MAXIMAL FUNCTIONS ASSOCIATED WITH FAMILIES
OF HOMOGENEOUS CURVES: L BOUNDS FOR p <2

SHAOMING GUO JORIS ROOS ANDREAS SEEGER PO-LAM YUNG

ABSTRACT. Let M, H®™ be the maximal operator and Hilbert trans-
form along the parabola (¢,ut?). For U C (0,00) we consider L? esti-
mates for the maximal functions sup, . |M™ f| and sup, e, |[H™ f),
when 1 < p < 2. The parabolae can be replaced by more general non-
flat homogeneous curves.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let b > 1, u > 0, and 75 : R — R homogeneous of degree b, i.e. v,(st) =
sy (t) for s > 0. Also suppose v,(+1) # 0. For a Schwartz function f on
R? we let

1 R

M“f (z) = sup & | 1@ = Eup®))ldt,
R>0 0

dt
(@) = po. [ Sl = (tun®) T
denote the maximal function and Hilbert transform of f along the curve
(t,uyp(t)). For an arbitrary nonempty U C (0, 00) we consider the maximal
functions

(1.1) MUf(x) = sup MWf(z), HYf(z) = sup [HWf ()],

uelU uelU

For 2 < p < oo the operators MY are bounded on LP(R?) for all U; this
was shown by Marletta and Ricci [8]. For the operators HY a corresponding
satisfactory theorem was proved in a previous paper [6] of the authors. To
describe the result let

NU)=1+#{neZ: 22" NU # 0}
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Then, for 2 < p < 0o, HY is bounded on LP(R?) if and only if (V) is finite,
and we have the equivalence

1Y || Lo—sr
<Oy, 2<p< 00,
P> logm(@))2 =7 b=

with nonzero constants c,, C,. Moreover, for all p > 1 we have the lower
bound ||HY||zr—r» = 1/logM(U). The consideration of such results in [6]
was motivated by results in [5], [4], and by the analogous questions for
Hilbert transform along straight lines. See [7] for lower bounds, [3] for
upper bounds, and the bibliography of [6] for a list of related works.

In this paper we seek to find efficient upper bounds for the operator norms
of MY and HY in the case 1 < p < 2. As pointed out in [6], with reference to
[10], LP boundedness for p < 2 fails, for both MY and HY, when U = [1,2];
therefore some additional sparseness condition needs to be imposed. To
formulate such results let, for each r > 0

U =r'UN[,2]={pec[1,2]:rp e U}

For 0 < § < 1 we let N(U",0) the d—covering number of U", i.e. the
minimal number of intervals of length § needed to cover U". It is obvious
that sup,~, N(U",8) <071, Define

1.2 K,(U,8) = 6% sup N(U", 8) 5.
P r>0

These definitions, and the results below are motivated by considerations for
spherical maximal functions in [I1] (see also [12], [10]). Define

i sup,~qlog N(U", )

(1.3) pa(U) =1+ hgi?)lip log(é_l)
Notice that 1 < pe(U) < 2, and that p,(U) = 1 for lacunary U. We
have p.,(U) = 2 if U contains any intervals. Moreover if p.,(U) < p < 2
there exists an € = &(p,U) > 0 such that supg 5.4 6 °K,(U,0) < oco. If
1 < p < per(U) then there is e’ = ¢/'(p,U) > 0 and a sequence d,, — 0 such
that limsup,, 0% K, (U, 8,) > 0.
Theorem 1.1. Let 1 < p <2 and pe:(U) as in (L.3).

(i) If per(U) < p < 2 then MY is bounded on LP(R?).

(i3) If 1 < p < per(U) then MY is not bounded on LP(R?).

(iii) For every e > 0 we have

cpsup Kp(U, 8) < |MY | zos1r < Cepsupd K, (U, 6).
6>0 6>0

Here ¢, Cp e are constants only depending on p or p,e, respectively.

Theorem 1.2. Let 1 < p <2 and pe:(U) as in ([L.3).

(i) If p(U) < p < 2 then HY is bounded on LP(R?) if and only if
NU) < oo.

(i3) If 1 < p < per(U) then HY is not bounded on LP(R?).
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191) For every € > 0 we have
( )
||HL ||Lp_>Lp < Cp\/log(‘)t(U)) + Cé-,p il;%)(s EICp(U,é).

and

& (Viog(M(D)) +5up K (U, ) < [H” |17
>

Here c,, Cp, Cpe are constants only depending on p or p, e, respectively.

