
RADIAL FOURIER MULTIPLIERS IN HIGH DIMENSIONS
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Abstract. Given a fixed p 6= 2 we prove a simple and effective charac-
terization of all radial multipliers of FLp(Rd) provided that the dimen-
sion d is sufficiently large. The method also yields new Lq space-time
regularity results for solutions of the wave equation in high dimensions.

Introduction

In this paper we study convolution operators with radial kernels acting on
functions defined in R

d. These can also be described as Fourier multiplier
transformations Tm defined by

T̂mf = mf̂,

with radial m. The main question we will be interested in is when the
operator Tm is bounded in Lp(Rd), 1 ≤ p <∞. By duality, the boundedness

of Tm in Lp is equivalent to its boundedness in Lp′ where 1
p + 1

p′ = 1, so we

may restrict ourselves to the range 1 ≤ p ≤ 2.

A simple characterization of convolution operators bounded in Lp (whether
radial or not) is known only in two cases: p = 1 and p = 2; namely, bound-
edness in L1 holds if and only if the convolution kernel is a bounded Borel
measure and boundedness in L2 holds if and only if the multiplier is an
essentially bounded function (see [12]). It is currently widely believed that
for 1 < p < 2, a full characterization of all Lp-multipliers in reasonable
terms is impossible. For the class of radial multipliers we deal with in this
paper, numerous sufficient conditions for boundedness in Lp have been ob-
tained in the literature. Many of them are in some or another sense close
to being necessary (cf. [3], [1], [14], [2], [26], [16], and references in those
papers) but no nice necessary and sufficient conditions have been known.
However, recently, Garrigós and the second author [9] obtained a perhaps
surprising characterization of the radial multiplier transformations that are
bounded on the invariant subspace Lp

rad of radial Lp functions in the range
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1 < p < 2d
d+1 (which is optimal for their result). This raised the question

whether the necessary and sufficient conditions in [9] actually give a char-
acterization of the radial multiplier transformations bounded on the entire
space Lp(Rd). The main result of the present paper is to show that this is
indeed the case in dimensions d ≥ 5 for 1 < p < pd where pd → 2 as d→ ∞.

1. Statement of results

Theorem 1.1. Let d ≥ 5, 1 < p < pd := 2(d2−2d−3)
d2−5

, and let m be radial.
Fix an arbitrary Schwartz function η that is not identically 0. Then

(1.1)
∥∥Tm

∥∥
Lp→Lp

≍ sup
t>0

td/p
∥∥Tm[η(t·)]

∥∥
Lp
.

The finiteness of the right hand side is, obviously, necessary for the Lp

boundedness, and the main result here is that it is also sufficient. The
constants implicit in this characterization depend (of course) on the choice
of η. The condition in (1.1) is equivalent to supt>0 ‖F

−1[m(t·)η̂]‖p < ∞.
If one chooses η to be radial and such that η̂ is compactly supported away
from the origin, then one recovers one of the characterizations for Lp

rad-
boundedness in [9]. Consequently, in the given range Lp-boundedness is
equivalent to Lp

rad-boundedness. For other equivalent formulations, we refer
the reader to [9].

One special situation is worth mentioning here. Namely when m is com-
pactly supported away from the origin, the convolution operator is bounded
in Lp if and only if the (radial) convolution kernel belongs to Lp.

We have no reason to believe that the range for p in Theorem 1.1 is even
close to the optimal one. It is conceivable that the characterization holds
in low dimensions or even in the optimal range p < 2d

d+1 , but proving that
will certainly require new ideas. We also emphasize that the theorem gives
no improvements for the Bochner-Riesz multiplier problem that is by now
understood in the range p < 2d+4

d+4 , d ≥ 2 ([3], [14]). Our result just goes
in a different direction: it applies to all, however irregular, radial kernels
and it is to be expected that, using some additional structural or regularity
conditions, one may get some better range of p for each particular case.
Nevertheless, our technique does yield some improvements upon the existing
results in the so-called local smoothing problem for the wave equation in high
dimensions. This concerns inequalities of the form

(1.2)
( ∫

I
‖eit

√
−∆f‖q

q dt
)1/q

≤ CI‖f‖Lq
α
,

for q > 2; here I is compact interval and Lq
α(Rd) denotes the usual Sobolev

(or potential) space where q is the Lebesgue exponent and α is the number
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of derivatives. Sharp Lq-Sobolev inequalities for fixed time were obtained

by Miyachi [15] and Peral [18]; they showed that the operator eit
√
−∆ maps

Lq
β(Rd) into Lq(Rd) provided that β ≥ (d − 1)|1/2 − 1/q|, 1 < q < ∞. In

[21] Sogge raised the question whether the averaged inequality (1.2) could
hold with a gain of almost 1/q derivatives compared to the fixed time esti-
mate, i.e., with α > α(q) = d(1/2 − 1/q) − 1/2, in the best possible range
q > 2d/(d− 1) for such an estimate. This conjecture is at the top of a tree
of other conjectures in harmonic analysis (including the cone multiplier,
Bochner-Riesz, Fourier-restriction and Kakeya conjectures) and the relation
between the different questions is discussed for example in [23]. The current
techniques seem to be insufficient to settle this problem, as well as many
of its consequences, in the full range of q’s. Some evidence for the smooth-
ing conjecture can be found in [16] where the analogous question for the
Lq

rad(L2
sph) scale of spaces is settled. For the Lq spaces even partial results

proved to be rather hard and the first result was obtained by Wolff [26];
he established, in a deep and fundamental paper, the validity of Sogge’s
conjecture in two dimension for the range q > 74. Versions of this result
for the higher dimensional cases were obtained by  Laba and Wolff [13] and
further improvements on the range of q’s are in [8], [10]; it is now known
that Wolff’s main ℓq(Lq) → Lq inequality for plate decompositions of cone
multipliers, which implies (1.2) for α > α(q), holds with q > 20 if d = 2 and
q > 2 + 8

d−2
2d+1
2d+2 if d ≥ 3, cf. [10].

We improve the current results on the smoothing problem in two ways.
First we widen the range in dimensions d ≥ 6 to q > qd where qd = p′d =
2 + 4d−1 + O(d−2) as d → ∞. Secondly, we strengthen Sogge’s conjecture
to obtain the endpoint result in (1.2), in dimensions d ≥ 5, for q > qd.

Theorem 1.2. Suppose d ≥ 5 and q > qd = 2(d2−2d−3)
d2−4d−1

. Then there is a
constant Cq so that for all L > 0

(1.3)
1

2L

∫ L

−L

∥∥eit
√
−∆f

∥∥q

q
dt ≤ Cq

q

∥∥(I − L2∆)α/2f
∥∥q

q

holds for α = α(q) = d(1/2 − 1/q) − 1/2.

We remark that this result can be strengthened further by using suitable
Triebel-Lizorkin spaces, see §9. A similar phenomenon occurs for solutions
of Schrödinger type equations, see [19].

A downside of our method is of course that it currently does not yield
results in low dimensions. However when it does apply it is somewhat sim-
pler than the induction on scales methods introduced by Wolff. We also
remark that we do not improve on the current range of the abovementioned
Wolff inequality for plate decompositions which has other applications and
is interesting in its own right.
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Structure of the paper. In §2 we explain the basic idea in the paper, which
is that weak orthogonality properties may be combined with support size
estimates to prove satisfactory Lp bounds. Here we also state a basic in-
terpolation lemma which is related to the Marcinkiewicz theorem and will
be used throughout the paper. The main section is §3 where we outline the
proof of a discretized version of Theorem 1.1 for a fixed scale. A crucial
L2 estimate needed for this proof is done in §4. The characterization of Lp

boundedness for radial multipliers that are compactly supported away from
the origin is proved in §5. In §6 we give an important refinement of the ear-
lier estimates, which is crucial for putting scales together. This is completed
in §7 where the relevant atomic decomposition techniques are introduced
and applied. The proof of Theorem 1.1 is concluded in §8. The last section
§9 contains the proof of (a somewhat strengthened version of) Theorem 1.2.

Notation. For two quantities A and B we shall write A . B if A ≤ CB for
some absolute positive constant C (depending on the dimension). We write
A ≍ B if A . B and B . A. The cardinality of a finite set E is denoted by
#E. The Lebesgue measure on R

d of a subset E will be denoted by meas(E)
or by |E|.

Acknowledgement. The authors would like to thank Gustavo Garrigós and
Keith Rogers for useful comments on preliminary versions of this paper.

2. L2 bounds versus support: A simple model case

Since we do not know how to exploit cancellations in Lp directly, we
use the strategy of controlling the L2 norm and the size of the support
simultaneously to get our Lp bounds. We describe a simple model case
for which we have some limited orthogonality, but not enough to prove a
favorable L2 bound.

Lemma 2.1. Suppose we are given finite number of complex-valued L2-
functions {fz} indexed by z ∈ Z

d so that each function fz is supported on a
cube Qz of sidelength 1. Suppose also that the family {fz} satisfies

(2.1) |〈fz, fz′〉| ≤ (1 + |z − z′|)−β,

for some β ∈ (0, d). Then

(2.2)
∥∥∥

∑

z

azfz

∥∥∥
p
≤ Cβ,p

( ∑

z

|az|
p
)1/p

, p <
2d

2d− β
.

We remark that if (2.1) were assumed for some β > d, then inequality
(2.2) would be true for p = 2 and the result would follow for 1 ≤ p ≤ 2
by interpolation with the trivial ℓ1 → L1 bound. The assumption (2.1) for
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β < d is too weak to yield the ℓ2 → L2 bound. Instead we have to use some
improved support properties when several of the intervals Ik overlap.

Proof of Lemma 2.1. We shall first prove a weaker (so-called restricted strong
type) inequality that includes the endpoint; namely

(2.3)
∥∥∥

∑

z∈E

azfz

∥∥∥
p
≤ Cβ(#E)1/p sup

z
|az|, p ≤

2d

2d− β
.

