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Abstract. Let m have compact support in (0,∞). For 1 < p < 2d/(d + 1), we give a

necessary and sufficient condition for the Lp
rad(Rd)-boundedness of the maximal operator

associated with the radial multiplier m(|ξ|). More generally we prove a similar result for

maximal operators associated with multipliers of modified Hankel transforms. The result

is obtained by modifying the proof of the characterization of Hankel multipliers given by

the authors in [2].

1. Introduction and statement of results

Let m ∈ L∞[0,∞), and denote by K the associated radial convolution kernel in R
d,

whose (distributional) Fourier transform is given by the identity

K̂(ξ) = m(|ξ|), ξ ∈ R
d.

Consider the usual dilation Kt = t−dK(t−1·), so that K̂t(ξ) = m(t|ξ|), and define the

convolution operator TK and the associated maximal operator T ∗
K by

TKG = K ∗ G and T ∗
KG = sup

t>0
|TKtG|,

at least for functions G ∈ S(Rd).

In [2] we gave necessary and sufficient conditions for the boundedness of TK in the

subspace of radial functions of Lp(Rd), denoted Lp
rad(R

d), for values of p in the range

1 < p < 2d
d+1 . In particular we showed that TK extends to a bounded operator on Lp

rad(R
d)

if and only if

(1.1) sup
t>0

‖Kt ∗ Φ‖Lp(Rd) < ∞

for some fixed radial (and not identically zero) Φ ∈ S(Rd).
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When the multiplier m is compactly supported in (0,∞), then the Lp
rad(R

d)-boundedness

of TK is equivalent to the simpler statement

(1.2)
∥∥K

∥∥
Lp

rad(Rd)
< ∞.

The range of p in this statement is best possible, since when p ≥ 2d
d+1 one can construct

K ∈ Lp
rad(R

d) for which K̂ is compactly supported away from the origin but is not even a

bounded function.

Yuichi Kanjin, at the 2007 Miraflores Conference on Harmonic Analysis and Orthogonal

Systems, posed the question whether one could also characterize the Lp
rad(R

d)-boundedness

of the maximal operator T ∗
K . We use the methods of [2] to prove such a result when the

multiplier m is compactly supported in (0,∞).

Theorem 1.1. Let m be an integrable function with compact support in (0,∞) and let

K = F−1
Rd [m(| · |)]. If 1 < p < 2d/(d+1) then T ∗

K extends to a bounded operator on Lp
rad(R

d)

if and only if

(1.3)
∥∥∥sup

t∈I
|Kt|

∥∥∥
Lp(Rd)

< ∞

for some fixed interval I ⋐ (0,∞).

Remark. One could ask whether the conditions in (1.1) or (1.3) do actually characterize the

boundedness of the operators TK or T ∗
K in the full space Lp(Rd). In [4] this has been shown

to be true for TK , at least for sufficiently high dimensions for each fixed p ∈ (1, 2). The

situation is different for the maximal operators T ∗
K : consider the (truncated) Bochner-Riesz

multipliers defined by

(1.4) mα(r) = χ(r)
(
1 − r2

)α

+
,

with χ ∈ C∞
c (1/2, 2) so that χ(1) = 1, and let K = F−1

Rd [mα(|·|)]. Then supt∈I |Kt| ∈ Lp(Rd)

if α > d(1/p − 1/2) − 1/2, for any I ⋐ (0,∞). However, Tao [6] showed that T ∗
K is not

bounded on Lp(Rd) if α < d(1/p − 1/2) − 1/(2p). Thus Theorem 1.1 does not extend to

general Lp-functions.

1.1. A more general formulation. As in [2], Theorem 1.1 can be formulated in the more

general setting of multipliers of (modified) Hankel (or Fourier-Bessel) transforms. We use

the notation

Bd(s) = s−
d−2
2 J d−2

2
(s) ,

where Jν stands for the usual Bessel function. Observe that, with this normalization,

Bd(s) = O(1) as s → 0, and Bd(s) = O(s−
d−1
2 ) as s → ∞.
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Lp spaces on R
+ = (0,∞) will be defined with respect to the measure µd given by

(1.5) dµd(r) = rd−1 dr.

