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1. Introdu
tion

Let 
 be a 
onvex domain in R

d


ontaining the origin in its interior. We mostly assume that 


has smooth boundary and that the Gaussian 
urvature of the boundary vanishes nowhere. Let

N




(t) = 
ard(t
 \ Z

d

);

the number of integer latti
e point inside the dilated domain t
. It is well known that N




(t) is

asymptoti
 to t

d

vol(
) as t!1. We denote by

(1.1) �




(t) =

N




(t)� t

d

vol(
)

t

d

vol(
)

the relative error, or the dis
repan
y fun
tion. It is 
onje
tured that in dimensions d � 5 the relative

error is O(t

�2

) as t ! 1. This 
onje
ture is known to be true in the 
ase of a ball 
entered at

the origin, and for ellipsoids in various degrees of generality (see Landau [20℄, Wal�sz [31℄, [32℄,

Bentkus and G�otze [2℄). The error 
an be even smaller. For example, Jarn��k [14℄ established the

bound O(t

�d=2+"

) for the relative error, with any " > 0, for almost all ellipsoids with axes parallel

to the 
oordinate axes. For general 
onvex domains with non-vanishing 
urvature on the boundary,

W. M�uller [22℄ proved that �




(t) = O(t

�2+�(d)+"

), where �(d) = (d + 4)=(d

2

+ d + 2), if d � 5,

�(4) = 6=17 and �(3) = 20=43, improving on earlier results by Kr�atzel and Nowak [19℄. For planar

domains, Huxley [11℄ obtained this estimate with �(2) = 46=73, whi
h implies the relative error

O(t

�100=73

(log t)

315=146

).

In this paper we study the mean square dis
repan
y of the latti
e rest, the square fun
tion

(1.2) G




(R) =

�

1

R

Z

2R

R

j�




(t)j

2

dt

�

1=2

and related expressions. For the ball B

d

in R

d

, 
entered at the origin, bounds and various asymptoti
s

for mean square dis
repan
ies have been obtained by Wal�sz [32℄ for d � 4, Jarn��k [16℄ for d = 3

and Katai [17℄ for d = 2.

In the more general situation where the boundary of 
 is smooth and is assumed to have

everywhere non-vanishing Gaussian 
urvature, Nowak [25℄ proved that G




(R) = O(R

�3=2

) for planar

Resear
h supported in part by NSF grants.

Typeset by A

M

S-T

E

X

1



domains. This estimate is sharp by the results of Bleher [3℄ who investigated the limit of R

3=2

G




(R)

as R ! 1. The higher dimensional 
ase was 
onsidered by W. M�uller [21℄, who proved a nearly

sharp estimate for d � 4, namely that G




(R) � C

"

R

�2+"

for any " > 0. The 
ase d = 3 was left

open.

The main purpose of this note is to show that the known endpoint bounds for the mean square

dis
repan
y in the 
ase of the ball remain valid in the general 
ase, provided that d � 4. Moreover,

we prove a nearly sharp estimate in dimension d = 3, where we are o� by a fa
tor of

p

logR.

Theorem 1.1. Let 
 be a 
onvex domain in R

d


ontaining the origin in its interior, and assume

that 
 has smooth boundary with everywhere non-vanishing Gaussian 
urvature. Then there exists

a 
onstant C(
), su
h that for all R � 2,

(1.3) G




(R) � C(
)

8

>

<

>

:

R

�2

if d � 4

R

�2

logR if d = 3

R

�3=2

if d = 2

:

As we noted above, the sharp estimate O(R

�3=2

) in the plane was already known for more

general planar domains with the non-vanishing 
urvature assumption. In fa
t, it turns out that

this estimate holds even if we repla
e the mean square dis
repan
y over [R; 2R℄ by the mean square

dis
repan
y over substantially smaller intervals [R;R + h℄. A 
losely related result due to Huxley

[10℄ says that (

R

R+1

R

j�




(t)j

2

dt

�

1=2

� C




R

�3=2

(logR)

1=2

.

Theorem 1.2.1. Let 
 be a 
onvex domain in R

2


ontaining the origin in its interior, and assume

that 
 has C

1

boundary with non-vanishing 
urvature. Then there is a 
onstant C = C(
) so that

for all R � 2,

(1.4)

�

1

h

Z

R+h

R

j�




(t)j

2

dt

�

1=2

� C(
)R

�3=2

if logR � h � R:

As an immediate 
onsequen
e of Theorem 1.2.1, the mean square dis
repan
y over [R;R+ h℄ is

dominated by C(
)R

�3=2

(logR)

1=2

h

�1=2

if 0 � h � logR. In parti
ular, the aforementioned result

of Huxley follows if we set h = 1.

We now 
onsider more general domains in the plane. We say that a 
onvex domain is of type

at most m if its boundary has order of 
onta
t at most m with every tangent line. Thus if m = 2

we re
over the 
ase of everywhere non-vanishing 
urvature 
onsidered above. It is known that the

analogue of Theorem 1.2.1 may fail if the order is greater than 2 (
f. [26℄, [5℄, and [23℄). However

for almost all rotations the estimate remains true for the rotated domain. More pre
isely we have

the following result.

Theorem 1.2.2. Let 
 be a 
onvex domain in R

2


ontaining the origin in its interior, and assume

that the boundary is smooth and of �nite type at most m, in the sense that the order of 
onta
t

of �
 with every tangent line is at most m. For A 2 SO(2), denote by A
 the rotated domain

fAx : x 2 
g. Then for almost all rotations A, the inequality (1.4) holds for A
, with the 
onstant

C

A


depending on A. More pre
isely, the following hold.

2



(i) The maximal fun
tion

(1.5) C




(A) = sup

R�2

R

3=2

sup

logR�h�R

�

1

h

Z

R+h

R

j�

A


(t)j

2

dt

�

1=2

belongs to the weak type spa
e L

2m�2

m�2

;1

(SO(2)).