We may assume that supz |az| = 1. Let xz ∈ R
d be the center of the cube

Qz of sidelength 1 supporting fz. Split R
d into nonoverlapping cubes J of

sidelength 1, put EJ = {z ∈ E : xz ∈ J} and define uJ = #EJ so that
#E =

∑
J uJ . Define FJ =

∑
z∈EJ

azfz so that we have to bound the Lp

norm of
∑

J FJ .

Now observe that at each point x ∈ R, at most 3d of the functions FJ can
be non-zero simultaneously. Therefore

∥∥∥
∑

J

FJ

∥∥∥
p

p
≤ 3dp

∑

J

‖FJ‖
p
p .

Now, according to our weak orthogonality assumption about the functions
fz, we have

‖FJ‖
2
2
≤

∑

z∈EJ

∑

z′∈EJ

(1 + |z − z′|)−β

≤
∑

z∈EJ

∑

z′:|z−z′|≤
√

du
1/d
J

(1 + |z − z′|)−β . u
2−β

d
J .

The measure of the support of FJ is at most 2d and therefore, by Hölder’s
inequality, ‖FJ‖p . ‖FJ‖2. Hence

∥∥∥
∑

J

FJ

∥∥∥
p

.
( ∑

J

‖FJ‖
p
2

)1/p
.

( ∑

J

u
(2−β/d)p/2
J

)1/p

and if (2−β/d)p/2 ≤ 1 then the last expression is bounded by (
∑

J uJ)1/p ≤

(#E)1/p. This yields (2.3).

The improved bound (2.2) can be deduced by using interpolation theorems
for Lorentz spaces (see [22], ch. V): Consider the operator on sequences
a = {az}z∈Zd, given by T [a] =

∑
z azfz. Then (2.3) states that T maps

the Lorentz space ℓp,1 to Lp, for p ≤ 2d/(2d− β) and, by interpolation, one
deduces the inequality (2.2) in the open range p < 2d/(2d− β) �

We wish to give a direct proof of the last interpolation result based on
a dyadic interpolation lemma, which will be frequently used in this paper.
For closely related considerations see also the expository note [24] by Tao.
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Lemma 2.2. Let 0 < p0 < p1 < ∞. Let {Fj} be a sequence of measurable
functions on a measure space {Ω, µ}, and let {sj} be a sequence of nonneg-
ative numbers. Assume that, for all j, the inequality

(2.4) ‖Fj‖
pν
pν

≤ 2jpνMpνsj

holds for ν = 0 and ν = 1. Then for all p ∈ (p0, p1) there is a constant
C = C(p0, p1, p) so that

(2.5)
∥∥∥

∑

j

Fj

∥∥∥
p

p
≤ CpMp

∑

j

2jpsj

There is an analogous statement for the case p0 = 0 where the assumption
(2.4) for ν = 0 is replaced with meas({x : |Fj(x)| 6= 0}) ≤ sj, and the
conclusion (2.5) holds for 0 < p < p1.

To see how this is used to derive (2.2) from (2.3) we consider the sets of
indices Ej = {z ∈ Z : 2j−1 < |az| ≤ 2j} and define Fj =

∑
z∈Ej

azfz. Then

‖Fj‖
p
Lp . 2jp#Ej for all p ∈ (0, 2d/(2d − β)], by (2.3). Thus Lemma 2.2

immediately yields ‖
∑

k azfz‖
p
p = ‖

∑
j Fj‖

p
p .p

∑
j 2pj#Ej .

∑
j |ck|

p for

all p < 2d/(2d− β).

Proof of Lemma 2.2. First, replacing Fj by M−1Fj , we can reduce the state-
ment to the case M = 1. Now let, for n ∈ Z, denote by Ej,n the set where
2j+n ≤ |Fj| < 2j+n+1 and put Fj,n = χ

Ej,n
Fj. Then Fj =

∑
n∈Z

Fj,n. Ob-

serve that if aj is any numerical sequence such that for every j, the absolute
value of aj either is 0 or belongs to [2j , 2j+1), then |

∑
j aj |

p .
∑

j |aj|
p.

Applying this observation to 2−n
∑

j Fj,n, we see that for fixed n and x

∣∣∣
∑

j

Fj,n(x)
∣∣∣ .

( ∑

j

|Fj,n(x)|p
)1/p

and therefore∥∥∥
∑

j

Fj,n

∥∥∥
p

p
.

∑

j

‖Fj,n‖
p
p .

∑

j

2(j+n)pmeas
(
{x : |Fj| ≥ 2j+n}

)
.

By Chebyshev’s inequality,

meas
(
{x : |Fj | ≥ 2j+n}

)
≤ min{2−p0n, 2−p1n}sj .

Thus, ∥∥∥
∑

j

Fj,n

∥∥∥
p

. 2−σ|n|/p
( ∑

j

2jpsj

)1/p

where σ = min{p1 − p, p − p0}. We sum in n to get the statement of the
lemma for the case p0 > 0. The case p0 = 0 is very similar and left to the
reader. �



RADIAL FOURIER MULTIPLIERS IN HIGH DIMENSIONS 7

3. The main inequality

In this section we shall prove the main inequality of this paper, which
turns out to be the key estimate for the case that our multiplier has compact
support away from the origin; this application is discussed at the end of this
section.

In what follows, we denote by σr the surface measure on the (d − 1)-
dimensional sphere of radius r centered at the origin. We shall denote by ψ◦
a fixed radial C∞ function that is compactly supported in a ball of radius

(2d)−1 centered at the origin, and whose Fourier transform ψ̂◦ vanishes to
high order (say 20d) at the origin. We set ψ = ψ◦ ∗ ψ◦.

Consider a 1-separated set Y of points in R
d and a 1-separated set R of

radii ≥ 1. Also set

Rk = R∩ [2k, 2k+1), k ≥ 0.

For y ∈ Y and r ∈ R define

(3.1) Fy,r = σr ∗ ψ(· − y).

Proposition 3.1. Let E be a finite subset of Y×R and let Ek = E∩(Y×Rk).
Let c : E → C be a function satisfying |c(y, r)| ≤ 1 for all (y, r) ∈ E. Then
for p < pd

(3.2)
∥∥∥

∑

(y,r)∈E
c(y, r)Fy,r

∥∥∥
p

p
.

∑

k

2k(d−1) #Ek;

here the implied constant depends only on p, d and ψ.

Proposition 3.1 implies a stronger estimate, namely

Corollary 3.2. For Fy,r as in (3.1), (y, r) ∈ Y ×R, and p < pd,

(3.3)
∥∥∥

∑

(y,r)

γ(y, r)Fy,r

∥∥∥
p

.
( ∑

y,r

|γ(y, r)|prd−1
)1/p

.

Indeed let, for j ∈ Z, denote by Ej the set of all (y, r) ∈ Y ×R for which
2j−1 < |γ(y, r)| ≤ 2j. By Proposition 3.1 we see that ‖

∑
(y,r)∈Ej γ(y, r)Fy,r‖

p
p

is dominated by Cp
p2jp

∑
(y,r)∈Ej rd−1 for all p < pd, and the assertion follows

from the proposition by the dyadic interpolation Lemma 2.2.

If γ has a tensor product structure, namely γ(y, r) = α(y)β(r) then the
expression

∑
(y,r)∈E c(y, r)Fy,r can be interpreted as the convolution opera-

tor with kernel
∑

r βrσr ∗ ψ acting on f =
∑

y α(y)δ(· − y). Here δ is the



8 FEDOR NAZAROV AND ANDREAS SEEGER

Dirac measure at the origin. In §5 we shall show how by a simple averag-
ing argument this model case implies the version of our theorem for radial
multipliers compactly supported away from the origin.

We shall now outline the proof of Proposition 3.1 (leaving one part to the
next section).

Estimates for scalar products. We are aiming at a good L2 estimate
for

∑
cy,rFy,r and make use of some (albeit weak) orthogonality property of

the summands. This property is expressed by

Lemma 3.3. For any choice of r, r′ > 1 and y, y′ ∈ R
d

(3.4)
∣∣〈Fy,r, Fy′,r′

〉∣∣ .
(rr′)

d−1
2

(1 + |y − y′| + |r − r′|)
d−1
2

.

Proof. Note that σr =r−1σ1(r−1·), in the sense of measures, and that σ̂r(ξ)=

rd−1σ̂1(rξ). Next σ̂1(ξ) =Bd(|ξ|) where Bd(s) = cs−(d−2)/2J(d−2)/2(s) (the

usual Bessel function). Thus |Bd(s)| . (1 + |s|)−(d−1)/2 (see [22], ch. IV).

Now ψ̂ is radial and we can write ψ̂(ξ) = a(|ξ|) where a is rapidly decaying
and a vanishes to high order at the origin. By Plancherel’s theorem the
scalar product 〈Fy,r, Fy′,r′〉 is equal to a constant times

∫
σ̂r(ξ)σ̂r′(ξ)|ψ(ξ)|2ei〈y′−y,ξ〉dξ

= c (rr′)d−1

∫
Bd(rρ)Bd(r′ρ)Bd(|y − y′|ρ)|a(ρ)|2ρd−1dρ

The decay properties of Bd and the behavior of a imply that

∣∣〈Fy,r, Fy′,r′
〉∣∣ .

(rr′)
d−1
2

(1 + |y − y′|)
d−1
2

which gives the claimed bound for the range |r − r′| ≤ C(1 + |y − y′|). But
if |r − r′| ≫ (1 + |y − y′|) then Fy,r and Fy′,r′ have disjoint supports. Thus
in this case 〈Fy,r, Fy′,r′〉 = 0. The lemma is proved. �

Remark 3.4. Taking into account the oscillation of the Bessel functions one
can obtain the improved bound

|〈Fy,r, Fy′,r′〉| ≤ CN (rr′)
d−1
2 (1 + |y − y′|)−

d−1
2

∑

±,±

(
1 +

∣∣r ± r′ ± |y − y′|
∣∣)−N

.

