
ON POINTWISE CONVERGENCE OF SCHRÖDINGER MEANS
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Abstract. For functions in the Sobolev space Hs and decreasing sequences

tn → 0 we examine convergence almost everywhere of the generalized Schrödinger

means on the real line, given by

Saf(x, tn) = exp(itn(−∂xx)a/2)f(x);

here a > 0, a 6= 1. For decreasing convex sequences we obtain a simple

characterization of convergence a.e. for all functions in Hs when 0 < s <

min{a/4, 1/4} and a 6= 1. We prove sharp quantitative local and global esti-
mates for the associated maximal functions. We also obtain sharp results for

the case a = 1.

1. Introduction

For Schwartz functions f defined on the real line consider the initial value prob-
lem

i∂tu(x, t) + (−∂xx)a/2u(x, t) = 0, u(x, 0) = f(x);

so that for a = 2 we recover the Schrödinger equation. The solutions are given by

Saf(x, t) =

∫
R
ei(xξ+t|ξ|

a)f̂(ξ) dξ2π ,

and, for fixed time, the solution operator extends to all f ∈ Hs, where Hs is the

Sobolev space of all distributions f with ‖f‖Hs := (
∫

(1 + |ξ|2)s|f̂(ξ)|2dξ)1/2 <∞.
One refers to the operators f 7→ Saf(·, t) as generalized Schrödinger means.

For Schwartz functions f it is clear that limt→0 S
af(x, t) = f(x) and that the

convergence is uniform in x. One is interested in almost everywhere convergence
for functions in Hs for suitable s > 0. Following the fundamental result by Carleson
[2], many authors have considered this question. It was shown in [2], [15] that

lim
t→0

Saf(x, t) = f(x) a.e., f ∈ H1/4,

when a > 1 and this result fails for some f ∈ Hs, if s < 1/4 ([5], [15]). If 0 < a < 1,
pointwise convergence for f ∈ Hs holds when s > a/4 and may fail for f ∈ Hs

when s < a/4, see [21]. We remark that the problem in higher dimensions is much
harder and not considered here. For the Schrödinger equation in higher dimensions
a complete solution up to endpoints has been recently found in [8], [9] and relies
on sophisticated methods from Fourier restriction theory. We refer to these papers
for more references and a historical prospective.
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In this paper, we consider, in one spatial dimension, the question of the solution
converging to the initial data when the limit is taken over a decreasing sequence
{tn}∞n=1, converging to zero. Here we always use the term ‘decreasing’ as synony-
mous with ‘nonincreasing’. Given such a sequence we seek to find the precise range
of s such that limn→∞ Saf(x, tn) = f(x) a.e. holds for every f ∈ Hs. This is par-
tially motivated by the work [3] on approach regions for pointwise convergence for
solutions of the Schrödinger equation, and also by the work [13] on the pointwise
convergence of spherical means of Lp functions (although the mathematical issues
and expected outcomes for the latter problem are different).

For the class of convex decreasing sequences and any s ∈ (0,min{a/4, 1/4})
we obtain a complete characterization of when pointwise convergence holds for all
f ∈ Hs. This characterization involves the Lorentz space `r,∞(N). By definition,
for 0 < r <∞,

{tn} ∈ `r,∞ ⇐⇒ sup
b>0

br#{n ∈ N : |tn| > b} <∞.

Note that `r1,∞(N) ⊂ `r2(N) ⊂ `r2,∞(N) ⊂ `∞(N) if r1 < r2 <∞ and all inclusions
are strict. A model example is given by tn = n−γ which belongs to `r,∞ if and only
if r ≥ 1/γ. Another example is {n−γ log n} which belongs to `r,∞ if and only if
r > 1/γ.

Theorem 1.1. Let a > 0, a 6= 1, and assume 0 < s < min{a/4, 1/4}. Let {tn}∞n=1

be a decreasing sequence with limn→∞ tn = 0 and assume that tn − tn+1 is also
decreasing. Then the following four statements are equivalent.

(a) The sequence {tn} belongs to `r(s),∞(N), where r(s) = 2s
a−4s .

(b) There is a constant C1 such that for all f ∈ Hs and for all sets B of diameter
at most 1 we have

‖ sup
n∈N
|Saf(x, tn)|‖L2(B) ≤ C1‖f‖Hs .

(c) There is a constant C2 such that for all f ∈ Hs, for all sets B of diameter
at most 1, and for all α > 0,

meas({x ∈ B : sup
n∈N
|Saf(x, tn)| > α}) ≤ C2 α

−2‖f‖2Hs .

(d) For every f ∈ Hs we have

lim
n→∞

Saf(x, tn) = f(x) a.e.

Here and in what follows we write meas(A) for the Lebesgue measure of A ⊂ R.
The equivalence of (b) and (c) seems nontrivial, and we do not have a direct proof for
it, without going through condition (a). In Theorem 1.1 the convexity assumption
can be dropped for the sufficiency, i.e. statements (b), (c), (d) hold whenever tn is

decreasing and belongs to `
2s
a−4s ,∞(N), see Proposition 2.3 below.

Regarding the maximal function inequalities we also have a global version:

Theorem 1.2. Let a > 0, a 6= 1, and assume 0 < s < a/4. Let {tn}∞n=1 be a de-
creasing sequence with limn→∞ tn = 0, and assume that tn−tn+1 is also decreasing.
Then the following statements (a), (b), (c) are equivalent.

(a) The sequence {tn} belongs to `
2s
a−4s ,∞(N).
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(b) There is a constant C1 such that for all f ∈ Hs we have

‖ sup
n∈N
|Saf(x, tn)|‖L2(R) ≤ C1‖f‖Hs .