(ii) Let � be the set of all points P 2 �
 where the 
urvature vanishes, and for P 2 � assume

that the 
urvature vanishes of order m

P

� 2 (� m� 2). Let n

P

be the outer unit normal at P and

v

P

a unit tangent ve
tor at P . Then C




(A) < 1, if A satis�es, for some � > 0, the Diophantine


ondition

(1.6) max

P2�

supfjkj

m

P

m

P

�2

��

jhk;A

�

v

P

ij : dist(k;Rn

P

) � 1g > 0:

In parti
ular the set fA 2 SO(2) : C




(A) =1g is of Hausdor� dimension �

m�2

m�1

.

It is likely that one 
an weaken the Diophantine 
ondition and thus the estimate for the upper

bound of the Hausdor� dimension is presumably not sharp. The latter theorem is related to the

results by Colin de Verdi�ere [5℄ and Tarnopolska-Weiss [30℄ who proved similar statements about the

maximal fun
tion A 7! sup

t�1

t

4=3

�

A


(t); see also the improvements by Nowak [24℄ who obtained

the van der Corput type bounds j�

A


(t)j � C

A

t

�4=3�Æ

for suitable Æ = Æ(
) > 0, again under

appropriate Diophantine 
onditions on the rotation.

We remark that in Theorem 1.2.1 the smoothness assumption 
an be relaxed 
onsiderably;

moreover a slightly weaker variant of Theorem 1.2.2 holds without any assumption on the boundary

of the 
onvex domain. These issues are taken up in the sequel [13℄ to this paper.

Notation: Given two quantities A, B we write A . B if there is an absolute positive 
onstant,

depending only on the spe
i�
 domain 
, so that A � CB. We write A � B if A . B and B . A.

2. Preliminaries

We denote by 


�

the polar set of 
,

(2.1) 


�

= f� : hx; �i � 1 for all x 2 
g;

and let �

�

be the Minkowski fun
tional asso
iated to 


�

; i.e. �

�

is homogeneous of degree 1 and

satis�es �

�

(�) = 1 if � 2 �


�

. Then, if P

+

(�) is the unique point in �
 at whi
h � is an outer normal

to �
, then

(2.2.1) �

�

(�) = hP

+

(�); �i:

Similary, if P

�

(�) is the unique point in �
 at whi
h � is an inner normal, then

(2.2.2) �

�

(��) = �hP

�

(�); �i:

If t 7! x(t) is a regular C

k

parametrization of �
 near a point P

0

= x(t

0

), and t 7! n(t) denotes

the outward unit normal ve
tor, then t 7! x

�

(t) = hx(t); n(t)i

�1

n(t) parametrizes the boundary of

3






�

, and x

�

is of 
lass C

k�1

. If �(P

0

) denotes the Gaussian 
urvature at P

0

, and �(P

0

) 6= 0 then

the parametrization t 7! x

�

(t) is regular near P

�

0

= x

�

(t

0

) and the 
urvature �

�

(P

�

0

) of �


�

at P

�

0

satis�es

(2.3) j�(P

�

0

)�(P

0

)j = (jP

0

j � jP

�

0

j)

�d�1

:

For these fa
ts see e.g. Lemma 1 in [21℄.

We shall also need asymptoti
s for the indi
ator fun
tion of a 
onvex domains. Suppose that


 is of �nite line type (in the sense that every tangent line has �nite order of 
onta
t with �
).

Let d� be a smooth density on the boundary of 
. We de�ne the Fourier transform by

b

f(�) =

R

f(y)exp({h�y; �i)dy, and then a result by Bruna, Nagel and Wainger [4℄ says that

(2.4.1)




d�(�) = e

�{hP

+

(�);�i

a

+

(�) + e

�{hP

�

(�);�i

a

�

(�);

where a

�

is smooth and satis�es the symbol estimates

(2.4.2) j�

�

�

a

�

(�)j � C

�




�

(�)j�j

�j�j

; j�j � 1

for all multiindi
es �, and 


�

is de�ned as follows. Let H

P

be the (aÆne) tangent plane to 
 at P .

Then 


�

(�) is the surfa
e measure of the 
ap

(2.5) 


�

(�) = �

�

fy 2 �
 : dist(y;H

P

�

(�)

) � j�j

�1

g

�

;

where � denotes surfa
e measure on �
. By the divergen
e theorem, �

x

i

�




= �n

i

d�, in the

sense of distributions, where n = (n

1

; : : : ; n

d

) is the outward unit normal. Thus we get 
�




(�) =

�{

P

d

i=1

(�

i

=j�j

2

)

[

n

i

d�(�). If one 
ombines this with (2.2.1/2) and (2.4.1/2), one obtains

(2.7) 
�




(�) = e

�{�

�

(�)

b

+

(�) + e

{�

�

(��)

b

�

(�);

where

(2.8) j�

�

�

b

�

(�)j � C

�




�

(�)j�j

�1�j�j

; j�j � 1:

In the 
ase of non-vanishing 
urvature one has 


�

(�) . j�j

�(d�1)=2

but of 
ourse the above

statement, and more pre
ise asymptoti
s, follow from the method of stationary phase as in papers

by Hlawka [8℄ (see also x7 in [9℄). More generally, for �nite type domains one has

(2.9) 


�

(�) . j�(x

�

(�))j

�1=2

j�j

�(d�1)=2

:

This is proved in [29℄, and 
an also be dedu
ed from the 
ap estimates (2.5) using an argument

in [6℄. However, it should be noted that these results are mu
h easier in the two-dimensional 
ase

needed here. See [27℄ and also [1℄.

De�nitions. Let Æ

0

> 0 be �xed so that the ball B

2Æ

0

(0) with 
enter 0 and radius 2Æ

0

is 
ontained

in 
. Let � be a smooth nonnegative radial 
uto� fun
tion supported in the ball B

Æ

(0) so that

R

�(x)dx = 1. Let �

"

(x) = "

�d

�(x=").

We set N(t) = N




(t),

E(t) = N(t)� t

d

vol(
);

and

(2.10)

N

"

(t) =

X

k2Z

d

�

t


� �

"

(k)

E

"

(t) = N

"

(t)� t

d

vol(
):

We also denote by N

�

"

(t) and E

�

"

(t) the 
orresponding expressions for the polar domain 


�

.

4



Three elementary Lemmas.