We shall not use it in our proof.

The exponent (d − 1)/2 in the denominator in (3.4) is too small to use
orthogonality in a straightforward way; this is analogous to the weak ortho-
gonality assumption in Lemma 2.1. However if we impose a suitable density
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assumption on the sets Ek, then we can prove a satisfactory L2 bound. To
quantify this we give a definition.

Definition 3.5. Fix a parameter h ∈ (1, d), and fix R ≥ 1 and u ≥ 1. Let E
be a finite 1-separated subset of R

d × [R, 2R). We say that E is of h-density
type (u,R) if

#(B ∩ E) ≤ 2(u+ ρh)

for any ball B of radius ρ ≤ 25R.

We shall prove in section §4 the following L2 inequality involving sets of
h-density type with h < (d− 1)/2. The proof will be based on Lemma 3.3.

Lemma 3.6. Suppose h < d−1
2 and let u ≥ 1. For each k ≥ 0, let Ek ⊂ Y ×

Rk be a set of h-density type (u, 2k). Assume |c(y, r)| ≤ 1 for (y, r) ∈ Y×R.
Then

(3.5)
∥∥∥

∑

k

∑

(y,r)∈Ek

c(y, r)Fy,r

∥∥∥
2

2
.h u

2
d+1 log(2 + u)

∑

k

2k(d−1) #Ek.

In order to use this estimate efficiently we shall need to decompose the
sets Ek into subsets of h-density type (u, 2k) for various values of u.

Density decompositions of sets. Fix h < d. Assume that E ⊂ Y ×R is
a 1-separated set and let Ek = E ∩ (Y ×Rk) (i.e. only radii in [2k, 2k+1) are
involved). We consider u ∈ U = {2ν , ν = 0, 1, 2, . . . }. For u ∈ U , let

Rk,u = min{2k+5, u1/h}

and let Bk,u(y, r) be the ball (in R
d+1) of radius 2Rk,u centered at (y, r) ∈

R
d+1.

For k ∈ N and u ∈ U , consider a maximal Rk,u-separated set Λk(u) ⊂

R
d × [2k, 2k+1). Let

Λk(u, E) = {(y, r) ∈ Λk(u) : #
(
Ek ∩Bk,u(y, r)

)
≥ u} .

Let

Êk(u) = Ek ∩
⋃

(y,r)∈Λk(u,E)

Bk,u(y, r),

and

Ek(u) = Êk(u) \
⋃

u′∈U
u′>u

Êk(u′) .

Finally set E(u) =
⋃

k Ek(u).
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Lemma 3.7. The sets E(u) have the following properties.

(i) E =
⋃

u∈U E(u) =
⋃

u∈U
⋃

k≥0 Ek(u) and the unions are disjoint.

(ii) Ek(u) can be covered by .d u
−1(#Ek) balls of radius 2Rk,u each.

(iii) If B is any ball of radius Rk,u containing at least u points of Ek, then

B ∩ Ek ⊂
⋃

u∈U
u′≥u

Ek(u) = Êk(u).

(iv) Ek(u) is a set of h-density type (u, 2k) (i.e., for every (y, r) ∈ R
d ×

[2k, 2k+1) and every ρ ≤ 2k+5 the ball of radius ρ centered at (y, r) contains
no more than 2(u+ ρh) points in Ek(u).)

Proof. In order to prove (i), it suffices to observe that Êk(20) = Ek and

Êk(u) = ∅ when u is sufficiently large.

To prove (ii), first note that Ek(u) is empty if u > #Ek. Observe that
the family of balls Bk,u(y, r) (with (y, r) ∈ Λk(u)) has the covering number
.d 1. This implies that

#Λk(u, E) .d u
−1#Ek,

so we may just use the balls Bk,u(y, r) with (y, r) ∈ Λk(u, E).

(iii) immediately follows from the observation that every ball of radius
Rk,u is contained in one of the balls Bk,u(y, r) (of radius 2Rk,u) with (y, r) ∈
Λk(u).

It remains to prove (iv). Let B be a ball of radius ρ centered at (y, r). If
#(B ∩ E) ≤ 2u+ 2ρh, there is nothing to prove. Suppose that the opposite
inequality holds. Let ũ be the smallest number in U that exceeds u + ρh.
Then ρ ≤ ũ1/h and the ball B whose radius is ρ ≤ Rk,eu = min{2k+5, ũ1/h}

contains at least ũ points of E . Therefore, by (iii), B∩Ek ⊂ Êk(ũ) and (since
ũ > u) we conclude that in this case B ∩ Ek(u) = ∅. �

We now set

(3.6) Gu,k =
∑

(y,r)∈Ek(u)

c(y, r)Fy,r and Gu =
∑

k

Gu,k.

From the support properties of σr∗ψ it follows immediately that Gu,k is sup-

ported in a set of measure . 2k(d−1)#Ek,u, hence of measure . 2k(d−1)#Ek.
By the properties of Ek,u we get the following improved bound.
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Lemma 3.8. For u ∈ U ,

meas(supp(Gu,k)) . u−
h−1

h 2k(d−1)#Ek.

Proof. Recall that Ek,u can be covered by . u−1#Ek balls of radius 2Rk,u ≤

2 · u1/h. Let (y◦, r◦) be the center of one such ball. Then, for every pair
(y, r) contained in this ball, the support of c(y, r)σr ∗ ψ(· − y) is contained
in the annulus of width not exceeding 4Rk,u +1 built on the sphere centered

at y◦ of radius r◦. Note also that we can assume that r◦ ≤ 2k+7 because
otherwise the ball centered at (y◦, r◦) of radius 2Rk,u does not intersect Ek

and we can just remove this ball from the covering. Also, note that the
estimate for the width of the annulus does not exceed the estimate for the
radius of the sphere it is built upon, so we can conclude that the volume of
this annulus is .d 2k(d−1)u1/h. Consequently the measure of the support of
Gu,k does not exceed Cu−1u1/h2k(d−1)#Ek. �

We now combine the L2 bound of Lemma 3.6 and the support bound of
Lemma 3.8 to get an Lp bound; for later reference in §6 this is formally
stated as

Lemma 3.9. Suppose d ≥ 4. Let Gu be as in (3.6) where the sets Ek,u are

defined using the density decomposition of Ek, with a parameter h ∈ (1, d−1
2 ).

Let

(3.7) ph,d :=
2(h− 1)(d+ 1)

(h− 1)(d+ 1) + 2h
.

Let p < ph,d and let δ < h−1
h (1

p − 1
ph,d

). Then

‖Gu‖
p
p ≤ Cδu

−δp
∑

k

2k(d−1)#Ek.

Proof. Since we assume h < (d−1)/2 we have by Lemma 3.6 that ‖Gu‖
2
2 .p

log(2 + u)u2/(d+1)
∑

k 2k(d−1) #Ek. Combining this with the support bound
of Lemma 3.8 we obtain

‖Gu‖
p
p ≤

(
meas(supp(Gu))

)1−p/2
‖Gu‖

p
2(3.8)

≤
( ∑

k

meas(supp(Gu,k))
)1−p/2

‖Gu‖
p
2

. u−
h−1

h
(1− p

2
)
(

log(2 + u)u
2

d+1
) p

2
∑

k

2k(d−1) #Ek.

This implies the conclusion of the lemma. �
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In order to finish the proof of Proposition 3.1 we fix p < 2(d2−2d−3)
d2−5

= pd.

If we choose h < d−1
2 sufficiently close to d−1

2 then p > ph,d and thus the
conclusion of Lemma 3.9 holds with a positive δ. Consequently we can sum
the bounds for each ‖Gu‖p in u ∈ U and the proof of Proposition 3.1 is
complete.

4. Proof of Lemma 3.6

We are working with sets Ek ⊂ Y × Rk, which have the property that
every ball of radius ρ ≤ 2k+5 contains . u+ ρh points in Ek. Let

Gk =
∑

(y,r)∈Ek

c(y, r)Fy,r

with ‖c‖∞ ≤ 1, and it is our task to estimate the L2 norm of
∑

k Gk. We
may break up this sum into ten separate sums, each with the property that
k ranges over a 10-separated set of natural numbers. We shall assume this
separation property in all sums involving a k-summation.

It will be convenient to avoid scalar products of expressions of Gk involv-
ing k . log(2 + u). We therefore let N(u) be the smallest integer larger
than 10 log2(2 + u) and split the sum as

∑
k≤N(u) +

∑
k>N(u)Gk, and then

apply the Cauchy-Schwarz inequality with respect to the first sum. We thus
obtain

∥∥∥
∑

Gk

∥∥∥
2

2
. log(2 + u)


 ∑

k≤N(u)

‖Gk‖
2
2 +

∥∥∥
∑

k>N(u)

Gk

∥∥∥
2

2




. log(2 + u)


∑

k

‖Gk‖
2
2 + 2

∑

k′>k>N(u)

∣∣〈Gk′ , Gk〉
∣∣

 .(4.1)

We begin with estimating the double sum
∑

k′>k>N(u)

∣∣〈Gk′ , Gk〉
∣∣. In this

sum we have various scalar products of Fy,r with FY,R where r ≤ R2−5. Let
us fix the pair (Y,R) and examine the sum of the absolute values of such
scalar products when (y, r) runs over Ek with 2k < R/4. The scalar product
〈Fy,r, FY,R〉 can be different from 0 only if y lies in the annulus of width

2k+1 + 2 built upon the sphere of radius R centered at Y , moreover 2k ≤
r < 2k+1. Now the set of all pairs (y, r) ∈ Y ×R satisfying these conditions
can be covered by . Rd−12−k(d−1) balls (in R

d+1) of radius 2k. Each such
ball can contain only O(u + 2kh) pairs (y, r) ∈ Ek by our assumption on

Ek. For each such (y, r), the scalar product 〈Fy,r, FY,R〉 is O(2k(d−1)/2) by
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Lemma 3.3. Consequently, for fixed (Y,R),
∑

(y,r)∈Ek

∣∣〈Fy,r, FY,R〉
∣∣ . Rd−12−k(d−1)/2(u+ 2kh).

and therefore (as N(u) = 10 log2(2 + u))
∑

2N(u)<2k<R/4

∑

(y,r)∈Ek

∣∣〈Fy,r, FY,R〉
∣∣ . Rd−1

∑

k>N(u)

2−k(d−1)/2(u+ 2kh) . Rd−1;

here we used h < (d − 1)/2 and summed a decaying geometric progression
whose maximal term corresponds to k = N(u) + 10. Since (d− 1)/2 ≥ 1/2,
we see that the geometric series cancels the large term u in the last displayed
formula. Now it remains to sum this estimate over pairs (Y,R) to get the

bound
∑

k 2k(d−1)#Ek for the sum of scalar products in (4.1).

