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A mixed norm variant of Wolff’s inequality for paraboloids

Gustavo Garrigés and Andreas Seeger

ABSTRACT. We adapt the proof for ¢?(LP) Wolff inequalities in the case of
plate decompositions of paraboloids, to obtain stronger ¢2(LP) versions. These
are motivated by the study of Bergman projections for tube domains.

1. Introduction and statement of results

For small § > 0, let % denote a truncated d-neighborhood of the paraboloid
in R¢,
(1.1) W={e=(E8) R |Ga—|EP/2] <6, €1 <1}
Consider the usual covering of 3% by C'(61/2x @D 512 ¢ d)-plates, H,(f), subordi-

nated to a v/d-separated sequence {y;} C R4~1; namely dist(yg, ypr) > V0 if k # K/,
and

(1.2) md ={(.c)e%s : ¢ —ul<CVo}

Typically y = kV/§ for k € Z41 with |k| < 6~1/2.
In this paper we are interested in the validity of the inequality
(1.3)

1/2 ~
IS5 = ccoP@==(3012) T forall (£} with supp fi < 11,
K P k

d—1 d+1

where 5(p) = — ;p )

THEOREM 1.1. Let d > 2. Then, for all € > 0 the mized norm inequality (1.3)
holds when p > pa. =2+ 757 — d(d4—1)'

The power —f(p) — € is best possible (except perhaps for £ > 0) but the range
is not, indeed (1.3) is conjectured to hold for all p > 2 + ﬁ. The problem is
motivated by questions on the Bergman projection for tube domains over light
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180 GUSTAVO GARRIGOS AND ANDREAS SEEGER

cones [1] where a similar inequality for plate decomposition of neighborhoods of
cones plays a crucial role. This harder inequality is considered in [4].

Inequality (1.3) is a mixed norm variant of a Wolff inequality for paraboloids
which itself can be considered as a model problem simplifying the corresponding
harder problem for decompositions of cone multipliers in R*! (see [13], [7], [5], [4]).

Let a(p) == d(3— %) — 1, the standard Bochner-Riesz critical index in d dimensions.
Then Wolff’s inequality for paraboloids asserts that for all € > 0

(1.4)
H Z kap < C. o) (Z ||fk||g) 1/p, for all {fx} with supp fAk C H,(f) .
k k

As before, the power «(p) is optimal for each p (except for £ > 0), and the inequality
is conjectured to hold for all p > 2 + ﬁ. By an interpolation argument the
inequality (1.4) for some p implies the mixed norm variant (1.3) in the smaller
range p > 2(p — 1) only. On the other hand, inequality (1.4) for fixed p is implied
by (1.3) for the same p, by Holder’s inequality, since a(p) — B(p) = %(% — % .
Theorem 1.1 states that the stronger mixed norm inequality holds in the same
range as the currently known range for the Wolff inequality (1.4) (¢f. [5]), that is

forp > 2+ % — ﬁ. We also remark that the resolution of the problem for
the paraboloid is necessary for the corresponding problems for cones in R4+,

By a randomization argument it is easy to see that the conjectured range p >
2+4/(d—1) is sharp for (1.4) (and a fortiori for (1.3)). Let {rx} be the sequence
of Rademacher-functions on [0,1] and define hy by hie(€) = o(671(¢ — wy)) for
a C* function ¢ supported in {|¢| < 1/10}, and where wi, = (yg, |yx|?/2). Let
hi+(x) = ri(t)hg(x) for ¢t € [0,1]. Then the validity of Wolff’s inequality implies

that
! 1/ 1/
([ ISl ™ s oo (i)™
0 p 3

and by Fubini’s theorem and the familiar inequality for Rademacher functions ([10])

H (Z |hk|2)1/2Hp < gelp)—e ( Z ||hk||§>1/p.
’ k

This leads to 6—(4=1/4 < §=a@)—<5=(d=1)/(2P) and consequently to the restriction
p> 2t
Z 7T

Returning to (1.3), there is a square-function variant with a larger exponent,

(1.5)
(e+a(@)/2) 2)/?
< _
[ 52 ]y < et |2 )]
k k
which is known to hold in some range of ¢ < 2(d+1)/(d—1). For ¢ > 2(d+1)/(d—1)
inequality (1.5) with € = 0 is a consequence of the Stein-Tomas adjoint restriction
theorem as was shown by Bourgain [2]. In two dimensions the inequality in the
optimal range ¢ > 4, again with e = 0, is due to Fefferman [3], and the proof of the
crucial L* bound is based on the observation that in two dimensions the algebraic

v {h} : supp hy C IIY,

La(Rd)’

sums of plates H,(f) + H,(j) are essentially disjoint as (k, k') run over integers with
|k|,|+'] < 61/2. In dimensions d > 3 it is conjectured, but not known, that (1.5)
holds on L% (R%) with gy = 2d/(d — 1). Partial results in higher dimensions follow
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A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 181

from the bilinear adjoint restriction theorem of Tao [11] using arguments in [8], [5];
indeed (1.5) is known to hold for ¢ > 2+ 4/d.

By Minkowski’s inequality the square function bound (1.5) also implies the
weaker (and possibly non optimal)

1/2 —~
(16) || . Coo @42 ( S ) s supp T 11
k k

We use inequality (1.6) as a hypothesis:

DEFINITION 1.2. Suppose 2d/(d — 1) < ¢ < 2(d+1)/(d —1). We say that
Hypothesis S(2,q) holds if (1.6) holds for all € > 0.