Lemma 2.1. Suppose that 
 has C

1

boundary. Then there is a 
onstant C = C(
) su
h that for

1 � R � t � 2R, 0 < " � 1,

jE

"

(t� ")j � Ct

d�1

" � jE(t)j � jE

"

(t+ ")j+ Ct

d�1

"(2.11.1)

jE(t� ")j � Ct

d�1

" �jE

"

(t)j � jE(t+ ")j+ Ct

d�1

"(2.11.2)

Proof. By the properties of the the 
uto� �

"

we have

N

"

(t� ") � N(t) � N

"

(t+ ");

and if we subtra
t V (t) = t

d

vol(
) throughout, we get

E

"

(t� ") + [V (t� ")� V (t)℄ � E(t) � E

"

(t+ ") + [V (t+ ")� V (t)℄:

Clearly jV (t � ") � V (t)j . t

d�1

" and (2.11.1) follows. (2.11.2) follows as well if we apply (2.11.1)

with t� " in pla
e of t. �

Lemma 2.2. Suppose that � 2 [0; 1℄ and that the estimate

(2.12) sup

t>0

t

�(d�1��)

jE(t)j � C

1

holds. Then for t � 1

(2.13) E

"

(t) . maxft

d�1��

; t

d�1

"g:

Moreover there a 
onstant C so that for 0 < " � h � r

�

�

�

�

1

h

Z

r+h

r

jE(t)j

2

dt

�

1=2

�

�

1

h

Z

r+h

r

jE

"

(t)j

2

dt

�

1=2

�

�

�

� Cr

d�1

[h

�1=2

"

1=2

r

��

+ "℄:

Proof. We �rst observe that (2.13) is immediate by Lemma 2.1. We integrate and obtain

Z

r+h

r

jE(t)j

2

dt �

Z

r+h+"

r

jE

"

(t)j

2

dt+ Chr

2d�2

"

2

�

Z

r+h

r

jE

"

(t)j

2

dt+ Chr

2d�2

"

2

+ C

0

"r

2(d�1��)

;

whi
h implies one of the desired inequalities, the other is obtained in the same way. �

Lemma 2.3. Let 0 < " < 1 and let for � � 1

(2.15) S(�; ") = 
ardf` 2 Z

d

: � � " � �(`) � � + "g:

Then

(2.16) S(�; ") � C

1

�

d�1

"+ C

2

�

Z

�+"=2

��"=2

E

�

(t)

2

N

0

�

(t)dt

�

1=3

; � =

4"

Æ

0

:

5



Proof. Let t 2 (� � "; � + "). We use the elementary inequality

Z

�

(t+h)
nt


(x� y)�

�d

�(�

�1

y)dy � 


0

h=� if h� ", x 2 (� + ")
 n (� � ")
.

This implies

N

�

(t+ h)�N

�

(t) =

X

k

Z

�

(t+h)
nt


(k � y)�

�d

�(�

�1

y)dy

� 


0

h

�

S(�; ")

and thus

(2.17) N

0

�

(t) � 


0

S(�; ")"

�1

; jt� � j � "; � =

4"

Æ

0

:

We now turn to the proof of (2.16). We may assume that S(�; ") � C

1

"�

d�1

with C

1

=

d2

d+1




�1

0

vol(
). Then by (2.17),

E

0

�

(t) = N

0

�

(t)� d t

d�1

vol(
)

� N

0

�

(t)� d (2�)

d�1

vol(
)

� 


0

S(�; ")"

�1

� 2

d

C

�1

1

d "

�1

vol(
)S(�; ")

� 


0

(2")

�1

S(�; "):(2.18)

Let I

�;"

= [� � "=2; � + "=2℄ and pi
k t

0

2 I

�;"

so that min

t2I

�;"

jE

�

(t)j = jE

�

(t

0

)j; thus jE

�

(t)j �

jE

�

(t) � E

�

(t

0

)j=2 and jE

�

(t)j � j

R

t

t

0

E

0

�

(s)dsj=2 � 


0

(4�)

�1

jt � t

0

jS(�; "). We use also (2.17) and

obtain that

Z

�+"=2

��"=2

E

�

(t)

2

N

0

�

(t)dt �

Z

�+"=2

��"=2

(




0

4"

S(�; "))

2

jt� t

0

j

2



0

"

S(�; ") dt � 
[S(�; ")℄

3

as asserted. �

3. Proof of Theorem 1.1

In this se
tion we assume that 
 has a smooth boundary with everywhere non-vanishing 
ur-

vature. This implies that 


�

is also smooth and has everywhere non-vanishing Gaussian 
urvature.

See (2.3) above. We estimate the square-fun
tion

G

"

(R) =

�

1

R

Z

2R

R

jE

"

(t)j

2

dt

�

1=2

for 0 < " � 1=2 and R � 2, and set

(3.1) w

d

(R) =

8

>

<

>

:

R

2�d

if d � 4

(R logR)

�1

if d = 3

R

�1=2

if d = 2

6



and for 0 < s � 1=2 let

(3.2) A

d

(s) = sup

s<"�1=2

sup

R�2

(1 + "R)

�d�1

w

d

(R)G

"

(R):

Analogously, we denote by A

�

d

(s) the 
orresponding quantity asso
iated to 


�

. It is not hard to see

that A

d

(s) is �nite for every s sin
e we have a trivial estimate A

d

(s) . sup

R�2

(1+sR)

�d�1

R . s

�1

;

and, similarly, A

�

d

(s) . s

�1

for every s � 1=2. We shall see that A

d

(s) is bounded as s ! 0. On
e

this is established, the required bound for G




follows from

(3.3) G




(R) . R

�d

�

G

1=R

(R) +R

d�2

�

;

whi
h is a 
onsequen
e of Lemma 2.2.

The boundedness of A

d

(s) 
an be dedu
ed from the following iterative pro
edure.

Proposition 3.1. There is a 
onstant C




so that for s � 1=2

(3.4) A

d

(s)

2

� C




�

1 +A

�

d

(s)

�

:

Indeed, sin
e 


��

= 
, (3.4) implies that A

�

d

(s)

2

� C




�

�

1 +A

d

(s)

�

, so

A

d

(s)

2

� C




(1 +

p

C




�

(1 +A

d

(s)))

from whi
h the boundedness of A

d

is immediate.