Now that we have dealt with the interaction of incomparable radii, we
can concentrate on estimating ‖Gk‖

2
2 for each k separately. It is convenient

to arrange the radii in intervals of length ua, for some a ∈ (0, 1/h), and then
apply the estimates of Lemma 3.3 to scalar products arising from different
intervals; we shall see later that that the choice of a = 2/(d+ 1) is optimal.

Now let Ik,µ = [2k + (µ− 1)ua, 2k + µua for µ = 1, 2, . . . , and let Ek,µ be
the set of all (y, r) ∈ Y × Ik,µ that belong to Ek. Set

Gk,µ =
∑

(y,r)∈Ek,µ

c(y, r)Fy,r.

We need to estimate the L2 norm of
∑

µGk,µ. By splitting the µ sum into
ten different sums we may assume that µ ranges over a 10-separated set and
bound ∥∥∥

∑

µ

Gk,µ‖
2
2 .

∑

µ

∥∥Gk,µ

∥∥2

2
+ 2

∑

µ′>µ

∣∣〈Gk,µ′ , Gk,µ〉
∣∣.

Again, we shall first estimate the sum of the various scalar products, using
strongly the assumption that the sets Ek are of h density type (u, 2k). We
claim that

(4.2)
∑

µ′>µ

∣∣〈Gk,µ′ , Gk,µ〉
∣∣ . u1−a d−1

2 2k(d−1)#Ek.

To see this we pick again some pair (Y,R) ∈ Ek,µ′ and examine how it
interacts with pairs in Ek,µ where µ ≤ µ′−10. Note that if (y, r) is such a pair

for which the scalar product is non-zero, then we must have |y − Y | ≤ 2k+3

and, since |r−R| ≤ 2k+1, we conclude that |(y, r)− (Y,R)| ≤ 2k+4 in R
d+1.

Moreover |r−R| ≥ ua and thus the sum of the scalar products in which the
pair (Y,R) participates is

. 2k(d−1)
∑

(y,r)∈Ek:

ua≤|(y,r)−(Y,R)|≤2k+5

|(y, r) − (Y,R)|−(d−1)/2 .
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We split this sum into two parts, one involving the terms for which the
distance between (y, r) and (Y,R) is ≥ u1/h and one involving the terms for
which this distance is between ua and u1/h. Note that if u1/h ≤ T ≤ 2k+5

then every ball of radius T centered at (Y,R) contains only O(T h) points.
Since h < (d− 1)/2 we obtain the uniform bound

∑

(y,r)∈Ek:

u1/h≤|(y,r)−(Y,R)|≤2k+5

|(y, r) − (Y,R)|−(d−1)/2 .h 1.

We also know that the ball of radius u1/h centered at (Y,R) contains at
most O(u) points in Ek. This implies that

∑

(y,r)∈Ek:

ua≤|(y,r)−(Y,R)|≤u1/h

|(y, r) − (Y,R)|−(d−1)/2 . u · u−a d−1
2 .

We combine these two estimates, add over all (Y,R) ∈ Ek,µ′ and then add
over all µ′. Then the left hand side of (4.2) is

. u1−a d−1
2 2k(d−1)

∑

µ

#Ek,µ;

thus (4.2) follows.

We now estimate the L2 norm of each Gk,µ. For each r ∈ Rk,µ := Ik,µ∩R
let

Gk,µ,r =
∑

(y,r)∈Ek

c(y, r)Fy,r.

The conclusion of Lemma 3.3 is now too weak to give satisfactory results;
instead we apply the Cauchy-Schwarz inequality with respect to r and use
that the cardinality of Rk,µ is . ua. Thus

‖Gk,µ‖
2
2 . ua

∑

r∈Rk,µ

‖Gk,µ,r‖
2
2.

Now Gk,µ,r is the convolution of
∑

y:(y,r)∈Ek,µ
c(y, r)ψ◦(· − y) with σr ∗ ψ◦.

By the standard decay estimate for the Fourier transform of the surface
measure on the unit sphere we have

|σ̂r(ξ)| ≤ rd−1(1 + r|ξ|)−
d−1
2

and since ψ̂◦ vanishes to high order at the origin we also have, for r ≥ 1,

‖σ̂rψ̂◦‖∞ . r(d−1)/2.

Since Y is 1-separated and the support of ψ is contained in a ball of radius
1/2, we conclude that

‖Gk,µ,r‖
2
2 . rd−1#{y ∈ Y : (y, r) ∈ Ek,µ}
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and thus ∑

µ

‖Gk,µ‖
2
2 . ua

∑

µ

∑

r∈Rk,µ

‖Gk,µ,r‖
2
2 . ua2k(d−1)#Ek.

Combining this bound with (4.2) yields
∥∥Gk

∥∥2

2
.

(
ua + u1−a d−1

2
)
2k(d−1)#Ek.

The two terms balance if a = 2/(d + 1) and with this choice the previous
bound becomes ∥∥Gk

∥∥2

2
. u

2
d+1 2k(d−1)#Ek.

Now we use this to estimate the first term in (4.1) and combine with the
earlier bound for the mixed terms in (4.1) to complete the proof of the
lemma. �

5. Application to compactly supported multipliers

Now let m be a radial Fourier multiplier supported in {1/2 < |ξ| < 2}
and let K = F−1[m]; since K is radial we can also write K = κ(| · |) for
suitable κ. We shall prove the estimate

(5.1) ‖K ∗ f‖p . ‖K‖p‖f‖p, 1 ≤ p < pd.

Let η◦ be a radial Schwartz function whose Fourier transform is supported
in {1/4 < |ξ| < 3} so that η̂◦(ξ) = 1 on the support of m. Let ψ◦ be a radial
C∞ function with compact support in {|x| ≤ 10−1}, with the property that

ψ̂◦ and all its derivatives up to order 20d vanish at the origin, but ψ̂◦(ξ) > 0
on {1/4 ≤ |ξ| ≤ 4} . This is easy to achieve (take a radial function χ ∈ C∞

0

so that χ̂(0) = 1, then define ψ◦ = λd∆10d[χ(λ·)], for a sufficiently large λ;
here ∆ denotes the Laplacian in R

d.

Let η = F−1[η̂◦(ψ̂◦)−2]. Then K ∗ f = ψ◦ ∗K ∗ ψ◦ ∗ g where g = η ∗ f
and clearly ‖g‖p . ‖f‖p. We split K = K0 + K∞ where K(x) = K0(x) if
|x| ≤ 1 and K(x) = K∞(x) if |x| > 1. Since K0 is a bounded compactly
supported function the operator of convolution with K0 is clearly bounded
on all Lp, 1 ≤ p ≤ ∞, and therefore it suffices to show that the Lp norm of
ψ◦ ∗K∞ ∗ ψ◦ ∗ g is controlled by C‖K‖p‖g‖p. We now write

K∞ =

∞∑

n=1

∫ 1

0
κ(n+ τ)σn+τdτ,

and set ψ = ψ◦ ∗ψ◦. Let Q◦ = [0, 1)d. Then ‖ψ◦ ∗K∞ ∗ψ◦ ∗g‖p is dominated
by

∫∫
(τ,w)∈

[0,1)×Q0

∥∥∥
∞∑

n=1

∑

z∈Zd

g(z + w)κ(n+ τ)σn+τ ∗ ψ(· − z − w)
∥∥∥

p
dτdw
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We set γ(y, r) = g(y)κ(r), with y ∈ Y := w+ Z
d, r ∈ R := τ + N, and apply

Corollary 3.2. It follows that the last displayed expression is bounded by

C

∫ 1

0

( ∞∑

n=1

|κ(n+ τ)|p(n+ τ)d−1
)1/p

dτ

∫

Q◦

( ∑

z

|g(z + w)|p
)1/p

dw,

which after applying Hölder’s inequality with respect to τ and w is bounded
by C‖K∞‖p‖g‖p . ‖K‖p‖f‖p. This establishes (5.1). �

6. A variant of Corollary 3.2 involving large radii

The following estimate for convolution operators with radial kernels will
be used in conjunction with atomic decompositions to extend the one scale
situation of §5 to the general case. The crucial feature is an exponential gain
for large radii, which will be useful when putting different scales together.
For ν ∈ Z, let Wν be the tiling of R

d with dyadic cubes of sidelength 2ν ,
i.e., the set of cubes of the form

[z12ν , (z1 + 1)2ν) × · · · × [zd2ν , (zd + 1)2ν), z = (z1, . . . , zd) ∈ Z
d.

Proposition 6.1. For 1 < p < pd there is ε = ε(p) > 0 so that the following
holds. Let K be a radial convolution kernel supported in {x : |x| > 2ℓ}. For
s ∈ Z let Ks = 2sdK(2s·), ψs = 2sdψ(2s·). Let ℓ ≥ 0. Then

(6.1)
∥∥ψs ∗Ks ∗ g

∥∥
p

. ‖K‖p2−ℓε
( ∑

W∈Wℓ−s

meas(W ) ‖gχ
W
‖p
∞

)1/p

We shall base the proof on the arguments in §3 and first prove a discretized
version for the functions Fy,r in (3.1); here (y, r) is taken from Y ×R where

Y is a 1-separated set of R
d and R is a 1-separated set of R

+. We prove a
variant of Corollary 3.2, which involves only radii r ≥ 2ℓ. This corresponds
to the case s = 0 of the proposition.