We note that part (i), (ii) of the theorems follow immediately from part
(iii) of the respective theorem. The term C.,0 ¢ can be replaced by a
logarithmic dependence, namely C,[log(2/8)]* for A > 14/p — 6. More
precisely, we have the following

Theorem 1.3. Let 1 < p < 2. Then there is C independent of p and U so
that

(1.4) MYl < CY 0K, (U, 277,

>1
where ¥y = (p — 1)371170 Lyc(p—1)-1 + 57(%71)1@(73_1)_1 and
(1.5) [|H | zos20 < Clp=1) 7" Iog(MU))+C(p=1)"> Y 9,0 Kp(U,27°).

>1

Structure of the paper. In §2| we decompose the operators MU HY in
the spirit of [6] in order to prepare for the proof of Theorem [1.3l The proof
of Theorem [1.3] is then completed in §3] and §4 Finally, the lower bounds
claimed in Theorem and Theorem are addressed in

2. BASIC REDUCTIONS

We recall some notation and basic reductions from [6]. By the assumption
of homogeneity and v,(41) # 0 there are cy # 0 such that y;(t) = ct® for
t >0, and v, (t) = c_(—t)® for t < 0, and finally 7,(0) = 0. We note that by
scaling we may always assume that c. = 1. Let x4 € C¢° be supported in
(1/2,2) such that

ZX+(2jt) =1fort>0.
JEZ
Let x_(t) = x+(—t) and x = x, + x_. We define measures 79, 09, o1 by
7—07 /f t 717 )d

o h)= | f(t,%(t))xi(t)%

op=04++0_.
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Let, for j € Z, the measures i’ 0} be defined by

(7. 8) = [ Fun®)2i @0
. Lt
i h) = [ feumoxen L
By homogeneity of v, we have 7}' = 2j(1+b)7'6‘(512’j-) with 6z = (tz1,tzs),

as well as the analogous relation between o7 and oy. We note that the 7'
are positive measures and the o7 have cancellation.

For Schwartz functions f the Hilbert transform along I'} can be written
as

HMWf=> "ot f.
JEL

For the maximal function it is easy to see that there is the pointwise estimate

(2.1) M(“)f(x)SCsupT}‘*]f\.
JEZ

Following [6], §2] we further decompose o and 7. Choose Schwartz func-
tion np, supported in {|¢| < 100} and equal with 79(§) = 1 for || < 50.
Let ¢ € CX(R) be supported in (b(1/4)*~1,64*~!) and equal to 1 on
[b(2/7)0=1, b(7/2)"7Y. Let - € C2°(R) be supported on (—b4*~1 —b(1/4)b~1)
and equal to 1 on [—b(7/2)~1, —b(2/7)*~1].

One then decomposes

00 = Qo + po,+ + Ho,—
T0 = ¥0 + po

where ¢q, g are given by

60(&) = m0(&)50(€) + (1 —10(€)) (1 — - (2))71(€)

and
20(8) = m0(70(&) + (1 = m0(§) (1 — 5 (55))7(E)-

The measures and 1, , and pg are given via the Fourier transform by

flo+(€) = (1 =m0()s-(:25)5+ (),
fio,— (&) = (1 = m0(&))s+(:°5)7-(6)

and
(2:2) Po(€) = (1= m0(&))s— (5570 (6)-

As in Lemma 2.1 of [6], the functions g, ¢¢ are Schwartz functions. In
addition we have ¢o(0) = 0.
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~

Define, for j € Z, p;j and qu by scaling via @; (&) = @0(27%1,27?’[)52) &)
and ¢;(€) = ¢o(277€1,279%62) f(€). Define Af o f by

Ao f(6) = 8561, ue2) F1©)
and let Mof(z) = supjcz supycr |A%of(7)]. Let

—
o~

SFE) =" 6561, u&) F(€).

JEZ

Let M3 f denote the strong maximal function of f. For p € (1,2] we have

(2.3) IM* | oo < Clp — 1) 72
Lemma 2.1. There exists a constant C such that for all p € (1,2],
(i) ,
[Mofllp < Clp = 1) flp-
(ii)

HsuplS(“)f\Hp<C — 1)7"\/1og N || f |-

Proof. Part (i) follows from the estimate
(2.4) |[Afof (@) < OM™ f(x).

