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1. Introduction
Let X and Y be ('* manifolds of dimension d,
C C(T"X\0) x (T*Y'\0)

a homogeneous canonical relation (Lagrangian with respect to the symplectic form wr«x — wr-y)
and let I"(C; X,Y) denote the m®* order Fourier integral operators from £'(Y') to D'(.X ) associated
to C'. A basic problem is to find the mapping properties of A € I"™(C; X,Y) relative to the scale
of Sobolev spaces L.

If the natural projections 77 : ¢ — T*X and 7p : € — T*Y have nonsingular differen-
tials, then €' is a local canonical graph and A maps Lzmomp(Y) boundedly to Li—m,loc(X)7 see
Hoérmander [13]. If one of the projections is singular at a point ¢® € €', the other must be as well
[13], and one has dim(ker(dr(c?))) = dim(ker(drr(c))) := x. Otherwise the nature of the singu-
larities of 77, and 7 can be quite different, and the general result A : L2 (V) — L2_  _ %JOC( )
[13] may be improved upon. In this paper we only consider cases where k = 1.

The simplest singularity that can occur is a Whitney fold (.51 ¢ in the Thom-Boardman descrip-
tion of singularities [1], [6].) Canonical relations C' for which both 77, and 7 are (at most) folds
arise naturally in scattering theory and were shown by Melrose and Taylor [17] to be microlocally
conjugate to a single normal form, from which it follows that there is a loss of 1/6 derivative;

namely operators in [”(C') map Lzmomp(Y) to Li_m_%7loc(X); estimates on L? are treated in
Smith and Sogge [29]. On the other hand, canonical relations for which one projection is a fold,
but with the other possibly being more degenerate, arise naturally in integral geometry [9,10,11,12]
and scattering theory [3]. Under an assumption of maximal degeneracy on the other projection,
it was shown in [10] that there is a loss of 1/4 derivative, and in [7] the authors extended this to
all one-sided folds, with no assumption of the other projection. Estimates for one- and two-sided
folds and higher singularities in a two-dimensional setting are obtained in articles by Phong and

Stein [23, 24, 25, 26] and one of the authors [27, 28].

In the present work we consider Fourier integral operators for which one of the projections 7,
7 has a Whitney cusp. These 51,0 = 51,10 singularities are, after the folds, the simplest stable
singularities of mappings between manifolds of the same dimension. Our main result is

Theorem 1.1. Let C' C (T*X\0) x (I*Y'\0) be a homogeneous canonical relation, so that the
only singularities of the projection 7y : C' — T*X are Whitney folds or Whitney cusps. Let
AeI™C;X,Y). Then A maps L2, .,,,(Y) boundedly to Li_m_l/B loe (X)),

By a duality argument the same conclusion can be obtained if the only singularities of 7p :
C — T*Y are folds or cusps.
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In §5 we shall state and prove more general estimates for oscillatory integrals with not ne-
cessarily homogeneous phases. The statement of Theorem 1.1 is sharp as one makes assumptions
on one of the projections 7y, 7r. The estimates tend to be better if one makes simultaneous
assumptions on both 7 and 7g.

Our main application concerns the X-ray transform in R?, in particular when d = 4. Let M 4
be the (2d — 2)-dimensional manifold of affine lines in R? and Ry 4 : C§°(R?%) — C§°(My 4) be the
X-ray transform,

Raf() = [ SG0)p()

here du(t) denotes arclength measure.

For a line complex € C M 4, t.e. i.e., a smooth d-dimensional submanifold of M; 4, the
restricted X-ray transform is defined by

(1.1) Ref = Riqfle.

We shall assume that f is supported in some open subset @ C R? Associated with € is the
point-line incidence relation,

(1.2) Ze ={(7,y) e CxQ:yey}.

We assume that the projection 7pa : Z¢g — R?is a submersion above 2. Then for each y € Q the
set ﬂﬂgdl(y) =: Zy C Zg is a smooth curve, which can be identified with ¢, = {y € € : y € ~},
which itself can be identified with a smooth curve in the d — 1 dimensional manifold G7 , of all

lines through y (or its double cover S4=1).

Definition 1.2. A line complex € C M 4 is well-curved over Q C R?if mpa @ Z¢ — R%is a
submersion above € and each €,, y € Q is a nondegenerate curve; i.e. if y € €, and s — p(s) € €Y

is any smooth regular parametrization of €Y near v with p(0) = 7, then the vectors p(0), 5(0), ...,
pl=1(0) in T,GY , are linearly independent.

