3)), so that $M \geq 10M_0d$. Let $t = \delta^{\varepsilon_0}$ and let \mathcal{Q} be a grid of tN-cubes, where again we write Q = Q(x) if $x \in Q$. There is a relation \sim between plates in \mathcal{P} and tN-cubes in \mathcal{Q} so that

(4.10)
$$\#\{Q: \pi \sim Q\} \lessapprox 1 \text{ for every } \pi \in \mathcal{P}$$

and if

$$\mathfrak{W}_{\mathcal{P}}(x) = \sum_{\substack{\pi \in \mathcal{P} \\ \pi \not\sim Q(x)}} w_{\pi}(x)$$

then

$$\int_{W} \mathfrak{W}_{\mathcal{P}}(x) dx \lessapprox t^{-3d} |W| \sqrt{\#\mathcal{P}} + \delta^{M_0} |W|.$$

Proof of Proposition 4.4. We wish to apply Lemma 4.3 and therefore have to show that with $\mathcal{P} \equiv \mathcal{P}(f)$ under the assumption $\#\mathcal{P} \leq ct^{10d}\lambda^2 \#E$ the localization condition in Definition 4.2 holds.

We proceed applying Lemma 4.6 to $W = \{x : |f| \ge \lambda\}$, and let \sim be the relation between N-plates and tN-cubes from Lemma 4.6. Recall that $f(x) = (\#E)^{-1/2} \sum_{\pi \in \mathcal{P}} f_{\pi}$ with $|f_{\pi}| \le w_{\pi}$. For every tN-cube $Q \in \mathcal{Q}$ define $f^Q(x) = (\#E)^{-1/2} \sum_{\pi \sim Q} f_{\pi}$.

By condition (4.10) we have $\sum_Q \# \mathcal{P}(f^Q) \lessapprox \# \mathcal{P}(f)$, *i.e.* (4.2). Moreover with $\mathcal{P} \equiv \mathcal{P}(f)$

$$\int_{W} \mathfrak{W}_{\mathcal{P}}(x) dx \lesssim t^{-3d} |W| \sqrt{\#\mathcal{P}} \lesssim t^{-3d} |W| \sqrt{t^{10d} \lambda^2 \#E} \lesssim t^{2d} |W| \lambda \sqrt{\#E}.$$

This means that there is a subset W^* of W so that $|W^*| \ge |W|/2$ so that the pointwise bound $\mathfrak{W}_{\mathcal{P}}(x) \leq t\lambda \sqrt{\#E}$ for $x \in W^*$. Also if $x \in W^* \cap Q$ we have

$$|f(x) - f^Q(x)| = \left|\frac{1}{\sqrt{\#E}} \sum_{\pi: \pi \not\sim Q} f_\pi(x)\right| \lesssim \frac{\mathfrak{W}_{\mathcal{P}}(x)}{\sqrt{\#E}} \lesssim t\lambda$$

and hence $|f^Q(x)| \ge \lambda$ for $x \in W^* \cap Q$. This implies the localization condition (4.3).

5. A parabolic rescaling

We first note that the paraboloid in Wolff's theorem can be replaced by $\{\xi : \xi_d = c + (\xi' - a')^t A(\xi' - a')\}$ for any positive definite matrix A, by a linear transformation. We also may rotate the paraboloid in \mathbb{R}^d and obtain a similar result.

More useful is the following Lemma which is an analogue and consequence of Wolff's inequality for Fourier plates in an angular sector of angle $\sqrt{\sigma} \gg \sqrt{\delta}$ (or equivalently, for δ -Fourier plates contained in a fixed σ -Fourier plate).

Lemma 5.1. Let $\delta < \sigma < 1$ and consider a σ -plate $\Pi^{(\sigma)}$ contained in Σ^{σ} . Suppose that Hypothesis $\mathcal{H}^{str}(p,\gamma)$ holds. Then for all functions $h_k \in L^p(\mathbb{R}^d)$

$$\Big|\sum_{k:\Pi_k^{(\delta)}\subset\Pi^{(\sigma)}} P_k^{(\delta)} h_k\Big\|_p \lesssim (\sigma/\delta)^{\beta(p)+\gamma} \Big(\sum_k \|h_k\|_p^2\Big)^{1/2}.$$