(c) There is a constant C2 such that for all f ∈ Hs and all α > 0,

meas({x ∈ R : sup
n∈N
|Saf(x, tn)| > α}) ≤ C2 α

−2‖f‖2Hs .

We contrast the above results with the exceptional case a = 1 which covers
solutions of the wave equation. Now the critical r(s) = 2s

a−4s in Theorem 1.1 has to

be replaced with the smaller 2s
1−2s , for all s < 1/2. Notice that S1 corresponds to a

family of translation operators, when acting on functions with spectrum in [0,∞)
or (−∞, 0]. The analysis is somewhat similar to the one for spherical means in [13],
see also [12]. For a = 1 we have

Theorem 1.3. Let 0 < s < 1/2 and let {tn}∞n=1 be a decreasing sequence with
limn→∞ tn = 0 such that tn − tn+1 is also decreasing. Then the following four
statements are equivalent.

(a) The sequence {tn} belongs to `ρ(s),∞(N), where ρ(s) = 2s
1−2s .

(b) There is a constant C1 such that for all f ∈ Hs we have

‖ sup
n∈N
|S1f(x, tn)|‖L2(R) ≤ C1‖f‖Hs .

(c) There is a constant C2 such that for all f ∈ Hs, for all sets B of diameter
at most 1, and for all α > 0,

meas({x ∈ B : sup
n∈N
|S1f(x, tn)| > α}) ≤ C2 α

−2‖f‖2Hs .

(d) For every f ∈ Hs we have

lim
n→∞

S1f(x, tn) = f(x) a.e.

The convexity condition is satisfied for the model case tn = n−γ with γ > 0 and
thus Theorems 1.1, 1.3 and the known results for s = 1/4, when a > 1, yield

Corollary 1.4. Let 0 < γ <∞.
(i) If a > 1, then limn→∞ Saf(x, n−γ) = f(x) a.e. holds for every f ∈ Hs(R)

if and only if s ≥ min{ a
2γ+4 ,

1
4}.

(ii) If 0 < a < 1, then limn→∞ Saf(x, n−γ) = f(x) a.e. holds for every f ∈
Hs(R) if and only if s ≥ a

2γ+4 .

(iii) If a = 1, then limn→∞ S1f(x, n−γ) = f(x) a.e. holds for every f ∈ Hs(R)
if and only if s ≥ 1

2γ+2 .

This answer for the sequence {n−γ} reveals a perhaps surprising phenomenon for
the case a > 1, namely that there is a gain over the general pointwise convergence
result when γ > 2(a − 1), but not when 0 < γ ≤ 2(a − 1). When 0 < a ≤ 1,
we have for all γ ∈ (0,∞) a gain over the general convergence result. The same
remarks apply to the local Hs → L2(B) maximal inequality. In contrast we get for
the global maximal operator and a 6= 1:
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Corollary 1.5. Let 0 < γ < ∞ and a ∈ (0,∞) \ {1}. Then the global maximal
function inequality

‖ sup
n
|Saf(x, n−γ)|‖L2(R) ≤ C‖f‖Hs

holds for some C > 0 and all f ∈ Hs if and only if s ≥ a
2γ+4 .

Remarks. (i) Our results for the special case {n−γ}, a 6= 1 as stated in Corollaries
1.4, 1.5 were already incorporated in the 2016 thesis [7] of the first named author.
Moreover sufficiency in Theorem 1.1, merely for decreasing sequences but under
the more restrictive assumption {tn} ∈ `r for r < 2s

a−4s , follows already from

Proposition 1.6 in [7].
(ii) The problem of convergence of Schrödinger means Sa(f, tn) for a decreasing

sequence {tn} was independently considered in recent papers by Sjölin [17] and by
Sjölin and Strömberg [18]. Their conditions are more restrictive, but apply in all
dimensions. In [17] it is proved for a > 1 that the condition {tn} ∈ `2s/a is sufficient
for pointwise convergence. This is improved in [18] where for s ≤ 1/2, a > 2s, the
condition {tn} ∈ `r for r < 2s

a−2s is shown to be sufficient for pointwise convergence.
Proposition 2.3 yields an improvement of these results and Theorem 1.1 gives the
optimal result for decreasing convex sequences.

(iii) For a 6= 1 there are natural analogous open questions of necessary and
sufficient conditions in higher dimensions, given the recent groundbreaking results
for the full local Schrödinger maximal operator in [8], [9] which are sharp up to
endpoints.

(iv) For 0 < a < 1 there is still the open problem whether Saf(x, t) → f(x)
a.e. holds for all f ∈ Ha/4(R). Likewise there is the problem of a global bound
for the maximal function if s = a/4, and a > 1. One can show using a variant of

the arguments in [21], [16] that a.e. convergence holds in the Besov space B
a/4
2,1 (R)

which is properly contained in B
a/4
2,2 ≡ Ha/4, see Proposition 2.4. For the case

a = 1 we have pointwise convergence in B
1/2
2,1 (R), but pointwise convergence fails

for some functions in H1/2(R), see Proposition 4.3.

This paper. In §2 we show for decreasing sequences that the `r(s),∞ condition is
sufficient for pointwise convergence and the appropriate boundedness properties of
the maximal operators. The necessity for decreasing convex sequences (converging
to 0) is proved in §3. The case a = 1 is separately considered in §4. In §5 we include
a short appendix regarding the relevant application of Stein-Nikishin theory.

Acknowledgement. We would like to thank Per Sjölin and Jan-Olov Strömberg for
their interest and for pointing out an error in a previous version, concerning the
term E1 in the proof of Proposition 2.3.