Clearly the definition is independent of the particular parametrization. Similar notions of
well-curvedness are used in [9], [7].

In this paper we are concerned with the restricted X-ray transform in R*. If N*Z¢ C T*ExT*Q
is the conormal bundle to Z¢ then we show in §5 that the projection 7 to T*Q exhibits at most
5110 singularities, if d = 4. Since R¢ is a Fourier integral operator of order —1/2 part (a) of the
following theorem will be an immediate consequence of Theorem 1.1. Similar statements can be
made for microlocalized versions of the restricted X-ray transform in higher dimensions if one stays
away from 57 singularities of 7g with r > 2, but we omit these.

Theorem 1.3. Suppose that the line complex € C My 4 is well curved over @ C R*. Then
a) Re : L2 (Q) — Li—l—%,loc(@)’ for all s € R.

s,comp
b) Re i Loy, (Q) — L, (€) for (1, 1) € hull{(0,0),(1,1),(15, 3)}-

comp

It turns out that the L? — L7 estimates of Theorem 1.3 are sharp for p > 12/7. Consider the
translation invariant complex of lines with parametrizations v(v,t) = (v1 +v4t, vo +v3t, v3 + 031, 1),
t € R. It is not hard to see (¢f. §5) that R¢ cannot be bounded from L? to L7 if (1/p,1/q) belongs



to the complement of the triangle 7 with corners (0,0), (1,1), ({5, 2). Part (b) of the Theorem

establishes the boundedness for a subtriangle with vertex (7/12,1/2) on the lower edge of 7.

The IP — L? estimates of Theorem 1.3 will not hold for general F € I~Y/*(X,Y;C) with
one-sided cusp singularities. It is important that 7p satisfies an additional transversality condition
with respect to the fibration in T*Y, namely mr being a strong cusp as defined in Definition 2.5
below; moreover the projections of the cusp surface to the fibers in T*Y satisfy a suitable curvature
assumption.

In §2, we recall some basic terminology from singularity theory, including the definition of a
cusp, and more generally of 57 o or Morin singularities. We shall also introduce the notion of a
strong cusp, and discuss curvature assumptions for the image of the cusp surface.

In §3, following the outlines of [7], we prove decay estimates in A for oscillatory integral
operators (with not necessarily homogeneous phases) having one-sided strong simple cusps, which
then imply theorems on Radon transforms and Fourier integral operators. In [7], estimates for one-
sided folds followed from those for (two-sided, of course) canonical graphs in one lower dimension;
here, estimates for one-sided cusps follow from those for two-sided folds in one lower dimension. It
is essential for this approach to assume the strong cusp condition. We shall also prove L? — L4
estimates for such operators, under various curvature assumptions on the cusp surface.

In §4 we shall use a canonical transformation to prove that a cusp need not be a strong cusp
for the L? estimates to hold, thereby proving Theorem 1.1 and corresponding results for oscillatory
integral operators.

In §5 we show that the restriction of the X-ray transform in R to a generic line complex
¢ C M, 4 is a Fourier integral operator for which mgr exhibits strong 51, , o singularities. In §6 we
give conditions on vector fields X,Y,Z and W in R* such that the family of curves ¢ — vy(z,t) =
exp,(tX + LY +37 + t4W) is associated with a strong right- or left-cusp, obtaining a formula
analogous to the one found by Phong and Stein [24] for Whitney folds in R?.

Notation: Given two quantities A; and Ay we write A3 < Ay or Ay 2 Ay if there is a positive
constant ¢, such that Ay < cA,.

2. Morin singularities and oscillatory integrals

Let P € R"and let f:R"™ — R" be a germ of a "™ map at P. We say that f drops rank simply
at P if rank dfp = n—1 and if det df vanishes of order 1 at P (i.e. d(detdf)p # 0). By the implicit
function theorem the variety S1(f) = {« : rank df = n — 1} is (the germ of) a hypersurface. We
shall say that f has an 57 singularity at P with singularity manifold S1(f). Given diffeomorphisms
by, &y, with &1(Q) = P it is clear that ®3 o f o &1 drops rank simply by 1 at @ if and only if f
does at P. Therefore the notion extends to manifolds.

