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A mixed norm variant of Wolff’s inequality for paraboloids

Gustavo Garrigós and Andreas Seeger

Abstract. We adapt the proof for �p(Lp) Wolff inequalities in the case of
plate decompositions of paraboloids, to obtain stronger �2(Lp) versions. These
are motivated by the study of Bergman projections for tube domains.

1. Introduction and statement of results

For small δ > 0, let Σδ denote a truncated δneighborhood of the paraboloid
in Rd,

(1.1) Σδ ≡
�
ξ = (ξ�, ξd) ∈ Rd :

�
�ξd − |ξ�|2/2

�
� ≤ δ, |ξ�| ≤ 1

�
.

Consider the usual covering of Σδ by C(δ1/2×
(d−1)
. . . ×δ1/2×δ)plates, Π

(δ)
k , subordi

nated to a
√
δseparated sequence {yk} ⊂ Rd−1; namely dist(yk, yk�) ≥

√
δ if k �= k�,

and

(1.2) Π
(δ)
k =

�
(ξ�, ξd) ∈ Σδ :

�
�ξ� − yk

�
� ≤ C �

√
δ
�
.

Typically yk = k
√

δ for k ∈ Zd−1 with |k| ≤ δ−1/2.
In this paper we are interested in the validity of the inequality

(1.3)
�
�
�
�

k

fk

�
�
�
p
≤ Cε δ

−β(p)−ε
��

k

�fk�
2
p

�1/2
, for all {fk} with supp �fk ⊂ Π

(δ)
k ,

where β(p) =
d− 1

4
−

d + 1

2p
.

Theorem 1.1. Let d ≥ 2. Then, for all ε > 0 the mixed norm inequality (1.3)
holds when p ≥ pd,∗ = 2 + 8

d−1 −
4

d(d−1) .

The power −β(p)− ε is best possible (except perhaps for ε > 0) but the range
is not, indeed (1.3) is conjectured to hold for all p ≥ 2 + 4

d−1 . The problem is
motivated by questions on the Bergman projection for tube domains over light
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cones [1] where a similar inequality for plate decomposition of neighborhoods of
cones plays a crucial role. This harder inequality is considered in [4].

Inequality (1.3) is a mixed norm variant of a Wolff inequality for paraboloids
which itself can be considered as a model problem simplifying the corresponding
harder problem for decompositions of cone multipliers in Rd+1 (see [13], [7], [5], [4]).
Let α(p) := d( 12−

1
p )−

1
2 , the standard BochnerRiesz critical index in d dimensions.

Then Wolff’s inequality for paraboloids asserts that for all ε > 0

�
�
�
�

k

fk

�
�
�
p
≤ Cε δ

−α(p)−ε
��

k

�fk�
p
p

�1/p
, for all {fk} with supp �fk ⊂ Π

(δ)
k .

(1.4)

As before, the power α(p) is optimal for each p (except for ε > 0), and the inequality
is conjectured to hold for all p > 2 + 4

d−1 . By an interpolation argument the

inequality (1.4) for some �p implies the mixed norm variant (1.3) in the smaller
range p > 2(�p− 1) only. On the other hand, inequality (1.4) for fixed p is implied
by (1.3) for the same p, by Hölder’s inequality, since α(p) − β(p) = d−1

2 ( 12 −
1
p ).

Theorem 1.1 states that the stronger mixed norm inequality holds in the same
range as the currently known range for the Wolff inequality (1.4) (cf. [5]), that is
for p ≥ 2 + 8

d−1 −
4

d(d−1) . We also remark that the resolution of the problem for

the paraboloid is necessary for the corresponding problems for cones in Rd+1.
By a randomization argument it is easy to see that the conjectured range p ≥

2 + 4/(d− 1) is sharp for (1.4) (and a fortiori for (1.3)). Let {rk} be the sequence

of Rademacherfunctions on [0, 1] and define hk by �hk(ξ) = ϕ(δ−1(ξ − ωk)) for
a C∞ function ϕ supported in {|ξ| ≤ 1/10}, and where ωk = (yk, |yk|

2/2). Let
hk,t(x) = rk(t)hk(x) for t ∈ [0, 1]. Then the validity of Wolff’s inequality implies
that

�� 1

0

�
�
�
�

hk,t

�
�
�
p

p
dt
�1/p

� δ−α(p)+�
��

k

�hk�
p
p

�1/p

and by Fubini’s theorem and the familiar inequality for Rademacher functions ([10])
�
�
�
��

k

|hk|
2
�1/2��

�
p
� δ−α(p)−�

��

k

�hk�
p
p

�1/p
.

This leads to δ−(d−1)/4 � δ−α(p)−εδ−(d−1)/(2p) and consequently to the restriction

p ≥ 2(d+1)
d−1 .

Returning to (1.3), there is a squarefunction variant with a larger exponent,
(1.5)
�
�
�
�

k

hk

�
�
�
Lq(Rd)

≤Cq,εδ
−(ε+α(q)/2)

�
�
�
��

k

|hk|
2
�1/2��

�
Lq(Rd)

, ∀ {hk} : supp �hk ⊂ Π
(δ)
k ,

which is known to hold in some range of q ≤ 2(d+1)/(d−1). For q ≥ 2(d+1)/(d−1)
inequality (1.5) with ε = 0 is a consequence of the SteinTomas adjoint restriction
theorem as was shown by Bourgain [2]. In two dimensions the inequality in the
optimal range q ≥ 4, again with ε = 0, is due to Fefferman [3], and the proof of the
crucial L4 bound is based on the observation that in two dimensions the algebraic

sums of plates Π
(δ)
k + Π

(δ)
k� are essentially disjoint as (k, k�) run over integers with

|k|, |k�| � δ−1/2. In dimensions d ≥ 3 it is conjectured, but not known, that (1.5)
holds on Lq0(Rd) with q0 = 2d/(d− 1). Partial results in higher dimensions follow
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from the bilinear adjoint restriction theorem of Tao [11] using arguments in [8], [5];
indeed (1.5) is known to hold for q > 2 + 4/d.

By Minkowski’s inequality the square function bound (1.5) also implies the
weaker (and possibly non optimal)

(1.6)
�
�
�
�

k

hk

�
�
�
Lq(Rd)

≤ Cεδ
−(α(q)+ε)/2

��

k

�
�hk

�
�2
Lq(Rd)

�1/2
, supp �hk ⊂ Π

(δ)
k .

We use inequality (1.6) as a hypothesis:

Definition 1.2. Suppose 2d/(d − 1) < q ≤ 2(d + 1)/(d − 1). We say that
Hypothesis S(2, q) holds if (1.6) holds for all ε > 0.