When G(x) = f(|x|) is a radial function in L1(Rd), we can write its Fourier transform as

Ĝ(ξ) =

∫

Rd

e−iξ·xf(|x|) dx = cd

∫ ∞

0
Bd(r|ξ|) f(r) dµd(r),

where cd is a suitable positive constant. For every real number d ≥ 1 we define a (modified)

Hankel transform acting on functions in L1(µd) by

(Bdf)(ρ) =

∫ ∞

0
Bd(ρr) f(r) dµd(r).

and given m ∈ L1
loc(0,∞), the corresponding Hankel multiplier operator by

Tmf = Bd[mBdf ].

We remark that, as long as m ∈ L1
loc(0,∞), the operator Tm is well defined acting on

functions f in Bd(C
∞
c (0,∞)) which is a dense subspace of Lp(µd) when 1 < p < ∞; see e.g.

[5, Thm 4.7]. We also define the corresponding maximal operator

T ∗
mf = sup

t>0

∣∣Bd[m(t·)Bdf ]
∣∣.

Theorem 1.2. Let m ∈ L1
c(0,∞) (i.e., integrable and compactly supported in (0,∞)). If

1 < p < 2d
d+1 then T ∗

m extends as a bounded operator to Lp(µd) if and only if

(1.6)
∥∥∥ sup

t∈I

∣∣Bd[m(t·)]
∣∣
∥∥∥

Lp(µd)
< ∞

for some fixed interval I ⋐ (0,∞). Moreover, (1.6) is equivalent with

(1.7)
∥∥∥ (1 + | · |)−

d−1
2 sup

t∈I
|κt|

∥∥∥
Lp(R,eµd)

< ∞,

where κt = F−1
R

[m(t·)] and µ̃d(r) = (1 + |r|)d−1 dr.

When d is an integer and G = f(|x|), then TKG(x) = c Tmf(|x|). Thus Theorem 1.2

reduces easily to Theorem 1.1. We give the proof of the sufficiency in §3, and the necessary

conditions and some preliminary kernel estimates in §2. Finally, section 4 contains some

extensions and remarks.

2. Necessary conditions and kernel bounds

2.1. The condition (1.6). The necessity of the condition in (1.6) is easily verified. Given

an interval I ⋐ (0,∞), take a function χ ∈ C∞
c (0,∞) such that m(t·) = χm(t·), ∀ t ∈ I.

Then,

sup
t∈I

∣∣Bd[m(t·)]
∣∣ = sup

t∈I

∣∣Bd[χm(t·)]
∣∣ ≤ T ∗(Bdχ).

Taking Lp(µd) norms we see that the boundedness of T ∗ implies (1.6).
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2.2. The condition (1.7). The argument given in [2] can be easily modified to show that

(1.6) implies (1.7). We state the result separately and sketch the proof below.

Lemma 2.1. Let m ∈ L1
c(0,∞), I ⋐ (0,∞), and κt = F−1

R
[m(t·)] for t ∈ I. Then for all

1 ≤ p ≤ 2

(2.1)

∥∥∥∥∥
supt∈I |κt|

(1 + | · |)
d−1
2

∥∥∥∥∥
Lp(R,eµd)

≤ C
∥∥∥sup

t∈I

∣∣Bd[m(t·)]
∣∣
∥∥∥

Lp(µd)
,

where

(2.2) µ̃d(r) = (1 + |r|)d−1 dr,

and C is a constant depending on I and supp m.

Proof. Fix an integer N0 so that supp m(t·) ⊂ [1/N0, N0] for all t ∈ I; the constants below

may depend on this number N0. Let χ ∈ C∞
c (1/(2N0), 2N0) with χ ≡ 1 in [1/N0, N0], so

that m(t·) = χm(t·). We first claim that, for all 1 ≤ p ≤ 2,

(2.3)

∥∥∥∥ (1 + ·)−
d−1
2 sup

t∈I

∣∣B1[χBdgt]
∣∣
∥∥∥∥

Lp(eµd)

≤ C
∥∥∥sup

t∈I
|gt|

∥∥∥
Lp(µd)

,

where gt, t ∈ I, are functions so that the right hand side is finite. This is a “vector-valued”

version of the inequality in [2, (4.4)], which is obtained with exactly the same proof; namely,

the function on the left hand side of (2.3) is estimated pointwise as in [2, Corollary 3.2],

with the supt∈I taken inside the integrals (a valid operation since the kernels involved are

positive), and from here the proof is the same as in [2, p.46].