Next let & be a hypersurface in a manifold V' and let v be a vector field defined on & with
values in TV (so that vp € TpV for P € &). We say that v is transversal to & at P € & if
vp ¢ TpS. We say that v is simply tangent to & at P if there is a one-form w annihilating vectors
tangent to & so that <w,v>‘6 vanishes of first order at P. Notice that this condition does not
depend on the particular choice of w. Also let @ be a smooth function nonvanishing at P; then v
is simply tangent to & if and only if av is simply tangent to &. Next let P — {(P) C Tp(V) be
a smooth field of lines defined on &. Let v be a nonvanishing vector field so that {(P) = Rvp. If
vp ¢ Tp®S then (is defined to be transversal to & at P. The line { is defined to be simply tangent
to & at P if v is simply tangent to & at P. Both notions do not depend on the particular choice
of v.

Next consider F' : V — W where dimV = k£ > 2 and dimW = n > k and assume that



rank dF > k—1. Suppose that & is a hypersurface in V such that rank dF = k—1 on &. Suppose
that ker dF’ is simply tangent to & at P € &. Then there is a neighborhood U of P in & such that

the variety {@ € U : rank dF‘ = k — 2} is a smooth hypersurface in &.
To &

Definition 2.1. Let 1 < r < n. For k = 1,...,7 let &; be a submanifold of dimension n — k in
V so that &1 D &3 D -+ D &,; we also set G := V.

(a) We say that f has an Sy singularity in V', with a descending sequence of singularity
manifolds (&q,...,8,) if the following conditions hold.

(i) For P € V, either dfp is bijective or f drops rank simply at P.
(ii) For 1 <7 <r, rank d(f‘e._l)Q =n—i+1forall Q € &;,_1\&,.

iii) For2<i<r—1, kerd ‘ is simply tangent to &; at points in &, 4.
S, g +

(b) Let P € V. Let 1 < r < n. We say that f has an 57, singularity at P, if there is a
neighborhood U of P and submanifolds &, of dimension n—k& in U sothat P€ &, C &,y C ---C
Sy and so that f: U — W has an S, singularity in U, with singularity manifolds (&q,...,8,).

The singularity manifolds &y, are uniquely determined by f (and the choice of the open set V')
and denoted by 51, (f) in singularity theory, suppressing the dependence on V.

Definition 2.2. Let P € V and 1 < r < n. We say that f has a 57, ¢ singularity at P, if f has
an 57, singularity at P and if ker dfp N Tp(51,(f)) = {0}.

An Sy (or 51, o) singularity is a Whitney fold; an ;1 o (or 51, o) singularity is referred to as
a Whitney or simple cusp.
Remarks 2.3.

1. Suppose that f has an 5y, singularity at P. Then

kerdfp = kerd(fl|s,)p if P € S1,,,(p)

while ker d( fls, (f)) = {0} at points in S1,(f) \ S1,,,(f). If ker df is simply tangent to S1,(f) at
some point P € 51, (f), then by the implicit function theorem there is a neighborhood U, of P and
a hypersurface &,4 in 51, (f) N U, (of dimension n — r — 1) so that rank d(fs, (5))p = n —rif
P e S, (f)\Sr41, and rank d(f|51r(f))]3 =n—r—1if P € &,41; this then defines the singularity
manifold Sy ., (f), and f has an 5, singularity at P.

2. It is straightforward to check invariance under changes of variables. If f has an 57 singu-
larity at P, with singularity manifolds &y D --- D &, and x1, X2 are germs of diffeomorphisms,
X1(Q) = P, x2 defined near f(P) then x2 o fox; has an S, singularity at P, with singularity
manifolds x7!(&1) D -+ D xTH(S,).

3. It is not hard to verify the occurence of 5, singularities when the map is given in special
coordinates. Following Morin [18], we say that coordinates ¢t = (#/,¢,) on V, vanishing at P and
y = (y',y,) on W, vanishing at f(P), are adapted coordinates if

(2.1) FFyj=t,1<ji<n-1, df*(dy,)|p = 0;

in other words

(2.2) f(t) = (', h(1))
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for some smooth h : R™ — R with ~(0) = 0.

By changes of variables in source and target each map of rank > d — 1 can be put in the form
(2.2).

4. f has an 5y, singularity at P if and only if there is an adapted coordinate system vanishing
at P with h as in (2.2) such that

O*h
(2.3) @(0) =0, 1<k<r
and if
oh d"h

(2.4) rank [dt(ﬁ)’ vy dy( o (%) = »
The singularity manifolds are given by

' h .