2. Upper bounds for maximal functions

In the present section we prove maximal function results which imply the positive
results of the theorems stated in the introduction. We already know the local
estimate

(2.1)
∥∥∥ sup
t∈[0,1]

|Saf(·, t)|
∥∥∥
L2(B)

≤ C‖f‖H1/4 ,
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which was established by Kenig and Ruiz [11] when a = 2 and Sjölin [15] for general
a > 1. In view of (2.1) it now suffices to give the proof of the L2(R) bound in part

(b) of Theorem 1.2, under the assumption of {tn} ∈ `
2s
a−4s , whenever s < a/4.

Throughout this section we assume that {tn} is decreasing but we drop the
convexity assumption in the introduction. Without loss of generality (dropping a
finite number of terms in the sequence) we can assume that tn ∈ (0, 1) for all n ∈ N.
We first restrict our attention to the frequency localized operator

Saλf(x, t) =

∫
R
ei(xξ+t|ξ|

a)f̂(ξ)χ(ξ/λ) dξ2π ,

where χ ∈ C∞ is a real-valued, smooth function, supported in {1/2 ≤ |ξ| ≤ 1}.
The following result is a variant of the inequality given in [11]:

Proposition 2.1. If J ⊆ [0, 1] is an interval and 0 < a 6= 1, then∥∥ sup
t∈J
|Saλf(·, t)|

∥∥
L2(R)

≤ C(1 + |J |1/4λa/4)‖f‖2.

Proof. We use the Kolmogorov-Seliverstov-Plessner method, by linearizing the max-
imal operator: let x 7→ t(x) be a measurable function, with values in J . It will then
suffice to prove (∫

R
|Saλ(x, t(x))|2 dx

)1/2

≤ C(1 + |J |1/4λa/4)‖f‖2,

where the constant C is independent of t(·) and f . Notice that

Saλf(x, t(x)) =

∫
ei(xξ+t(x)|ξ|a)f̂(ξ)χ(ξ/λ) dξ2π = λT aλ [f̂(λ·)](x)

where

T aλ g(x) =

∫
ei(λxξ+λ

at(x)|ξ|a)χ(ξ)g(ξ) dξ2π .

Since ‖f̂(λ·)‖2 = cλ−1/2‖f‖2 we need to show that

‖T aλ‖L2→L2 . λ(a−2)/4|J |1/4 + λ−1/2,

which in turn follows from

‖T aλ (T aλ )∗‖L2→L2 . λ(a−2)/2|J |1/2 + λ−1.(2.2)

The kernel of T aλ (T aλ )∗ is

Ka
λ(x, y) =

∫
ei[λ(x−y)ξ+λa(t(x)−t(y))|ξ|a]χ2(ξ) dξ2π .

and the derivative of the phase Φaλ(ξ) = λ(x− y)ξ + λa(t(x)− t(y))|ξ|a is equal to

(Φaλ)′(ξ) = λ(x− y) + aλa(t(x)− t(y)) (sign ξ) |ξ|a−1.

Therefore, if |x − y| � λa−1|t(x) − t(y)|, we have that |(Φaλ)′(ξ)| & λ|x − y| and
integration by parts gives

|Ka
λ(x, y)| .N (λ|x− y|)−N .

In the case where |x− y| . λa−1|t(x)− t(y)| we use van der Corput’s lemma. The
second derivative of the phase is (Φaλ)′′(ξ) = caλ

a(t(x)− t(y))|ξ|a−2, hence

|Ka
λ(x, y)| . λ−a/2|t(x)− t(y)|−1/2 . (λ|x− y|)−1/2.
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Thus
∫
R |K

a
λ(x, y)| dy can be estimated by∫

|x−y|.
λa−1|t(x)−t(y)|

λ−1/2|x− y|−1/2dy +

∫
|x−y|�

λa−1|t(x)−t(y)|

(1 + λ|x− y|)−Ndy

≤
∫
|x−y|.λa−1|J|

λ−1/2|x− y|−1/2dy +

∫
R
(1 + λ|x− y|)−Ndy

. λ(a−2)/2|J |1/2 + λ−1 .

Therefore supx∈R
∫
|Ka

λ(x, y)| dy . λ(a−2)/2|J |1/2 + λ−1 and by symmetry we get
the same bound for supy∈R

∫
|Ka

λ(x, y)| dx. Hence Schur’s test gives the required
bound (2.2). �

We now use Proposition 2.1 to prove a sharp result for the frequency-localized
operaors Saλ.

Lemma 2.2. Let 0 < a 6= 1, 0 < r <∞ and let {tn} be a sequence in [0, 1] which
belongs to `r,∞. Then for λ > 1∥∥∥ sup

n
|Saλf(·, tn)|

∥∥∥
L2(R)

≤ Cλ
ar

2+4r ‖f‖L2(R).

Proof. We start by writing∥∥∥ sup
n
|Saλf(·, tn)|

∥∥∥
2
≤
∥∥∥ sup
n: tn≤b

|Saλf(·, tn)|
∥∥∥

2
+
∥∥∥ sup
n: tn>b

|Saλf(·, tn)|
∥∥∥

2
.

By Proposition 2.1 we can bound the first term by b1/4λa/4‖f‖2. On the other
hand, by using Plancherel’s theorem and our assumption, we get

∥∥∥ sup
n: tn>b

|Saλf(·, tn)|
∥∥∥
L2(R)

≤
( ∑
n: tn>b

‖Saλf(·, tn)‖22
)1/2

≤ #({n : tn > b})1/2‖f‖2 . b−r/2‖f‖2.