Part (ii) is more substantial and relies on the Chang—Wilson—Wolff bounds
for martingales, [2]. This is the subject of Theorem 2.2 in [6]. The depen-
dence on p was not specified there, but can be obtained by a literal reading
of the proof provided in [0, §4]. We remark that the exponent 7 can likely
be improved, but it is satisfactory for our purposes here. O

We also decompose pg and fi9 1 further by making an isotropic decompo-
sition for large frequencies. Let ¢y € C2°(R?) supported in {¢ : |¢| < 2} and
such that (p(§) =1 for |£| < 5/4. For £ =1,2,3,... let

Ge(&) = G(27°¢) — C(2'¢).
Then for £ > 0, {; is supported in the annulus {¢ : 21 < |¢] < 2F1} and

we have 1 =3, ((&) for £ in the support of py, fig +.
Define operators AY i and TJ v+ by

(2.5) AL F(€) = G276, 27706 (27761, 2770ugs) FIE),
(2.6) %(f) = G276, 27 &) 1 (27761, 277 ) F(£).
We shall show

Proposition 2.2. There is C > 0 such that for each £ > 0, p € (1,2] we
have

(2.7) HsupsuplA I, < COp k(U270 flps
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here 9,0 = (p—1)° "7 1 Gy d
where Vpp = (p—1)" 7 Lyc(poyy-1 + €77 (>(p—1)-1 an

(2.8)

sup| o1 f|| < o= 120,027 1]
uelU jez p

We claim that Proposition implies Theorem Indeed, we have for
non—negative f,

MUF S Mof+> supsup |AY,f]
>0 uelU jeZ

and thus (|1.4) follows from part (i) of Lemma and (2.7)). It remains to
show ([1.5). But in view of the decomposition,

H(u) — S(U) + Z Z Z T;ff,:l:’

+ ¢>0 jez
this follows from part (ii) of Lemma and ([2.8)). This finishes the proof
of Theorem [L.3]

We conclude this section with some estimates that will be used in the
proof of Proposition We will harvest the required decay in £ from the
following simple estimate. For p € [1,2], £ >0, j € Z, u € (0,00) we have

(2.9) 145 0 fllp < C271P| £,

Indeed, the endpoint p = 2 is a consequence of Plancherel’s theorem and
van der Corput’s lemma, while p = 1 follows because the convolution kernel
of A;{e f is L'-normalized. Another key ingredient will be the following
pointwise estimate. From the definition of A}L,z in we have for ¢ > 0,
JjE€Z,ue€ (0,00) that

(2.10) |AY  f| < OMP™ (73 | f1).
This follows because we have

Afof = (f * 7)) * K5y,

with /{}‘7 , certain Schwartz functions that can be read off from the definitions
2-2), and satisfy |f * £%,[ < CM®™ f with C' > 0 not depending on
7,4, u.

We also need to introduce appropriate Littlewood—Paley decompositions.
Let x™) be an even C™ function supported on

{&1 0 |eq 2771 < &) < Jeg 02501}

and equal to 1 for |c[b273 < |&] < |e[b2%. Let x® be an even C
function supported on

{&9: 27271 < |gy| < 2211}
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and equal to 1 for 272° < |&| < 220, Define PIE )e, PIEQ)“ by

o~

P &) = XD ) fe)

Then for s € [1,2],
bn g bn 1 2 bn ¢
(2.11) AY)e = a2pep® | PY) = PP AT

For p € (1,2] we have the Littlewood—Paley inequalities

e (X S EER) | < co- v,

ki1€Z ko€Z
and
(2.13)
H > > P(l) Péf) bfkl,k2 <C(p-— H( 3D ekl ) ‘p7
k1E€EZ ko €L k1€Z ko €Z

which also hold for Hilbert space valued functions.

3. A POSITIVE BILINEAR OPERATOR

In this section we are given for every n € Z an at most countable set
S(n) = {s,(i):i=1,2,...} c [1,2°].

Proposition 3.1. There is a constant C' independent of the choice of the
sets S(n) = {sn(i)}, n € N, such that for 1 <p <2 and ¢ >0,

[ w2700

j,m€EZ ieN

310 0 pp—
<Clp—1)r27'0 1)/25ug||wn”€?||f”p
ne

for all functions f and w, : N — C. This holds for .A2 sn(®) being any one
of the following:

Tansn(Z‘) 2_4 d an

ansn(l) —¢ d obn
A 2 A JAbE ’ ds IlEtls=s, (i)

]f d $|S Sn(’l,)7

We will only detail the proof in the case A2 ron() Aj ‘ ") The other
cases follow mutatis mutandis. To this end note that the correspondmg
variants of the main ingredients (2.9 , -, also hold for each of the
other cases, the underlying reasoning being identical in each case.