S1,(f) =He: —=(0) = 0, 1 < j <k},

otd,

fork=1,...,r.
This is a straightforward consequence of Definition 2.1.

5. f has an 57, o singularity if and only if there is an adapted coordinate system with & as in
(2.2) such that (2.3), (2.4) hold and moreover

ezl

(2.5) W(O) 70

Equivalently, f has an 57, ¢ singularity if and only if (2.3), (2.5) hold and (if » > 1)

oh 0" th
(26) I’ank [dt1(£)7'”7dt1(w——l

)](0)=r— 1.

6. Let X, C J'Y(V,W) be the Thom-Boardman class with Boardman symbol w, =
(1,1,...,1,0), with r ones. Morin[18] states that for j7*f € (X, )p it is necessary and suffi-
cient that there exist adapted coordinates ¢ on V near P, y on W near f(P) such that (2.3) and
(2.5) hold. If this is the case then j"7'f intersects ¥, transversally at P if and only if (2.4) holds.
Therefore the definition of Sy, ¢ singularities above is equivalent with the standard description
in singularity theory (¢f. Boardman [1], Levine [15], Morin [18], [19]). Conditions (2.3, 2.5) and
(2.4) are independent of the choice of adapted coordinate systems. It is shown in [18] that there
exist adapted coordinate systems, vanishing at P, f(P) such that h is given by the normal form
R(t) = tit, + tot? + oo+t t7 7L 7L

In order to verify that a given map has Morin singularities we shall use the following lemma,
proved by changing coordinates to adapted coordinates. In what follows we split coordinates as
v = (' ).

Lemma 2.4. Suppose that f : R"™ — R" is a smooth function defined near 0 and f(0) = 0 and
rank dfy > n — 1. Suppose that forv,7 =1,...n— 1,



2.6 =0 =1
(2.6) dzs lo » 8 et
0°%f;
(2.7) 7f5_1 ‘ =0, s=2,...,7
8$]'8$n 0
Then

8fn

(a) f has an Sy, singularity at 0 if and only if

{a(2L)

=0,s = 1,...,7, and the set
0

,s=1,.. .,7‘} is linearly independent.

0
b) f has an Sy, o singularity at 0 if and only if 8 f" =0,s=1,...,r, % 0, and the
g 0 Ox + 0
set {dx (88;::) o0 S=1,..m— 1} is linearly mdependent.
Proof. Let A be the (n — 1) x (n — 1) matrix A given by A;; = gf’ .n—1; then A

is invertible. Let b € R™~! with b; = gf

n

We introduce adapted coordinates t;(z) = fi(z), ¢ = 1,...,n — 1 and ¢, = x, so that with
F(t(z)) = f(z), Fi(t)=t;, fori=1,...,n— 1. An elementary calculation yields

Dz (A= —A~Y
Dt \ 0 1 ‘

In particular

o9 & 0
_—  — _ A—lb —
th 8$n 221( ) 8$z
i 0
_— = A_l i1 = 1 . - 1
dt; 221( ) T 0x;’ J el
Let a = A='b. Then %Q(O) =0, for s =0,...,r — 1. This follows from a routine calculation

using 9, A=t = —A719, AA~! and the assumption (2.6). Thus, if h(t) = f,(x) then

O*h =AY 0% f,
= (50~ Z“ia_xi) f”‘o = (0z,)*

Je
Jtr lo —

.
By a similar calculation using the assumption (2.7)

O " hy g, 0,0 0

= A Vi A - n
at; otk L y:l( iz G 2" 5z, Irlo
z_: a0t lfn
Jvs dx,, (D, )1
for £ = 2,...,r. These formulas together with the description of Morin singularities in Remarks

2.3.4 and 2.3.5 imply the statements of the Lemma. O

We will now formulate a strengthened version of the cusp condition when the range space W
is itself a fiber bundle over a base, B ; the example of relevance for oscillatory integral operators
will be W = T*X | the cotangent bundle of a "> manifold, over B = X.

Assume that WW—B> B is a fiber bundle, with dim (B) = ¢ < n—r, so that the fibers W, = ﬂglb
are n — ¢ dimensional manifolds.



Definition 2.5. Let b = 7p(f(P)) and let W), = 753'b be the fiber through f(P). f has a strong
51,0 singularity at P, denoted by Sil;,m if

(a) f intersects W), transversally, so that there is a neighborhood U of P such that the preimages
F~ W, 0 U are smooth manifolds of dimension n — ¢,

and if
(b) f‘f—l(Wb)ﬁU has an S, o singularity at P.