Under this hypothesis we show

Theorem 1.3. Suppose d ≥ 2 and 2d/(d−1) < q ≤ 2(d+1)/(d−1) and Hypoth
esis S(2, q) holds. Then the inequality (1.3) holds for all p ≥ pd := q + 4/(d− 1).

Theorem 1.1 follows from Theorem 1.3 since, as pointed out above, S(2, q)
holds for q > 2+ 4/d. If one could prove the above square function estimate in the
optimal range q > 2d/(d − 1) (and therefore S(2, q) in the same range) then the
range of (1.3) would improve to p ≥ 2 + 6/(d− 1).

A reformulation. Let ζ be a function in C∞
c (Rd−1) which is identically 1 in the

cube {ξ� : |ξi| ≤ 1, i = 1, . . . , d − 1}, and let ζ0 be a Schwartz function on R with
compact support in (−2, 2) so that ζ0(τ ) = 1 for |τ | ≤ 1. For k ∈ Zd−1, |k| � δ−1/2

define operators Pk = P
(δ)
k by

�Pkf(ξ) = ζ(δ−1/2ξ� − k) ζ0
�
δ−1(ξd − |ξ�|2/2)

�
�f(ξ).

Note that with the choice of yk = δ1/2k the supports of the functions �Pkf are

essentially the plates Π
(δ)
k (actually slightly expanded plates).

The operators Pk are uniformly bounded on all Lp (as long as |k| � δ−1/2)
and (1.3) is equivalent with the statement that for all families of Lp functions {hk}

(1.7)
�
�
�

�

|k|�δ−1/2

Pkhk

�
�
�
p
≤ Cεδ

−β(p)−ε
��

k

�hk�
2
p

�1/2
.

For functions with Fourier transform supported in Σδ we may define a norm

(1.8) �f�p,2;δ =
��

k

�Pkf�
2
p

�1/2
.

Note that if f =
�

fk with supp �fk ⊂ Πδk we have

(1.9) �f�p,2;δ ≈
��

k

�fk�
2
p

�1/2
.

More general surfaces. Theorem 1.1 may be extended to convex surfaces with
nonvanishing Gaussian curvature, using arguments in §2 of [9]. Namely, one notes
that on sets of diameter γ1/3 � 1 the surface can be approximated by paraboloids
with accuracy O(γ) and uses the scaled estimate in §5 below, together with an
induction on scales argument. One could also modify the proof for paraboloids
using arguments in [6] (which apply to more general situations).
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Acknowledgements. The main ideas can be traced back to the pioneering
work by Wolff [13], see also the subsequent articles [7], [9], [6], [5] and [4]. An ear
lier version of this paper was originally written as class notes intended to give an
expository account of some of the material in [13] and [7]. For selfcontainedness
and in order to retain the expository nature of the notes we have included in §4
material from �LabaWolff [7] which could have been quoted. We are indebted to
Wilhelm Schlag for comments and for collaboration on [4] and to Detlef Müller for
useful remarks on an earlier version of this paper.

2. Notation and basic definitions

We note that because of the appearance of ε in (1.3) we may assume that
p > pd = q+4/(d−1) since we can then interpolate with a trivial �2(L2) inequality
to get the result for p = pd.

Throughout we fix p > pd. We also fix a positive but very small ε0, which may
depend on p and q and will be determined later. We remark that for the proof of
Theorem 1.3 in the range p > pd = q + 4/(d− 1) the choice

(2.1) ε0 = 10−3d−1(d− 1− 4/(p− q))

is admissible. Statements involving the parameter δ are assumed to hold for all
δ ∈ (0, δ0], for some fixed δ0 � 1. For each such δ we set

(2.2) N = 1/δ and t = δ�0 = N−�0 .

The constants C, c0, c1, ... appearing below may depend on p, d, ε0, δ0 and also on
other constants appearing below, but will be independent of δ, fk, {yk}, and pa
rameters such as λ or ε. Otherwise we will indicate it by Cε, etc... By A � B we
will mean A ≤ C B for some C as above, and by A � B we mean A ≤ C (logN)C B,
for some C > 0. We shall write either card(P) or #P for the cardinality of a finite
set P, and meas (A) or |A| for the Lebesgue measure of a set in Rd.

Plates and plate families. A rectangular box in Rd of size
√

N×
(d−1)
. . . ×

√
N × N .

will be referred to as an Nplate. We typically denote plates in xspace by π and
plate families by P. We shall always assume that N plates are essentially dual to

some Π
(δ)
k . In this case we use the notation

π � k

to indicate that π is an N plate, whose long side is parallel to nk = (yk,−1) =

(k
√

δ,−1). Observe that, for different k’s, plate directions are
√

δseparated, since
so are the directions of {nk}. The integer vectors k will be taken in

Z(
√
N) = {k ∈ Zd−1 : |ki| ≤

√
N, i = 1, . . . , d− 1}.

We shall also assume that families P consist only of separated plates, meaning that
for each π ∈ P at most C1 plates from P can be contained in a fixed dilate C2π,
where C1 and C2 are fixed universal constants. This means that for fixed k, plates
π�k are essentially disjoint.

We recall that the cardinality of Z(
√
N), and thus the number of essentially

different directions that plates can achieve at scale N , is approximately N
d−1
2 .

Finally, a σcube ∆ is a cube of sidelength σ centered at some point of the grid σZd.
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Localizing weight functions. Given a fixed large M we let

(2.3) w(x) = (1 + |x|2)−M/2,

and given a rectangle R we denote wR = w ◦ a−1R , where aR is an affine map taking
the unit cube centered at 0 to the rectangle R. Thus wR is roughly the characteristic
function of R with “Schwartz tails” (with an abuse of language as for fixed M the
function w is not a Schwartzfunction).

We shall also use a fixed Schwartz function ψ, strictly positive in B2(0), with
Fourier transform supported in B 1

100
(0), and so that

�
n∈Zd ψ2(∙ + n) = 1. Again

we set

(2.4) ψR = ψ ◦ a−1R .

In particular, if {∆} is a tiling of Rd by σcubes with centers c∆ in σZd, then�
∆ ψ2∆ = 1, where ψ∆(x) = ψ((x− c∆)/σ).

Elementary properties of � ∙ �p,2;δ.