Under this hypothesis we show

THEOREM 1.3. Suppose d > 2 and 2d/(d—1) < ¢ < 2(d+1)/(d—1) and Hypoth-
esis S(2,q) holds. Then the inequality (1.3) holds for all p > pg :==q+4/(d —1).

Theorem 1.1 follows from Theorem 1.3 since, as pointed out above, S(2,q)
holds for ¢ > 2+ 4/d. If one could prove the above square function estimate in the
optimal range ¢ > 2d/(d — 1) (and therefore S(2,¢q) in the same range) then the
range of (1.3) would improve to p > 2+6/(d — 1).

A reformulation. Let ¢ be a function in C2°(R¢~1) which is identically 1 in the
cube {& : & < 1,0 =1,...,d — 1}, and let (p be a Schwartz function on R with
compact support in (—2,2) so that (o(7) = 1 for |7| < 1. For k € Z¢~1, |k| < 6~1/2
define operators P, = P,gé) by

Pef(€) = C(67Y2 — k) Go(57 1 (Ea — 1€'12/2)) F(£)-

Note that with the choice of y, = 6'/2k the supports of the functions 13;;” are
essentially the plates Hl(f) (actually slightly expanded plates).

The operators Py, are uniformly bounded on all L? (as long as |k| < §-1/2)
and (1.3) is equivalent with the statement that for all families of LP functions {hy}

(1.7) H klgl/z thka < Cgéfﬁ(p)—a(%: Hhk||12)) 1/2.

For functions with Fourier transform supported in % we may define a norm

1/2
(18) 1o = (D IPeFIZ)
k
Note that if f =" fr with supp ﬁ C ¢ we have
1/2
(1.9) 1l ~ (D2 I12)
k

More general surfaces. Theorem 1.1 may be extended to convex surfaces with
nonvanishing Gaussian curvature, using arguments in §2 of [9]. Namely, one notes
that on sets of diameter v'/3 < 1 the surface can be approximated by paraboloids
with accuracy O(v) and uses the scaled estimate in §5 below, together with an
induction on scales argument. One could also modify the proof for paraboloids
using arguments in [6] (which apply to more general situations).
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2. Notation and basic definitions

We note that because of the appearance of ¢ in (1.3) we may assume that
p > pg = q+4/(d—1) since we can then interpolate with a trivial £2(L?) inequality
to get the result for p = py.

Throughout we fix p > pg. We also fix a positive but very small £y, which may
depend on p and ¢ and will be determined later. We remark that for the proof of
Theorem 1.3 in the range p > pg = ¢+ 4/(d — 1) the choice

(2.1) c0=1073d""(d— 1~ 4/(p— q))

is admissible. Statements involving the parameter ¢ are assumed to hold for all
0 € (0, dp), for some fixed §y < 1. For each such ¢ we set

(2.2) N=1/§ andt=6°=N*.

The constants C, ¢, ¢1, ... appearing below may depend on p, d, &g, g and also on
other constants appearing below, but will be independent of §, fx, {yx}, and pa-
rameters such as A\ or €. Otherwise we will indicate it by C., etc... By A < B we
will mean A < C' B for some C' as above, and by A 5 B we mean A < C (log N)° B,
for some C' > 0. We shall write either card(P) or #P for the cardinality of a finite
set P, and meas (A) or |A| for the Lebesgue measure of a set in R%.

Plates and plate families. A rectangular box in R of size v/N x @y xvV/N x N.
will be referred to as an N-plate. We typically denote plates in z-space by 7 and
plate families by P. We shall always assume that N-plates are essentially dual to
some T1'”). In this case we use the notation

b

|| k

to indicate that m is an N-plate, whose long side is parallel to ny = (yg, —1) =
(k\/g, —1). Observe that, for different k’s, plate directions are V/d-separated, since
so are the directions of {ny}. The integer vectors k will be taken in

Z(WN)={keZ¥" : |k| <VN,i=1,...,d —1}.

We shall also assume that families P consist only of separated plates, meaning that
for each m € P at most C; plates from P can be contained in a fixed dilate Com,
where C and Cy are fixed universal constants. This means that for fixed k, plates
7|k are essentially disjoint.

We recall that the cardinality of Z(v/N), and thus the number of essentially
different directions that plates can achieve at scale N, is approximately N =a
Finally, a o-cube A is a cube of sidelength o centered at some point of the grid ¢Z?.
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A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 183

Localizing weight functions. Given a fixed large M we let
(2.3) w(z) = (1+ af?) /2,

and given a rectangle R we denote wp = wo agl, where ag is an affine map taking
the unit cube centered at 0 to the rectangle R. Thus wg is roughly the characteristic
function of R with “Schwartz tails” (with an abuse of language as for fixed M the
function w is not a Schwartz-function).