Choosing gt = Bd[m(t·)] in (2.3) and using the fact that B1 is the cosine transform, one

obtains (2.1) with κt = F−1
R

[m(t·)] replaced by ht = F−1
R

[meven(t·)], where meven denotes

the even extension of m. Since κ̂t = ĥtχ, we have

sup
t∈I

|κt| ≤
(
sup
t∈I

|ht|
)
∗ |χ̌|.

Hence, taking Lp(R, µ̃d) norms of the above quantities multiplied by (1 + |r|)−(d−1)/2, and

using the elementary Lemma 2.2 in [2] to dispense with the convolution, one controls the

left hand side of (2.1) by the same expression with ht in place of κt, therefore establishing

the result. �

2.3. Kernel bounds. Let m ∈ L1
c(0,∞). Using Fubini’s theorem we can write

Tmf(r) =

∫ ∞

0
K(r, s) f(s) dµd(s),

where K = Km is given by

(2.4) K(r, s) =

∫ ∞

0
Bd(ru) Bd(su) m(u) dµd(u), r, s > 0.
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The following estimate is shown in [2], being a crucial step in proving the sufficiency of

(1.1). We denote by κ = F−1
R

[m], where m is extended as zero outside R
+.

Lemma 2.2. Let m ∈ L1 with supp m ⊂ [1/2, 2]. Then, for every n ∈ N, there exists

Cn > 0 such that

(2.5) |K(r, s)| ≤ Cn
|κ| ∗ ωn(±r ± s)

(1 + r)
d−1
2 (1 + s)

d−1
2

, ∀ r, s > 0

where ωn(u) = (1+|u|)−n. The same estimate is valid with |K(r, s)| replaced by
∣∣∂s[K(r, s)]

∣∣.

We refer to [2, Lemma 3.1] for details about the proof. We only mention that (2.5) is

obtained from the asymptotic expansion of Bessel functions, namely

(2.6) Bd(u) = u− d−1
2

M∑

ℓ=0

cℓe
iu + dℓe

−iu

uℓ
+ u−MEM (u), u ≥ 1,

for suitable constants cℓ, dℓ, and where EM (u) is a bounded C∞ function with all its deriva-

tives bounded.

3. The proof of Theorem 1.2

The proof is very much analogous to the proof of the Lp Hankel multiplier result in [2].

Since m is fixed, we write T ∗ instead of T ∗
m (and T instead of Tm). In view of Lemma 2.1

we must show that T ∗ is bounded in Lp(µd) provided that

A(p) ≡

∥∥∥∥∥
supt∈I |κt(·)|

(1 + | · |)
d−1
2

∥∥∥∥∥
Lp(R,eµd)

< ∞,

where as before κt = F−1
R

[m(t·)]. Dilating m if necessary, we may assume that I = [1, λ]

for some λ > 1. We also fix an integer N0 so that supp m(t·) ⊂ [1/N0, N0], ∀ t ∈ I, and

a bump function φ ∈ C∞
c (1/(2N0), 2N0) with φ ≡ 1 in [1/N0, N0], so that m(t·) = φm(t·).

The constants below may depend on λ or N0.

3.1. Decomposition of T ∗. For j ∈ Z, define

T t
j f = Bd[m(λjt·)Bdf ] and T ∗

j f = sup
t∈[1,λ]

∣∣T t
j f

∣∣ ,

and set

Ljf = Bd[φ(λj ·)Bdf ].