Lemma 2.1. Let 2 ≤ p ≤ ∞ and �f be supported in Σδ. Then

�f�∞,2;δ � N−(d+1)/2p�f�p,2;δ,(2.5)

�f�∞ � Nβ(p)�f�p,2;δ,(2.6)

�f�p,2;δ � �f�
2/p
2 �f�

1−2/p
∞,2;δ .(2.7)

Proof. If �g is supported in Π
(δ)
k then by Young’s inequality

�g�∞ � N−(d+1)/2p�g�p

this yields (2.5). If f =
�

fk with �fk supported in Π
(δ)
k then

�f�∞ �
�

k

�
�fk

�
�
∞

� N
d−1
4

��

k

�
�fk

�
�2
∞

�1/2
� N

d−1
4 − d+1

2p

��

k

�
�fk

�
�2
p

�1/2

which is (2.6). Inequality (2.7) follows from a corresponding interpolation inequality
for the projection operators Pk, namely for ϑ = 1− 2/p,

��

k

�Pkhk�
2
p

�1/2
�

��

k

�hk�
2
2

�(1−ϑ)/2��

k

�hk�
2
∞

�ϑ/2
.

This follows by convexity from the obvious cases p = 2 and p = ∞. �

We also need the following localization estimate.

Lemma 2.2. Let �f be supported in Σδ. Let Q = {Q} be a grid of Ncubes and

let ψQ be as in (2.4) (so that �ψQ is supported in |ξ| ≤ (100N)−1). Then

(2.8)
��

Q

�ψQf�
p
p,2;2δ

�1/p
� �f�p,2;δ .

Proof. Note that �ψQ ∗ �f is supported in Σ2δ. The case p = ∞ is immediate
and the case p = 2 follows by orthogonality. One uses the projection operators Pk
to set up an interpolation argument showing the inequality for 2 < p < ∞. �
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Packets.

Definition 2.3. (i) f is called an Npacket associated with Π
(δ)
k if it can be

written as f =
�
π∈P fπ for some family P = Pk(f) of separated N plates with

π � k, in such a way that every fπ, π ∈ Pk, satisfies

(2.9) |fπ| ≤ c1 wπ and supp �fπ ⊂ c2Π
(δ)
k .

(ii) Let R be a cube of diameter ≥ N and let E ⊂ Z(
√
N). An (N,R,E)packet f

is a function that can be written as

(2.10) f =
1

√
#E

�

k∈E

�

π∈Pk

fπ

where Pk consists of plates π � k which have nonempty intersection with R, and
fπ are functions so that (2.9) holds for all π ∈ Pk and all k ∈ E. We denote by
P(f) = ∪k∈EPk the plate family of f .

(iii) For f as in (ii), we say that g is a subpacket of f if g = 1√
#E

�
k∈E

�
π∈P�

k
fπ,

with P �
k ⊂ Pk.

(iv) An (N,R,E)packet f as in (2.10) is called stable if it satisfies

(2.11)
1

2
#Pk ≤ #Pk� ≤ 2#Pk whenever k, k� ∈ E .

Elementary properties of packets are listed in

Lemma 2.4. Let f be an (N,Q,E)packet. Then

(2.12) �f�∞,2;δ � 1,

(2.13) �f�∞ �
�

#E � N (d−1)/4,

and, for 2 ≤ p < ∞

(2.14) �f�pp,2;δ ≤ Cp
N (d+1)/2#P(f)

#E
.

Proof. The bounds (2.12) and (2.13) are immediate. We can use the inter

polation inequality �G��2(Lp) ≤ �G�
2/p
�2(L2)�G�

1−2/p
�2(L∞) to see that (2.14) follows from

the (2.12) and the case p = 2 of (2.14). Observe that �f�22,2;δ is dominated by

�

k∈E

�
�
�

�

π∈Pk

fπ√
#E

�
�
�
2

2
�

1

#E

�

k∈E

�
�
�

�

π∈Pk

wπ

�
�
�
2

2
�

1

#E

�

k∈E

N
d+1
2 #Pk

and the last expression is equal to N (d+1)/2#P(f)/#E. �

Another preparatory result concerns decompositions of functions with Fourier
support in Σδ into (stable) N packets. The stability property (2.11) gives estimate
(2.18) in the following lemma (a sort of converse to (2.14)), which will be crucial
in the induction on scales argument, cf. Lemma 6.1 below.
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Lemma 2.5. Let �f be supported in Σδ and assume that

(2.15) �f�∞,2;δ ≤ A.

Let Q be an Ncube, let 0 < ε ≤ 1, and let R be the cube of sidelength N1+ε with
the same center as Q. Then on Q we may decompose

(2.16) f(x) =
�

AN−10d≤2j≤CεA

2j
nj�

�=1

fj,�(x) + g(x), x ∈ Q,

for some integers nj ≤ Cε(logN)2, and where

(i) the function g satisfies

(2.17) sup
x∈Q

|g(x)| ≤ CεN
−8dA;

(ii) for each j, � the function fj,� is a stable (N,R,Ej,�)packet, for some subset

Ej,� of Z(N1/2), and with associated plate family Pj,� containing only plates π with
dist(Q, π) ≤ N1+ε;

(iii) for every 2 ≤ p ≤ ∞ and every j, � it holds

(2.18) 2j(N
d+1
2 #Pj,�)1/p � �f�p,2;δ(#Ej,�)

1/p.

Proof. We decompose f =
�
k fk where �fk is supported in Π

(δ)
k . By a pid

geonhole argument we may immediately reduce to the case where the k are strongly
separated, in the sense that, if k and k� occur in the sum and are different then
|k − k�| ≥ 10d. Note that then

�f�p,2;δ ≈ (
�

k

�fk�
2
p)
1/2.

Next, we fix k, and further decompose fk as

fk =
�

π�k

fkψ
2
π.

We let Pk ≡ Pk,R(f) be the family of all π with π � k and which intersect R. Notice

that there are at most O(Nd(1+ε)) in ∪kPk,R(f).
We first discard the terms involving plates that do not intersect R. Let

(2.19) gcompl(x) =
�

k

�

π�k
π∩R=∅

fkψ
2
π.

Using the rapid decay of the functions wπ away from π we get

�gcompl�L∞(Q) � N (d−1)/4�f�∞,2;δ sup
x∈Q

��

k

�

π�k
π∩R=∅

|wπ(x)|
2
�1/2

≤ CεAN
d−1
2 −Mε

and here M (in the definition of (2.3)) may be chosen so large that Mε > 10d.
Secondly we discard terms for which π intersects R but �fkψπ�∞ is very small.

Define

(2.20) gsmall(x) =
�

k

�

π∈Pk,R

�fkψπ�∞≤AN−10d

fkψ
2
π
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As the cardinality of all plates intersecting R is O(Nd(1+ε)) we trivially get

�gsmall�L∞(Q) � N2dAN−10d

and if we set g = gsmall + gcompl the bound (2.17) follows.
It remains to decompose the function

(2.21) f − gsmall − gcompl =
�

k

�

π∈Pk,R

�fkψπ�∞>AN
−10d

fkψ
2
π .

Note that �f�∞ � AN (d−1)/4 (by (2.6) for p = ∞) so that there are only O(logN)
relevant dyadic scales for the possible size of �fψπ�∞.