Lemma 6.2. For p < pd, there is ε = ε(p) > 0 so that for ℓ ≥ 0,

∥∥∥
∑

(y,r)∈Y×R
r≥2ℓ

γ(y, r)Fy,r

∥∥∥
p

. 2−ℓε2ℓd/p
(∑

r

∑

W∈Wℓ

sup
y∈Y∩W

|γ(y, r)|prd−1
)1/p

.

Proof. Let ph,d be as in (3.7). Since ph,d → pd as h → d−1
2 it suffices to

prove the inequality for p < ph,d, for a fixed h ∈ (1, d−1
2 ). We choose δ > 0

so that δ < h−1
h (1

p − 1
ph,d

).

For j ∈ Z, r ∈ R, let Wℓ(j, r) be the set of all W ∈ Wℓ for which
2j ≤ supx∈W |γ(x, r)| < 2j+1. For each y ∈ Y let W (y) be the unique
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cube in Wℓ that contains y, and for each j ∈ Z, let Ek(j) be the set of all
(y, r) ∈ Y ×Rk with the property that W (y) ∈ Wℓ(j, r).

We now apply the density decomposition of Lemma 3.7 to the sets Ek(j)
and write Ek(j) =

∑
u∈U Ek(j, u) as in this lemma. Lemma 3.9 applied to

the set ∪k≥ℓ Ek(j, u) yields

(6.2)
∥∥∥

∑

(y,r)∈
∪k≥ℓEk(j,u)

γ(y, r)Fy,r

∥∥∥
p

p
.p u

−δp2jp
∑

k≥ℓ

∑

(y,r)∈Ek(j,u)

rd−1.

Now we use that Ek(j, u) is of h-density type (u, 2k). Since k ≥ ℓ this implies
that for every u ∈ U , every j, every W ∈ Wℓ and every r ∈ [2k, 2k+1), the
slice Ek(j, u,W, r) := {y ∈ Y ∩W : (y, r) ∈ Ek(j, u)} contains no more than
2u+ 2 · 2ℓh points. Also, since Y is 1-separated, the cardinality of each slice
is . 2ℓd. Therefore the right hand side of (6.2) is controlled by

2jpu−δp
∑

k≥ℓ

∑

r∈Rk

rd−1
∑

W∈Wℓ

#Ek(j, u, r,W )

. 2jpC(ℓ, u)
∑

k≥ℓ

∑

r∈Rk

rd−1#Wℓ(j, r),

with C(ℓ, u) := u−δp min{u+ 2ℓh, 2ℓd}. By interpolation (Lemma 2.2),
∥∥∥

∑

j

∑

(y,r)∈∪k≥ℓEk(j,u)

γ(y, r)Fy,r

∥∥∥
p

p

.p C(ℓ, u)
∑

j

2jp
∑

k≥ℓ

∑

r∈Rk

rd−1#Wℓ(j, r)

.p C(ℓ, u)
∑

W∈Wℓ

∑

r∈R
rd−1 sup

y∈W
|γ(y, r)|p.

We sum geometric progressions to get
∑

u∈U C(ℓ, u)1/p .p 2−ℓε2ℓd/p, with
ε = min{(d− h)/p, δ}. Hence

∥∥∥
∑

j

∑

(y,r)∈
∪k≥ℓEk(j)

γ(y, r)Fy,r

∥∥∥
p

p
.p 2−ℓεp

∑

r∈R
rd−1

∑

W∈Wℓ

|W | sup
y∈W

|γ(y, r)|p.

This proves the lemma. �

Proof of Proposition (6.1). By rescaling we can immediately reduce to the
situation where s = 0. Then |W | = 2ℓd for all W involved. We can write

K(x) =
∑

n≥2ℓ

∫ n+1

n
κ(r)σrdr
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where
∫
|κ(r)|prd−1dr = c‖K‖p

p. As in §3 we have

ψ ∗K ∗ f =

∫

w∈Q0

∫ 1

τ=0

∑

z,n

κ(n+ τ)f(z + w)ψ ∗ σn+τ (· − z − w) dτ dw .

We fix w, τ and apply Lemma 6.2 to bound

‖ψ ∗K ∗ f‖p . 2−ℓε2ℓd/p×
∫∫

Q0×[0,1]

( ∑

n≥2ℓ

∑

W∈Wℓ

sup
z∈W∩Zd

|κ(n+ τ)f(z + w)|p(n+ τ)d−1
)1/p

dw dτ.

The double integral is equal to the product of
∫ 1

0

( ∑

n≥2ℓ

|κ(n+ τ)|p(n+ τ)d−1
)1/p

dτ

and ∫

Q0

( ∑

W∈Wℓ

sup
z∈W∩Zd

|f(z + w)|p
)1/p

dw.

Now (6.1) for s = 0 follows quickly from applications of Hölder’s inequality.
�

7. Atomic decompositions and the proof of Theorem 1.1

The purpose of this chapter is to prove Theorem 1.1 for one particular
Schwartz-function η whose Fourier transform is compactly supported away
from the origin (for the extension to more general η see §8). We follow the
presentation in §3.1 and introduce a radial Schwartz function η◦ such that
η̂◦ is supported in {ξ : 1/2 < |ξ| < 2} and satisfies

(7.1)
∑

s∈Z

[η̂◦(2
−sξ)]2 = 1

for all ξ 6= 0. Let ψ◦ be a C∞ function compactly supported in {x : |x| ≤

1/10} such that ψ̂◦ does not vanish in {ξ : 1/4 ≤ |ξ| ≤ 4} and such that ψ̂◦
does vanish to order 10d at the origin. Let ψ = ψ◦ ∗ ψ◦ and

(7.2) η = F−1[η̂◦/ψ̂].

We shall use this particular η in the assumption of our theorem; in other
words, we shall assume that supt>0 ‖Tm[td/pη(t·)]‖p ≤ B < ∞. For s ∈ Z,
let

Hs = F−1[η̂(·)m(2s·)].

By our assumption,

(7.3) sup
s∈Z

‖Hs‖p ≤ B.
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Now let Ks = 2sdHs(2
s·), ψs = 2sdψ(2s·) = 2sdψ◦ ∗ ψ◦(2s·), ηs = 2sdη(2s·).

By (7.1), and our definitions, we have the decomposition

Tmf =
∑

s

ψs ∗ ψs ∗Ks ∗ fs

where

(7.4) fs = ηs ∗ f.

We may assume that fs is a Schwartz function whose Fourier transform is
compactly supported away from the origin; this class is dense in Lp(Rd),
1 < p <∞. For those functions the sum in s is finite.

We shall work with atomic decompositions constructed from Peetre’s max-
imal square-function (cf. [17], [25] and [20]), using ideas from work by Chang
and Fefferman [4]. The nontangential version of Peetre’s expression is

Sf(x) =
( ∑

s

sup
|y|≤10d·2−s

|fs(x+ y)|2
)1/2

.

Then the Lp norm of Sf is controlled by ‖f‖p if 1 < p < ∞, and by the
Hardy space (quasi-)norm ‖f‖Hp if p ≤ 1. These statements follow for
example from the Fefferman-Stein inequalities for the vector-valued Hardy-
Littlewood maximal operator ([5]).

Put Ψs = ψs ∗ ψs. The proof of Lp boundedness of Tm reduces to the
inequality

(7.5)
∥∥∥

∑

s

Ψs ∗Ks ∗ fs

∥∥∥
p

. B‖Sf‖p, 1 < p < pd;

here we may assume that the sum in s is over a finite set of integers. In what
follows, we will make several decompositions of the Schwartz functions fs

(involving even rough cutoffs) and the a priori convergence of various sums
can be justified by using the rapid decay of the functions.

The cancellation of the functions ψs is crucial for the estimation of the
left hand side in (7.5) and various similar expressions. A simple tool is the
inequality

(7.6)
∥∥∥

∑

s

ψs ∗ hs

∥∥∥
p
≤ C

( ∑

s

‖hs‖
p
p

)1/p
, 1 ≤ p ≤ 2,

with a constant C depending only on ψ. This is immediate from Plancherel’s
theorem for p = 2, trivial for p = 1 and true by interpolation for 1 < p < 2.
Inequality (7.6) is not enough to put the estimates for the various scales
together, and in addition we have to use an “atomic decomposition” of each
fs which we now describe.
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For fixed s, we tile R
d by the dyadic cubes of sidelength 2−s; this family

of cubes is denoted by Qs, and we write L(Q) = −s if we want to indicate
that the sidelength of a dyadic cube is 2−s. For each integer j, we introduce
the set Ωj = {x : Sf(x) > 2j}. Let Qs

j be the set of all dyadic cubes in Qs

with the property that |Q ∩ Ωj | ≥ |Q|/2 but |Q ∩ Ωj+1| < |Q|/2. We also
set

Ω∗
j = {x : Mχ

Ωj
(x) > 100−d}

where M is the Hardy-Littlewood maximal operator. Ω∗
j is an open set

containing Ωj and |Ω∗
j | . |Ωj |. We work with a Whitney decomposition Wj

of Ω∗
j into dyadic cubes W . Specifically Wj is the set of all dyadic cubes W

for which the 20-fold dilate of W is contained in Ω∗
j and W is maximal with

respect to this property. We note that each Q ∈ Qs
j is contained in a unique

W ∈ Wj . This is verified by showing that the 20-fold dilate Q∗ of Q belongs

to Ω∗
j . Indeed, |Q∗ ∩ Ω|/|Q∗| ≥ 20−d|Q ∩ Ω|/|Q| ≥ 40−d; hence Q∗ ⊂ Ω∗

j .