Clearly

T ∗f ≤
(∑

j∈Z

sup
s∈[λj ,λj+1]

∣∣Bd[m(s·)Bdf ]
∣∣2

) 1
2

=
(∑

j∈Z

∣∣T ∗
j [Ljf ]

∣∣2
) 1

2
.
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As discussed in [2, p.37], the following Littlewood-Paley inequality holds
∥∥∥
(∑

j∈Z

|Ljf |
2
) 1

2

∥∥∥
Lp(µd)

≤ Cp ‖f‖Lp(µd), 1 < p < ∞;

this is well-known when d is an integer, and in general follows by standard arguments from

a Hörmander type multiplier theorem as in Gasper-Trebels [3]. Thus, to establish Theorem

1.2 it suffices to prove the inequality

(3.1)
∥∥∥
(∑

j∈Z

|T ∗
j fj |

2
) 1

2

∥∥∥
Lp(µd)

. A(p)
∥∥∥
(∑

j∈Z

|fj|
2
) 1

2

∥∥∥
Lp(µd)

for all functions fj in the dense class Bd(C
∞
c ).

As in [2, §5], we break each operator T t
j into various parts. Call Im = [λm, λm+1), and

write

T t
j f =

∑

m∈Z

T t
j [fχ

Im
] =

∑

m∈Z

[
Ht

j,mf + St
j,mf + Et

j,mf
]
,

where

Ht
j,mf = χ[λm+2,∞) T

t
j [fχ

Im
]

St
j,mf = χ[λm−2,λm+2] T

t
j [fχ

Im
]

Et
j,mf = χ(0,λm−2] T

t
j [fχ

Im
] .

Respective operators H∗
j,m,S∗

j,m, E∗
j,m are defined taking the supt∈[1,λ] of the modulus of each

of the above expressions. We shall deduce the theorem from the following three propositions.

Proposition 3.1. For j, m ∈ Z and 1 ≤ p < 2d
d+1 we have

(3.2)
∥∥H∗

j,m+jf
∥∥

Lp(µd)
. A(p) 2−|m|δ(p)

∥∥fχ
Im+j

∥∥
Lp(µd)

,

where δ(p) = d
p − d+1

2 .

In the next proposition we write, for ε ≥ 0,

B(ε) =
∥∥sup

t∈I
|κt|

∥∥
L1(R,(1+|r|)ε dr)

.

When p < 2d
d+1 , it follows easily from Hölder’s inequality that there is ε(p) > 0 such that

B(ε) . A(p) for ε < ε(p).

Proposition 3.2. For j, m ∈ Z, ε ≥ 0 and 1 ≤ p ≤ 2 we have

∥∥E∗
j,m+jf

∥∥
Lp(µd)

. B(ε) 2−|m|ε
∥∥fχ

Im+j

∥∥
Lp(µd)

.

Finally, we write I∗m = [λm−2, λm+2].
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Proposition 3.3. For every m ∈ Z, ε > 0 and 1 < p ≤ 2 we have

(3.3)
∥∥∥
(∑

j∈Z

|S∗
j,mfj |

2
) 1

2

∥∥∥
Lp(I∗m,µd)

. B(ε)
∥∥∥
(∑

j∈Z

|fj |
2
) 1

2

∥∥∥
Lp(Im,µd)

.

3.2. Proof of Propositions 3.1 and 3.2. For each j ∈ Z and t ∈ I, the kernel Kt
j(r, s)

of the operator T t
j satisfies the estimate

∣∣Kt
j(r, s)

∣∣ =
∣∣∣
∫ ∞

0
Bd(rρ) Bd(sρ) m(λjtρ) dµd(ρ)

∣∣∣(3.4)

. Cn

∑

(±,±)

λ−jd |κt| ∗ ωn(λ−j(±r ± s))

(1 + λ−jr)
d−1
2 (1 + λ−js)

d−1
2

, r, s > 0,

where ωn(u) = (1+|u|)−n and n can be chosen as large as desired. This is obtained changing

variables λjρ = u and using Lemma 2.2. Recall that supp m(t·) ⊂ [1/N0, N0], for some N0,

so that the application of the lemma produces constants depending on N0, but independent

of t ∈ I. Thus, if we denote W ∗ ≡ [supt∈I |κt|] ∗ ωn, we have

(3.5) sup
t∈I

λjd
∣∣Kt

j(λ
jr, λjs)

∣∣ .
W ∗(±r ± s)

(1 + r)
d−1
2 (1 + s)

d−1
2

.