For each k define

(2.22) Pmk,R =
�
π ∈ Pk,R : 2m < �fkψπ�∞ ≤ 2m+1

�
.

Next, for i = 0, 1, 2, . . . , define

(2.23) E(i,m) =
�
k ∈ Z(

√
N) : 2i ≤ #Pmk,R < 2i+1

�
;

clearly these sets are disjoint subsets of Z(
√

N). Set

(2.24) F i,m =
�

k∈E(i,m)

�

π∈Pm
k,R

fkψ
2
π .

Notice that by definition the cardinalities of Pmk,R are comparable for k ∈ E(i,m).

If we divide F i,m by C2m
�

#E(i,m), for suitably large C, then the new function
will be a stable (N,R,E(i,m)) packet.

Recall AN−10d ≤ C2m
�

#E(i,m) � ANd. Now for each j with AN−10d ≤

C2j � ANd there are nj = O((logN)2) pairs (i,m) with

(2.25) 2j−1 < C2m
�

#E(i,m) ≤ 2j ;

for these (i,m) the functions 2−jF i,m are also stable (N,R,E(i,m))packets.
We relabel these nj functions as fj,�, � = 1, . . . , nj , the associated plate families

as Pj,� and the associated sets E(i,m) of directions as Ej,� and then obtain the
decomposition f =

�
2j≥AN−10d

�nj

�=1 2
jfj,� + g, for x ∈ Q.

If Pj,�k = {π ∈ Pj,� : π � k} then by construction

#Pj,� ≈ (#Ej,�)(#Pj,�k ).

We use this to verify (2.18). Fix (j, �), and with the above notation assume Ej,� =
E(i,m). Then we observe

�f�p,2,δ �
��

k

�fk�
2
p

�1/2
�

��

k

��

π�k

�fkψπ�
p
p

�2/p�1/2

≥
� �

k∈E(i,m)

� �

π∈Pm
k,R

�fkψπ�
p
p

�2/p�1/2
�

� �

k∈E(i,m)

� �

π∈Pm
k,R

�fkψπ�
p
∞N (d+1)/2

�2/p�1/2

�
� �

k∈E(i,m)

�
2mp#Pmk,RN

(d+1)/2
�2/p

�1/2
≥

� �

k∈Ej,�

�
2mp

#Pj,�

#Ej,�
N (d+1)/2

�2/p�1/2

� 2m(#Ej,�)
1/2−1/p(#Pj,�)1/pN (d+1)/2p,

and from (2.25) we obtain (2.18). We note that (2.18) for p = ∞ also shows that
the sum in j in (2.16) is restricted to the range 2j ≤ CεA. �
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3. Equivalent formulations of the problem

We continue to assume that always p > 2(d+1)
d−1 and that S(2, q) holds for some

q ∈ [ 2dd−1 ,
2(d+1)
d−1 ].

Definition 3.1. Given p > 2 and γ > 0, we say that hypothesis Hstr(p, γ)
holds if there exists Cγ > 0 so that for any δ ≤ δ0 and any f =

�
k fk with

supp �fk ⊂ Π
(δ)
k

(3.1) �f�p ≤ CγN
β(p)+γ

��

k

�fk�
2
p

�1/2
.

It is our objective to prove this ‘strong’ inequality H(p, γ) for all γ > 0, in the
asserted range p ≥ q + 4/(d − 1). We formulate a weaker condition which can be
seen as an analogue of a restricted weak type inequality.

Definition 3.2. Given p > 2 and γ > 0, we say that hypothesis H(p, γ) holds
if there exists Cγ > 0 so that for all δ = N−1 ≤ δ0, for all pairs of N cubes Q0, Q

�
0,

for all E ⊂ Z(δ1/2), for all stable (N,Q0, E)packets f with plate family P(f), and

for all λ ∈ (N
d−1
4 − 1

2(p−q) , N
d−1
4 )

(3.2)
�
�{x ∈ Q�

0 : |f(x)| > λ}
�
� ≤ Cγ λ

−pN (β(p)+γ)p N (d+1)/2#P(f)

#E
.

Proposition 3.3. Let 0 < γ < γ1. Then

(3.3) Hstr(p, γ) =⇒ H(p, γ) =⇒ Hstr(p, γ1).

The main task in Wolff’s bootstrapping procedure will then be to prove the
following

Theorem 3.4. Let d ≥ 2, p > pd = q + 4/(d − 1) and γ0 > 0. Let ε0 be
as in (2.1). If hypothesis Hstr(p, γ0) holds, then hypothesis H(p, γ) holds for all
γ > (1− �0

4 )γ0.

Indeed, if Theorem 3.4 holds, then Proposition 3.3 together with an iteration
gives the validity of the strong type estimate Hstr(p, �) for all � > 0. The proof of
Theorem 3.4 is given in §6, after preparation in §4 and §5.

Proof of Proposition 3.3. Note that implication Hstr(p, γ) =⇒ H(p, γ)
is immediate by Čebyšev’s inequality and the convexity bound (2.7) (together
with Lemma 2.4). We now show the proof of the main implication H(p, γ) =⇒
Hstr(p, γ1) for γ1 > γ.

We first establish that the restriction on λ is superfluous. First, for an (N,Q0, E)
packet f we have �f�∞ � N (d−1)/4 and by decomposing into a bounded num
ber of subpackets we may assume that �f�∞ < N (d−1)/4. In this case the set
{x : |f(x)| > λ} has measure zero if λ ≥ N (d−1)/4.

Next, by Čebyšev’s inequality and hypothesis S(2, q)

meas
�
{x : |f(x)| > λ}

�
≤ λ−q�f�qq � Cε λ

−qN (α(q)
2 +ε)q�f�qq,2;δ,

and by Lemma 2.4, we have �f�qq,2;δ ≤ N (d+1)/2#P(f)/#E since f is an (N,Q0, E)

packet. Notice that λ−qN
α(q)

2 q ≤ λ−pNβ(p)p if λ ≤ N
d−1
4 − 1

2(p−q) . Thus, un
der S(2, q), hypothesis H(p, γ) implies the inequality (3.2) for all λ > 0, provided γ
is replaced by γ + ε for any ε > 0.
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We now argue that assuming H(p, γ) it suffices to show

(3.4)
��

Q�

|f(x)|pdx
�1/p

≤ C�N
β(p)+γ+��f�p,2;δ

for all � > 0. Indeed once (3.4) is shown uniformly for all cubes we choose a
grid Q of N cubes and decompose f =

�
ψ2Qf . Notice that �ψQf�p,2;2δ � �f�p,2;δ.