Remarks 2.6.

1. f has an Sil;,o singularity at P if and only if there exist adapted coordinate systems
for f of the form t = ((¢',t"),t,) on V, y = ((¢/,4y"),yn) on W, vanishing at P, f(P), with
t'y e R ",y € R"97! | so that (i) (2.1) holds and furthermore, y' = 75 for some local
coordinates 2 on B, ii) (2.3) and (2.5) hold; and, if » > 1, iii) the rank of the differential of the

map R"=47t 3¢ — (%, e 88;;_1?) € R""! at 0 is equal to r — 1.

2. Clearly, for f:V — W any cusp of order r, we may take the trivial fiber bundle 75 : W —
{point}, so that ¢ = 0, and then the Morin singularity is strong. However, we will be interested in
the nontrivial case ¢ > 0, and in particular n = 2d,¢ = d,r < d — 2.

3. The notion of an Sf’r o singularity is invariant under diffeomorphisms of V' and fiber-
preserving diffeomorphisms of W.

4. The property of being an Sf’r o map is stable under perturbations in the C™1 topology.

Conditions for canonical relations associated to oscillatory integral operators. Let X
and Z be manifolds of dimension d and let wr+ x,wr+z be the canonical two-forms on T*X,T*Z,
respectively. Let

CCcT"XxT"Z
a submanifold, Lagrangian with respect to wp-x — w7z, i.e. a symplectic relation.

In the study of oscillatory and Fourier integral operators one is led to consider the geometry
of the projections 7y : C — T*X, 7 : C — T*Z. T*X is of course fiber bundle over X, with
projection 7x : T*X — X and Lagrangian fibers. Taking V = C,W = T*X, B = X,n = 2d,
and ¢ = d, we thus have a well-defined notion of C' having a left Sil;,o singularity at ¢® € C. If

2% € X, nxc® = 2% and U is a (sufficiently small) neighborhood of ¢ then we can restrict 7, to
7% {2°} N U and define
Tw0 = T2 ey
with target space 77 X; the map 77, .o is then assumed to have an 51 o singularity at .
Similarly, we speak of C' having a right Sil;,o singularity if tg : C' — T*Z has an Sf’r o singularity
with respect to the fibration 7*Z ~2 Z, and define similarly the restrictions TR0 = ﬂR‘?Tgl({ZO})ﬁU'

We shall study oscillatory integral operators acting on functions defined in R? given by
(2.8) T\ f(z)= /eim)(gg’z)a(x,z)f(z)dz;

here a € C§°(R% x R?) and @ is a smooth real-valued phase function defined in a neighborhood of
supp a. The object of interest is the behavior of the LY — L4 operator norm as A — oc.

The symplectic (or canonical) relation associated to the phase ® is given by

(2.9) Co ={(z,0(2,2);2, -0 (2,2)) : (z,2) € X x Z}.
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Note that, since C'g is given as a graph over X x Z, the transversality condition (a) in Definition
2.5 is always satisfied for both 7;, and 7. The LP — L% bounds of T depend on the geometry of
Cs, in particular on the projections 7, : €' — T*X, 7 : €' — T*Y, but also on the projections
Tx, Tz to X and Z and other geometric information.

We wish to give reformulations of the assumption that one of the projections, say 7r, has a
(possibly strong) 57, o singularity at a point ¢® € C'. ;From Remark 2.6 (3) above, it follows that
the class of strong left cusps is invariant under Diff(X) x Can(7™X) (diffeomorphisms in X and
canonical transformations in 7% X).

In proving estimates on T’y one establishes estimates under the assumption that the amplitude
a is supported in a small neighborhood of a point P° = (2°,4°). This assumption can then be
removed by compactness arguments.

We now fix P? = (29,2°), so that ¢® = (2, ®/(2°,2°); 20, =9’ (2, 20)). Clearly the operator
norm of T\ does not change by adding smooth terms depending only on x or only on z to .
Moreover the behavior of the operator norm in A does not change under changes of variables in X
and Z. In particular we may assume that 2° = 0, z° = 0 and that

(2.10) ®(0,2) = &(z,0) = 0.
Throughout the paper we shall always assume that

rank dny = rank dogp > d — 1,

which is the case for the Morin singularities and equivalent with rank ¢ (z,2) > d — 1. We split
variables as @ = (2',24), z = (#', z4). By a linear transformation in the & variables we may assume
that

(2.11) h(0,0)=0

rgz'
and consequently
det ®”,.,(0,0) # 0.