Using this kernel estimate, Propositions 3.1 and 3.2 can be proved as in [2], with the function

W ∗(x) in place of the function Wj(x) which appears in [2, (6.2)]. For completeness, we

briefly sketch the arguments.

Proof of Proposition 3.1. Using the kernel estimate in (3.5) and Minkowski’s integral in-

equality, one easily controls the quantity
∥∥H∗

j,m+jf
∥∥

Lp(µd)
by a constant multiple of

∫

Im+j

∥∥∥
W ∗(λ−j(± · ±s))

(1 + λ−j ·)
d−1
2

∥∥∥
Lp([λm+j+2,∞),dµd(r))

λ−jd |f(s)|

(1 + λ−js)
d−1
2

dµd(s).

Changing variables λ−j(±r ± s) = u inside the norm, since r ≫ s we see that λ−jr ≈ |u|.

Performing also the change λ−js = v, the above expression becomes bounded by

∫

Im

λjd/p
∥∥∥ W ∗

(1+|·|)
d−1
2

∥∥∥
Lp(R,dµ̃d)

|f(λjv)|

(1 + v)
d−1
2

dµd(v).

Now, ‖(1+|·|)−
d−1
2 W ∗‖Lp(R,µ̃d) . A(p), since the convolution with ωn is a harmless operation

by [2, Lemma 2.2]. The remaining integral is handled with Hölder’s inequality, leading to

∥∥H∗
j,m+jf

∥∥
Lp(µd)

. A(p) λjd/p
∥∥f(λj ·)χIm

∥∥
Lp(µd)

(∫

Im

sd−1

(1+s)p′(d−1)/2
ds

)1/p′

,

from which the right hand side of (3.2) follows easily.
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Proof of Proposition 3.2. Again, we use the kernel estimate in (3.5) to write

E∗
j,m+jf(r) .

∑

(±,±)

∫ ∞

λ2r

λ−jd W ∗(λ−j(±r ± s))

[(1 + λ−jr)(1 + λ−js)](d−1)/2
χIm+j (s) |f(s)| sd−1 ds.

The range of integration is justified by the fact that, by definition of E∗
j,j+m, we have

r ≤ λm+j−2 and s ≥ λm+j . To control the Lp(µd)-norm of this operator we may use Schur’s

lemma; that is, it suffices to find some α ∈ R so that
∫ ∞

λ2r

λ−jd W ∗(λ−j(±r±s))

[(1+λ−jr)(1+λ−js)]
d−1
2

χIm+j (s) s−αp′ sd−1 ds . B′(ε) 2−ε|m| r−αp′(3.6)

∫ r/λ2

0

λ−jd W ∗(λ−j(±r±s))

[(1+λ−jr)(1+λ−js)]
d−1
2

χIm+j (s) r−αp rd−1 dr . B′(ε) 2−ε|m| s−αp ,(3.7)

where B′(ε) ≡ ‖(1+ | · |)εW ∗‖L1(R) . B(ε) (again by [2, Lemma 2.2]). The inequalities (3.6)

and (3.7) follow from straightforward pointwise estimates. Changing variables ρ = λjr and

s = λjσ we may assume that j = 0. For the first inequality it suffices to see that

(3.8)
s−αp′ rαp′ sd−1

[(1 + r)(1 + s)]
d−1
2 (1 + |r ± s|)ε

. 2−ε|m|, for λ2r ≤ s, s ∈ Im.

Since |r ± s| ≈ s, separating the cases m ≥ 0 and m ≤ 0, (3.8) is easily verified as long as

αp′ ≥ (d − 1)/2. Arguing similarly, (3.7) is implied by the pointwise estimate

(3.9)
r−αp sαp rd−1

[(1 + r)(1 + s)]
d−1
2 (1 + |r ± s|)ε

. 2−ε|m|, for λ2r ≤ s, s ∈ Im,

which again, separating into two cases according to the sign of m, it is valid as long as

αp ≤ (d − 1)/2. Thus, it suffices to choose a number α so that

d − 1

2p′
≤ α ≤

d − 1

2p
,

which is always possible when p ≤ 2.