We shall also use a fixed Schwartz function v, strictly positive in Bs(0), with
Fourier transform supported in B_1_(0), and so that 7. P2(-+n) = 1. Again
we set

(2.4) Yr=1oag".
In particular, if {A} is a tiling of R? by o-cubes with centers ca in ¢Z?, then
YA ¥R =1, where ¥a(z) = ¥((z — ca)/0).
Elementary properties of || - ||p,2:5-

LEMMA 2.1. Let 2 < p < o0 and f be supported in X°. Then
(2.5) | lloo,2:6 S N™EHD/2P £
(2.6) 1£lloe S NP Fllp,2:5,
(2.7) 1Fllp2s S NFISPNF 50

p,2;6

Proof. If § is supported in H,(f) then by Young’s inequality
lglle S N™(HHD2P g,

this yields (2.5). If f = 37 f, with fi supported in TI\") then

1 1/2 —1 1 1/2
1o S D Ikl S NF (D IA6l2) T S N5 (S 1)
k k k

which is (2.6). Inequality (2.7) follows from a corresponding interpolation inequality
for the projection operators Py, namely for ¢ =1 — 2/p,

(Siemel2)” < (S meg) ™" (Simaz) ™
k k k

This follows by convexity from the obvious cases p =2 and p = . O

We also need the following localization estimate.

LEMMA 2.2. Let f be supported in X°. Let Q = {Q} be a grid of N-cubes and
let g be as in (2.4) (so that vq is supported in [¢| < (L100N)~!). Then

1/
(2.8) (X aflszs) " S 1 lpas-
Q

Proof. Note that 17); * fis supported in ¥2°. The case p = oo is immediate
and the case p = 2 follows by orthogonality. One uses the projection operators Py
to set up an interpolation argument showing the inequality for 2 < p < oo. O
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184 GUSTAVO GARRIGOS AND ANDREAS SEEGER

Packets.

DEFINITION 2.3. (i) f is called an N-packet associated with Hgf) if it can be
written as f = ) __p fr for some family P = P, (f) of separated N-plates with
7 || k, in such a way that every fr, m € Py, satisfies

(2.9) |fr]l < 1wy and supp 7; C ¢ H,(j).

(ii) Let R be a cube of diameter > N and let E C Z(v/N). An (N, R, E)-packet f
is a function that can be written as

(2.10) f= \/—Z Y Jn

kEE m€Py,

where Py, consists of plates 7 || k& which have nonempty intersection with R, and
fr are functions so that (2.9) holds for all 7 € Py, and all £ € E. We denote by
P(f) = Ure Py the plate family of f.

(iii) For f asin (ii), we say that g is a subpacket of f if g = ﬁ D okeE Zﬂep}; frs
with P, C Py.

(iv) An (N, R, E)-packet f as in (2.10) is called stable if it satisfies

1
(2.11) E#Pk < #P < 24P, whenever k, k' € E.

Elementary properties of packets are listed in

LEMMA 2.4. Let f be an (N, Q, E)-packet. Then

(2.12) [ flloo2:6 1
(2.13) Ifllee S VH#E S N,
and, for 2 <p < oo
N 24 (f)
(2.14) 11526 < CPT'
Proof. The bounds (2.12) and (2.13) are immediate. We can use the inter-

polation inequality ||G[¢2(rr) < ||G||32/€7L2)HGH22(3:/£) to see that (2.14) follows from

the (2.12) and the case p = 2 of (2.14). Observe that ||f||§72;6 is dominated by

SIS g nl 5w

and the last expression is equal to N(HD/24P(f)/#E. O

< #E ZN“ #P

Another preparatory result concerns decompositions of functions with Fourier
support in X% into (stable) N-packets. The stability property (2.11) gives estimate
(2.18) in the following lemma (a sort of converse to (2.14)), which will be crucial
in the induction on scales argument, c¢f. Lemma 6.1 below.
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A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 185

LEMMA 2.5. Let f be supported in X0 and assume that

(2.15) [ flloc.2 < A.

Let Q be an N-cube, let 0 < € < 1, and let R be the cube of sidelength N'T¢ with
the same center as Q. Then on @ we may decompose

n

(2.16) flx) = > 2 fielz) + glz), zeQ,
4

AN-104<2i<C. A =1

for some integers n; < C-(log N)?, and where

(i) the function g satisfies
(2.17) sup |g(z)| < C.N~844;
zEQ

(ii) for each j, ¢ the function f;¢ is a stable (N, R, E;)-packet, for some subset
Ejq¢ of Z(NY?), and with associated plate family P7* containing only plates m with
dist(Q, ) < N1*¢;

(iii) for every 2 < p < oo and every j,¢ it holds
(2.18) V(NP S| Fllpais (B 0) /7.

Proof. We decompose f = 3, fi where fk is supported in HEC‘S). By a pid-
geonhole argument we may immediately reduce to the case where the k are strongly
separated, in the sense that, if k¥ and &’ occur in the sum and are different then
|k — k'| > 10d. Note that then

1z =~ (3 11212,
k

Next, we fix k, and further decompose fi as
fe = fi.
||k
We let Py, = Py r(f) be the family of all © with 7 || k£ and which intersect R. Notice
that there are at most O(N?(+9)) in Uy Py r(f).
We first discard the terms involving plates that do not intersect R. Let

(219) gcompl(l‘) :Z Z fk’d)?r

k ||k
TNR=0

Using the rapid decay of the functions w, away from 7 we get

1/2 _
lgcompillz<ca S N W oo sup (30 3 fun(@)?) 7 < CoANT 0
ze ko owlk

7Tﬂ]|~|3:0

and here M (in the definition of (2.3)) may be chosen so large that Me > 10d.