16

Proof. By a rotation and translation we may assume that we are working with the standard paraboloid and the σ -plate $\Pi^{(\sigma)} = \{\xi : |\xi_i| \leq \sqrt{\sigma}, i = 1, \dots, d-1; |\xi_d| \leq \sigma\}$. Let $f_k = P_k^{(\delta)}h_k, \ L_{\sigma}(\xi) = (\sigma^{1/2}\xi', \sigma\xi_d)$ and let $f_k^{\sigma}(x) := \sigma^{-(d+1)/2}f_k(L_{\sigma}^{-1}x)$ so that $\widehat{f_k^{\sigma}}(\xi) = \widehat{f_k}(\sigma^{1/2}\xi', \sigma\xi_d)$. The functions $\widehat{f_k^{\sigma}}$ are supported in $(\delta/\sigma)^{1/2} \times \cdots \times (\delta/\sigma)^{1/2} \times \delta/\sigma$ plates tangential to the paraboloid and Hypothesis $\mathcal{H}^{str}(p, \gamma)$ yields

$$\left\|\sum_{|k| \lesssim \sqrt{\sigma/\delta}} f_k^{\sigma}\right\|_p \lesssim (\delta/\sigma)^{-\beta(p)-\gamma} \Big(\sum_k \|f_k^{\sigma}\|_p^2\Big)^{1/2}.$$

Changing variables $y = L_{\sigma}^{-1}x$ on both sides yields the assertion.

6. Proof of Theorem 3.4

Let R be an N-cube, let p > q+4/(d-1) and ε_0 be as in (2.1). We also fix $0 < \varepsilon_1 \le 10^{-2}\varepsilon_0$. Assuming that $\mathcal{H}^{str}(p,\gamma_0)$ holds we need to show for any stable (N, R, E)-packet f and any fixed N-cube Q_0 that

(6.1) meas
$$(\{x \in Q_0 : |f(x)| > \lambda\}) \le C_{\gamma} \lambda^{-p} N^{(\beta(p)+\gamma)p} N^{(d+1)/2} \frac{\#\mathcal{P}(f)}{\#E}$$

for all $\gamma > \gamma_0(1 - \varepsilon_0/4)$ and all λ in the range

(6.2)
$$N^{\frac{d-1}{4} - \frac{1}{2(p-q)}} \lesssim \lambda \lesssim N^{\frac{d-1}{4}}.$$

This will be done by localizing at a smaller scale N_1 and then using the induction hypothesis at that scale. We may without loss of generality assume that $\operatorname{dist}(R, Q_0) \leq 2N^{1+\varepsilon_1}$ (otherwise a much better inequality holds).

Let N_1 be a number with

(6.3)
$$\sqrt{N} \le N_1 \ll N;$$

we shall later see that the choice $N_1 = \sqrt{N}$ will be optimal for our proof. Set $\delta_1 = N_1^{-1}$ and let $\{\Delta\}$ be a tiling of \mathbb{R}^d by N_1 -cubes. For each such Δ let $\widetilde{\Delta}$ be a cube with same center as Δ but with sidelength equal to $5N_1^{1+\varepsilon_1}$.

Now since $\min_{x \in Q} \psi_Q(x) \ge c > 0$ with a universal constant c we have

(6.4)
$$\left| \left\{ x \in Q_0 : |f(x)| > \lambda \right\} \right| \le \sum_{\Delta : \Delta \cap Q_0 \neq \emptyset} \left| \left\{ x \in \Delta : |f\psi_{\Delta}(x)| > c\lambda \right\} \right|$$

for some constant c > 0. Given a fixed Δ , the function $f\psi_{\Delta}$ has Fourier transform supported in $\Sigma^{c\delta_1}$. Note that $f\psi_{\Delta}$ is in general not a packet. However, by Lemma 2.5, $f\psi_{\Delta}$ can be decomposed on Δ in terms of N_1 -packets: **Lemma 6.1.** Let R and Q_0 be N-cubes as above, let f be an (N, R, E)-packet and let λ be as in (6.2). Then there exists $\lambda_1 > 0$ so that for every N_1 -cube Δ which intersects Q_0 there is a plate family \mathcal{P}_{Δ} , a set $E_{\Delta} \subset \mathcal{Z}(N_1^{1/2})$, and a stable $(N_1, \widetilde{\Delta}, E_{\Delta})$ -packet f_{Δ} so that