We now define some building blocks that are analogous to the usual atoms;
however they are not normalized, and, since we are mainly interested in Lp

bounds for p > 1, we do not insist on cancellation. For each W ∈ Wj, set

As,W,j =
∑

Q∈Qs
j

Q⊂W

fsχQ
;

note that only terms with L(W ) + s ≥ 0 occur. We also need to consider
“cumulative atoms”, as any dyadic cube W can be a Whitney cube for
several Ω∗

j . We set

As,W =
∑

j:W∈Wj

As,W,j .

Note that
fs =

∑

W

As,W =
∑

j

∑

W∈Wj

As,W,j .

The following observations about atomic decomposition are standard (see
e.g. [4]), but included here for completeness.

Lemma 7.1. For each j ∈ Z the following inequalities hold.

(i) ∑

W∈Wj

∑

s

‖As,W,j‖
2
2 . 22jmeas(Ωj).

(ii) There is a constant Cd so that for every assignment W 7→ s(W )
defined on Wj, and 0 ≤ p ≤ 2,

∑

W∈Wj

meas(W )‖As(W ),W,j‖
p
∞ ≤ Cd2pjmeas(Ωj).
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Proof. Using the definitions of the atoms part (i) follows from the inequality
∑

s

∑

Q∈Qs
j

‖fsχQ
‖2
2 . 22jmeas(Ωj).

To see this observe that meas(Q \Ωj+1) ≥ meas(Q)/2 for each Q ∈ Qs
j , and

we also have Q ⊂ Ω∗
j . We use this together with Fubini’s theorem and see

that the left hand side of the first inequality is bounded by
∑

s

∑

Q∈Qs
j

meas(Q)‖fsχQ
‖2
∞ ≤

∑

s

∑

Q∈Qs
j

2 meas(Q \ Ωj+1) ‖fsχQ
‖2
∞

≤ 2

∫

Ω∗
j\Ωj+1

∑

s

sup
|y|≤

√
d2−s

|fs(x+ y)|2dx ≤ 2 · 22(j+1)meas(Ω∗
j )

which is . 22jmeas(Ωj).

Part (ii) of the lemma follows since

‖As,W,j‖∞ . sup
Q∈Qs

j

Q⊂W

∣∣fsχQ

∣∣ ≤ sup
x∈Ω∗\Ωj+1

|Sf(x)| ≤ 2j+1

and
∑

W∈Wj
|W | ≤ |Ω∗

j | . |Ωj |. �

To establish (7.5) we need to verify the inequality

(7.7)
∥∥∥

∑

s

∑

j

∑

ℓ≥0

∑

W∈Wj

L(W )=−s+ℓ

Ψs ∗Ks ∗ As,W,j

∥∥∥
p

. B‖Sf‖p.

For each integer ℓ in this sum we split the convolution operator Ks into

a short range and a long-range piece, Ksh
s,ℓ and K lg

s,ℓ. To define them we

first look at the rescaled kernels Hs and set Hsh
s,ℓ(x) = Hs(x) if |x| ≤ 2ℓ

and Hsh
s,ℓ(x) = 0 if |x| > 2ℓ. Also H lg

s,ℓ(x) = Hs(x) − Hsh
s,ℓ. Now set Ksh

s,ℓ =

2sdHsh
s,ℓ(2

s·) and K lg
s,ℓ = 2sdH lg

s,ℓ(2
s·). Finally, we split the sum in (7.7) into

two parts, replacing Ks by Ksh
s,ℓ and K lg

s,ℓ, respectively.

Now consider W with L(W ) = −s + ℓ and note that the short range
convolution ψs ∗K

sh
s,ℓ ∗As,W,j is supported in the quadruple dilate W ∗ of W ;

thus for fixed j, all these terms are supported in Ω∗
j . In order to prove the

short range inequality

(7.8)
∥∥∥

∑

s

∑

j

∑

ℓ

∑

W∈Wj

L(W )=−s+ℓ

Ψs ∗K
sh
s,ℓ ∗As,W,j

∥∥∥
p

. B‖Sf‖p
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for p < 2, it suffices to show that for fixed j, and for q ≤ 2,

(7.9)
∥∥∥

∑

s

∑

ℓ

∑

W∈Wj

L(W )=−s+ℓ

Ψs ∗K
sh
s,ℓ ∗ As,W,j

∥∥∥
q

q
. Bq2jqmeas(Ωj).

Indeed, by Lemma 2.2, inequality (7.9) implies that the left hand side of
(7.8) is controlled for p < 2 by Bp

∑
j 2jpmeas(Ωj) . Bp‖Sf‖p

p.

Inequality (7.9) for q < 2 follows from (7.9) for q = 2 by Hölder’s in-
equality. Here we use that the relevant expressions are supported in Ω∗

j and

|Ω∗
j | . |Ωj|. To prove (7.9) for q = 2 we use a standard estimate for the

Fourier transform of radial kernels K =
∫ ∞
0 κ(r)σrdr, namely,

(7.10) ‖K̂ψ̂‖∞ ≤ Cp‖K‖p = c
( ∫ ∞

0
|κ(r)|prd−1dr

)1/p
, p <

2d

d+ 1
.

Indeed using Bessel functions as in the proof of Lemma 3.3 one can estimate
by Hölder’s inequality

|K̂(ξ)| = c′
∫ ∞

0
κ(r)rd−1Bd(r|ξ|)dr

.
( ∫ ∞

0
|κ(r)|prd−1dr

)1/p( ∫ ∞

0
rd−1(1 + r|ξ|)−

d−1
2

p′dr
)1/p′

and it is easy to see that the last Lp′ norm is O(|ξ|−d/p′) provided that

p < 2d/(d + 1). The bound (7.10) follows since ψ̂ is a Schwartz function
that vanishes to high order at 0.

We return to (7.9) for q = 2. As Ψs ∗ K
sh
s,ℓ ∗ As,W,j is supported in W ∗

and the W ∗ have bounded overlap, we can dominate the left hand side of
the inequality by

∑

W

∥∥∥
∑

s

ψs ∗ ψs ∗K
sh
s,L(W )+s ∗ As,W,j

∥∥∥
2

2

.
∑

W

∑

s

∥∥ψs ∗K
sh
s,L(W )+s ∗ As,W,j

∥∥2

2

. sup
s,ν

‖ψ̂sK̂sh
s,ν‖

2
∞

∑

W∈Wj

∑

s

‖As,W,j‖
2
2.

Here we used (7.6) for p = 2. Now by (7.10) the Fourier transform of ψs∗K
sh
s,ν

has L∞ norm . ‖Hsh
s,ν‖p . ‖Hs‖p ≤ B. Thus, by Lemma 7.1, (i), the last

displayed quantity is . B222j |Ω|. This finishes the proof of (7.9).

We now turn to the long range estimate, that is

(7.11)
∥∥∥

∑

s

∑

ℓ

∑

j

∑

W∈Wj

L(W )=−s+ℓ

ψs ∗ ψs ∗K
lg
s,ℓ ∗ As,W,j

∥∥∥
p

. B‖Sf‖p.
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We use the j-sum to combine the atoms into the cumulative atoms As,W ,
take out the ℓ-sum by Minkowski’s inequality and use (7.6). Thus the left
hand side of the previous inequality is dominated by a constant times

(7.12)
∑

ℓ≥0

( ∑

s

∥∥∥ψs ∗K
lg
s,ℓ ∗

∑

W :L(W )=−s+ℓ

As,W

∥∥∥
p

p

)1/p
.

Now ‖H lg
s,ℓ‖p ≤ ‖Hs‖p ≤ B and therefore Proposition 6.1 implies that, for

fixed ℓ,
∥∥∥ψs ∗K

lg
s,ℓ ∗

∑

W :L(W )=−s+ℓ

As,W

∥∥∥
p

b . 2−ℓεB
( ∑

W :L(W )=−s+ℓ

meas(W ) ‖As,W ‖p
L∞(W )

)1/p

for p < pd, with some ε = ε(p) > 0. Now also use that for fixed s,W the
functions As,W,j live on disjoint sets (since the dyadic cubes of sidelength
2−s are disjoint and each is in exactly one family Qs

j). Thus it follows that

the expression (7.12) is

. B
∑

ℓ

2−ℓε
( ∑

j

∑

W∈Wj

meas(W )‖Aℓ−L(W ),W,j‖
p
L∞(W )

)1/p

. B
∑

ℓ

2−ℓε
( ∑

j

meas(Ωj) 2jp
)1/p

. B‖Sf‖p,

by part (ii) of Lemma 7.1. Thus we obtain (7.11). Finally, (7.7) follows
from (7.8) and (7.11). This concludes the proof of the Lp boundedness of
Tm, under the assumption (7.3). �

8. Conclusion of the proof

We still have to show the equivalence (1.1) for arbitrary choices of η. To
this end we fix the radial multiplier m and consider the family Θ of all C∞

functions compactly supported away from the origin such that the condition

(8.1)
∥∥F−1[ϕm(t·)]

∥∥
p
<∞

holds. Note that if ϕ ∈ Θ, then ϕ(λ·) ∈ Θ for every λ > 0, moreover
ϕ(R·) ∈ Θ for every rotation R of R

d (here we use the fact that m is radial).
Also if χ is any compactly supported C∞ function then χϕ ∈ Θ, simply
because χ is an FLp multiplier. Finally if ϕ1, ϕ2 ∈ Θ, then ϕ1 + ϕ2 ∈ Θ.

Now assume that there exists at least one not identically zero function
ϕ0 ∈ Θ. Let V be a non-empty open subset of R

d+1 such that |ϕ0| > 0 on
V . Let ϕ be any other C∞ function compactly supported away from the
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origin. For every ξ ∈ R
d \ {0}, one can find a rotation Rξ and a number

λξ > 0 such that λξRξξ ∈ V or, equivalently, ξ ∈ λ−1
ξ R−1

ξ V . Then the open

sets λ−1
ξ R−1

ξ V , ξ ∈ suppϕ, form a cover of suppϕ. Choose a finite subcover

λ−1
ξj
R−1

ξj
V , j = 1, . . . , n, and put

ζ =
n∑

j=1

ϕ0(λξj
Rξj

·)ϕ0(λξj
Rξj

·) .