Secondly we discard terms for which 7 intersects R but || fxtr ||oo is very small.
Define

(220) gsmall(x) = Z Z fk'(/}?r
k

WEP}C,R
| fitor |l oo AN ~104
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186 GUSTAVO GARRIGOS AND ANDREAS SEEGER

As the cardinality of all plates intersecting R is O(Nd(l"'s)) we trivially get
||gsmall||L°°(Q) ,S NQdAN_lod

and if we set ¢ = gsmall + Jeompl the bound (2.17) follows.
It remains to decompose the function

(221) f — Gsmall — Ycompl = Z Z fkwgr .
k T€Pr, R
| frtmll o >AN~104
Note that || f|lee < AN@=D/4 (by (2.6) for p = 00) so that there are only O(log N)
relevant dyadic scales for the possible size of || f1)x||oo-
For each k define

(2.22) Pir={m€Prr : 2" <|frtbnlloc <27'}.
Next, for ¢ =0,1,2,..., define
(2.23) E@i,m)={ke Z(VN) : 2" <#Ppy <27}

clearly these sets are disjoint subsets of Z(v/N). Set
(2.24) Frm= NN fug?
kEE(i,m) TP

Notice that by definition the cardinalities of P}, are comparable for k € E(i,m).
If we divide F'*™ by C2™/#E(i,m), for suitably large C, then the new function
will be a stable (N, R, E(i,m)) packet.

Recall AN~19 < 02m, /#E(i,m) < AN?. Now for each j with AN~ <
C27 < AN? there are nj = O((log N)?) pairs (i, m) with

(2.25) 2971 < C2™\/#E(i,m) < 27;
for these (i,m) the functions 279 F“™ are also stable (N, R, E(i,m))-packets.

We relabel these n; functions as f; ¢, £ = 1,...,n;, the associated plate families
as P7* and the associated sets E(i,m) of directions as E;, and then obtain the

decomposition f =3 ;- 4 n-10a Sl 2 fie + g, forz € Q.
If ’F’,z’z = {7 € P?' . 7 || k} then by construction
#PH (B0 (#PL).
We use this to verify (2.18). Fix (j,¢), and with the above notation assume E; , =
E(i,m). Then we observe

Fllas > (Z ka||12)) 1/2 > (Z (Z kallJﬂﬂg)WP) 1/2

k k ||k

> (0 (3 wels) ) 2 (3 (3wl Y

kEE(i,m) mEP ', k€E(i,m) TEPT

m m 1/2 . #Pj7€ 2o 12
2 (keg(;m) (2 p#PhRN(dJrl)/Q)?/P) > (,@GZE;E (2 P#TMN(dJrl)/Q) )

2 2m(#Ej’z)1/2—1/p(#7)j,l)1/pN(d+1)/2p’

and from (2.25) we obtain (2.18). We note that (2.18) for p = oo also shows that
the sum in j in (2.16) is restricted to the range 27 < C. A. O
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A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 187

3. Equivalent formulations of the problem

We continue to assume that always p > % and that S(2,¢) holds for some

2(d+1
g €[22, 2t

DEFINITION 3.1. Given p > 2 and v > 0, we say that hypothesis H*" (p, )
holds if there exists C, > 0 so that for any § < 6y and any f = >, fi with

supp fAk C ng)

(3.1) 1l < GNP (3 15l2)
k

1/2

It is our objective to prove this ‘strong’ inequality H(p, ) for all v > 0, in the
asserted range p > g+ 4/(d — 1). We formulate a weaker condition which can be
seen as an analogue of a restricted weak type inequality.

DEFINITION 3.2. Given p > 2 and v > 0, we say that hypothesis H(p,~y) holds
if there exists C., > 0 so that for all § = N1 < §y, for all pairs of N-cubes Qo, Q},

for all E C Z(5'/?), for all stable (N, Qo, E)-packets f with plate family P(f), and
for all A € (N7 ~ %50, N*T)

(d+1)/2
(3.2) |{:z: c Q6 | f ()] > )\}‘ <O NP NB®+)p N#—E#’P(f)

PROPOSITION 3.3. Let 0 <y < ;. Then
(3.3) H'(p,y) = H(p,7) = H(p,m)

The main task in Wolff’s bootstrapping procedure will then be to prove the
following

THEOREM 3.4. Letd > 2, p > pg = ¢+ 4/(d—1) and v > 0. Let gy be
as in (2.1). If hypothesis H5" (p,vo) holds, then hypothesis H(p,~y) holds for all
7> (1= ).

Indeed, if Theorem 3.4 holds, then Proposition 3.3 together with an iteration
gives the validity of the strong type estimate H5'"(p, €) for all € > 0. The proof of
Theorem 3.4 is given in §6, after preparation in §4 and §5.

Proof of Proposition 3.3. Note that implication H*"(p,7) = H(p,7)
is immediate by Cebysev’s inequality and the convexity bound (2.7) (together
with Lemma 2.4). We now show the proof of the main implication H(p,y) =
H'" (p, 1) for y1 > .