If Q,Q� ∈ Q for any M1 > 0 then we use the estimate
�
�fψ2Q�Lp(Q�) ≤ C(M1)

�
(1 + dist(Q,Q�)

�−M1
�fψQ��p.

From this it is straightforward to deduce (with NεQ denoting the cube dilated by
Nε with respect to its center) that
��

Q�

�
�
�
�

Q∈Q

fψQ

�
�
�
p

Lp(Q�)

�1/p
�

��

Q

�fψQ�
p
Lp(N�/2dQ)

�1/p
+ C(M2, �)N

−M2�f�p

≤
��

Q

�

Q�

dist(Q,Q�)�N1+�/3d

�fψQ�
p
Lp(Q�)

�1/p
+ C(M2, �)N

−
M2�
2d +d�f�p,2;δ.

We apply (3.4) to ψQf and cubes Q� with distance ≤ N1+�/2d to Q and estimate
the first term on the right hand side by a constant times

(3.5) Nβ(p)+γ+�
��

Q

�fψQ�
p
p,2;2δ

�1/p
� Nβ(p)+γ+��f�p,2;δ.

For the last estimate we have used Lemma 2.2.
We now proceed to show (3.4). To do this we may assume

(3.6) �f�p,2;δ = 1.

Fix an N cube Q. Then

�f�pLp(Q) � p
�

�

2�pmeas
�
{x ∈ Q : |f | > 2�}

�
.

By (3.6) and (2.6) for p = ∞ we have that �f�∞ � N (d−1)/4 so that the set
where |f | > 2� is empty when 2� � N (d−1)/4. Moreover, as the measure of Q is
O(Nd) we have

�

2�≤N−d

2�pmeas
�
{x ∈ Q : |f | > 2�}

�
� N−d(p−1);

thus only the O(logN) terms with N−d � 2� � Nd have to be estimated.
This means that it suffices to show, for N−d ≤ λ ≤ Nd,

(3.7) meas
��

x ∈ Q : |f | > λ
��

� λ−pN (β(p)+γ+ε)p;

cf. the normalization (3.6). This normalization (together with (2.5)) also implies
�f�∞,2;δ � N−(d+1)/2p. We now use the decomposition in Lemma 2.5 with A ≈

N−(d+1)/2p. The function g in (2.16) is then � N−9d � λ. By the pidgeonhole
principle applied to the O((logN)3) terms in the sum in (2.16) there is a set E∗ ⊂
Z(N1/2), a stable (N,Q,E∗) packet f∗, a number j∗ with N−11d � 2j∗ � 1 and a

constant C so that 2j∗pN
d+1
2 #P(f∗) � #E∗, and

meas {x ∈ Q : |f | > λ} � (logN)3meas
��

x ∈ Q : 2j
∗

|f∗| > λ(logN)−3C−1
��

.
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By Hypothesis H(p, γ) (and our initial observation that the restriction on λ in this
hypothesis is superfluous) the right hand side is estimated by a constant times

(logN)3N (β(p)+γ)p(λ2−j∗(logN)−3)−p
N (d+1)/2#P(f∗)

#E∗
≤ Cελ

−pN (β(p)+γ+ε)p,

where in the last step we have used the key inequality (2.18) and �f�p,2;δ = 1. This
finishes the proof of (3.7) and thus the proposition. �

4. Localization

This section is included for expository reasons; it is essentially taken from [7],
with minor modifications. The purpose is to identify, for given λ, properties of
specific plate families so that the improvement in Theorem 3.4 holds.

We begin with an easy localization estimate which will later give a crucial gain
in the induction on scales argument.

Lemma 4.1. Let �f be supported in Σδ and let Q be a cube of diameter ρδ−1

(here ρ ≤ 1). Then

(4.1) �ψQf�2 � ρ1/2�f�2

Proof. By Plancherel’s theorem this is equivalent with a statement about the

integral operator T with kernel Kδ(ξ, η) = �ψQ(ξ − η)χΣδ (η). Let

A1 = sup
ξ

�

|Kδ(ξ, η)|dη and A2 = sup
η

�

|Kδ(ξ, η)|dξ .

Then the L2 operator norm of T is ≤
√

A1A2. Now clearly A2 = O(1) while the
smaller ηsupport yields A1 = O(ρ). This implies the assertion. �

We now state a definition of localization for packets.

Definition 4.2. Let R be an Ncube and let f be an (N,R,E)packet and
t = δε0 with 0 < ε0 � 1/2. We say that f localizes at height λ (with respect to
tN cubes) if there are subpackets fQ of f where Q runs over tNcubes in a grid Q,
such that

(4.2)
�

Q

#P(fQ) � #P(f)

and

(4.3) meas
�
{x : |f(x)| > λ}

�
�

�

Q

meas
�
Q ∩ {x : |fQ| � λ}

�
.

Lemma 4.3. Let p > 2 and suppose that Hstr(p, γ0) holds. Let f be a stable
(N,R,E)packet and assume that f localizes at height λ (with respect to tN = δε0−1

cubes), and let the fQ be as in Definition 4.2. Then for any Ncube Q0 the estimate
(3.2), i.e.

�
�{x ∈ Q0 : |f(x)| > λ}

�
� ≤ Cγ λ

−pN (β(p)+γ)p N (d+1)/2#P(f)

#E

holds for this f , R and λ, and for all γ > γ0(1− ε0/2).
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Proof. For each tN cube Q, the function t
d−1
4 fQψQ has Fourier transform

supported in Σδ/t, and
�
�t

d−1
4 fQψQ

�
�
∞,2;Cδ/t

� 1.

Thus, we may apply Hstr(p, γ0), with δ replaced by δ/t, and the convexity
inequality (2.7) to obtain

meas
�
{x : |f(x)| > λ}

�
�

�

Q

meas
�
{|t

d−1
4 fQψQ| � t

d−1
4 λ}

�
(by (4.3))

�
�

Q

(t
d−1
4 λ)−p(tN)(β(p)+γ0)p �t

d−1
4 fQψQ�

2
2

=
�

Q

λ−pN (β(p)+γ0)p tγ0p t−1�fQψQ�
2
2.(4.4)

By Lemma 4.1 we have t−1�fQψQ�
2
2 � �fQ�22 � N

d+1
2

#P(fQ)
#E , and therefore, sum

ming in Q and using (4.2) we see that (4.4)�λ−pN (β(p)+γ0(1−ε0))pN
d+1
2 #P(f)/#E,

which yields the assertion. �

It is now important to identify situations in which the localization conditions
of Definition 4.2 apply and thus the improvement of Lemma 4.3 holds. Such a
situation is described in the following proposition.

Proposition 4.4. Let p ≥ 2 and assume H(p, γ0). Let f be a stable (N,R,E)
packet so that for some λ > 0

(4.5) #P(f) ≤ t10d λ2#E.