Proof of Proposition 3.1. We estimate G

"

(R) assuming �rst that

R

�1

� " � 1=2:

We apply the Poisson summation formula

P

k2Z

d

f(k) = (2�)

d

P

k2Z

d

b

f(2�k) to f = �




(t�) � �

"

.

This yields

(3.5.1) E

"

(t) =

X

k 6=0

(2�t)

d


�




(2�tk)

b

�(2�"k):

We split E

"

(t) =

P

�

E

�

"

(t) by using (2.7/8); here

(3.5.2)

E

+

"

(t) =

X

k 6=0

(2�t)

d

b

+

(2�tk)exp(�2�{�

�

(k))

E

�

"

(t) =

X

k 6=0

(2�t)

d

b

�

(2�tk)exp(2�{�

�

(�k)):

Now �x a nonnegative � 2 C

1

(R) so that �(t) = 1 for t 2 [1; 2℄ and � is supported in (1=2; 3).

Then

G

"

(R) � G

+

"

(R) +G

�

"

(R)

:=

X

�

�

R

�1

Z

jE

�

"

(t)j

2

�(R

�1

t)dt

�

1=2

:

7



We shall only 
onsider estimates for G

+

"

(R) be
ause the estimates for G

�

"

(R) are exa
tly analogous.

Multiplying out the squared expression we get

(3.6) G

+

"

(R)

2

=

X

k 6=0

k

0

6=0

b

�(2�"k)

b

�(2�"k

0

)R

�1

Z

e

2�{t(�

�

(k)��

�

(k

0

))

q

k;k

0

(t)dt

where

(3.7) q

k;k

0

(t) = b

+

(2�tk)b

+

(2�tk

0

)t

2d

�(t=R):

Thus q

k;k

0

is supported in [R=2; 3R℄ and by (2.8) and 


�

(�) = O(j�j

�(d�1)=2

) we have the symbol

estimates

(3.8)

�

�

�

�

d

dt

�

m

q

k;k

0

(t)

�

�

�

� C

m

R

d�1�m

jkj

�(d+1)=2

jk

0

j

�(d+1)=2

:

We now integrate by parts in t. We note that jkj � �

�

(k) and j

b

�(2�k=R)j � C

N

(1 + jk=Rj)

�N

and

obtain the estimate

G

+

"

(R)

2

� C

M;N

X

k 6=0

X

k

0

6=0

R

d�1

(1 +Rj�

�

(k)� �

�

(k

0

)j)

�M

(1 + "jkj+ "jk

0

j)

�N

[�

�

(k)�

�

(k

0

)℄

�

d+1

2

:

The terms with j�

�

(k) � �

�

(k

0

)j � R

�1=2

give a 
ontribution of O(R

d�1�M=2

"

�2d

) =

O(R

3d�1�M=2

) and we may 
hoose M = 6d.

Thus

G

+

"

(R)

2

� C

1

X

�R

1=2

�n�R

1=2

X

k 6=0

(1 + "�

�

(k))

�N

X

j�

�

(`)��

�

(k)j

2[

n�1

R

;

n

R

℄

R

d�1

(1 + n)

M

[�

�

(k)℄

�d�1

+ C

2

R

3d�1�M=2

� C

0

1

R

d�1

X

�R

1=2

�n�R

1=2

(1 + n)

�M

X

k 6=0

(1 + "�

�

(k))

�N

S

�

(�

�

(k);

n+1

R

)

�

�

(k)

d+1

+ C

0

2

R

3d�1�M=2

;(3.9)

here re
all that S

�

(�; ") = 
ardf` 2 Z

d

: � � " � �

�

(`) � � + "g. Now

X

k 6=0

(1 + "�

�

(k))

�N

S

�

(�

�

(k);

n+1

R

)

�

�

(k)

d+1

.

1

X

l=0

2

�l

(1 + "2

l

)

�N

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

[S

�

(�

�

(k);

n+1

R

)℄

2

�

1=2

.

1

X

l=0

2

�l

(1 + "2

l

)

�N

[(n+ 1)I

l

+ II

n;l

℄

where

I

l

=

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

�

�

(k)

2d�2

R

�2

�

1=2

;

II

n;l

=

�

1

2

ld

X

2

l

��

�

(k)<2

l+1

Z

�

�

(k)+(n+1)=2R

�

�

(k)�(n+1)=2R

E

�

�

(t)

2

N

�

�

0

(t)

S

�

(�

�

(k);

n+1

R

)

dt

�

1=2

;

8



with � = 4"=Æ

0

; here we used Lemma 2.3. Observe that for N large,

1

X

l=0

2

�l

(1 + "2

l

)

�N

I

l

. R

�1

1

X

l=0

2

l(d�2)

(1 + "2

l

)

�N

.

�

R

�1

"

2�d

if d � 3

R

�1

log(2 + "

�1

) if d = 2

(3.10)

and thus, sin
e we are assuming " � 1=R,

R

d�1

1

X

l=0

2

�l

(1 + "2

l

)

�N

I

l

. R

d�2

maxf"

2�d

; log(2 + "

�1

)g . w

d

(R)

�2

:

We now estimate II

n;l

and set J

k;n

:= [�

�

(k)� (n+ 1)=2R; �

�

(k) + (n+ 1)=2R℄. Observe that

S(�

�

(k);

n+1

R

) = 
ardf` : �

�

(k)�

n+1

R

� �

�

(`) � �

�

(k) +

n+1

R

g

� 
ardf` : t�

n+1

2R

� �

�

(`) � t+

n+1

2R

g if jt� �

�

(k)j �

n+1

2R

;

whi
h is saying that S(�

�

(k);

n+1

R

) � S(t;

n+1

2R

) if t 2 J

k;n

. Thus

X

2

l

<�

�

(k)�2

l+1

�

J

k;n

(t)

S(�

�

(k);

n+1

R

)

�

1

S(t;

n+1

2R

)

X

k

�

J

k;n

(t) = 1:

Therefore

II

2

n;l

= 2

�ld

Z

h

X

2

l

��

�

(k)<2

l+1

�

J

k;n

(t)

i

E

�

�

(t)

2

N

�

�

0

(t)

S

�

(�

�

(k);

n+1

R

)

dt

�

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

N

�

�

0

(t)dt

=

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

E

�

�

0

(t)dt +

1

2

ld

Z

2

l+2

2

l�1

E

�

�

(t)

2

d

dt

(vol(t
))dt

�

1

2

ld

�

[E

�

�

(2

l+2

)℄

3

3

�

[E

�

�

(2

l�1

)℄

3

3

�

+

C

2

l

Z

2

l+2

2

l�1

E

�

�

(t)

2

dt

.