3.3. Proof of Proposition 3.3. By definition of S∗
j,m, (3.3) follows from

(3.10)
∥∥∥
(∑

j∈Z

|T ∗
j fj |

2
) 1

2

∥∥∥
Lp(I∗m,µd)

. B(ε)
∥∥∥
(∑

j∈Z

|fj |
2
) 1

2

∥∥∥
Lp(µd)

,

for all functions fj supported in Im. When p = 2, the same Schur’s lemma argument in the

proof of Proposition 3.2 (with ε = 0) gives, for each j ∈ Z,

∥∥T ∗
j fj

∥∥
L2(I∗m,µd)

. B(0) ‖fj‖L2(µd),

where supp fj ⊂ Im. The fact that r ≈ s ∈ Im does not affect the previous proof, since

when ε = 0 we do not need to estimate the factors (1 + |r ± s|)ε. Thus, (3.10) holds for

p = 2.
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By Marcinkiewicz interpolation theorem, it suffices to prove the weak type (1,1) version of

(3.10), which in “vector-valued” notation can be written as follows: if ~f = {fj}j∈Z belongs

to the space L1
ℓ2(Im, µd), then we must show that

T(~f) ≡
{
T t

j (fj)
}

j∈Z,t∈I
∈ L1,∞

B
(I∗m, µd),

where B = ℓ2(Z; L∞(Im)). At this point one can proceed exactly as in the proof of [2, Prop.

5.3], with the crucial step now being the kernel estimate

(3.11)

∫

I∗m\(2Jν)

∣∣T(x, y) − T(x, yν)
∣∣
ℓ1(Z,L∞(Im))

dµd(x) . B(ε), y ∈ Jν .

For completeness we briefly describe the proof, and establish (3.11) at the end of the section.

Given α > 0, we consider a Calderón-Zygmund decomposition of ~f of height α/B(ε), that

is ~f = ~g +~b such that

(i) |~g(x)|ℓ2 . α/B(ε) for a.e. x ∈ Im;

(ii) there are dyadic subintervals Jν ⊂ I∗m, ν = 1, 2, . . ., with disjoint interiors so that

∞∑

ν=1

µd

(
Jν

)
.

B(ε)
α ‖~f‖L1

ℓ2
(Im,µd) ;

(iii) ~b =
∑

ν
~bν , and for each ν we have

supp ~bν ⊂ Jν ,

∫
~bν dµd = ~0 and

∫
|~bν |ℓ2 dµd . α

B(ε) µd(Jν).

Clearly, this implies

(3.12) ‖~b‖L1
ℓ2

(µd) ≤
∑

ν

‖~bν‖L1
ℓ2

(µd) . ‖~f‖L1
ℓ2

(µd) and ‖~g‖L1
ℓ2

(µd) . ‖~f‖L1
ℓ2

(µd).

From this construction and the inequality (3.10) for p = 2 we obtain

µd

{
x ∈ I∗m : |T~g|

B
> α

2

}
.

B(ε)2

α2 ‖~g‖2
L2

ℓ2
(µd) .

B(ε)
α ‖~g‖L1

ℓ2
(µd) .

B(ε)
α ‖~f‖L1

ℓ2
(µd).

In view of (ii) it suffices to show that

(3.13) µd

{
x ∈ I∗m \ [∪ν J̃ν ] : |T~b|

B
> α

2

}
.

B(ε)
α ‖~f‖L1

ℓ2
(µd),

where J̃ν denotes the interval with same center as Jν (call it yν), and twice its length. We

write T(x, y) = {Kt
j(x, y)}j,t for the B-valued kernel of T. The left hand side of (3.13) is
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handled by a standard argument (using the cancellation of ~bν):

LHS ≤
2

α

∫

I∗m\[∪ν
eJν ]

|T~b(x)|B dµd(x)

≤
2

α

∑

ν

∫

I∗m\ eJν

|T~bν(x)|B dµd(x)

=
2

α

∑

ν

∫

I∗m\ eJν

( ∑

j

[
sup
t∈I

∫

Jν

[T t
j (x, y) − T t

j (x, yν)](bν)j(y) dµd(y)
]2

) 1
2
dµd(x)

≤
2

α

∑

ν

∫

Jν

∫

I∗m\ eJν

∣∣∣T(x, y) − T(x, yν)
∣∣∣
ℓ∞(Z,L∞(Im))

dµd(x)
∣∣~bν(y)

∣∣
ℓ2

dµd(y).