We therefore have ∥∥∥ sup
n
|Saλf(·, tn)|

∥∥∥
2
. (b1/4λa/4 + b−r/2)‖f‖2

and choosing b such that b1/4λa/4 = b−r/2, namely b = λ−
a

1+2r , finishes the proof.
�

We wish to apply the Lemma 2.2 for λ = 2k, k > 1. A more refined argument is
needed to combine the dyadic scales.

Proposition 2.3. Let 0 < a 6= 1, and assume that {tn} ∈ `r,∞(N) is decreasing.
Then

(2.3)
∥∥ sup

n
|Saf(·, tn)|

∥∥
L2(R)

≤ C‖f‖Hs , s =
ar

2 + 4r
.

Moreover Saf(x, tn)→ f(x) a.e. whenever f ∈ Hσ for σ ≥ min{ 1
4 ,

ar
2+4r}.
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Proof. Define projection operators Pk by

P̂0f(ξ) = 1[−1/2,1/2](ξ)f̂(ξ)

P̂kf(ξ) = (1[2k−1,2k] + 1[−2k,−2k−1])f̂(ξ), k ≥ 1

Clearly PkPk = Pk and
∑
k≥0 Pkf = f .

Next, for each integer l ≥ 0 we set

Nl =
{
n ∈ N : 2−(l+1) a

1+2r < tn ≤ 2−l
a

1+2r
}
.

By assumption {tn} ∈ `r,∞ there is C > 0 so that

(2.4) #(Nl) ≤ C2l
ar

1+2r = C22ls.

We can then write

sup
n
|Saf(x, tn)| ≤ E1(x) + E2(x) + E3(x)

where

E1(x) = sup
l

sup
n∈Nl

∣∣ ∑
k< l

1+2r

SaPkf(x, tn)
∣∣

E2(x) = sup
l

sup
n∈Nl

∣∣ ∑
l

1+2r≤k<l

SaPkf(x, tn)
∣∣

E3(x) = sup
l

sup
n∈Nl

∣∣∑
k≥l

SaPkf(x, tn)
∣∣

We first give the estimate for ‖E3‖2. We make the change of variable k = l +m
and and get

E3(x) ≤
∑
m≥0

(∑
l≥0

sup
n∈Nl

|SaPl+mf(x, tn)|2
)1/2

.

From this,

‖E3‖2 ≤
∑
m≥0

(∑
l≥0

∥∥∥ sup
n∈Nl

|SaPl+mf(·, tn)|
∥∥∥2

2

)1/2

≤
∑
m≥0

(∑
l≥0

∑
n∈Nl

∥∥∥SaPl+mf(·, tn)
∥∥∥2

2

)1/2

≤
∑
m≥0

(∑
l≥0

#(Nl)
∥∥Pl+mf∥∥2

2

)1/2

and using (2.4) this is further estimated by∑
m≥0

(∑
l≥0

22sl‖Pl+mf‖22
)1/2

=
∑
m≥0

2−ms
(∑
l≥0

22s(l+m)‖Pl+mf‖22
)1/2
. ‖f‖Hs .

In order to deal with the first and second terms we use that by definition of Nl

the tn with n ∈ Nl lie in the interval

Jl = [0, 2−l
a

1+2r ].
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For the term E2 we make the change of variables k = l − j and estimate

E2(x) ≤ sup
l

sup
n∈Nl

∣∣ ∑
0<j≤ 2r

1+2r l

SaPl−jf(x, tn)
∣∣

≤
(∑
l≥0

( ∑
0<j≤ 2r

1+2r l

sup
n∈Nl

|SaPl−jf(x, tn)|
)2)1/2

≤
∑
j>0

( ∑
l≥j 1+2r

2r

sup
n∈Nl

|SaPl−jf(x, tn)|2
)1/2

.

We can now use Proposition 2.1, with J = Jl amd λ = 2k = 2l−j . Note that

l ≥ j 1+2r
r implies that |Jl|

1
4 2

a
4 (l−j) = 2−l

a
4(1+2r) 2

a
4 (l−j) ≥ 1. Using PkPk = Pk we

then get

‖E2‖2 ≤
∑
j≥0

( ∑
l≥j 1+2r

r

∥∥∥ sup
n∈Nl

|SaPl−jf(·, tn)|
∥∥∥2

L2(R)

)1/2

.
∑
j≥0

( ∑
l≥j 1+2r

2r

[
(1 + 2

a
4 (l−j) 2−l

a
4(1+2r) )‖Pl−jf‖2

]2)1/2

.
∑
j≥0

( ∑
l≥j 1+2r

2r

[
2(l−j) a4 (1− 1

1+2r ) 2−j
a

4(1+2r) ‖Pl−jf‖2
]2)1/2

=
∑
j≥0

2−j
a

4(1+2r)

( ∑
l≥j 1+2r

2r

[
2s(l−j)‖Pl−jf‖2

]2)1/2

. ‖f‖Hs .

Finally we consider the term E1 and estimate

‖E1‖2 ≤
∥∥ sup

l
sup
n∈Nl

∑
k< l

1+2r

|SaPkf(x, tn)|‖2

≤
∑
k≥0

∥∥ sup
l>k(1+2r)

sup
n∈Nl

|SaPkf(·, tn)|
∥∥

2

The tn with n ∈ ∪l>k(1+2r)Nl lie in an interval of length O(2−ka), namely in Jl(k)

with l(k) = bk(1 + 2r)c. We use again Proposition 2.1, with J = Jl(k) and λ = 2k,

and observe that now 2ka/4|Jl(k)|1/4 . 1. Thus we can bound for each k > 0∥∥ sup
l>k(1+2r)

sup
n∈Nl

|SaPkf(·, tn)|
∥∥

2
. (1 + 2ka/4|Jl(k)|1/4)‖Pkf‖2 . ‖Pkf‖2.