We first establish that the restriction on A is superfluous. First, for an (N, Qo, F)
packet f we have ||f]loc < N@D/* and by decomposing into a bounded num-
ber of subpackets we may assume that ||f|. < N@ /4 In this case the set
{x : |f(x)| > A} has measure zero if A > N(@=1)/4,

Next, by Cebysev’s inequality and hypothesis S(2, q)

meas ({o 2 [/(@)] > A}) S A S CATINCEEY g1
and by Lemma 2.4, we have || f[|? ,.; < NUEFD/24P(f) /#E since f is an (N, Qo, E)-

a(q)

packet. Notice that A"IN"2 ¢ < \"PNB®@IP if )\ < NT D, Thus, un-
der S(2, q), hypothesis H(p, ) implies the inequality (3.2) for all A > 0, provided ~
is replaced by v + € for any € > 0.
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188 GUSTAVO GARRIGOS AND ANDREAS SEEGER

We now argue that assuming H(p, ) it suffices to show

1/p
(3.4) (/Q/ F@)Pda) < CNPO

for all ¢ > 0. Indeed once (3.4) is shown uniformly for all cubes we choose a
grid Q of N-cubes and decompose f = 3~ ¢ f. Notice that [[¢q fll2:25 < IIf
If Q,Q € Q for any M; > 0 then we use the estimate

183 oo @ < C(M) (1 + dist(Q, Q")) ™| b -

From this it is straightforward to deduce (with N°Q denoting the cube dilated by
N¢ with respect to its center) that

(3] X2 rwel ;(Q,))”” S (S bl yegy)  + COM AN 1],
Q' QeQ Q

1/p _ Mae
<(X X Welgy) OOz N fl]
Q Q'

dist(Q,Q) SN F/34

|p72;5-

We apply (3.4) to ¢g f and cubes Q' with distance < N1+€/2d 6 () and estimate
the first term on the right hand side by a constant times

1/p
(3.5) NBP)+r+e ( Z I fvo Hz,z;zé) < NBP)+r+e I1f]
Q

p,2;0-

For the last estimate we have used Lemma 2.2.
We now proceed to show (3.4). To do this we may assume

(3.6) 1fllp,2:5 = 1.
Fix an N-cube Q. Then

||f||]£p(Q) 5p22€pmeas ({z €@ :|f] >29).
¢

By (3.6) and (2.6) for p = oo we have that | f|jec < N(@~1/4 50 that the set
where |f| > 2¢ is empty when 2¢ > N(@=1D/4 Moreover, as the measure of Q is
O(NY) we have

Z 2P meas {zeqQ:|fl> 25}) < N,
20< N
thus only the O(log N) terms with N~¢ < 2¢ < N have to be estimated.
This means that it suffices to show, for N=% < A\ < N¢,
(3.7) meas ({z € Q:|f|>A}) ATPNB@Fep,

¢f. the normalization (3.6). This normalization (together with (2.5)) also implies
[ flloo,2:s < N~(@HD/2P. We now use the decomposition in Lemma 2.5 with A ~
N—(@+1/2p  The function g in (2.16) is then < N~ < X. By the pidgeonhole
principle applied to the O((log N)3) terms in the sum in (2.16) there is a set F, C
Z(N'?), a stable (N, Q, E,) packet f,, a number j, with N~'¢ < 27+ <1 and a
constant C' so that 2-P N “F* #P(f,) < #E,, and

meas {z € Q : |f| > \} < (log N)*meas ({x €eQ:2|f] > )\(logN)’?’C’l}).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 189

By Hypothesis H(p,~) (and our initial observation that the restriction on X in this
hypothesis is superfluous) the right hand side is estimated by a constant times

d+1)/2
(log N)? NB@FNP (X973~ (log N)~3) P N ;;E#P(f*) < C A PNB@+tr+e)p
where in the last step we have used the key inequality (2.18) and || f||,2;6 = 1. This
finishes the proof of (3.7) and thus the proposition. O

4. Localization

This section is included for expository reasons; it is essentially taken from [7],
with minor modifications. The purpose is to identify, for given A, properties of
specific plate families so that the improvement in Theorem 3.4 holds.

We begin with an easy localization estimate which will later give a crucial gain
in the induction on scales argument.

LEMMA 4.1. Let f be supported in X° and let Q be a cube of diameter pd~—*
(here p < 1). Then

(4.1) lvafll2 < o' /2112

Proof. By Plancherel’s theorem this is equivalent with a statement about the
integral operator T with kernel Ks(&, 1) = ¥o(€ — n)xss(n). Let

A =sup/|K5(§,77)|d77 and Ao ZSUP/|K6(§777)|CZ§-
13 n

Then the L? operator norm of T is < \/A;A;. Now clearly A, = O(1) while the
smaller n-support yields A; = O(p). This implies the assertion. O

We now state a definition of localization for packets.

DEFINITION 4.2. Let R be an N-cube and let f be an (N, R, E)-packet and
t = 6% with 0 < g9 < 1/2. We say that f localizes at height A (with respect to
tN cubes) if there are subpackets f9 of f where Q runs over tN-cubes in a grid Q,
such that

(4.2) S #P(fO) S #P(f)
Q

and

(4.3) meas ({z : |f(z)| > A\}) £ Zmeas (Q@N{z:|f 2 A}).
Q

LEMMA 4.3. Let p > 2 and suppose that HS" (p,vo) holds. Let f be a stable
(N, R, E)-packet and assume that f localizes at height \ (with respect to tN = §50~1
cubes), and let the f be as in Definition 4.2. Then for any N-cube Qq the estimate
(3.2), ie.