In view of Lemma 2.4 it will be advantageous to have @, vanish at = 0.

Lemma 2.7. Suppose that rank (®¢)!, > d — 1 and ®q satisfies (2.11). Then there is a smooth
G with G(0) = 0, det(DG(0)) # 0 so that for z near 0 the phase function ®(z,z) = ®g(z,G(2))
satisfies (2.11),

(2.12) ®7,..(0,0) = Iyq
and
(2.13) ., (0,2) = 0.

Proof. We set ¥(z,z) = ®g(z, A2, z4) with A = (9, _,)71(0,0); then ¥ satisfies (2.10-2.12).
Define
Z(w) = (W;’(Ov w)v wd)

which by (2.12) is a diffeomorphism near 0 with Z(0) = 0, DZ(0) = I;. Let 2z — w(z) = (w'(2), 2q)
be the inverse map and define

b(z,2) = V(z,w(z)).

8



It is immediate that @ satisfies (2.10-2.12) and we check that (2.13) holds as well. This implies
the Lemma with G(z) = (Aw'(2), wy).

We differentiate the relation ®(z,Z(w)) = ¥(z,w), taking into account that V,.Z; = 0,
DuyZq = 1 and 22 (w) = 9", (0,w). Then

@;{121($, Z(w))\IJ;{,Z,(O, w) = W’l{lzl($7 w)
., (x, Z(w)) + @ (2, Z(w)¥Y,, (0,w) =V, (z,w).

x'zg x'zg

Evaluating at @ = 0 yields

8 (0, 2(w)) = Tis
N (0, Z(w)) =0

x'zg
and thus the assertion. O

The proof yields more than stated in (2.12), namely ®”, ,(0,2) = I;_1. However we later need
to introduce changes of variables violating this condition but keeping (2.12).

Proposition 2.8. Let ¢® € C so that 2° = 7xc® = 0, 2° = 75" = 0. Suppose that the phase
function ¢ satisfies (2.11-13).

a) Ty : Ce — T*X has an Sy ¢ singularity at ¢ if and only if
T g

OF 1P o2 p
2.14 —0,0)=0,1<k<r, ——(0,0 0
( ) 82§8$d( ) — ST 82§+18$d( )#
and, if r > 2,
*® Itie
(2.15) rank [dy .1 1(0,0) = r — 1.

Dz0024" " ) 9z 0a,

(b) 7y, : Ce — T*X has an Sil;,o singularity at ¢® if and only if (2.14) holds and, if r > 2,

0*® oo
N 82d8$d7”'7 N 82§8$d

(2.16) rank [d 1(0,0) =r — 1.

Proof. For (a) apply Lemma 2.4 to the map (2, 2) — (&, ®/(z,2)). For (b) apply Lemma 2.4 to
the map z — (0, ®’ (0, z)) (in fact this map is already given in adapted coordinates). O

Note that the conditions (2.15), (2.16) are vacuous if r = 1; in particular, if 77 has an Sy
singularity (or Whitney fold) it is already strong.

Interchanging z and z, one obtains a similar statement for the projection = : € — T*Z.
Obviously, €' has a left 51, ¢ singularity (or left Sil;,o singularity) if and only if the transpose
relation C* has a right 51, ¢ singularity ( right 57 o singularity).

The following observation will be useful when discussing curvature hypothesis for the image of
cusp surfaces in the fibers. In what follows, eq,...,eq will denote the standard basis in R%.



Lemma 2.9. Let ¢ € Cg so that 2° = 7x(c°) = 0, 2° = 7Tz( %) = 0. Suppose ®¢(x,z) sat-
isfies (2.11-13) and suppose wy, has an SIT,O singularity at ¢®. Then there is an invertible linear
transformations B € GL(R%™!), and smooth W(z) with W(0) = 0 and DW(0) € GL(R?) so that
b(z,2) = ©g(Ba', x4, W(2)) satisfies (2.11), (2.12), (2.13), (2.14),

1o
(217) VZW(()’O):ed_T—H“ k= 1,...,7‘—1,
and
0* o
2.18 —(0 ey Zder,0,...,0) =0,
( 0) axdzd—r-l—l( s %1, s Zd )
e
2.18 —(0,21,...,24_+,0,...,0) =0, k=1,....r—1,
(218) IR ) '
for z; near 0.
Moreover
(2.19) 1, (71.20) = {((0,8(0,2), 2, —8.(0,2)) : 89T (0,2) =0, 5 =1,...,k}
l’dZd

and for ¢ € Sy(mp, o) near ¢, Tzc =z
(2.20) ker(drp 40)c = {T(i _Zq)" (0 z)i) Cre R}
) L,z% )¢ 82d7 - Zi2g \ V) 8@ : .