We sum in k and deduce that

‖E1‖2 .
∑
k≥0

‖Pkf‖2 ≤ C(s)‖f‖Hs , s > 0.

We combine the estimates for ‖Ei‖, i = 1, 2, 3 to finish the proof of the maxi-
mal inequality (2.3). Since limt→0 S

af(x, t) = f(x) for all x ∈ R whenever f is a
Schwartz function, and since Schwartz functions are dense in Hσ the stated point-
wise convergence result follows from (2.1), (2.3) by a standard argument (see e.g.
[15] or [18]). �
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Finally we mention an endpoint result involving the Besov space Bs2,1(R) when

s = a/4. We do not know whether B
a/4
2,1 can be replaced with Ha/4 in the following

proposition.

Proposition 2.4. Let a > 0, a 6= 1. Then, for all f ∈ Ba/42,1 (R),∥∥ sup
t∈[0,1]

|Saf(·, t)|
∥∥
L2(R)

≤ C‖f‖
B
a/4
2,1
.

Proof. Write f =
∑
k≥0 S

aPkPkf as in the proof of Proposition 2.3. By Proposition
2.1 we have∥∥ sup

t∈[0,1]

Saf
∥∥

2
≤
∑
k≥0

∥∥ sup
t∈[0,1]

|SaPkPkf |
∥∥

2
.
∑
k≥0

2ka/4‖Pkf‖2

and using Plancherel’s theorem and the definition of Besov spaces via dyadic fre-
quency decompositions we see that the last expression is dominated by C‖f‖

B
a/4
2,1

.

�

3. Necessary conditions

In order to prove necessity in Theorem 1.1 we use arguments from Nikishin-Stein
theory. We include the standard argument for the proof of the following proposition
in Appendix §5.

Proposition 3.1. Assume that for every f ∈ Hs, the limit limn→∞ Saf(x, tn)
exists for almost every x ∈ R. Then for any compact set K ⊂ R, there is a
constant CK , such that for all α > 0,

meas({x ∈ K : sup
n
|Saf(x, tn)| > α}) ≤ CK

(‖f‖Hs
α

)2

.

We also need the following elementary lemma.

Lemma 3.2. Let {tn} be a sequence of positive numbers in [0, 1], let 0 < r < ∞
and assume that supb>0 b

r#({n : b < tn ≤ 2b}) ≤ A. Then {tn} ∈ `r,∞.

Proof. For every β > 0,

βr#({n : tn > β}) = βr
∑
k≥0

#({n : 2kβ < tn ≤ 2k+1β}) ≤
∑
k≥0

A2−kr . A. �

We now turn to the proof of the necessity of the `r,∞-condition in Theorems 1.1
and Theorem 1.2.

Proposition 3.3. Assume that {tn} is a decreasing sequence such that tn − tn+1

is also decreasing and limn→∞ tn = 0. For 0 < s < a/4, let

r(s) =
2s

a− 4s
.

(i) If s < min{a/4, 1/4} and if

(3.1) meas({x ∈ [0, 1] : sup
n
|Saf(x, tn)| > 1/2}) ≤ C◦‖f‖2Hs

holds for all f ∈ Hs, then {tn} ∈ `r(s),∞.

(ii) If s < a/4 and if the global weak type inequality

(3.2) meas({x ∈ R : sup
n
|Saf(x, tn)| > 1/2}) ≤ C◦‖f‖2Hs
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holds for all f ∈ Hs, then {tn} ∈ `r(s),∞.

Proof. We argue by contradiction and assume that {tn} /∈ `r(s),∞ while (3.1) holds
if s < min{a/4, 1/4} or (3.2) holds in the case a > 1 and 1/4 ≤ s < a/4. By Lemma
3.2, this means

sup
0<b<1/2

br(s)#({n : b < tn ≤ 2b}) =∞.

Hence there exists an increasing sequence {Rj} with limj→∞Rj = ∞ and a se-
quence of positive numbers bj with limj→∞ bj = 0 so that

(3.3) #({n : bj < tn ≤ 2bj}) ≥ Rjb−r(s)j .

We take another sequence

Mj ≤ Rj with lim
j→∞

Mj =∞

such that in the case where s < 1/4

(3.4) aM
2(a−1)
a

j b
1−4s
a−4s

j ≤ 1.

In the case 1/4 ≤ s < a/4 we simply take Mj = Rj .
We now show that

(3.5) tn − tn+1 ≤ 2M−1
j b

a−2s
a−4s

j , if tn ≤ bj .

Indeed since n 7→ tn − tn+1 is decreasing we get, for tn ≤ bj ,

tn − tn+1 ≤ min{tm − tm+1 : tm > bj} ≤
2bj

#({n : bj < tn ≤ 2bj})

≤ 2bj

Rjb
−r(s)
j

≤ 2bj

Mjb
−r(s)
j

,

by (3.3), and (3.5) follows since r(s) + 1 = a−2s
a−4s .

For our construction of a counterexample we rely on the idea originally proposed
by Dahlberg and Kenig [5]. We introduce a family of Schwartz functions which is
used to test (3.1). Choose a C∞ function g with compact support in [−1/2, 1/2]
such that g(ξ) ≥ 0 and

∫
g(ξ) dξ = 1 and consider a family of functions fλ,ρ, with

large λ and ρ� λ, defined via the Fourier transform by

f̂λ,ρ(η) = ρ−1g((η + λ)/ρ).

Thus f̂λ,ρ is supported in an interval of length ρ � λ contained in [−2λ,−λ/2].
The assumption ρ� λ clearly implies

(3.6) ‖fλ,ρ‖Hs . λsρ−1/2.