Note that ζ ∈ Θ and ζ > 0 on
⋃n

j=1 λ
−1
ξj
R−1

ξj
V ⊃ suppϕ . Hence, the function

χ defined as ϕ/ζ on suppϕ and 0 on R
d \ suppϕ is a C∞ function with

compact support, so ϕ = χζ ∈ Θ.

Proof of Theorem 1.1, concluded. Let g be an arbitrary Schwartz function,
then the condition supt>0 ‖Tm[td/pg(t·)]‖p < ∞ is clearly necessary for Lp

boundedness. Conversely, suppose that this condition is satisfied; it is equiv-
alent to supt>0 ‖F

−1[m(t·)ĝ]‖p < ∞. We may pick χ ∈ C∞ with compact

support in R
d \ {0} so that χĝ is not identically 0. Since χ is a Fourier

multiplier we see that χĝ ∈ Θ. By the above consideration we also have
η̂ ∈ Θ where η is as in (7.2). But for this η the characterization is already
proved and the Lp boundedness of Tm follows. �

9. The regularity result for the wave equation

In this section we shall prove Theorem 1.2. We first note that by a
standard scaling argument it suffices to prove the inequality

(9.1)
(∫ 2

1

∥∥eit
√
−∆f

∥∥q

q
dt

)1/q
. ‖(I − ∆)α/2f‖q.

Indeed let us first show how (1.3) follows assuming (9.1) (here q <∞). We
may assume by symmetry that in (1.3) we integrate over [0, L]. We then
write

(
L−1

∫ L

0
‖eit

√
−∆f‖q

q dt
)1/q

≤
∞∑

n=1

(
L−1

∫ 2−n+1L

2−nL
‖eit

√
−∆f‖q

q dt
)1/q

=

∞∑

n=1

2−n/q
( ∫ 2

1
‖eiL2−ns

√
−∆f‖q

q ds
)1/q

=

∞∑

n=1

2−n/q
(
∗)n

where

(∗)n =
( ∫ 2

1

∫

Rd

∣∣eis
√
−∆fL,n(L−12nx)

∣∣qdx ds
)1/q

and fL,n(y) = f(L2−ny).
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We change variables in x, apply (9.1), and then change variables again to
see that

(∗)n . Ld/q2−nd/q‖(I − ∆)α/2fL,n‖q = ‖(I − 2−2nL2∆)α/2f‖q.

Now, by standard L1 Fourier multiplier results, we have for α ≥ 0, n ≥ 0,

‖(I − 2−2nL2∆)α/2f‖q ≤ C‖(I − L2∆)α/2f‖q

where C does not depend on L and n. Thus (∗)n is bounded by the right
hand side of (1.3), uniformly in n ≥ 1, and therefore, as q <∞, we can sum∑∞

n=1 2−n/q(∗)n.

Now we shall actually show an improvement of (9.1) where the Sobolev
space on the right hand side is replaced by the larger (Besov-Triebel-Lizorkin)
space Bq

α,q = F q
α,q and the spatial Lq space on the left hand side is replaced

by the Triebel-Lizorkin space F q
0,1 which is imbedded in Lq. We use argu-

ments that are very similar to those in the proof of Theorem 1.1.

Theorem 9.1. Suppose d ≥ 5 and q > 2(d2−2d−3)
d2−4d−1

. Then

( ∫ 2

1

∥∥eit
√
−∆f

∥∥q

F q
0,1
dt

)1/q
. ‖f‖

F q
α,q
, α = d(

1

2
−

1

q
) −

1

2
.

If η◦ is as in (7.1) and if Pk is, say, defined by P̂kf = (η̂◦(2−kξ))2f̂ for
k > 0 and P0 = I −

∑
k≥1 Pk then the inequality of the theorem can be

expressed as

(9.2)
( ∫ 2

1

∥∥∥
∑

k≥0

|Pke
it
√
−∆f |

∥∥∥
q

q
dt

)1/q
.

(∑

k≥0

2kαq
∥∥Pkf

∥∥q

q

)1/q
,

with α = d(1
2 − 1

q ) − 1
2 . We remark that we have chosen k as our index

for the dyadic frequency pieces instead of s, first, to distinguish it from the
homogeneous expression (s ∈ Z) used earlier and secondly to match it with
the notation in §3; the term for large frequencies ≈ 2k corresponds, after
a rescaling, to the situation of Corollary 3.2 when the radii are taken in
[2k, 2k+1].

It will be convenient to dispose of the terms for k = 0, 1. Let χ0 be
a radial C∞

0 (Rd) function so that χ0(ξ) = 1 for |ξ| ≤ 1 and χ0(ξ) = 0

for |ξ| ≥ 3/2. One easily checks that χ0(ξ/λ)ei|ξ| is the Fourier transform
of an L1 function for any λ (with L1 norm growing in λ for λ → ∞).
The contribution of the multiplier near the origin is handled by considering
mκ(ξ) = (χ0(2κξ) − χ0(2κ+1ξ))(ei|ξ| − 1). One bounds the derivatives of
mκ(2−κξ) for κ > 0 to see that the L1 norm of F−1[mκ] is O(2−κ).

Next, we describe a further reduction to an inequality involving spherical
means (cf. (9.7), (9.6) below). This can be done in various ways. One way
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is to apply the method of stationary phase in conjunction with multiplier
theorems. We give a more direct approach based on the principle that every
radial function can be written as a superposition of spherical measures. As
before we let σρ denote the surface measure of the sphere of radius ρ.

Let ϑ be a C∞-function on the real line supported in (1/8, 8) so that
ϑ(s) = 1 on (1/4, 4). For k ≥ 1 let the convolution kernel Kk be defined by

K̂k(ξ) = ei|ξ|ϑ(2−k|ξ|).

Lemma 9.2. For k ≥ 1,

(9.3) Kk = 2k(d−1)/2

∫ 2

1/2
wk(ρ)σρdρ + Ek

where

(9.4) sup
k

∫
|wk(ρ)|dρ <∞,

and, for any N ,

‖Ek‖1 ≤ CN2−kN .

Proof. Straightforward integration by parts arguments show thatKk is rapidly
decreasing away from the unit sphere; in fact

|Kk(x)| ≤ cN2−kN (1 + |x|)−N if |x| < 1/2 or |x| > 2.

Thus if with A = {x : 1/2 ≤ |x| ≤ 2} we set Ek := Kk(1 − χA), it is clear
that the error term Ek has an L1 norm that is rapidly decreasing as k → ∞.
We now examine Kk(x) for 1/2 ≤ |x| ≤ 2. We use polar coordinates and
then write an integral over the sphere Sd−1 in terms of integrals over d− 2
dimensional spheres perpendicular to x. We get

(2π)dKk(x) =

∫

Rd

ϑ(2−k|ξ|)ei|ξ|ei〈ξ,x〉dξ

= 2k(d−1)

∫ ∞

0
ϑ(2−ks)(2−ks)d−1eis

∫

Sd−1

e
is|x|〈 x

|x|
,θ〉
dσ(θ) ds

= cd−22k(d−1)

∫ 1

−1
2kΘ(2k(1 + τ |x|))(1 − τ2)

d−3
2 dτ,

where cd−2 is the surface measure of the unit sphere Sd−2 and

Θ(σ) =

∫ ∞

0
ϑ(s)sd−1eisσds.

Clearly Θ ∈ S(R). Since ϑ and therefore Θ̂ is supported in (1/8, 8) the
function Θ is the derivative of order M of a Schwartz function ΘM .
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From the above formula it is clear that (9.3) holds with

wk(ρ) = cd−2(2π)−d2k(d−1)/2

∫ 1

−1
2kΘ(2k(1 + τρ))(1 − τ2)

d−3
2 dτ.

We now prove for β ≥ 1, 1/2 ≤ ρ ≤ 2,

(9.5)

∫ 1

−1
βΘ(β(1 + τρ))(1 − τ2)

d−3
2 dτ ≤ CNβ

− d−1
2

β

(1 + β|1 − ρ|)N

for any N > 1. This immediately yields the uniform bound (9.4).

For the proof of (9.5) one first considers the case where |1 − ρ| ≤ β−1.

In this case the asserted bound O(β−(d−3)/2) follows from a straightforward
estimation using the rapid decay of Θ.

Now assume |1 − ρ| > β−1. We make a dyadic decomposition of the
integral in terms of the distance to the boundary. Let v ∈ C∞

0 (R) so that
v(s) = 1 if |s| ≤ 1/2 and v(s) = 0 for |s| > 3/4 and let vβ,0(s) = v(β(1−τ2))
so that v is supported in a β−1 neighborhood of the boundary of [−1, 1]. For
ℓ ≥ 1 set vβ,ℓ(s) = vβ,0(2−ℓ(1−τ2))−vβ,0(21−ℓ(1−τ2)) and split the integral

as
∑∞

ℓ=0 I
β
ℓ (ρ) where

Iβ
ℓ (ρ) =

∫ 1

−1
βΘ(β(1 + τρ))vβ,ℓ(τ)(1 − τ2)

d−3
2 dτ.

We note that vβ,ℓ is supported where |τ | ≤ 1 and dist(τ,±1) ≈ 2ℓ/β; in

particular for 2ℓ ≫ β the term Iβ
ℓ (ρ) is identically zero. To estimate Iβ

0 (ρ)

we only use the bound |(1 − τ2)
d−3
2 | . β−(d−3)/2 in the support of vβ,0, and

the rapid decay of Θ. It is then easy to see that Iβ
0 (ρ) is dominated by a

constant times the right hand side of (9.5). Next, we consider the terms for
ℓ > 0, and we can integrate by parts to obtain

Iβ
ℓ (ρ) = (−1)M

∫ 1

−1
(βρ)−MβΘM (β(1 + τρ))

[
vβ,ℓ(τ)(1 − τ2)

d−3
2

](M)
dτ.