Assuming the validity of (3.11), and using (3.12) above, one easily obtains (3.13).

Thus, it only remains to justify (3.11). We shall use Lemma 2.2 to control, for each fixed

j ∈ Z, the individual term

(3.14) Ij(y) ≡

∫

I∗m\ eJν

sup
t∈I

∣∣Kt
j(x, y) −Kt

j(x, yν)
∣∣ dµd(x), y ∈ Jν .

Consider first integers j ∈ Z such that λ−j |Jν | ≤ 1. We use the pointwise estimate

∣∣∣∂yK
t
j(x, y)

∣∣∣ . Cn
λ−jλ−jd |κt| ∗ ωn(λ−j(±x ± y))

(1 + λ−jx)
d−1
2 (1 + λ−jy)

d−1
2

,

which is obtained as in (3.4) applying Lemma 2.2 to λ−jd∂y[Km(t·)(λ
−jx, λ−jy)]. Since

|x| ≈ |z| ≈ λm when z ∈ Jν and x ∈ I∗m we have

Ij(y) . |y − yν |

∫

I∗m\ eJν

λ−2j

∫ 1

0
W ∗(λ−j(±x ± [yν + s(y − yν)]))ds dx

. λ−j |Jν |

∫

|u|&λ−j |Jν |
W ∗(u) du,

where in the second inequality we took out the s integral and changed variables u =

λ−j(±x ± [yν + s(y − yν)]), so that |u| & λ−j |Jν | (since x 6∈ J̃ν and yν + s(y − yν) ∈ Jν).

Therefore, for all y ∈ Jν ,

∑

j∈Z : λ−j |Jν |≤1

Ij(y) .

∫

R

|W ∗(u)| du . B(0).

On the other hand, when λ−j |Jν | ≥ 1 we directly apply the estimate in (3.5) to Kt
j(x, y)

and Kt
j(x, yν), obtaining after a similar reasoning that for all y ∈ Jν

∑

λj≤|Jν |

Ij(y) .
∑

λj≤|Jν |

∫

|u|&λ−j |Jν |
W ∗(u) du

.
∑

λj≤|Jν |

(
λ−j |Jν |)

−ε

∫

R

W ∗(u) (1 + |u|)ε du . B(ε), ∀ y ∈ Jν .
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This justifies (3.11) and completes the proof of Proposition 3.3.

3.4. Proof of (3.1). We argue as in [2, p. 50]. That is, for each m ∈ Z we control the

H∗
j,m+j terms as follows:

∥∥∥
(∑

j∈Z

|H∗
j,m+jfj |

2
) 1

2

∥∥∥
Lp(µd)

≤
(∑

j∈Z

∥∥H∗
j,m+jfj

∥∥p

Lp(µd)

) 1
p

. A(p) 2−|m|δ(p)
(∑

j∈Z

∫

Im+j

|fj|
p dµd

) 1
p
≤ A(p) 2−|m|δ(p)

∥∥∥
(∑

ℓ∈Z

|fℓ|
2
) 1

2

∥∥∥
Lp(µd)

(3.15)

where in the first inequality we used the inclusion ℓp →֒ ℓ2 (since p < 2), in the second one

Proposition 3.1, and in the last one we have majorized |fj| by the square function and then

summed the integrals over disjoint intervals.

The same reasoning, using Proposition 3.2, gives

(3.16)
∥∥∥
(∑

j∈Z

|E∗
j,m+jfj |

2
) 1

2

∥∥∥
Lp(µd)

. B(ε) 2−|m|ε
∥∥∥
(∑

j∈Z

|fj |
2
) 1

2

∥∥∥
Lp(µd)

.