Then f localizes at height λ to tNcubes and hence (3.2) for any Ncube Q0, i.e.

�
�{x ∈ Q0 : |f(x)| > λ}

�
� ≤ C λ−pN (β(p)+γ)p N

d+1
2 #P(f)

#E

holds for such f and λ, and all γ > γ0(1− ε0/2).

It will be clear from the proof that the exponent 10d of t in (4.5) may be
substantially lowered; this however seems to be of no consequence to the range of
p in Theorem 1.1.

The main geometrical argument behind Proposition 4.4 is in the following result
from [7] which (in a slightly more complicated version) will be applied to W = {x :
|f(x)| > λ}.

Lemma 4.5. Let P be a family of Nplates intersecting a fixed cube of diameter
CN and let W be a measurable subset of Rd. Let t = δε0 and let Q be a grid of
tNcubes; we write Q = Q(x) if x ∈ Q (this is well defined apart from a set of
measure 0). For each π ∈ P choose a tNcube Qπ ∈ Q for which the quantity
|W ∩ π ∩Q| is maximal. For a plate π and a cube Q ∈ Q we say that π ∼ Q if Q
intersects the 9fold dilate of Qπ. Then

(4.6) #{Q : π ∼ Q} ≤ 10d for every π ∈ P

and for I =
�
W

�
π∈P,π �∼Q(x) χπ(x)dx there is the estimate

(4.7) I � t−3d|W |
�

#P .
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Proof. The condition that all plates in P intersect a fixed N cube, and the
separation property of the plates implies #P = O(Nd).

Note that (4.6) is trivial from the definition of the relation. To prove (4.7) we

first note that I =
�
π ν(π) where ν(π) =

�
�
�{x ∈ W ∩ π : Q(x) �∼ π}

�
�
�. We only need

to bound

(4.8) �I =
�

π∈P:
N−d|W |≤ν(π)≤|W |

ν(π)

since the analogous sum involving plates π ∈ P with ν(π) ≤ |W |N−d is trivially
bounded by #P|W |N−d � |W |.

In (4.8) there are O(logN) relevant dyadic scales between N−d|W | and |W |
and thus we can use a pidgeonhole argument to get a subfamily P � ⊂ P and a value
of ν between N−d|W | and |W | so that

(4.9) |�I| � ν card(P �) and ν ≤ ν(π) ≤ 2ν for each π ∈ P �.

Hence for each π ∈ P � there is a cube Q�(π) not related to π so that

|W ∩Q�(π) ∩ π| � tν.

By the maximality condition in the definition of Qπ we must then also have

|W ∩Qπ ∩ π| � tν for each π ∈ P �.

Clearly the number of all possible pairs of tN cubes is O(t−2d). This means
that we can find two tN cubes Q,Q� in Q and a subfamily P �� of P � which has
cardinality � t2d#P � so that for all π ∈ P �� we have Qπ = Q and Q�(π) = Q�.

We now fix these two tN cubes Q and Q� and consider the auxiliary expression

A =
�

π∈P��

|W ∩Q ∩ π||W ∩Q� ∩ π|.

Then we have the lower bound

A � (tν)2card(P ��) � t2d+2card(P �)ν2.

We can also derive an upper bound by rewriting

A =

�

W∩Q

�

W∩Q�

�

π∈P��

χπ(x)χπ(x
�)dxdx�

If π ∩Q �= ∅ and π ∩Q� �= ∅ for some π ∈ P �� then π is related to Q but not to Q�,
thus the distance of Q to Q� is at least tN . This means that for each pair of points
(x, x�) ∈ Q×Q� there are no more than Ct−d+1 separated plates which go through
both x and x�. Therefore the integrand

�
π∈P�� χπ(x)χπ(x) is O(t−d+1), and hence

we get the upper bound

A � t−d+1|W ∩Q||W ∩Q�| � t−d+1|W |2.

Comparing the upper and the lower bounds for A we find that

ν ≤ t−d−1(#P �)−1/2
√
A ≤ t−(3d+1)/2|W |(#P �)−1/2

and thus using (4.9) we obtain

�I � t−(3d+1)/2|W |
�

#P �.

�
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Unfortunately, for technical reasons Lemma 4.5 is not quite enough since we
need to replace the characteristic functions χπ by the similar weights wπ with
“Schwartztails”). This is fairly straightforward and requires adjustments in the
definition of the relation ∼ between plates and tN cubes and some additional pid
geonholing. We state the required estimate and refer to Lemma 4.4 in the paper
by �Laba and Wolff [7] for the details of the proof.

Lemma 4.6. Let P be a family of Nplates intersecting a fixed cube of diameter
CN and let W be a measurable subset of Rd. Let M0 be a large constant and
assume that the constant M in the definition of w(x) is large (see (2.3)), so that
M ≥ 10M0d. Let t = δε0 and let Q be a grid of tNcubes, where again we write
Q = Q(x) if x ∈ Q. There is a relation ∼ between plates in P and tNcubes in Q
so that

(4.10) #{Q : π ∼ Q} � 1 for every π ∈ P

and if

WP(x) =
�

π∈P
π �∼Q(x)

wπ(x)

then �

W

WP(x)dx � t−3d|W |
�

#P + δM0 |W |.

Proof of Proposition 4.4. We wish to apply Lemma 4.3 and therefore have
to show that with P ≡ P(f) under the assumption #P ≤ ct10dλ2#E the localiza
tion condition in Definition 4.2 holds.

We proceed applying Lemma 4.6 to W = {x : |f | ≥ λ}, and let ∼ be the
relation between N plates and tN cubes from Lemma 4.6. Recall that f(x) =
(#E)−1/2

�
π∈P fπ with |fπ| � wπ. For every tN cube Q ∈ Q define fQ(x) =

(#E)−1/2
�
π∼Q fπ.

By condition (4.10) we have
�
Q#P(fQ) � #P(f), i.e. (4.2). Moreover with

P ≡ P(f)
�

W

WP(x)dx � t−3d|W |
�

#P � t−3d|W |
�

t10dλ2#E � t2d|W |λ
�

#E.

This means that there is a subset W ∗ of W so that |W ∗| ≥ |W |/2 so that the
pointwise bound WP(x) � tλ

√
#E for x ∈ W ∗. Also if x ∈ W ∗ ∩Q we have

|f(x)− fQ(x)| =
�
�
�

1
√

#E

�

π:π �∼Q

fπ(x)
�
�
� �

WP(x)
√

#E
� tλ

and hence |fQ(x)| ≥ λ for x ∈ W ∗ ∩ Q. This implies the localization condition
(4.3). �

5. A parabolic rescaling

We first note that the paraboloid in Wolff’s theorem can be replaced by {ξ : ξd =

c+(ξ� − a�)
t
A(ξ�−a�)} for any positive definite matrix A, by a linear transformation.