We now examine the action of Sa on fλ,ρ. We have

|Safλ,ρ(x, tn)| =
∣∣∣ ∫ ei(xη+tn|η|a)ρ−1g((η + λ)/ρ) dη2π

∣∣∣ =
∣∣∣ ∫ eiΦλ,ρ(ξ;x,tn)g(ξ) dξ2π

∣∣∣
where

Φλ,ρ(ξ;x, tn) = x(ρξ − λ) + tn(λ− ρξ)a.
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We shall use, for x in a suitable interval Ij ⊂ I, and for suitable choices of λj , ρj
and n(x, j), the estimate

|Safλj ,ρj (x, tn(x,j))| ≥
∫
g(ξ) dξ −

∫
|eiΦλj,ρj (ξ;x,tn(x,j)) − 1| g(ξ) dξ2π

≥ 1− max
|ξ|≤1/2

∣∣eiΦλj,ρj (ξ;x,tn(x,j)) − 1
∣∣(3.7)

and we will have to show that the subtracted term is small for our choices of x,
n(x, j) and (λj , ρj).

By a standard Taylor expansion, we see that

(1− ρξ/λ)a = 1− aρξ/λ+ a(a−1)
2 (ρξ/λ)2 + E3(ρξ/λ)

where E3(t) = − 1
2a(a− 1)(a− 2)(

∫ 1

0
(1− st)a−3(1− s)2ds) t3. Hence

(3.8) Φλ,ρ(ξ;x, tn) =

(x− aλa−1tn)ρξ + a(a−1)
2 ρ2λa−2tnξ

2 + λatnE3(ρξ/λ) + λatn − λx.
Since terms that are independent of ξ do not affect the absolute value of our integral,
we only need to show an upper bound of the first three terms. We consider tn with
tn ≤ bj/2 and let ε be such that ε < 10−1(a+ 2)−1. We chose (λ, ρ) = (λj , ρj) as

(3.9) λj = M
2/a
j b

− 1
a−4s

j , ρj = εb
−1/2
j λ

1−a/2
j = εM

2−a
a

j b
− 1−2s
a−4s

j

and we consider these choices for large j when bj � 1 and Mj � 1. We then get

ρj/λj = εM−1
j b

2s
a−4s

j ≤ ε;
hence for |ξ| ≤ 1/2

|a(a−1)
2 ρ2

jλ
a−2
j tnξ

2| ≤ (a+1)2

2 ρ2
jλ
a−2
j bjξ

2(3.10a)

≤ (a+ 1)2ε2M
4−2a
a

j b
− 2−4s
a−4s

j M
2(a−2)
a

j b
− a−2
a−4s

j bj = (a+ 1)2ε2

and similarly

(3.10b) |λaj tnE3(ρjξ/λ)| ≤ (a+ 2)3λaj bj
( ρj

2λj

)3 ≤ (a+ 2)3ελa−2
j ρ2

jbj ≤ (a+ 2)3ε3.

Next we consider x in the interval

Ij := [0, aλa−1
j bj/2].

Notice that in the case s < 1/4,

aλa−1
j bj/2 =

a

2
M

2(a−1)
a

j b
1−4s
a−4s

j ≤ 1/2,

by (3.4) and hence Ij ⊂ [0, 1/2] in this case. If a > 1 and 1/4 ≤ s < a/4, no
restriction on Ij is required (as we are trying to disprove the global inequality (3.2)

in this case). Each x ∈ Ij is contained in an interval (aλa−1
j tn+1, aλ

a−1
j tn] for a

unique n, which we label n(x, j). By (3.5) we have that

0 ≤ tn(x,j) − tn(x,j)+1 ≤ 2M−1
j b

a−2s
a−4s

j .

Hence

|(x− aλa−1
j tn(x,j))ρjξ| ≤ aλa−1

j ρj(tn(x,j) − tn(x,j)+1)

≤ aM
2(a−1)
a

j b
− a−1
a−4s

j εM
2−a
a

j b
− 1−2s
a−4s

j 2M−1
j b

a−2s
a−4s

j = 2aε.(3.10c)
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As ε ≤ 10−1(a+ 2)−1 we obtain from (3.10a), (3.10b) and (3.10c)

max
|ξ|≤1/2

|eiΦλj,ρj (ξ;x,tn(x,j)) − 1| ≤ 1/2

and thus from (3.7)
(3.11)

sup
n
|Safλj ,ρj (x, tn)| ≥ |Safλj ,ρj (x, tn(x,j))| ≥ 1

2 , for x ∈ Ij = [0, aλa−1
j bj/2],

and, as noted before, Ij ⊂ [0, 1] if s < 1/4. The assumption of (3.1) (in the case
s < min{a/4, 1/4}) or the assumption of (3.2), both yield

(3.12) meas(Ij) ≤ 4C◦‖fλj ,ρj‖2Hs = C̃λ2s
j ρ
−1
j .

This leads to

aM
2(a−1)
a

j b
1−4s
a−4s

j ≤ C̃M
4s
a
j b
− 2s
a−4s

j ε−1M
a−2
a

j b
1−2s
a−4s

j

and hence to

aεC̃−1 ≤M−
a−4s
a

j .

Since limj→∞Mj =∞ the right hand side converges to 0 as j →∞ and we obtain

a contradiction. This means that if {tn} /∈ `
2s
a−4s ,∞ then (3.1) (and therefore (3.2))

cannot hold with s < min{a/4, 1/4} and (3.2) cannot hold with 1/4 ≤ s < a/4.
Thus both parts of the proposition are proved. �

We are now able to combine previous results to give a proof of the theorems in
the introduction.