(6.5)
$$\left|\left\{x \in Q_0 : |f(x)| > \lambda\right\}\right| \lesssim \sum_{\Delta \cap Q_0 \neq \emptyset} \left|\left\{x \in \Delta : |f_{\Delta}(x)| \ge \lambda_1\right\}\right|$$

and

(6.6)
$$\frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lesssim \frac{\lambda_1^2}{\lambda^2} \frac{\|f\psi_{\Delta}\|_2^2}{N_1^{\frac{d+1}{2}}} \lesssim \frac{\lambda_1^2}{\lambda^2} N_1^{\frac{d-1}{2}}$$

Moreover, for $2 \leq p < \infty$,

(6.7)
$$\frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lesssim \frac{\lambda_{1}^{p}}{\lambda^{p}} \frac{\|f\psi_{\Delta}\|_{p,2;\delta_{1}}^{p}}{N_{1}^{\frac{d+1}{2}}}.$$

Proof. Fix an N_1 cube Δ intersecting Q_0 and let $g \equiv g^{\Delta} = f\psi_{\Delta}$, which has Fourier transform supported in $\Sigma^{c\delta_1}$ and satisfies

$$||g^{\Delta}||_{\infty,2;c\delta_1} \lesssim (N/N_1)^{(d-1)/4} = A.$$

By Lemma 2.5 we can write

(6.8)
$$g^{\Delta}(x) = C \sum_{N_1^{-10d} \leq 2^j \leq N_1^d} 2^j \sum_{\ell=1}^{n_{j,\Delta}} g^{\Delta}_{[j,\ell]}(x) + h^{\Delta}(x), \quad x \in \Delta,$$

where

(6.9)
$$\sup_{x \in \Delta} |h_{\Delta}(x)| \le C_{\varepsilon_1} N_1^{-8d} A,$$

(6.10)
$$n_{j,\Delta} \le C_{\varepsilon_1} (\log N_1)^2;$$

moreover, for each (j, ℓ, Δ) there is a subset $E_{j,\ell}^{\Delta}$ of $\mathcal{Z}(N_1^{1/2})$ so that $g_{(j,\ell)}^{\Delta}$ is a stable $(N_1, \widetilde{\Delta}, E_{j,\ell}^{\Delta})$ -packet, with associated plate family $\mathcal{P}_{j,\ell}^{\Delta}$, which contains only N_1 -plates π with dist $(\Delta, \pi) \leq N_1^{1+\varepsilon_1}$, and

(6.11)
$$2^{jp} N_1^{\frac{d+1}{2}} \# \mathcal{P}_{j,\ell}^{\Delta} \lesssim \|f\psi_{\Delta}\|_{p,2;\delta_1}^p \# E_{j,\ell}^{\Delta}, \qquad 2 \le p < \infty.$$

As there are only $O(\log N)$ values of j and $O((\log N)^2)$ values of ℓ a simple pidgeonhole argument shows for λ in the range (6.2)

$$\begin{split} \left| \left\{ x \in \Delta : |g^{\Delta}| > c\lambda \right\} \right| &\leq \left| \left\{ x \in \Delta : \left| \sum_{N_1^{-10d} \lesssim 2^j \lesssim N_1^d} 2^j \sum_{\ell=1}^{n_{j,\Delta}} g^{\Delta}_{[j,\ell]}(x) \right| > \frac{c\lambda}{2} \right\} \right| \\ &\leq \left| \left\{ x \in \Delta : \left| 2^{j_{\Delta}} g^{\Delta}_{[j_{\Delta},\ell_{\Delta}]}(x) \right| > \frac{\lambda}{C(\log N)^3} \right\} \right| \end{split}$$

for some fixed $j_{\Delta}, \ell_{\Delta}$.