NUHD/24p(f)

Hx €Qo: |f(2)] > )\}| < C NP NB@+)p 75

holds for this f, R and X\, and for all v > vo(1 — &¢/2).
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Proof. For each tN cube @, the function 5 wiQ has Fourier transform
supported in 29/, and

d—1
”t T wiQHooQ;Cé/t Sl

Thus, we may apply H*"(p,70), with § replaced by §/t, and the convexity
inequality (2.7) to obtain

meas ({o: |f@)] > A}) 5 3 meas ({17 fol 2 tTAY)  (by (4.3))
Q
S DTN TN IO |5 g3
Q
(4.4) = Z)\*pN(ﬁ(pHvo)ptvoplede,Q”g.
Q

By Lemma 4.1 we have t 71 f@ug|12 < |93 < N %};Q), and therefore, sum-
ming in Q and using (4.2) we see that (4.4) SA~P NB@ 00—l NG 4P (f) /#E,
O

which yields the assertion.

It is now important to identify situations in which the localization conditions
of Definition 4.2 apply and thus the improvement of Lemma 4.3 holds. Such a
situation is described in the following proposition.

PROPOSITION 4.4. Let p > 2 and assume H(p, o). Let f be a stable (N, R, E)-
packet so that for some A > 0

(4.5) #P(f) < t1NTHE.
Then f localizes at height A to tN-cubes and hence (3.2) for any N-cube Qp, i.e.
d+1
{z € Qo:|f(z)] > A} < CA P NOEDP N 2#?‘27’”)

holds for such f and A, and all v > vo(1 — £0/2).

It will be clear from the proof that the exponent 10d of ¢ in (4.5) may be
substantially lowered; this however seems to be of no consequence to the range of
p in Theorem 1.1.

The main geometrical argument behind Proposition 4.4 is in the following result
from [7] which (in a slightly more complicated version) will be applied to W = {z :

[f (@) > A}

LEMMA 4.5. Let P be a family of N -plates intersecting a fized cube of diameter
CN and let W be a measurable subset of R, Let t = 60 and let Q be a grid of
tN-cubes; we write Q@ = Q(z) if v € Q (this is well defined apart from a set of
measure 0). For each m € P choose a tN-cube Qr € Q for which the quantity
[W N7 N Q)| is mazimal. For a plate 7 and a cube Q € Q we say that T ~ Q if Q
intersects the 9-fold dilate of Q.. Then

(4.6) #{Q: 7w~ QY <10 for every T € P
and for T = [, D oreP rpQx) Xn(@)dz there is the estimate
(4.7) TSt 3HWI/#P.
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Proof. The condition that all plates in P intersect a fixed N cube, and the
separation property of the plates implies #P = O(NY).

Note that (4.6) is trivial from the definition of the relation. To prove (4.7) we
first note that Z = >~ _ v(w) where v(r) = ‘{x eWnm:Q(x) £ w}|. We only need
to bound
(4.8) 7= > v(m)

TEP:
N™HW|<v(m)<|W|

since the analogous sum involving plates 7 € P with v(7) < [W|N~? is trivially
bounded by #P|W|N~¢ < |W|.
In (4.8) there are O(log N) relevant dyadic scales between N~¢|W| and |W|

and thus we can use a pidgeonhole argument to get a subfamily P’ C P and a value
of v between N~4|W| and |W| so that

(4.9) IZ| Sveard(P') and v <wv(m) <2v for each w € P
Hence for each m € P’ there is a cube Q'(7) not related to  so that
[WNnQ'(r)Nw| 2 tv.
By the maximality condition in the definition of @), we must then also have
[WNQ,Nn| >ty for each m € P'.

Clearly the number of all possible pairs of tN cubes is O(t~2?). This means
that we can find two tN cubes Q,Q’ in Q and a subfamily P” of P’ which has
cardinality > t2¢#7P’ so that for all 7 € P” we have Q, = Q and Q' (1) = Q'.

We now fix these two tIN cubes Q and Q' and consider the auxiliary expression

A= [WnQna|wnQ nnl.
TeP!

Then we have the lower bound
A > (tv)2card(P") 2 27 2card (P)v?,
We can also derive an upper bound by rewriting

Az/wmQ /WmQ' Z Xr (%) Xr (2 dzdz’

TeP’

IfrNQ #0and 1 NQ" # D for some m € P’ then 7 is related to Q but not to Q’,
thus the distance of Q to Q' is at least t/N. This means that for each pair of points
(x,2') € Q x Q' there are no more than Ct~9*! separated plates which go through
both z and 2’. Therefore the integrand Y p, Xx () Xx(2) is O(t~%*1), and hence
we get the upper bound

ASEFWAQIW N Q| S - W,
Comparing the upper and the lower bounds for A we find that
v < tfdfl(#:P/)fl/2\/J_4 < t7(3d+1)/2|W|(#fP/)71/2
and thus using (4.9) we obtain

AR VAT
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Unfortunately, for technical reasons Lemma 4.5 is not quite enough since we
need to replace the characteristic functions x, by the similar weights w, with
“Schwartz-tails”). This is fairly straightforward and requires adjustments in the
definition of the relation ~ between plates and tN-cubes and some additional pid-
geonholing. We state the required estimate and refer to Lemma 4.4 in the paper
by Laba and Wolff [7] for the details of the proof.

LEMMA 4.6. Let P be a family of N-plates intersecting a fized cube of diameter
CN and let W be a measurable subset of RY. Let My be a large constant and
assume that the constant M in the definition of w(zx) is large (see (2.3)), so that
M > 10Myd. Lett = §°° and let Q be a grid of tN-cubes, where again we write
Q = Q=) if x € Q. There is a relation ~ between plates in P and tN-cubes in Q
so that

(4.10) #{Q:m~Q} Z1 for every m € P
and if
Wo) = Y wel)
TEP
T2Q(x)

then
/ Wp(v)de St 3UW|\/H#P + sMo|w|.
w

Proof of Proposition 4.4. We wish to apply Lemma 4.3 and therefore have
to show that with P = P(f) under the assumption #P < ct'%\2#E the localiza-
tion condition in Definition 4.2 holds.