�

2

l(2d�6+

6

d+1

)

+ 2

l(2d�3)

�

3

+

1

2

l

Z

2

l+2

2

l�1

E

�

�

(t)

2

dt

�

;

here we have used the estimate jE

�

�

(t)j . 2

l(d�2+

2

d+1

)

+ 2

l(d�1)

�, t � 2

l

, whi
h by Lemma 2.1 is a


onsequen
e of the 
lassi
al estimate jE

�

(t)j = O(t

d�2+

2

d+1

), d � 2. Thus

R

d�1

1

X

l=0

2

�l

(1 + "2

l

)

�N

II

n;l

. R

d�1

�

1

X

l=0

(1 + "2

l

)

�N

h

2

l(d�4+

3

d+1

)

+ 2

l(d�5=2)

�

3=2

+ 2

�l

�

1

2

l

Z

2

l+2

2

l�1

jE

�

�

(t)j

2

dt

�

1=2

i�

. R

d�1

"

3�d

+R

d�1

1

X

l=0

2

�l

(1 + "2

�l

)

�N

1

X

i=�1

G

�

(2

l�i

)

. R

d�1

"

3�d

+R

d�1

1

X

l=0

2

�l

(1 + "2

�l

)

�N

(1 + �2

l

)

d+1

w

d

(2

l

)

sup

r�0

�

(1 + �2

r

)

�d�1

G

�

�

(2

r

)w

d

(2

r

)

	

:

(3.11)
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Now sin
e R

d�1

"

3�d

. w

d

(R)

�2

for " � R

�1

we have

R

d�1

1

X

l=0

2

�l

�

w

d

(2

l

)

�

�1

(1 + "2

�l

)

�N

(1 + �2

�l

)

d+1

. R

d�1

1

X

l=0

2

�l

�

w

d

(2

l

)

�

�1

(1 + �2

�l

)

�N+d+1

. w

d

(R)

�2

(1 + �R)

d�2

;(3.12)

where the third inequality follows in a straightforward manner from the de�nition of w

d

. It is

pre
isely at this point where one needs to distinguish the 
ases d = 2, d = 3 and d � 4. Combining

the previous estimates (3.10), (3.11) with (3.12) we obtain for s � 1 and maxfs;R

�1

g � " � 1=2

�

(1 + "R)

�d�1

w

d

(R)G

+

"

(R)

�

2

. 1 + (1 + �R)

�2d�2

w

d

(R)

2

R

d�1

X

l�0

(1 + "2

l

)

�N

X

jnj�R

1=2

(1 + n)

�3

�

(n+ 1)I

l

+ II

n;l

�

. 1 + sup

r�0

�

(1 + �2

r

)

�d�1

G

�

�

(2

r

)w

d

(2

r

)

	

(3.13)

for � = 4"=Æ

0

The same estimate holds for G

�

"

(R) and thus for G

"

(R). Consequently, sin
e " � �,

we have

(3.14)

�

(1 + "R)

�d�1

w

d

(R)G

"

(R)

�

2

� C(1 +A

�

d

(s)) if R

�1

� " � 1=2

The required estimate for " � 1=R follows from a small modi�
ation. Namely we 
an use Lemma

2.2 to see that

G

"

(R) � C

1

h�

1

R

Z

2R

R

jE(t)j

2

dt

�

1=2

+R

d�2

i

. C

2

h�

1

R

Z

2R

R

jE

1=R

(t)j

2

dt

�

1=2

+R

d�2

i

:

Thus

(1 + "R)

�2(d+1)

w

d

(R)

2

G

"

(R)

2

. w

d

(R)

2

�

R

2d�4

+G

1=R

(R)

2

�

� C(1 +A

�

d

(s)) if s � " � R

�1

:(3.15)

The desired estimate (3.4) follows from (3.14), (3.15). �

4. Lo
alized square fun
tions in the plane

In this se
tion we give the simple proof of Theorem 1.2.1. We assume that 
 is a 
onvex domain

in the plane, with smooth boundary, and that the 
urvature does not vanish at the boundary.

10



We may apply Lemma 2.2 with � = 0, say, and we let 1 � h � R and " = R

�1

. Then

(4.1)

�

1

h

Z

R+h

R

jE(t)j

2

dt

�

1=2

.

h�

1

h

Z

R+h

R

jE

1=R

(t)j

2

dt

�

1=2

+ (R=h)

1=2

i

:

Let �

0

be a nonnegative C

1

fun
tion supported in (�1=2; 3=2) and whi
h equals 1 on [0; 1℄. Then

(4.2)

1

h

Z

R+h

R

jE

1=R

(t)j

2

dt .

X

�

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt

with E

�

as in (3.5.2). The expressions on the right hand side are estimated by integration by parts,

as in the previous se
tion. We square the series. The 
uto� �(t=R) is now repla
ed by �

0

(

t�R

h

) and

this a�e
ts the argument sin
e in the symbol estimates for the modi�
ation of q

k;k

0

the estimate

R

d�1�m

in (3.8) is now repla
ed by R

d�1

h

�m

.