Pigeonholing once again we can find, among the $(j_{\Delta}, \ell_{\Delta})$'s, a fixed $j_*, \ell_* \in \mathbb{Z}$ (independent of Δ) so that

$$\sum_{\Delta} \left| \left\{ x \in \Delta : |g^{\Delta}| > c\lambda \right\} \right| \le C (\log N)^3 \sum_{\Delta} \left| \left\{ x \in \Delta : |2^{j_*} g^{\Delta}_{[j_*,\ell_*]}(x)| > \frac{\lambda}{C (\log N)^3} \right\} \right|$$

This means that (6.5) holds with $\lambda_1 = 2^{-j_*} \lambda / (C \log N)^3$, $f_{\Delta} = g_{[j_*, \ell_*]}^{\Delta}$, $E_{\Delta} = E_{j_*, \ell_*}^{\Delta}$ and $\mathcal{P}_{\Delta} = \mathcal{P}(g_{[j_*, \ell_*]}^{\Delta})$.

To prove (6.7) just observe that, by (6.11)

$$\frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lesssim 2^{-j_*p} N_1^{-(d+1)/2} \|f\psi_{\Delta}\|_{p,2;\delta_1}^p \approx (\log N)^{3p} \frac{\lambda_1^p}{\lambda^p N_1^{\frac{d+1}{2}}} \|f\psi_{\Delta}\|_{p,2;\delta_1}^p.$$

The first inequality in (6.6) follows from the case p = 2 of (6.7). For the second inequality in (6.6) we observe that if $f = \sum_k f_k$ with supp $\hat{f}_k \subset \Pi_k^{(\delta)}$ then the Fourier transforms $\widehat{f_k \psi_{\Delta}}$ are supported in essentially disjoint $C\sqrt{\delta}$ -cubes (here we use that $N_1 \ge \sqrt{N}$). Thus we have the crucial orthogonality estimate

(6.12)
$$\|f\psi_{\Delta}\|_{2}^{2} \lesssim \sum_{k} \|f_{k}\psi_{\Delta}\|_{2}^{2} \lesssim |\Delta| \sum_{k \in E} \|f_{k}\|_{\infty}^{2} \lesssim N_{1}^{d}$$

since f was assumed to be an (N, R, E)-packet. The second inequality in (6.6) follows. \Box

We wish to use the bound in (6.6) to argue that Proposition 4.4 can be applied to the pair (f_{Δ}, λ_1) . The next lemma, shows how to conclude the theorem for (f, λ) in such case. Basically, one rescales the problem and uses one more time the induction hypothesis at scale N/N_1 .

Lemma 6.2. Let p > 2 and assume $\mathcal{H}^{str}(p, \gamma_0)$. Let f be a (N, R, E)-packet for some N-cube R, let Q_0 be an N-cube and let λ as in (6.2). Let $\omega > 0$ and suppose that for every N_1 -cube Δ intersecting Q_0 , the quadruplet $(f_{\Delta}, \mathcal{P}_{\Delta}, E_{\Delta}, \lambda_1)$ defined in Lemma 6.1 satisfies

(6.13)
$$\left|\left\{x \in \Delta : |f_{\Delta}(x)| > \lambda_1\right\}\right| \lesssim \frac{N_1^{(\beta(p)+\omega)p}}{\lambda_1^p} N_1^{\frac{d+1}{2}} \frac{\#\mathcal{P}_{\Delta}}{\#\mathcal{E}_{\Delta}}.$$

Then, we also have

(6.14)
$$\left| \left\{ x \in Q_0 : |f(x)| > \lambda \right\} \right| \lesssim \lambda^{-p} \frac{N^{(\beta(p)+\gamma_0)p}}{N_1^{(\gamma_0-\omega)p}} N^{\frac{d+1}{2}} \frac{\#\mathcal{P}(f)}{\#E}.$$

This is saying that if we have an improvement in (6.13) with an $\omega < \gamma_0$ then we also get an improvement in our main bound (6.14).

Proof of Theorem 3.4, given Lemma 6.2. We choose $N_1 = \sqrt{N}$. We need to verify that (6.13) holds with $\omega > \gamma(1 - \varepsilon_0/2)$. Then Lemma 6.2 tells us that (6.14) holds with $\beta > \gamma(1 - \varepsilon_0/4)$ (where, say, ε_0 is chosen as in (2.1)). Proposition 4.4 says that (6.13) holds

if the plate families \mathcal{P}_{Δ} satisfy $\#\mathcal{P}_{\Delta} \lesssim t_1^{10d} \lambda_1^2 \# E_{\Delta}$ where $t_1 = \delta_1^{\varepsilon_0}$. By (6.6) and the lower bound on $\lambda, \lambda \gtrsim N^{\frac{d-1}{4} - \frac{1}{2(p-q)}}$ we have