In the proof of the proposition we use a bootstrapping argument by Nagel,
Stein and Wainger [9] in a simplified and improved form given in unpublished
work by Christ (see [I] for an exposition).
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We first introduce an auxiliary maximal operator. For R € N let

bnsnl’
Melf,w)(x) =  sup  suplwa(i)7; " Dsf(z)].
—R<jn<R ieN

We let B,(R) be the best constant C' in the inequality
1M R[f, wlllp < Csup [lwalle | flp,
nez

that is,
(3.1)  Bp(R) = sup{||Ma[f w]lp: [fll, <1, sup [[wnller < 1}.

The positive number By, (R) is finite, as from the uniform LP-boundedness of
the operator f — 7' x f we have By(R) < C(2R + 1)%/P. Tt is our objective
to show that By,(R) is independent of R. More precisely, we claim that there
is a constant C' independent of the choice of the sets &(n), such that for
1<p<2,

(3.2) By(R) < C(p—1)>1077.
We begin with an estimate for a vector—valued operator.

Lemma 3.2. Let 1 <p <2, p<q<oo. Then

(3.3) H( 3 Z\wn(i)Ai”e"sn(i)gm‘q)l/qup

—R<jn<R €N

p

_ _P _p _ _1\p
<Cp—-1) "B, (R) a2 p’qsgz)uwnrup

(3 o)

JMEZL

Proof. The case ¢ = p of (3.3) follows from (2.9). For ¢ = oo we use (2.10)

to estimate

N 4280 (3
H sup  sup |wy(7) AM ? (Z)Qj,n’Hp
—R<jn<R ieN
. 2bn (i
<C| sup  supluwn ()| Mgl
—R<jn<R €N
. 2bn (3
<C|M* [ sup  sup|w,(i)|7; @4 ( sup g7 D] ]|
—R<jn<R ieN §'\n €T
where we have used the positivity of the operators f +— T f. By (2.3)) we

can dominate the last displayed expression by
_ i 2bn " .
C'p=172| sup_suplwa (i) 7Ok sup |gyl]
—R<j,;n<R ieN j' ' €L

< (p—1)"°By(R) sup [[walew|| sup |gjrml|
nez 3’ n' €L

p

»

p

which establishes the case ¢ = co. The case p < ¢ < oo follows by interpo-
lation. (|



MAXIMAL FUNCTIONS FOR FAMILIES OF HOMOGENEOUS CURVES 9

Proof of Proposition[3.1. We use the decomposition T} * =3 hf.

By (2.4] . we get

For ¢ > 0 we have,

| e €50 <[ F T o)

—R<j,n<R ieN —R<j,n<RieN

and, by (2.11)) and Lemma for ¢ = 2, and ([2.12)),
(3.4)

[ SlwaaZ =)™

—R<jn<RieN

2 n
sup sup [uwn (i) A7 ™ O f| < (0= 172 sup a7
JmEZ ieN nez

1
< 0= 1) B(R) 520 E sup o
ne

(3 1P2PPr?) |

JMEZL
S (p—1p 2wl p (R) P/ sup [[waller [|.f1]p-
ne

This implies, for 1 < p <2
By(R) < [ +Z 1)p—42~t-1)/2p (R)l—p/ﬂ

>0
S(p=1)"+ (-1 By(R) P
which leads to
By(R) S (p—1)>710/7.
If we use this inequality in and observe
p—4+(2-10/p)(1 —p/2) =3 —10/p,

then the claimed inequality in Proposition [3.1]|follows by the monotone con-
vergence theorem. ([

4. PROOF OF PROPOSITION

For n € Z let U, C [1,2°] be defined by
= {27"uu e 2, 2D N U}
and let
Noo(U) = #{k : 27k, 27 (k + 1)) N U, # 0}.