We also may rotate the paraboloid in Rd and obtain a similar result.
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More useful is the following Lemma which is an analogue and consequence of
Wolff’s inequality for Fourier plates in an angular sector of angle

√
σ �

√
δ (or

equivalently, for δFourier plates contained in a fixed σFourier plate).

Lemma 5.1. Let δ < σ < 1 and consider a σplate Π(σ) contained in Σσ.
Suppose that Hypothesis Hstr(p, γ) holds. Then for all functions hk ∈ Lp(Rd)

�
�
�

�

k:Π
(δ)
k ⊂Π(σ)

P
(δ)
k hk

�
�
�
p
� (σ/δ)β(p)+γ

��

k

�hk�
2
p

�1/2
.

Proof. By a rotation and translation we may assume that we are working with
the standard paraboloid and the σplate Π(σ) = {ξ : |ξi| ≤

√
σ, i = 1, . . . , d − 1;

|ξd| ≤ σ}. Let fk=P
(δ)
k hk, Lσ(ξ)=(σ1/2ξ�, σξd) and let fσk (x) := σ−(d+1)/2fk(L

−1
σ x)

so that �fσk (ξ) = �fk(σ
1/2ξ�, σξd). The functions �fσk are supported in (δ/σ)1/2× ∙ ∙ ∙×

(δ/σ)1/2× δ/σ plates tangential to the paraboloid and Hypothesis Hstr(p, γ) yields

�
�
�

�

|k|�
√
σ/δ

fσk

�
�
�
p
� (δ/σ)−β(p)−γ

��

k

�fσk �
2
p

�1/2
.

Changing variables y = L−1
σ x on both sides yields the assertion. �

6. Proof of Theorem 3.4

Let R be an N cube, let p > q + 4/(d − 1) and ε0 be as in (2.1). We also fix
0 < ε1 ≤ 10−2ε0. Assuming that Hstr(p, γ0) holds we need to show for any stable
(N,R,E)packet f and any fixed N cube Q0 that

(6.1) meas ({x ∈ Q0 : |f(x)| > λ}) ≤ Cγλ
−pN (β(p)+γ)pN (d+1)/2#P(f)

#E

for all γ > γ0(1− ε0/4) and all λ in the range

(6.2) N
d−1
4 − 1

2(p−q) � λ � N
d−1
4 .

This will be done by localizing at a smaller scale N1 and then using the induc
tion hypothesis at that scale. We may without loss of generality assume that
dist(R,Q0) ≤ 2N1+ε1 (otherwise a much better inequality holds).

Let N1 be a number with

(6.3)
√

N ≤ N1 � N ;

we shall later see that the choice N1 =
√

N will be optimal for our proof. Set

δ1 = N−1
1 and let {∆} be a tiling of Rd by N1cubes. For each such ∆ let �∆ be a

cube with same center as ∆ but with sidelength equal to 5N1+ε1
1 .

Now since minx∈Q ψQ(x) ≥ c > 0 with a universal constant c we have

(6.4)
�
�{x ∈ Q0 : |f(x)| > λ}

�
� ≤

�

∆ : ∆∩Q0 �=∅

�
� {x ∈ ∆ : |fψ∆(x)| > cλ}

�
�

for some constant c > 0. Given a fixed ∆, the function fψ∆ has Fourier trans
form supported in Σcδ1 . Note that fψ∆ is in general not a packet. However, by
Lemma 2.5, fψ∆ can be decomposed on ∆ in terms of N1packets:
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Lemma 6.1. Let R and Q0 be Ncubes as above, let f be an (N,R,E)packet
and let λ be as in (6.2). Then there exists λ1 > 0 so that for every N1cube ∆

which intersects Q0 there is a plate family P∆, a set E∆ ⊂ Z(N
1/2
1 ), and a stable

(N1, �∆, E∆)packet f∆ so that

(6.5)
�
�{x ∈ Q0 : |f(x)| > λ }

�
� �

�

∆∩Q0 �=∅

�
�{x ∈ ∆ : |f∆(x)| ≥ λ1 }

�
�

and

(6.6)
#P∆
#E∆

�
λ21
λ2

�fψ∆�
2
2

N
d+1
2

1

�
λ21
λ2

N
d−1
2

1 .

Moreover, for 2 ≤ p < ∞,

(6.7)
#P∆
#E∆

�
λp1
λp

�fψ∆�
p
p,2;δ1

N
d+1
2

1

.

Proof. Fix an N1 cube ∆ intersecting Q0 and let g ≡ g∆ = fψ∆, which has
Fourier transform supported in Σcδ1 and satisfies

�g∆�∞,2;cδ1 � (N/N1)
(d−1)/4 = A.

By Lemma 2.5 we can write

(6.8) g∆(x) = C
�

N−10d
1 �2j�Nd

1

2j
nj,∆�

�=1

g∆[j,�](x) + h∆(x), x ∈ ∆,

where

sup
x∈∆

|h∆(x)| ≤ Cε1N
−8d
1 A,(6.9)

nj,∆ ≤ Cε1(logN1)
2;(6.10)

moreover, for each (j, �,∆) there is a subset E∆
j,� of Z(N

1/2
1 ) so that g∆(j,�) is a

stable (N1, �∆, E∆
j,�)packet, with associated plate family P∆j,�, which contains only

N1plates π with dist(∆, π) � N1+ε1
1 , and

(6.11) 2jpN
d+1
2

1 #P∆j,� � �fψ∆�
p
p,2;δ1

#E∆
j,�, 2 ≤ p < ∞.

As there are only O(logN) values of j and O((logN)2) values of � a simple pid
geonhole argument shows for λ in the range (6.2)
�
�
�
�
x ∈ ∆ : |g∆| > cλ

���
� ≤

�
�
�
�
x ∈ ∆ :

�
��
N−10d

1 �2j�Nd
1
2j
�nj,∆

�=1 g∆[j,�](x)
�
� > cλ

2

���
�

≤
�
�
�
�
x ∈ ∆ : |2j∆g∆[j∆,�∆](x)

�
� > λ

C(logN)3

���
�

for some fixed j∆, �∆.
Pigeonholing once again we can find, among the (j∆, �∆)’s, a fixed j∗, �∗ ∈ Z

(independent of ∆) so that
�

∆

�
�
�
�
x ∈ ∆ : |g∆| > cλ

���
� ≤ C(logN)3

�

∆

�
�
�
�
x ∈ ∆ : |2j∗g∆[j∗,�∗](x)

�
� > λ

C(logN)3

���
�.