Since for 1 < p < 2d
d+1 we have δ(p) > 0 and B(ε) . A(p) for some ε > 0, we can sum in

m ∈ Z the expressions in (3.15) and (3.16), obtaining the right hand side of (3.1). On the

other hand, the remaining term is controlled with Proposition 3.3, since
∥∥∥
(∑

j∈Z

∣∣∑
m∈Z

S∗
j,mfj

∣∣2 ) 1
2

∥∥∥
p

Lp(µd)
=

∑
m∈Z

∥∥∥
(∑

j∈Z

∣∣∑2
i=−1 S

∗
j,m+ifj

∣∣2 ) 1
2

∥∥∥
p

Lp(Im,µd)

.
∑

m∈Z

∥∥∥
(∑

j∈Z
|S∗

j,mfj |
2
) 1

2

∥∥∥
p

Lp(I∗m,µd)
. B(ε)p

∑
m∈Z

∥∥∥
(∑

j∈Z
|fj |

2
) 1

2

∥∥∥
p

Lp(Im,µd)
,

which yields the desired expression by disjointness of the Im’s.

4. Remarks and further comments

4.1. Weak type boundedness. One can also obtain the following characterization.

Theorem 4.1. Let m ∈ L1
c(0,∞). If 1 < p < 2d/(d + 1) then T ∗

m extends as a bounded

operator from Lp(µd) into Lp,∞(µd) if and only if

(4.1)

∥∥∥∥ sup
t∈I

∣∣Bd[m(t·)]
∣∣
∥∥∥∥

Lp,∞(µd)

< ∞

for some fixed interval I ⋐ (0,∞).

We sketch the modifications required for this case, following the strategy in [2]. Proposi-

tions 3.2 and 3.3 hold with Lp replaced by Lp,σ, for any 1 ≤ σ ≤ ∞ and 1 < p < 2; this is a

consequence of the Marcinkiewicz interpolation theorem and the present statements. The

same reasoning applies to Lemma 2.1 (this time interpolating the inequality in (2.3)). On

the other hand, the proof of Proposition 3.1 can be easily adapted to obtain the following

generalization:
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Proposition 4.2. For j, m ∈ Z, 1 < p < 2d
d+1 and 1 ≤ σ ≤ ∞ we have

∥∥H∗
j,m+jf

∥∥
Lp,σ(µd)

. A(p, σ) 2−|m|δ(p)
∥∥fχIm+j

∥∥
Lp,∞(µd)

,

where δ(p) = d
p − d+1

2 and

A(p, σ) ≡

∥∥∥∥
supt∈I |κt(r)|

1 + |r|(d−1)/2

∥∥∥∥
Lp,σ(R,eµd)

.

Using these facts, one can establish the inequality

(4.2)
∥∥∥
(∑

j∈Z

|T ∗
j fj |

2
) 1

2

∥∥∥
Lp,∞(µd)

. A(p,∞)
∥∥∥
(∑

j∈Z

|fj |
2
) 1

2

∥∥∥
Lp(µd)

(which implies Theorem 4.1) with minor modifications in the arguments presented in §3.4.

Namely, the crucial term to bound is

∥∥∥
(∑

j∈Z

|H∗
j,m+j(fj)|

2
) 1

2

∥∥∥
Lp,∞(µd)

.
(∑

j∈Z

∥∥H∗
j,m+j(fj)

∥∥p

Lp,∞(µd)

) 1
p

. A(p,∞) 2−|m|δ(p)
(∑

j∈Z

∥∥fjχIm+j

∥∥p

Lp,∞(µd)

) 1
p

≤ A(p,∞) 2−|m|δ(p)
∥∥∥
(∑

ℓ∈Z

|fℓ|
2
) 1

2

∥∥∥
Lp(µd)

,

where in the second inequality we have used Proposition 4.2 (with σ = ∞), and the first

inequality can be justified from general facts about Lorentz norms (see [2, p.50] for details).

Similar arguments for the operators E∗
j,m+j and S∗

j,m give (4.2).

Remark. We do not know whether condition (4.1) may actually imply boundedness of

T ∗
m from Lp,∞(µd) into Lp,∞(µd). It is known that this is the case for the Bochner-Riesz

multipliers mα defined in (1.4) above (see [1]).
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