The ρ−M term is irrelevant as ρ ≈ 1. We gain powers of 2−ℓ in this integra-
tion by parts but we also have to take into account the larger support of the

integrand. A straightforward computation shows that Iβ
ℓ (ρ) is bounded by

CM,N2−ℓ(M−(d−1)/2) times the right hand side of (9.5). Choosing M large
we may now sum in ℓ. �

We continue with the proof of (9.2). Let Kk,t = t−dKk(t−1·) with Kk as
in the lemma and observe that

Pk[eit
√
−∆f ] = Pk[Kk,t ∗ f ], 1/2 ≤ t ≤ 2.
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Now define

(9.6) µk,t =

∫ 2

1/2
wk(ρ)σρtdρ,

with wk satisfying (9.4). In view of Lemma 9.2 it suffices to prove, for q > qd,
the estimate

( ∫ 2

1

∥∥∥
∞∑

k=2

2k d−1
2

∣∣µk,t ∗ ψk ∗ fk

∣∣
∥∥∥

q

q
dt

)1/q
.

( ∑

k

‖fk‖
q
q2

kq(d( 1
2
− 1

q
)− 1

2
)
)1/q

;

for all {fk}
∞
k=2 with f̂k supported in Ak := {ξ : 2k−1 < |ξ| < 2k+1}. Here

ψk are suitably chosen so that ψk = 2kdψ(2k·), ψ = ψ◦ ∗ ψ◦, ψ◦ supported
in {|x| ≤ 10−1} with 10d vanishing moments (cf. the discussion leading to
(7.2)).

It suffices to prove this inequality for families {fk} for which all but finitely
many of the fk are zero, with constant independent of the number of sum-
mands. By duality the desired bound then follows from

(9.7)
( ∞∑

k=2

2
k d

p′
p
∥∥∥

∫ 2

1
µk,t ∗ ψk ∗ gk(·, t) dt

∥∥∥
p

p

)1/p

.
(∫ 2

1

∥∥ sup
k

|gk(·, t)|
∥∥p

p
dt

)1/p
, p < pd,

for all {gk}
∞
k=2, with the property that the (spatial) Fourier transform of

gk(·, t) is supported in Ak.

To prove (9.7) we need the following inequality for fixed k (which will be
a straightforward consequence of Lemma 6.2). Let Wℓ−k denote the set of
dyadic cubes of sidelength 2ℓ−k.

Proposition 9.3. For 1 ≤ p < pd there is ε = ε(p) > 0 so that

(9.8)
∥∥∥

∫ 2

1
ψk ∗ µk,t ∗ g(·, t) dt

∥∥∥
p

. 2−kd/p′2−ℓε
( ∑

W∈Wℓ−k

|W |

∫ 2

1
sup
y∈W

|g(y, t)|pdt
)1/p

.

Proof. We first prove the inequality

(9.9)
∥∥∥

∫ 2

1
ψk ∗ σt ∗ g(·, t) dt

∥∥∥
p

. 2−kd/p′2−ℓε
( ∑

W∈Wℓ−k

|W |

∫ 2

1
sup
y∈W

|g(y, t)|pdt
)1/p

.
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We apply a rescaling and averaging argument to deduce it from Lemma 6.2.

Define Hk,t by Ĥk,t(ξ) = ψ̂(ξ)σ̂1(2ktξ). The expression on the left hand side
of (9.9) can be written as

∥∥∥
∫ 2

1
2kdHk,t(2

k·) ∗ g(·, t) td−1dt
∥∥∥

p
= 2−kd/p

∥∥∥
∫ 2

1
Hk,t ∗ g(2−k·, t) td−1dt

∥∥∥
p

= 2−kd/p
∥∥∥

∫ 2k+1

2k

ψ ∗ σr ∗ 2−kdg(2−k·, 2−kr)dr
∥∥∥

p
.

We write out the convolution and discretize as in the proof of Proposition
6.1. Then the last expression is dominated by

2−kd/p

∫∫
v∈Q◦

τ∈[0,1]

∥∥∥
2k+1−1∑

n=2k

ψ∗σn+τ (x−z−v)2−kdg(2−k(z+v), 2−k(n+τ))
∥∥∥

p
dv dτ

and by Lemma 6.2 this is bounded by a constant times

2−kd/p2−ℓε2ℓd/p×

∫ 1

τ=0

( ∑

W ′∈Wℓ

2k+1−1∑

n=2k

sup
y′∈W ′

|2−kdg(2−ky′, 2−k(n+ τ))|p(n+ τ)d−1
)1/p

dτ,

which is dominated by

2−ℓε
( ∑

W∈Wℓ−k

|W |
2k+1−1∑

n=2k

∫ 1

0
sup
y∈W

|g(y, 2−k(n+ τ))|p2k(d−1−dp)dτ
)1/p

. 2−ℓε2−kd/p′
( ∑

W∈Wℓ−k

|W |

∫ 2

1
sup
y∈W

|g(y, t)|pdt
)1/p

.

It remains to show how (9.9) implies the assertion of the proposition.
Since

∫
|wk(ρ)|dρ is uniformly bounded it suffices, by averaging, to show the

uniform bound

(9.10)
∥∥∥

∫ 2

1
ψk ∗ σρt ∗ g(·, t) dt

∥∥∥
p

. 2−kd/p′2−ℓε
( ∑

W∈Wℓ−k

|W |

∫ 2

1
sup
y∈W

|g(y, t)|pdt
)1/p

,
1

2
≤ ρ ≤ 2.

This is a consequence of (9.9), by scaling. For the details assume ρ ∈ (1, 2]
and after a change of variables we have to estimate the Lp norm of

∫ 2

ρ
+

∫ 2ρ

2

[
ψk ∗ σ1 ∗ g(·, ρ−1t)

]
(x)

dt

ρ
.
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We apply (9.9) with the function g(·, ρ−1t)χ[ρ,1](t) to bound the first in-
tegral. The second integral is equal to

2

ρ

∫ ρ

1

[
ψk ∗ σ2s ∗ g(·, 2s

ρ )
]
(x)ds =

2d

ρ

∫ ρ

1

[
ψk+1 ∗ σs ∗ g(2·, 2s

ρ )
](x

2
)ds

and after conjugation with a dilation operator we may apply (9.9) (with
ψk replaced by ψk+1). Note that replacing Wℓ−k with Wℓ−k−1 on the right
hand side of (9.10) yields an equivalent norm. The argument for ρ ∈ [1/2, 1)
is similar. �

We now use the arguments of §7 based on atomic decompositions for the
functions gk(·, t), for any fixed t ∈ [1, 2]. We work with the ℓ∞ variant of
Peetre’s operator, namely

MG(x, t) = sup
k>0

sup
|y|≤10d·2−k

|gk(x+ y, t)|,

where it will always be understood that G = {gk}
∞
k=1 and gk(·, t) has spec-

trum in the annulus Ak. Then with this specification Peetre’s inequality
says that

(9.11)
∥∥MG(·, t)

∥∥
Lp(Rd)

.p ‖ sup
k

|gk(·, t)|‖p, 0 < p ≤ ∞.

As before, denote by Qk the family of dyadic cubes in R
d of sidelength 2−k.

Now for each t ∈ [1, 2] let Ωj(t) = {x ∈ R
d : Mf(x, t) > 2j} and let Qk

j (t)

be the set of all dyadic cubes in Qk with the property that |Q ∩ Ωj(t)| ≥
|Q|/2 but |Q ∩ Ωj+1(t)| < |Q|/2. Moreover let Ω∗

j (t) = {x : Mχ
Ωj(t)

(x) >

10−d} where M is the Hardy-Littlewood maximal operator. We work with
Whitney-cubes of Ω∗

j (t) and the set of these Whitney-cubes is denoted by

Wj(t). For each W , j, t define

Ak,W,j(x, t) =
∑

Q∈Qk
j (t)

Q⊂W

gk(x, t)χ
Q

(x);

and for each dyadic cube W we combine those atoms for which the appro-
priate Whitney cube is W ; i.e., we set

Ak,W (x, t) =
∑

j:W∈Wj(t)

Ak,W,j(x, t).

By Lemma 7.1, (ii), we have, for all t ∈ [1, 2],
∑

W∈Wj(t)

|W |‖Ak(W ),W,j(·, t)‖
p
∞ . 2pj |Ωj(t)|,

for any assignment W 7→ k(W ). We can then decompose

gk(x, t) =
∑

ℓ≥0

∑

W∈Wℓ−k

∑

j:W∈Wj(t)

Ak,W,j(x, t).
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Using this decomposition and Minkowski’s inequality we estimate the left
hand side of (9.7) by

∑

ℓ≥0

( ∑

k

2
k d

p′
p
∥∥∥

∫ 2

1
µk,t ∗ ψk ∗

∑

W∈Wℓ−k

∑

j:W∈Wj(t)

Ak,W,j(·, t) dt
∥∥∥

p

p

)1/p

and by Proposition 9.3 the term corresponding to a fixed ℓ is

. 2−ℓε
( ∑

k

∑

W∈Wℓ−k

|W |

∫ 2

1
sup
y∈W

∣∣∣
∑

j:W∈Wj(t)

Ak,W,j(y, t)
∣∣∣
p
dt

)1/p
.

For each fixed k, W , t the functions y 7→ Ak,W,j(y, t), j ∈ Z, live on disjoint
sets and therefore the last expression is

. 2−ℓε
( ∫ 2

1

∑

j

∑

W∈Wj(t)

|W |‖Aℓ−L(W ),W,j(·, t)χW‖p
∞ dt

)1/p

. 2−ℓε
( ∫ 2

1

∑

j

2jp|Ωj(t)|dt
)1/p

. 2−ℓε
( ∫ 2

1

∥∥ sup
k

Mkgk(·, t)
∥∥p

p
dt

)1/p
.

We sum in ℓ and use (9.11) to conclude the proof of (9.7). �
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