$$\lambda_1^{-2} \frac{\# \mathcal{P}_\Delta}{\# E_\Delta} \lesssim N_1^{(d-1)/2} \lambda^{-2} = N^{(d-1)/4} \lambda^{-2} \lesssim N^{\frac{1}{p-q} - \frac{d-1}{4}},$$

and we are done if $N^{\frac{1}{p-q}-\frac{d-1}{4}} \leq t_1^{10d} = N^{-5d\varepsilon_0}$. This holds if $1/(p-q) - (d-1)/4 < -5d\varepsilon_0$ or equivalently $p > q + 4/(d-1-20d\varepsilon_0)$. Note that this inequality is implied by (2.1) (and that the precise choice of ε_0 is not important in the argument).

Proof of Lemma 6.2. By (6.5) and (6.13) we have

$$\begin{split} \left| \left\{ x \in Q_0 : |f| > \lambda \right\} \right| & \lessapprox \quad \sum_{\Delta} \left| \left\{ x \in \Delta : |f_{\Delta}| > \lambda_1 \right\} \right| \\ & \lessapprox \quad \sum_{\Delta} \lambda_1^{-p} N_1^{(\beta(p) + \omega)p} N_1^{\frac{d+1}{2}} \frac{\# \mathcal{P}_{\Delta}}{\# E_{\Delta}} \end{split}$$

Thus, the result will be established if we can show

(6.15)
$$\sum_{\Delta} N_1^{\frac{d+1}{2}} \frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lesssim \frac{\lambda_1^p}{\lambda^p} (N/N_1)^{(\beta(p)+\gamma_0)p} N^{\frac{d+1}{2}} \frac{\#\mathcal{P}(f)}{\#E}.$$

Now consider functions Ξ_l so that their Fourier transforms $\widehat{\Xi}_l$ are bump functions associated to the $\delta_1^{1/2} \times \ldots \times \delta_1^{1/2} \times \delta_1$ -plates $\Pi_l^{\delta_1}$. Then by (6.7) we have for each Δ ,

$$N_{1}^{\frac{d+1}{2}} \frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lesssim \frac{\lambda_{1}^{p}}{\lambda^{p}} \|f\psi_{\Delta}\|_{p,2;\delta_{1}}^{p} \lesssim \frac{\lambda_{1}^{p}}{\lambda^{p}} \left(\sum_{l} \|(f\psi_{\Delta}) * \Xi_{l}\|_{p}^{2}\right)^{p/2}$$
$$\lesssim \frac{\lambda_{1}^{p}}{\lambda^{p}} \left(\sum_{l} \left\|\left[\psi_{\Delta}\left(\sum_{k:\Pi_{k}^{(\delta)} \subset C\Pi_{l}^{(\delta_{1})}} f_{k}\right)\right] * \Xi_{l}\right\|_{p}^{2}\right)^{p/2} \lesssim \frac{\lambda_{1}^{p}}{\lambda^{p}} \left(\sum_{l} \left\|\psi_{\Delta}\left(\sum_{\Pi_{k}^{(\delta)} \subset C\Pi_{l}^{(\delta_{1})}} f_{k}\right)\right\|_{p}^{2}\right)^{p/2}$$

We sum in Δ and apply Minkowski's inequality to obtain

$$\begin{split} &\sum_{\Delta} N_1^{\frac{d+1}{2}} \frac{\#\mathcal{P}_{\Delta}}{\#E_{\Delta}} \lessapprox \frac{\lambda_1^p}{\lambda^p} \sum_{\Delta} \Big(\sum_l \left\| \psi_{\Delta} \Big(\sum_{\Pi_k^{(\delta)} \subset C\Pi_l^{(\delta_1)}} f_k \Big) \right\|_p^2 \Big)^{p/2} \\ &\lesssim \frac{\lambda_1^p}{\lambda^p} \Big(\sum_l \Big[\sum_{\Delta} \left\| \psi_{\Delta} \Big(\sum_{\Pi_k^{(\delta)} \subset C\Pi_l^{(\delta_1)}} f_k \Big) \right\|_p^p \Big]^{2/p} \Big)^{p/2} \lesssim \frac{\lambda_1^p}{\lambda^p} \Big(\sum_l \left\| \sum_{\Pi_k^{(\delta)} \subset C\Pi_l^{(\delta_1)}} f_k \right\|_p^2 \Big)^{p/2}. \end{split}$$