Proof of Theorem 1.1. The implications (a) =⇒ (b) and (a) =⇒ (d) follow from
Proposition 2.3. The implication (b) =⇒ (c) is immediate by Tshebyshev’s in-
equality. The implication (c) =⇒ (a) follows from part (i) of Proposition 3.3.
Finally, the implication (d) =⇒ (c) follows from Proposition 3.1. �

Proof of Theorem 1.2. The implication (a) =⇒ (b) follows from Proposition 2.3.
The implication (b) =⇒ (c) is again immediate by Tshebyshev’s inequality. The
implication (c) =⇒ (a) follows from part (ii) of Proposition 3.3. �

4. The case a = 1

We now give the sketch of the proof of Theorem 1.3. We start with an analog to
Lemma 2.2, for the frequency-localized operator S1

λ.

Lemma 4.1. (i) Let b > λ−1. Then∥∥ sup
0≤t≤b

|S1
λf(·, t)|

∥∥
2
. (λb)1/2‖f‖2.

(ii) Let 0 < r <∞ and let {tn} be a sequence in [0, 1] which belongs to `r,∞. Then
for λ > 1 ∥∥∥ sup

n
|S1
λf(·, tn)|

∥∥∥
L2(R)

≤ Cλ
r

2+2r ‖f‖L2(R).
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Proof. We use the elementary inequality∥∥ sup
c≤t≤c+λ−1

|S1
λf(x, t)|

∥∥
2
. ‖f‖2(4.1)

which just follows from L2 estimates for Sλf(·, t) and ∂tSλf(·, t). Now∥∥∥ sup
0<t≤b

|S1
λf(·, t)|

∥∥∥
L2(R)

≤
( ∑

m≥0:
0≤mλ−1≤b

∥∥ sup
mλ−1≤t≤(m+1)λ−1

|S1
λf(·, t)|

∥∥2

2

)1/2

which is bounded by a constant times (λb)1/2‖f‖2.
To prove part (ii) we write as in the proof of Lemma 2.2, for b > λ−1 to be

determined,∥∥∥ sup
n
|S1
λf(·, tn)|

∥∥∥
2
≤
∥∥∥ sup
n: tn≤b

|S1
λf(·, tn)|

∥∥∥
2

+
∥∥∥ sup
n: tn>b

|S1
λf(·, tn)|

∥∥∥
2
.

For the first term we have∥∥∥ sup
n: tn≤b

|S1
λf(·, tn)|

∥∥∥
L2(R)

. (λb)1/2‖f‖2,

by part (i). For the second term we may estimate as in Lemma 2.2∥∥∥ sup
n: tn>b

|S1
λf(·, tn)|

∥∥∥
L2(R)

. b−r/2‖f‖2.

Choosing b such that (λb)1/2 = b−r yields the claimed result. �

Proposition 4.2. Let 0 < r < ∞ and assume that {tn} ∈ `r,∞(N) is decreasing.
Then

(4.2)
∥∥ sup

n
|S1f(·, tn)|

∥∥
L2(R)

≤ C‖f‖Hs , s =
r

2 + 2r
.

Proof. We set for l ≥ 0 we set

N(l) =
{
n ∈ N : 2−(l+1) 1

1+r < tn ≤ 2−l
1

1+r
}
.

By assumption {tn} ∈ `r,∞ there is C > 0 so that

(4.3) #(N(l)) ≤ C2l
r

1+r = C22ls.

Arguing as in the proof of Proposition 4.2 we can estimate ‖ supn |Saf(·, tn)|‖2 ≤
‖E1‖2 + ‖E2‖2 where

E1(x) =
∑
j≥0

(∑
l≥j

sup
n∈N(l)

|S1Pl−jf(x, tn)|2
)1/2

E2(x) =
∑
m≥0

(∑
l≥0

sup
n∈N(l)

|S1Pl+mf(x, tn)|2
)1/2

.

Again as in the proof of Proposition 2.3

‖E2‖2 ≤
∑
m≥0

(∑
l≥0

#(N(l))
∥∥Pl+mf∥∥2

2

)1/2

.
∑
m≥0

(∑
l≥0

22sl‖Pl+mf‖22
)1/2

=
∑
m≥0

2−ms
(∑
l≥0

22s(l+m)‖Pl+mf‖22
)1/2
. ‖f‖Hs .
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In order to deal with the first sum, we use that N(l) ⊂ [0, bl] with bl = 2−l/(1+r).
Hence by Lemma 4.1

‖E1‖2 ≤
∑
j≥0

(∑
l≥j

∥∥∥ sup
n∈N(l)

|S1Pl−jf(·, tn)|
∥∥∥2

L2(R)

)1/2

.
∑
j≥0

(∑
l≥j

[
2
l−j
2 2−l

1
2+2r ‖Pl−jf‖2

]2)1/2

.
∑
j≥0

2−j
1

2+2r

(∑
l≥j

[
2(l−j) r

2+2r ‖Pl−jf‖2
]2)1/2

. ‖f‖Hs

with s = r
2r+2 . �

For completeness we state the case s = 1/2, a = 1 analog of Proposition 2.4
which is sharp in this case.

Proposition 4.3. For all f ∈ B1/2
2,1 (R),∥∥ sup

t∈[0,1]

|S1f(·, t)|
∥∥
L2(R)

≤ C‖f‖
B

1/2
2,1
.

The space B
1/2
2,1 cannot be replaced by B

1/2
2,ν for any ν > 1.