We proceed applying Lemma 4.6 to W = {z : |f| > A}, and let ~ be the
relation between N-plates and tN-cubes from Lemma 4.6. Recall that f(z) =
(#E)" Y23 cp fr with |fz| S wr. For every tN-cube @ € Q define f9(z) =
(HE) V2N g fr

By condition (4.10) we have -, #P(f9) < #P(f), i.e. (4.2). Moreover with
P="P(f)

/ Wp(v)de St 3UYWVH#P S 3N WV0ANHE < 29[ WIA/#E.
w

This means that there is a subset W* of W so that |[W*| > |W|/2 so that the
pointwise bound p(x) S tAVF#E for x € W*. Also if € W* N Q we have

)l W ()
F(@) - fP(@)| = ]mﬂ%fﬂm] S~y St

and hence |f9(x)] > X for z € W* N Q. This implies the localization condition
(4.3). O

5. A parabolic rescaling

We first note that the paraboloid in Wolft’s theorem can be replaced by {£ : {4 =
c+ (¢ — a’)tA(ﬁ’—a')} for any positive definite matrix A, by a linear transformation.
We also may rotate the paraboloid in R? and obtain a similar result.
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More useful is the following Lemma which is an analogue and consequence of
Wolff’s inequality for Fourier plates in an angular sector of angle /o > v/ (or
equivalently, for é-Fourier plates contained in a fixed o-Fourier plate).

LEMMA 5.1. Let § < 0 < 1 and consider a o-plate 11°) contained in %°.
Suppose that Hypothesis H*'" (p,~) holds. Then for all functions hy € LP(R?)

| = Ao e (Sime)

kI CTI()
Proof. By a rotation and translation we may assume that we are working with
the standard paraboloid and the o-plate TI(?) = {¢ : || < Vo, i =1,...,d — 1;
€a] < o} Let fr=P" hy, Ly (€)=(c"/2¢",0&4) and let fg (x) := o~ (HHD/2f, (L 1x)
so that }E(f) = ﬁ(almf’, 0&4). The functions j"k; are supported in (§/0)1/2 x --- x
(8/0)Y/? x & /o plates tangential to the paraboloid and Hypothesis 5" (p, v) yields

| lk;mfz 5 <6/a>—5<1’>—7(; 1712)

Changing variables y = Lz on both sides yields the assertion. O

1/2

6. Proof of Theorem 3.4

Let R be an N-cube, let p > ¢+ 4/(d — 1) and &g be as in (2.1). We also fix
0 < e; < 1072g¢. Assuming that H*!"(p, o) holds we need to show for any stable
(N, R, E)-packet f and any fixed N-cube Qo that

(61) meas ({.’L‘ c Q() . |f($)| > )\}) < C’Y)\_PN(ﬁ(p)+’Y)PN(d+1)/2 #;:éf)

for all v > 49(1 — g0/4) and all A in the range

(6.2) NTTmm A SN

This will be done by localizing at a smaller scale N7 and then using the induc-
tion hypothesis at that scale. We may without loss of generality assume that
dist(R, Qo) < 2N1*é1 (otherwise a much better inequality holds).

Let N7 be a number with

(6.3) VN < Ny < N;

we shall later see that the choice Ny = v/N will be optimal for our proof. Set
0 = Nl_1 and let {A} be a tiling of R? by Nj-cubes. For each such A let A be a
cube with same center as A but with sidelength equal to 5N <.

Now since mingeq ¥q(x) > ¢ > 0 with a universal constant ¢ we have

(64) |{z€Qo : |f(x)]>)} < Y {zea: [fval@)] > A}
A i ANQo#D

for some constant ¢ > 0. Given a fixed A, the function fia has Fourier trans-
form supported in £, Note that fia is in general not a packet. However, by
Lemma 2.5, fia can be decomposed on A in terms of Nj-packets:
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LEMMA 6.1. Let R and Qo be N-cubes as above, let f be an (N, R, E)-packet
and let X be as in (6.2). Then there exists Ay > 0 so that for every Ni-cube A

which intersects Qg there is a plate family Pa, a set Ea C Z(Nll/Q), and a stable
(N1, A, En)-packet fa so that

(6.5) HzeQo : If@|>AM 5 D, Heea: |fa@)|>M}
ANQo#D

and

#Pa < A [1fall3

2 2N
#E N)\ L )\
A \1

(6.6)

Moreover, for 2 < p < o0,

(6.7) #Pa < AT ||f7/JA||Z,2;61.
#Ex © A
1

Proof. Fix an N; cube A intersecting Qo and let g = ¢® = fia, which has
Fourier transform supported in £ and satisfies
9% loo,2508, S (N/Np) D/ = A,