Then we have

9—t1-3) sup N, o(U) =~ K, (U, 24)
nez

We cover each set U, with dyadic intervals of the form

Ino = k275 (K +1)27%
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where k£ € N. Denote by &,, ¢ the left endpoints of these intervals and note
Nos(U) = #6,, 0. We label the set of points in &, ¢, by {sp ¢(i )}N" (W) and

write

sup sup |A%, f(z)| = supsup sup |A2}* f(x)|
JEZ uelU JEZ neZ s€Uy

<sup  osup AT pa)]
j)neZi:lvnNn,Z(U

(Sn 0(1)+a)
+ sup sup / ‘ f
FInELi=1,..N, o(U) do JE (z)|do

Hence

Jsmpspizes], < (3 S )|

JEZ uelU jneZ  i=1
2— n,Z
d 27 (s, (i) +a) 412 /2
o R [ de
/0 <j%e:z ; da” 7t f‘) P

and by part (ii) of Proposition both expressions on the right hand side
can be estimated by

(4.1) Clp— 170200 sup N (U) 7 ]
ne

This estimate is efficient for 1 < p < 1+ £~!. Note that in this range
2-CHI=1/P) ~ 1 and N, (U)YP ~ K,(U,27%). For p = 2 we have the
inequality

nl

W (S M)

JnEZ =1

_ N o (U) '
[T )

<27 ¢/2 sup/\/ng( )1/2Hf’|2-

nez

For p; :=1+¢~! < p < 2 we use the Riesz-Thorin interpolation theorem
(together with the fact that (p, —1)¢/* ~¢ 1 and (p;—1)~4 = £4). We then
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obtain for p; < p < 2

(575 o)),

Jn€Z =1

2*2 Nn,l(U)
d 27 (s, 4(i)+a) ;2 WH
A [O DD DR F-raaio e 2
Jn€Z =1

(@3) 22O N @) 5
ne

Thus we have established (2.7). The proof of (2.8)) is similar but the reduc-
tion to a square—function estimate requires one more use of a Littlewood—

Paley estimate. We have, using the analogue of (2.11)) for T]%Z:f

ZTJ%»J)HP

sup sup
nez uEUﬂ[Q”b 2(n+1)b]

<H<ZZ\ZP“>P s

neZ =1 ]6

/ H(Z Z ‘Z P nébdaj.fz:(_sne(i)+04)f)2)1/2dea

which by (2.13) is bounded by

nZ(U

2f|(S % S,

nez i=1 ]eZ

/ H(Z Z ;|da fzsnz(i)+a)f|2)1/2dea].
J

nezZ 1=1

From here on the estimation is exactly analogous to the previous square
function — just replace AY 7o with T%, . The arguments for the corresponding
terms with T]“ _ are Slmllar (or could be reduced to the previous case by a

change of varlable and curve). This concludes the proof of Theorem [2.2] .

5. LOWER BOUNDS FOR p < 2

As mentioned before the lower bound (logM(U))'/? for |HY||Lr—s1e »
based on ideas of Karagulyan [7], was established in [6]. We now show
the easier lower bound in terms of the quantity sups-o (U, d) (where we
only have to consider the cases § < 1). The same calculation gives the same
type of lower bound for | MY 1s_s1».
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By rescaling in the second variable and reflection we may assume that
¢y =1. Foru € U and § € (0,1) we define
Vs(u) = {(z1,20) : 1 < 1 < 2, |xo —uah| < 5/4}

and let f5 be the characteristic function of the ball of radius J centered at the
origin. Observe that for 1 <z, u<2,e<1and z; <t <z +ed we have
u(t’—2%) < 20-3""1es. Thus for e = (8b-3°~1)~! we get fs(x1—t, zo—ut®) =
1 and thus

1
3
By rescaling in the second variable we have for every r > 0 that
11 N zrsre > IR Lo sLe,

where U™ = r~'U N [1,2]. Let U"(5) be a maximal 2°¢-separated subset of
U”, then #U"(5) > N(U",8). This implies

HU" O f5(x) > 6 for z € Vis = U Vs(u).
welr ()

For different uj,ups € U"(0) the sets Vs(ui) and Vs(uz) are disjoint and
therefore we have meas(V;.5) 2 6#(U,(6)). Hence we get

[HY" O f5, > o™ /P4(UL(5)) V7.

Since also || fs]|, < 6%/7 we obtain

x1+epd €p
H™ f5(x) > / fo(xr —t,xg —ut’)dt > 50 TE Vs(w).

1

r _1 1 _1 1
1H o 2 (1Y Ol ooe 2 62 #(UT(6))7 2 6" #N(U”, 6)7

~

which gives the uniform lower bound
(5.1) 11 oo 2 Ky(U, 8)

for sufficiently small 6.
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