As a result we obtain the estimate

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt

. R

X

k 6=0

X

k

0

6=0

(1 + hj�

�

(k)� �

�

(k

0

)j)

�M

(1 + jkj=R+ jk

0

j=R)

�N

j�

�

(k)�

�

(k

0

)j

�3=2

and this term is estimated by a 
onstant times

(4.3)

X

jnj�R

1=2

X

k 6=0

(1 + jnj)

�M

�

�

(k)

�3

(1 + �

�

(k)=R)

�N

S

�

(�

�

(k) +

n

h

;

1

h

) +R

1�M=2

;

where, as before, S

�

(�; ") = 
ard

�

f` 2 Z

2

: � � " � �

�

(`) � � + "g

�

:

Now by the 
lassi
al estimate for the remainder term E(t) with t = �

�

(k) + (n � 1)=h � �

�

(k)

we have

(4.4) S

�

(�

�

(k) +

n

h

;

1

h

) . h

�1

�

�

(k) + �

�

(k)

2=3

:

Putting the previous estimates together, we have

1

h

Z

jE

�

1=R

(t)j

2

�

0

(

t�R

h

)dt . R

X

k 6=0

(1 +R

�1

�

�

(k))

�N

minfh

�1

�

�

(k)

�2

; �

�

(k)

�7=3

g+R

1�M=2

. R

�

1 + h

�1

logR

�

whi
h is O(R) if h & logR. This �nishes the proof of Theorem 1.2.1. �

5. Estimates for �nite type domains in the plane

We shall give a proof of Theorem 1.2.2. Let 
 be a 
onvex �nite type domain in R

2

whi
h


ontains the origin in its interior. We �rst give a version of the standard latti
e rest estimate for the

polar set 


�

whi
h has a C

1

boundary.

Lemma 5.1. We have the following estimate for the Fourier transform of the 
hara
teristi
 fun
tion

of 


�

,

(5.1)

�

�

d�




�

(�)

�

�

� C(1 + j�j)

�3=2

:

Taken Lemma 5.1 for granted we obtain as a 
onsequen
e

11



Corollary 5.2. Let 
 be a 
onvex set in R

2

, 
ontaining the origin in its interior and suppose that


 has smooth �nite type boundary. Let 


�

be the polar set. Then

(5.2) N




�

(t) = t

2

area(


�

) +O(t

2=3

)

as t!1.

Proof. This follows from Lemma 5.1 using the standard argument (see e.g. [8℄, or x7 of [9℄).

The Corollary 
an be improved by using more sophisti
ated te
hniques whi
h however are not

needed here.

Before proving Lemma 5.1 we re
all some terminology: We denote by � the set of all points in

�
 at whi
h the 
urvature vanishes; these points are separated and thus � is �nite. For every P 2 �

let m

P

be the type at P (i.e. the 
urvature vanishes of order m

P

� 2 at P ). For every P 2 �
 there

is a unique P

�

2 �


�

so that hP; P

�

i = 1 and we de�ne �

�

= fP

�

: P 2 �g.

Proof of Lemma 5.1.

The boundary �


�

is smooth away from �

�

and it is C

1

everywhere. Thus surfa
e measure d� is

well de�ned and by an appli
ation of the divergen
e theorem as in x2 estimate (5.1) follows provided

we 
an show that

(5.3) j

d

�d�(�)j . (1 + j�j)

�1=2

for � 2 C

1

0

.

To see this we introdu
e a partition of unity �d� =

P

�

�

�

d� where ea
h P

�

2 �

�

lies in exa
tly

one of the supports of the fun
tions �

�

. Clearly it suÆ
es to prove the estimate

d

d�

�

(�) = O(j�j

�1=2

)

for ea
h �

�

:= �

�

d�.

Fix � and P 2 �. If P

�

=2 supp d�

�

then

d

d�

�

(�) = O(j�j

�1=2

) by the standard stationary phase

argument. Thus suppose P 2 � \ supp d�

�

. By a rotation we may assume that n

P

= (0; 1) and by

an additional translation we may also assume that P lies on the x

2

-axis. Let m = m

P

be the type

at P . Near P the boundary of 
 is parametrized by (t; f(t)) where

f(t) = a

0

� a

m

t

m

m

+ t

m+1

g

1

(t)

with a

0

> 0, a

m

> 0. Thus a parametrization of �


�

near P

�

= (a

�1

0

; 1) is given by

t 7!

n(t)

hx(t); n(t)i

=

1

f(t)� tf

0

(t)

(�f

0

(t); 1)

p

1 + f

0

(t)

2

;

however this parametrization is not regular. Denote by !(t) the �rst 
oordinate of hx(t); n(t)i

�1

n(t).

Then it is easy to see that

!(t) = (a

m

=a

0

)t

m�1

(1 + tg

2

(t)) = (


0

s(t))

m�1

where 


0

= (a

m

=a

0

)

1=(m�1)

and s(t) = t+O(t

2

). Moreover

(f(t)� tf

0

(t))

�1

(

p

1 + f

0

(t)

2

)

�1

= a

�1

0

�

1�

m�1

m

a

m

a

0

t

m

+ t

m+1

g

2

(t)

�

:
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Thus setting � = (


0

s(t))

m�1

we see after a short 
omputation that near P

�

the boundary is

parametrized by � 7! (�; h(�)) with

h(�) = a

�1

0

�

1� 


1

�

m=(m�1)

+ �

m+1

m�1

g

3

(�

1

m�1

)

�

where 


1

= (m � 1)m

�1

(a

m

=a

0

)


�m

0

= (m � 1)m

�1

(a

m

=a

0

)

�1=(m�1)

and g

3

is smooth. Thus we

have to show that

(5.4) J(�) =

Z

e

�i(�

1

�+�

2

h(�))

�(�)d� = O(j�j

�1=2

)

as j�j ! 1; here we may assume that the support of �

�

is 
ontained in a small interval (�Æ; Æ).

It suÆ
es to estimate the analogous integral extended over the set f� : j� j � j�j

�1=2

sin
e the

error is O(j�j

�1=2

). Observe that for small � we have jh

0

(�)j � 1 and jh

00

(�)j � 
�

�(m�2)=(m�1)

& 1.

Thus by van der Corput's lemma ([28℄, 
h. VIII.1) we obtain for large j�j the estimate jJ(�)j . j�

1

j

�1

if j�

1

j � j�

2

j (using �rst derivatives of the phase fun
tion) and the estimate jJ(�)j . j�

2

j

�1=2

if

j�

2

j � j�

1

j (using se
ond derivatives). This implies (5.4) and thus (5.3). �

Proof of Theorem 1.2.2. We shall de
ompose the Fourier transform of �




as in [27℄, following

rather 
losely [13℄. Using the divergen
e theorem as above, we see that

(5.5) 
�




(�) = {

d

X

i=1

�

i

j�j

2

Z

�

n

i

(y)e

�{hy;�i

d�(y)

where n

i

denotes the i

th


omponent of n

P

.