By Lemma 2.5 we can write

NG A

(6.8) Play=c > 229[]@ ) + B2 (x), zeA,

Ny 104<2i <N =

where

(6.9) sup [ha (@)] < Ce, N> 4,
(IS

(6.10) nja < Ce, (log N1)?;

moreover, for each (j,¢,A) there is a subset EA[ of Z(N; 1/2 ) so that g@ ¢ s a

stable (IVy, A, Ej’e)—packet, with associated plate family PM, which contains only
Ni-plates 7 with dist(A, 7) < N; T and

o dtl
(6.11) VPN, T #PY SfYalll g, #Ery  2<p < oo

As there are only O(log N) values of j and O((log N)?) values of £ a simple pid-
geonhole argument shows for A in the range (6.2)

‘{IEA o lg® >c)\}’ < ‘{CL’EA : ’ZN 10d<2]<Nd2 Z? fg?z CA}‘

< \{z €A 2290 ()| > W}‘

for some fixed ja,lA.
Pigeonholing once again we can find, among the (ja,?a)’s, a fixed ji, l, € Z
(independent of A) so that

Z’{x eA: g8 > c)\}‘ < C(logN)?’Z‘{x eA: |2j*g§*ye*](x)| > 70(1021\,)3}‘.
A A

This means that (6.5) holds with \; = 277-)\/(Clog N)3, fa = g@M 0y Ba= ES .
and Pa = ’P(g@mé*]).
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To prove (6.7) just observe that, by (6.11)

#Pa P AP
T2 < o7iP N, (d+1)/2||fwAHp S (logN)3p 1@
#E P,2;01

A )\le 2

Ifallp 2,

The first inequality in (6.6) follows from the case p = 2 of (6.7). For the second
inequality in (6.6) we observe that if f = ", fi with supp ﬁc C H,(f) then the
Fourier transforms m are supported in essentially disjoint C'v/d-cubes (here we
use that Ny > +/N). Thus we have the crucial orthogonality estimate

(6.12) IFealls S D Ifsvalls S 1AL Ifellé S N
k

keE

since f was assumed to be an (N, R, E)-packet. The second inequality in (6.6)
follows. O

We wish to use the bound in (6.6) to argue that Proposition 4.4 can be applied
to the pair (fa,A1). The next lemma, shows how to conclude the theorem for
(f,A) in such case. Basically, one rescales the problem and uses one more time the
induction hypothesis at scale N/Nj.

LEMMA 6.2. Let p > 2 and assume H" (p, o). Let f be a (N, R, E)-packet for
some N-cube R, let Qo be an N-cube and let A as in (6.2). Let w > 0 and suppose
that for every Ni-cube A intersecting Qo, the quadruplet (fa,Pa, Ea, 1) defined
in Lemma 6.1 satisfies

N @+
A

d+1
2

N

IS

Pa
#EA

(6.13) ’{xGA s fal@)] >N }‘ =

Then, we also have

. N([z(p)ﬂ)o)p N #p(f)'
Nl“/o P #E

(6.14) {zeQo: |f@)]>A} S A

This is saying that if we have an improvement in (6.13) with an w < 7y then
we also get an improvement in our main bound (6.14).

Proof of Theorem 3.4, given Lemma 6.2. We choose N; = v/N. We need to
verify that (6.13) holds with w > v(1 —€0/2). Then Lemma 6.2 tells us that (6.14)
holds with 8 > (1 — g9/4) (where, say, ¢ is chosen as in (2.1)). Proposition 4.4
says that (6.13) holds if the plate families Pa satisfy #Pa < t199) 24 EA where

~

t; = 45°. By (6.6) and the lower bound on A, A > N“F ~2=9 we have

#Pa
#EA

1 d—1

ATRIEEA < ND/2) -2 N(-D/4y-2 < N T

and we are done if N77a~ "5 < 104 = N=5d=0_ This holds if 1/(p—q) — (d—1)/4 <
—5deg or equivalently p > g+4/(d—1—20deo). Note that this inequality is implied
by (2.1) (and that the precise choice of &g is not important in the argument).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



196 GUSTAVO GARRIGOS AND ANDREAS SEEGER

Proof of Lemma 6.2. By (6. d (6.13) we have

5) an
{zeQo : IfI>A} = Z|{xeA: \fal > A1 Y

1 #Pa
< AT pN(ﬁ(p)wLw)pN .
S 2N T Vs
Thus, the result will be established if we can show
s P N s #PUf)
6.15 N, 2 < ZL (N/N B +Fv0)r N )
615) N I S5 (N o

A

Now consider functions Z; so that their Fourier transforms =; are bump func-

tions associated to the 61/2 . X 5i/2 x 01-plates H?l. Then by (6.7) we have for
each A,
N AT N el S 5 (Slres =i 3"
i— (Sl = w)l-=l)”
! k) comy’ 8
2\ p/2
(Sl 2 w))™
H(‘”ccn(‘;l)

We sum in A and apply Minkowski’s inequality to obtain

SRR (e X sl

H(é)ccn(‘sl
p12/p\P/2
SR(E[Sha( = ")
n® con® P
D p/2
SV(ZH X al)”
bon®cen

Now, we apply Hypothesis H5!"(p, 7o) in the rescaled version of Lemma 5.1 and
bound for each [

1/2
| X s s@mypere( 3 aR)
k1l con!® k11 conior

This yields, using the convexity inequality (2.7) and || f||cc,2:6 S 1,

(Z H ka ) < (N/Np) B+l (Z Z kaHf,)p/

1 c o) 1 c 1)
(p—2)/2
S (Ve 3 kaHQ(Z 17112,
L #P(f)
(N/N;)B@)+r0)p N #
(N/V) 79,
and thus we get the asserted (6.15). O
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