Proof. The first part is immediate from Lemma 4.1. For the second part one recalls

that there are unbounded functions in B
1/2
2,ν whose Fourier transform is supported

in (−∞, 0], cf. [1]. For such functions S1f(x, t) = f(x− t) and thus, for ν > 1 one

can easily find f ∈ B1/2
2,ν such that supt∈[0,1] |S1f(x, t)| =∞ on a set A ⊂ [0, 1] with

meas(A) > 0. �

Proposition 4.4. Assume that {tn} is a decreasing sequence such that tn − tn+1

is also decreasing and limn→∞ tn = 0. For s < 1/2 let

ρ(s) =
2s

1− 2s
.

Then the validity of the inequality

(4.4) meas({x ∈ [0, 1] : sup
n
|S1f(x, tn)| > 1/2}) ≤ C◦‖f‖2Hs .

for all f ∈ Hs, implies that {tn} ∈ `ρ(s),∞.

Proof. Assume that {tn} /∈ `ρ(s),∞. Arguing as in the proof of Proposition 3.3
we find an increasing sequence Mj with limMj = ∞ and a sequence of positive
numbers bj with limj→∞ bj = 0 so that

#({n : bj < tn ≤ 2bj}) ≥Mjb
−ρ(s)
j .

As in the previous proof we also have

(4.5) tn − tn+1 ≤ 2M−1
j b

ρ(s)+1
j , if tn ≤ bj .

Let g ∈ C∞ be nonnegative, supported in (−1/2, 1/2), such that
∫
g(ξ) dξ = 1.

Define fλ, for large λ, by

f̂λ(ξ) = 10λ−1g(10λ−1(ξ + λ)).
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Then ‖fλ‖Hs ≤ C◦λs−1/2. We write

|S1fλ(x, t)| =
∣∣∣ ∫ ei10−1λ(x−t)ξg(ξ) dξ2π

∣∣∣ ≥ 1−
∣∣∣ ∫ (ei10−1λ(x−t)ξ − 1)g(ξ) dξ2π

∣∣∣
and see that

(4.6) |S1fλ(x, t)| ≥ 1/2, if |x− t| ≤ λ−1.

We now set λj = Mjb
− 1

1−2s

j . Note that ρ(s) + 1 = (1 − 2s)−1, and thus we have

tn − tn+1 ≤Mjλ
−1
j for tn ≤ bj , by (4.5). Hence by (4.6) we see that

sup
n
|S1fλj (x)| ≥ 1/2, for 0 < x < bj/2.

Therefore the asserted weak type inequality implies

bj/2 ≤ 4‖fλj‖2Hs ≤ 4C◦λ
2s−1
j = 4C◦M

2s−1
j bj

and thus 8C◦M
2s−1
j is bounded below as j →∞. This yields a contradiction as we

have limj→0M
2s−1
j = 0 for s < 1/2. �

Proof of Theorem 1.3. The implication (a) =⇒ (b) follows from Proposition 4.2.
The implication (b) =⇒ (c) follows from Tshebyshev’s inequality. The implication
(c) =⇒ (a) follows from Proposition 4.4. The implication (c) =⇒ (d) follows by
a standard argument using the weak type inequality and the density of Schwartz
functions. The implication (d) =⇒ (c) follows from Proposition 3.1. �

5. Appendix: Proof of Proposition 3.1

We need to use a theorem by Nikishin, whose proof can be found, for example,
in [6] (Chapter VI, Corollary 2.7), see also [19]. Nikishin’s theorem asserts that
if M : L2(Y, µ) → L0(Rd, | · |) is a continuous sublinear operator (with (Y, µ) an
arbitrary measure space), then there exists a measurable function w with w(x) > 0
a.e. such that ∫

{x: |Mf(x)|>α}
w(x) dx ≤ α−2‖f‖2L2(µ).

To prove Proposition 3.1, let Maf(x) = supn |Saf(x, tn)| and consider T ang(x) =

(2π)−1
∫
ei(xξ+tn|ξ|

a)g(ξ) dξ, so that T an f̂(x) = Saf(x, tn). Then T an acts on func-
tions in the weighted L2 space L2(µs), where dµs(ξ) = (1 + |ξ|2)sdξ. Define the

corresponding maximal operator, M̃ag = supn |T ang|.
Now assuming that limn S

af(x, tn) exists a.e. for every f ∈ Hs, we see that

M̃ag(x) < ∞ a.e. for every g ∈ L2(µs). Then by Proposition 1.4, p. 529 in [6],

this implies that the sublinear operator M̃a : L2(µs) → L0(| · |) is continuous. By
the abovementioned Nikishin’s theorem,∫

{x: |M̃ag(x)|>α}
w(x) dx ≤ α−2‖g‖2L2(µs)

for some weight w with w(x) > 0 a.e. As we can replace w with min{w, 1} we may
further assume that w is bounded.

Next, for f ∈ Hs, M̃af̂ = Maf and ‖f̂‖L2(µs) = ‖f‖Hs , so∫
{x: |Maf(x)|>α}

w(x) dx ≤ α−2‖f‖2Hs .
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After the change of variables x→ x+y and using the translation invariance of Ma,
we can replace the integrand w(x) by w(x−y) for any y. Arguing as in Chapter VI
of [6] multiply both sides of the resulting inequality by h(y), where h is a strictly
positive continuous function with

∫
h = 1, and then integrate in y, to arrive at∫

{x: |Maf(x)|>α}
h ∗ w(x) dx ≤ α−2‖f‖2Hs .

Since h ∗w is continuous it attains a minimum over any compact set. We therefore
conclude that

meas
(
{x ∈ K : |Maf(x)| > α}

)
≤ CKα−2‖f‖2Hs

must hold true for every compact set K, as desired. �
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[14] Peter Sjögren, Per Sjölin, Convergence properties for the time dependent Schrödinger equa-

tion. Ann. Acad. Sci. Fenn. 14, 13–25 (1989).
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