For every P 2 � we 
hoose a narrow 
oni
 symmetri
 neighborhood V

P

of the normals f�n

P

g,

a small neighborhood U

P

of P in � and a C

1

0

fun
tion �

P

whose restri
tion to � vanishes o� U and

so that �

P

equals one in a neighborhood of P . We may arrange these neighborhoods so that the sets

V

P

\ f� : j�j � 1g, P 2 � are pairwise disjoint and that the normals to all points in a neighborhood

of U

P

are 
ontained in V

P

, so that the U

P

's are disjoint too.

De�ne

F

i;P

(�) =

Z

�

�

P

(y)n

i

(y)e

�{hy;�i

d�(y)

Let v

P

a unit tangent ve
tor to �
 at P . Then if the 
ones V

P

are 
hosen suÆ
iently narrow, we

have

(5.5)

d

X

i=1

�

i

j�j

2

F

i;P

(�) = e

�{�

�

(�)

b

+

(�) + e

{�

�

(��)

b

�

(�)

where

(5.6) j�

�

�

b

�

(�)j � C

�

(

j�j

�1�j�j

minfj�j

�

1

m

P

; �

�

1

2

�

P

(�)g if � 2 V

P

C

N

j�j

�N

if � =2 V

P

;

with

(5.7) �

P

(�) =

�

�

�

hv

P

; �i

hn

P

; �i

�

�

�

�

m

P

�2

2(m

P

�1)

:

13



This follows from (2.8) (with � = 0) and (2.9) by a straightforward 
omputation. Moreover

(5.8)

d

X

i=1

�

i

j�j

2

�

F

i

(�)�

X

P2�

F

i;P

(�)

�

= e

�{�

�

(�)




+

(�) + e

{�

�

(��)




�

(�)

where

(5.9) j�

�

�




�

(�)j � C

�

j�j

�3=2�j�j

:

The estimate for � 2 V

P

follows from Proposition 1.2, and the estimate for � =2 V

P

follows by

a simple integration by parts; namely if t 7! 
(t) parametrizes � near P then jh


0

(t); �ij � j�j for


(t) 2 U

P

and � =2 V

P

.

Moreover by the usual stationary phase or van der Corput estimate we have

(5.10) jF

i

(�)�

X

P2�

F

i;P

(�)j . (1 + j�j)

�1=2

here we used the de�nition of � and the fa
t that �

P

is equal to 1 near P .

Let E

1=R;A

(t) be the remainder term (2.10) with " = 1=R, with 
 repla
ed by the rotated

domain A
; that is

E

1=R;A

(t) =

X

k2Z

2

�

t


� �

1=R

(A

�1

k)� t

2

area(
)

=

X

k 6=0

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i

(2�tAk)(5.11)

For P 2 �, A 2 SO(2) let

Z

P

I

(A) = fk 2 Z

d

: Ak 2 V

P

; k 6= 0; dist(Ak;Rn

P

) < 1g

Z

P

II

(A) = fk 2 Z

d

: Ak 2 V

P

; k 6= 0; dist(Ak;Rn

P

) � 1g

and let

Z

III

(A) = fk 2 Z

d

: k 6= 0; k =2 [

P2�

V

P

g:

We may use estimate (4.1) whi
h does not depend on any 
urvature assumptions and see that it

suÆ
es to estimate the square fun
tion (h

�1

R

jE

1=R;A

(t)j

2

�

0

(

t�R

h

)dt)

1=2

(
f. (4.2)). We de
ompose

for R � t � 2R

E

1=R;A

(t) =

�

X

P2�

X

k2Z

P

I

(A)

+

X

P2�

X

k2Z

P

II

(A)

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i;P

(2�tAk)

+

X

k2Z

III

(A)

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

�

F

i

(2�tAk)�

X

P2�

F

i;P

(2�tAk)

�

+

X

P

X

k=2V

P

t

2

b

�(2�R

�1

Ak)

d

X

i=1

2�thAk; e

i

i

j2�tAkj

2

F

i;P

(2�tAk)

=

X

�

�

X

P2�

I

�

P

(t) +

X

P2�

II

�

P

(t) + III

�

(t)

�

+ IV (t)

14



where

(5.12) jIV (t)j = O(t

�N

)

and

I

+

P

(t; A) =

X

k2Z

P

I

(A)

b

�(2�R

�1

Ak)b

+

(2�tAk)e

�2�it�

�

(Ak)

II

+

P

(t; A) =

X

k2Z

P

II

(A)

b

�(2�R

�1

Ak)b

+

(2�tAk)e

�2�it�

�

(Ak)

III

+

(t; A) =

X

k2Z

P

III

(A)

b

�(2�R

�1

Ak)


+

(2�tAk)e

�2�it�

�

(Ak)

;

and the expressions I

�

P

, II

�

P

and III

�

P

are de�ned by repla
ing b

+

by b

�

, 


+

by 


�

, and e

�2�it�

�

(Ak)

by e

2�it�

�

(�Ak)

.

The argument in the previous se
tion applies to the square fun
tions asso
iated to III

�

(t; A)

and we obtain the bound

(5.13)

1

h

Z

jIII

�

(t; A)j

2

�

0

(

t�R

h

)dt . R(1 + h

�1

logR);

uniformly in A.

A small variation of this argument also applies to the square fun
tion asso
iated to II

�

P

(t; A).