Now, we apply Hypothesis $\mathcal{H}^{\mathrm str}(p,\gamma_0)$ in the rescaled version of Lemma 5.1 and bound for each l

$$\left\|\sum_{k:\Pi_{k}^{(\delta)}\subset C\Pi_{l}^{(\delta_{1})}}f_{k}\right\|_{p} \lesssim (N/N_{1})^{\beta(p)+\gamma_{0}} \Big(\sum_{k:\Pi_{k}^{(\delta)}\subset C\Pi_{l}^{(\delta_{1})}}\|f_{k}\|_{p}^{2}\Big)^{1/2}$$

This yields, using the convexity inequality (2.7) and $||f||_{\infty,2:\delta} \leq 1$,

$$\left(\sum_{l} \left\| \sum_{\Pi_{k}^{(\delta)} \subset c\Pi_{l}^{(\delta_{1})}} f_{k} \right\|_{p}^{2} \right)^{p/2} \lesssim (N/N_{1})^{(\beta(p)+\gamma_{0})p} \left(\sum_{l} \sum_{\Pi_{k}^{(\delta)} \subset c\Pi_{l}^{(\delta_{1})}} \left\| f_{k} \right\|_{p}^{2} \right)^{p/2}$$

$$\lesssim (N/N_{1})^{(\beta(p)+\gamma_{0})p} \sum_{k} \left\| f_{k} \right\|_{2}^{2} \left(\sum_{k'} \left\| f_{k'} \right\|_{\infty}^{2} \right)^{(p-2)/2} \lesssim (N/N_{1})^{(\beta(p)+\gamma_{0})p} N^{\frac{d+1}{2}} \frac{\#\mathcal{P}(f)}{\#E},$$

d thus we get the asserted (6.15).

and thus we get the asserted (6.15).

References

- [1] D. BÉKOLLÉ, A. BONAMI, G. GARRIGÓS AND F. RICCI. Littlewood-Paley decompositions related to symmetric cones and Bergman projections in tube domains. Proc. London Math. Soc. (3) 89 (2004), 317-360.
- [2] J. BOURGAIN. Besicovitch type maximal operators and applications to Fourier analysis, Geometric and Functional analysis, 147-187.
- [3] C. FEFFERMAN. A note on spherical summation multipliers. Israel J. Math. 15 (1973), 44-52.
- [4] G. GARRIGÓS, W. SCHLAG, A. SEEGER. Improvements in Wolff's inequality for decompositions of cone multipliers.
- [5] G. GARRIGÓS, A. SEEGER, On plate decompositions for cone multipliers, to appear in Proc. Edinburgh Math. Soc.
- [6] I. LABA AND M. PRAMANIK. Wolff's inequality for hypersurfaces. Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial, 2004. Collect. Math. 2006, Vol. Extra, 293-326.
- [7] I. LABA AND T. WOLFF. A local smoothing estimate in higher dimensions. J. Anal. Math. 88 (2002), 149-171.
- [8] S. LEE. Improved bounds for Bochner-Riesz and maximal Bochner-Riesz operators. Duke Math. J. 122 (2004), no. 1, 205–232.
- [9] M. PRAMANIK AND A. SEEGER. L^p regularity of averages over curves and bounds for associated maximal operators. Amer. J. Math. 129 (2007), 61-103.
- [10] E.M. STEIN. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. 1970.
- [11] T. TAO. A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13 (2003), no. 6, 1359 - 1384.
- [12] T. TAO, A. VARGAS AND L. VEGA. A bilinear approach to the restriction and Kakeya conjectures. J. Amer. Math. Soc. 11 (1998), no. 4, 967–1000.
- [13] T. WOLFF. Local smoothing type estimates on L^p for large p. Geom. Funct. Anal. 10 (2000), 1237-1288.

G. GARRIGÓS, DEP. MATEMÁTICAS C-XV, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049 MADRID, SPAIN

E-mail address: gustavo.garrigos@uam.es

A. SEEGER, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON, WI 53706, USA

E-mail address: seeger@math.wisc.edu