Proof. By Proposition 2.8, (2.16) we may choose an invertible linear transformation B such that

d—1
8k—l—2q)0
B@d r+k — Z 8$d82k82’ ‘(070)6i7

for k=1,...,7 — 1. Define ¥(z,z) = ®o(Ba', x4, (B") 712", z4). Then V¥ satisfies (2.11-14), (2.16),
by Proposition 2.8; moreover it satisfies (2.17). Therefore

\IJ(HI)(O w)—wd 7’+k‘|’Qd r+k( ) k=1,...,7r—1

\Illlfdzd Pl (O’w) = wq + Qd( )
with smooth @Q4—,4, vanishing of second order at 0. In what follows set w” = (wy,...,wq_,).

Define a diffeomorphism 3 = (31,...,34) by

w;, fl<e<d—-r
i(w) =

w;+ Q;(w",0), fd—r+1<k<d
and let z — w(z) denote its inverse. Define
b(z,2) = V(z,w(z)).

10



Clearly w(0) = 0, Dw(0) = Id and therefore ® satisfies (2.11-12). Since 3;(w) does not depend
on wq, for i < d — 1. Similarly one verifies (2.16), (2.17). To see (2.18) we differentiate the
relation ®(x,3(w)) = ¥(z,w) and noting that dy,_,  34—r+1 = Ow,34 = 1 and 0y, 3; = 0if ¢ # d,
Owy_ry13i = 0if i #d —r + 1 we obtain

o0t (. 5(w)) = ¥ (2, w)

l’dZd

] (z,3(w)) = ¥ (2, w).

TdZd—r+1 TdZd—r+1

Consequently

T4z

; (0,3(w",0)) = ¥y (0,w",0) = 3a(w",0)

TdZd—r+1 TdZd—r+1

(0, 5(w”,0)) = B (0,07,0) = 30 pqpa(w”,0) 1<k <r—1
d d

by definition of 3. Since 3(w”(2",0),0)) = (2",0) the assertion (2.18) follows and the lemma holds
with W(z) = (B")"'w'(2), z4).

Define 77, y0(2) = (0,®/,(0,2)). Then Sy, (7 o) consists of all (0, ®!(0,2),z, —®,(0,2)) with
z € 81,(7r). By (2.11-12) the kernel of d7p, .0 is spanned by % from which (2.20) follows. The
assertion (2.19) on Sy, (71) follows now from Remark 2.3.4 above, since 7, ;o is given in adapted
coordinates. O

Curvature conditions for strong Morin singularities. Suppose that C'is a canonical relation
in T* X x T*Z and suppose that 7y : ' — T*X has an Sil;,o singularity at ¢® € C'. Then for a
neighborhood U of ¢°, the image of the cusp surface,

(221) EILT’QUO = {7TL7$OC S Slr(ﬂ-L,l’o) N U} = FL(SIT(WL) N U) N /‘T;o)(7

is a smooth manifold of codimension r in 77, X. The L? — L7 mapping properties of oscillatory
integrals may depend on the curvature properties of these surfaces. Although it is possible to
investigate a variety of curvature conditions we limit ourselves to two extreme cases, corresponding
to having { nonvanishing principal curvatures with respect to a normal n, and a weaker finite type
condition.

We now give, for a submanifold of R?, the definition of finite type with respect to normal n.
To do this recall that a (germ of a) smooth function f:R™ — R is said to be of finite type k at
2% € RYif Q(D)f(2°) = 0 for all differential operators of order < k — 1 and P(D)f(2°) # 0 for

some differential operator of order £.

Definition 2.10. Let M be a submanifold of R% with codimension ¢, P € M and ¢ ~ T(¢)
a parametrization of M near P, with T'(0) = P. Let n € TpRY, so that n annihilates tangent
vectors in TpM. Let &k > 2. M is said to be of type k at P, with respect to n if the function
R4~ 5t — (n,T(¢)) is of type k at ¢ = 0.