This means that (6.5) holds with λ1 = 2−j∗λ/(C logN)3, f∆ = g∆[j∗,�∗], E∆ = E∆
j∗,�∗

and P∆ = P(g∆[j∗,�∗]).

194



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

A MIXED NORM VARIANT OF WOLFF’S INEQUALITY FOR PARABOLOIDS 195

To prove (6.7) just observe that, by (6.11)

#P∆
#E∆

� 2−j∗pN
−(d+1)/2
1 �fψ∆�

p
p,2;δ1

≈ (logN)3p
λp1

λpN
d+1
2

1

�fψ∆�
p
p,2;δ1

.

The first inequality in (6.6) follows from the case p = 2 of (6.7). For the second

inequality in (6.6) we observe that if f =
�
k fk with supp �fk ⊂ Π

(δ)
k then the

Fourier transforms �fkψ∆ are supported in essentially disjoint C
√
δcubes (here we

use that N1 ≥
√

N). Thus we have the crucial orthogonality estimate

(6.12) �fψ∆�
2
2 �

�

k

�fkψ∆�
2
2 � |∆|

�

k∈E

�fk�
2
∞ � Nd1

since f was assumed to be an (N,R,E)packet. The second inequality in (6.6)
follows. �

We wish to use the bound in (6.6) to argue that Proposition 4.4 can be applied
to the pair (f∆, λ1). The next lemma, shows how to conclude the theorem for
(f, λ) in such case. Basically, one rescales the problem and uses one more time the
induction hypothesis at scale N/N1.

Lemma 6.2. Let p > 2 and assume Hstr(p, γ0). Let f be a (N,R,E)packet for
some Ncube R, let Q0 be an Ncube and let λ as in (6.2). Let ω > 0 and suppose
that for every N1cube ∆ intersecting Q0, the quadruplet (f∆,P∆, E∆, λ1) defined
in Lemma 6.1 satisfies

(6.13)
�
�{x ∈ ∆ : |f∆(x)| > λ1 }

�
� �

N
(β(p)+ω)p
1

λp1
N

d+1
2

1

#P∆
#E∆

.

Then, we also have

(6.14)
�
�{x ∈ Q0 : |f(x)| > λ }

�
� � λ−p N (β(p)+γ0)p

N
(γ0−ω)p
1

N
d+1
2

#P(f)

#E
.

This is saying that if we have an improvement in (6.13) with an ω < γ0 then
we also get an improvement in our main bound (6.14).

Proof of Theorem 3.4, given Lemma 6.2. We choose N1 =
√

N . We need to
verify that (6.13) holds with ω > γ(1− ε0/2). Then Lemma 6.2 tells us that (6.14)
holds with β > γ(1 − ε0/4) (where, say, ε0 is chosen as in (2.1)). Proposition 4.4
says that (6.13) holds if the plate families P∆ satisfy #P∆ � t10d1 λ21#E∆ where

t1 = δε01 . By (6.6) and the lower bound on λ, λ � N
d−1
4 − 1

2(p−q) we have

λ−2
1

#P∆
#E∆

� N
(d−1)/2
1 λ−2 = N (d−1)/4λ−2 � N

1
p−q−

d−1
4 ,

and we are done if N
1

p−q−
d−1
4 � t10d1 = N−5dε0 . This holds if 1/(p−q)−(d−1)/4 <

−5dε0 or equivalently p > q+4/(d−1−20dε0). Note that this inequality is implied
by (2.1) (and that the precise choice of ε0 is not important in the argument).

195



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Proof of Lemma 6.2. By (6.5) and (6.13) we have
�
�{x ∈ Q0 : |f | > λ }

�
� �

�

∆

�
�{x ∈ ∆ : |f∆| > λ1 }

�
�

�
�

∆

λ−p
1 N

(β(p)+ω)p
1 N

d+1
2

1

#P∆
#E∆

.

Thus, the result will be established if we can show

(6.15)
�

∆

N
d+1
2

1

#P∆
#E∆

�
λ1
p

λp
(N/N1)

(β(p)+γ0)pN
d+1
2

#P(f)

#E
.

Now consider functions Ξl so that their Fourier transforms �Ξl are bump func

tions associated to the δ
1/2
1 × . . .× δ

1/2
1 × δ1plates Πδ1l . Then by (6.7) we have for

each ∆,

N
d+1
2

1

#P∆
#E∆

�
λ1
p

λp
�fψ∆�

p
p,2;δ1

�
λ1
p

λp

��

l

�
�(fψ∆) ∗ Ξl

�
�2
p

�p/2

�
λ1
p

λp

��

l

�
�
�
�
ψ∆

� �

k:Π
(δ)
k ⊂CΠ

(δ1)

l

fk

��
∗ Ξl

�
�
�
2

p

�p/2

�
λ1
p

λp

��

l

�
�
�ψ∆

� �

Π
(δ)
k ⊂CΠ

(δ1)

l

fk

��
�
�
2

p

�p/2
.

We sum in ∆ and apply Minkowski’s inequality to obtain
�

∆

N
d+1
2

1

#P∆
#E∆

�
λp1
λp

�

∆

��

l

�
�
�ψ∆

� �

Π
(δ)
k ⊂CΠ

(δ1)

l

fk

��
�
�
2

p

�p/2

�
λp1
λp

��

l

��

∆

�
�
�ψ∆

� �

Π
(δ)
k ⊂CΠ

(δ1)

l

fk

��
�
�
p

p

�2/p�p/2

�
λp1
λp

��

l

�
�
�

�

Π
(δ)
k ⊂CΠ

(δ1)

l

fk

�
�
�
2

p

�p/2
.

Now, we apply Hypothesis Hstr(p, γ0) in the rescaled version of Lemma 5.1 and
bound for each l

�
�
�

�

k:Π
(δ)
k ⊂CΠ

(δ1)

l

fk

�
�
�
p
� (N/N1)

β(p)+γ0
� �

k:Π
(δ)
k ⊂CΠ

(δ1)

l

�fk�
2
p

�1/2
.

This yields, using the convexity inequality (2.7) and �f�∞,2;δ � 1,
��

l

�
�
�

�

Π
(δ)
k ⊂cΠ

(δ1)

l

fk

�
�
�
2

p

�p/2
� (N/N1)

(β(p)+γ0)p
��

l

�

Π
(δ)
k ⊂cΠ

(δ1)

l

�
�fk

�
�2
p

�p/2

� (N/N1)
(β(p)+γ0)p

�

k

�
�fk

�
�2
2

��

k�

�
�fk�

�
�2
∞

�(p−2)/2

� (N/N1)
(β(p)+γ0)pN

d+1
2

#P(f)

#E
,

and thus we get the asserted (6.15). �
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