Namely, arguing as in x3 and using (5.6/7) we see that

1

h

Z

jII

+

P

(t; A)j

2

�

0

(

t�R

h

)dt

. 2

X

k2Z

P

II

(A)

k

0

2Z

P

II

(A)

�

P

(Ak)��

P

(Ak

0

)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

�

1 +

jkj+ jk

0

j

R

�

�N

�

P

(Ak)�

P

(Ak

0

)

�

�

(Ak)

3=2

�

�

(Ak

0

)

3=2

. R

X

k2Z

P

II

(A)

�

P

(Ak)

2

�

�

(Ak)

3

X

n2Z

jnj�2

k�5

(1 + n)

�N

(1 + jkj=R)

�N

S

�

A

(�

�

(Ak) +

n

h

;

1

h

) +R

4�N

where now S

�

A

(�; ") = 
ard

�

f` 2 Z

2

: � � " � �

�

(A`) � � + "g

�

:

Observe that dist(Ak;Rn

P

) � 1 and dist(A�;Ak) � 1=2 implies that �

P

(Ak) � �

P

(A�). Thus

we 
an use the argument in x3 and Lemma 5.1 and estimate

1

h

Z

R+h

R

jII

�

P

(t; A)j

2

�

0

(

t�R

h

)dt

. R

Z

V

P

(1 + j�

�

(�)j)

�3

�

2

P

(�)(1 +R

�1

�

�

(�))

�N

minfh

�1

�

�

(�)

�2

; �

�

(k)

�7=3

gd� +R

1�M=2

:
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Sin
e �

2

P

is homogeneous of degree 0 and integrable over the sphere f�

�

(�) = 1g it is easy to see

that the former expression is bounded by R(1 + h

�1

logR); thus

(5.14)

1

h

Z

R+h

R

jII

+

P

(t; A)j

2

dt . R(1 + h

�1

logR);

for jhj � R, uniformly in A. The same estimate holds true with II

+

P

repla
ed by II

�

P

- the proof only

requires 
hanges in the notation.

In order to estimate the square fun
tion involving I

+

P

, we let S

P

(A) be the set of all k 2 Z

2

nf0g

with dist(k;RA

�

n

P

) < 1, and de�ne

M

P;"

(A) = sup

�

jkj

�1+"

�

P

(k) : k 2 S

P

(A)

	

:

Then

1

h

Z

jI

+

P

(t)j

2

�

0

(

t�R

h

)dt

.

X

k2S

P

(A)

X

k

0

2S

P

(A)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

(1 +

jkj+jk

0

j

R

)

�N

�

P

(Ak)�

P

(Ak

0

)

jkj

3=2

jk

0

j

3=2

.M

P;"

(A)

2

X

k2S

P

(A)

R(1 + hj�

�

(Ak)� �

�

(Ak

0

)j)

�N

(1 +

jkj+jk

0

j

R

)

�N

jkj

�"�1=2

jk

0

j

�"�1=2

.M

P;"

(A)

2

X

k2S

P

(A)

R(1 + jkj=R)

�N

jkj

�1�2"

;

and thus

(5.15)

1

h

Z

jI

+

P

(t)j

2

�

0

(

t�R

h

)dt � C

"

M

P;"

(A)

2

R:

Again the same estimate remains true for I

�

P

(t).

For ea
h k 6= 0 the fun
tion A 7! �

P

(Ak) belongs to the spa
e L

(2m

P

�2)=(m

P

�2);1

. For � > 0

the set fA 2 SO(2) : M

P;"

(A) > �g is the union of the sets E

k

(�) = fA : �

P

(Ak) > jkj

1�"

�g,

k 2 Z

2

n f0g and the measure of E

k

(�) is . (k

1�"

�)

�(2m

P

�2)=(m

p

�2)

. Sin
e (2m

P

� 2)=(m

p

� 2) > 2

we may sum over all k 2 Z

2

n f0g and we see that M

P;"

2 L

(2m

P

�2)=(m

P

�2);1

(SO(2)) provided that

" � 1=2. Combining the estimates (5.12-5.15) this proves that C




2 L

(2m

P

�2)=(m

P

�2);1

(SO(2)).

The Diophantine 
ondition (1.6) for some � > 0 is equivalent with the 
ondition M

P;"

(A) <1,

for some " > 0. Fix P . The estimates (5.12-15) show that C




(A) =1 also implies M

P;"

(A) =1 for

at least one P 2 �. Thus we 
an 
omplete the proof if for any suÆ
iently small " > 0 we demonstrate

that the set fA 2 SO(2) :M

P;"

(A) =1g has Hausdor� dimension � (m

P

� 2)(m

P

� 1)

�1

(1� ")

�1

.

Set � = (m

P

� 2)=(2m

P

� 2), thus � < 1=2. Now M

P;"

(A) =1 implies that there are in�nitely

many k 2 S

P

(A) so that jkj

"�1

jhk=jkj; v

P

ij

��

� 1. If A

�

v

P

= (�

1

; �

2

) this means jk

1

�

1

+ k

2

�

2

j �

jkj

(��1+")=�

. Now j�

1

j � j�

2

j implies jk

1

j . jk

2

j and j�

2

j � j�

1

j implies jk

2

j . jk

1

j (as k 2 S

P

(A)).

Thus if j�

1

j � j�

2

j the 
ondition M

P;"

(A) =1 implies that for in�nitely many k with jk

2

j � jkj we

have that

(5.16.1) jk

1

=k

2

� �

2

=�

1

j � Cjk

2

j

("�1)=�

or jk

1

=k

2

+ �

2

=�

1

j � Cjk

2

j

("�1)=�

:
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Likewise, if j�

2

j � j�

1

j and M

P;"

(A) =1 then

(5.16.2) jk

2

=k

1

� �

1

=�

2

j � Cjk

1

j

("�1)=�

or jk

2

=k

1

+ �

1

=�

2

j � Cjk

1

j

("�1)=�

for in�nitely many k with jk

1

j � jkj.

Let P

�

denote the set of all x 2 [�1; 1℄ for whi
h there exists in�nitely many rationals p=q su
h

that jx � p=qj � q

�2��

. By a Theorem of Jarn��k [15℄ (see also [18℄) the Hausdor� dimension of P

�

is equal to 2=(2 + �) (and we need only the easy upper bound). Now 
hoose in (5.16.1/2) a small

" > 0 (in parti
ular so that � < (1� ")=2) and we apply the last statement with � = (1� ")�

�1

� 2

and then 2=(2 + �) = 2�(1� ")

�1

= (m

P

� 2)(m

P

� 1)

�1

(1� ")

�1

.

Consequently, with m being the maximal type, the Hausdor� dimension of the set fA 2 SO(2) :

C




(A) =1g does not ex
eed (m� 2)=(m� 1). �
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