It is easy to check that the last condition is independent of the particular parametrization; so
the notion of type k is well defined. Also note the invariance of this notion under linear changes of
coordinates. If M is of type k at P, with respect to n, then k > 2 since n is required to annihilate
tangent vectors in TpM.

If M is of type k with respect to n at P, and I'(0) = P then there is a vector U € R%~* so that
<U7 Vl‘>)k <<n7 F(t)>) ‘t:o 7£ 0?

11



this follows from [30, p. 343].

0
The curvature condition that we shall impose on EL’x will be defined with respect to n in the
one-dimensional cokernel of the map (dny, ,o0).; n clearly annihilates tangent vectors in TgOEL ol
and the curvature conditions will be invariant under changes of coordinates in X since the induced

0
changes of coordinates in the fibers are linear. If ,Cf’x = S1(7p 40), the surface where 7y, o drops
rank by 1, then n has the geometric interpretation of being a “normal” vector to the hypersurface

0
T, 40 (L5177 which is nonsmooth at the cusp points (but has a well defined tangent plane there).

Lemma 2.11. Let ¢® = (2°,£°,2° (%) € Cg so that 2° = 2° = 0, and suppose that 7, has an
Sil;,o singularity at ¢®. Suppose that ® satisfies (2.11-13), (2.14), (2.17-18). Let ElLT’O C T3 X be
the image of S1 (7p, 40) under 7y, yo, and 0 # n € coker (dnp o). Then the following holds:

(i) For { < d — r the surface EILT’O has ¢ nonvanishing principal curvatures with respect to n at
€0 if and only if

(2.22) rank (@7, (0,0)), _, . =L

Tq2i %5 =

(ii) ElLT’O € Ty X is of type k at £° if and only if there is a vector u € span{ey,...,eq_,} so that

(2.23) ((u, V2))* @}, (0,0) # 0
and
(2.24) 9o ... 0% L (0,0)=0 i > ayl <k

Proof. It follows from (2.13) that coker (dnp, ;o). C T7(T0X) is spanned by d{y. By (2.19)
EILT’O = {®/(0,2): @;}Z—Z,})(O,z) =0fork=1,....r}.
d

Writing z = (2", 24— r41, - - -5 Zd—1, 24) We may use (2.14), (2.17) and the implicit function theorem
to obtain a function z" — 3 = (34—r41, ..., 3a), with 3(0) = 0 so that

q);k—l_kl)(o,z) =0 < zg_pk = 3a—rrir(?") for 1<k<r.

d2g

Implicit differentiation yields

(25) @ (0.2 302" +Z @) (0,2 30 Py = g

TaZy 2 xdzdzd T_H 822

Ad—r

for i =1,...,d — r. Repeating this we see that for P,(2") = 2" -+ 2,7

(2.26)  Pa(0.)@ (0, 2", 3(2") +E Ot (0,2",3(5") Pal@2)3a- s (2") = Ra(2)

l’dZd l’dZdZd r+]
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where R, belongs to the ideal of smooth functions generated by the Pg(0d.17)34_r4+; with Ej;; B; <
d—r
Zj:l .
Note that by (2.17)

1 ifj=k
o) (9,0 = { L
TdZqFd—rt 0 ifj#k

and it follows from (2.25) that 034_,4;/02;(0) =0 for i = 1,...,d — r. Inductively we use (2.26)
to deduce that

Pa(azn)Bd_H_]’(O) =0, ] =1,...,7

for all multiindices a. Consequently
(2.27) Po(0:0)(®7,(0,2",3(2"))) = Pa(020)®},, (0,27, 3(2")) + pa(2")

where p is in the ideal generated by all P,(0.1)34—r+;, so that p vanishes at 0. The assertion of
the Lemma is now an immediate consequence of (2.27). O

Examples: For ¢ = 1,2,3,4 let
Qi(x,2) =2121 + -+ 2g_124-1 + xqhi(2, 2)
where

r—1

1 k

hi(z,z) = zS‘" + Z Tdertk?y
k=1

r

ho(z, 2) = Z Zd—rth 7y

k=1
7
k m
h3($72) = E Zd—r+kZg + 21
k=1
r 4
k 2
h4($72): E Zg—rtkZq T g Z;
k=1 i=1

with 1 < {<d—rand k > 2. Let ﬂi denote the projection of Uy, to T X. Then ﬂ]l; has an 57, o
singularity but not an Sf’r o singularity, while 72 73, w1 have Sf’r o singularities. For ¢ = 2,3,4
the cokernel of dﬂ'ip is generated by n = d€;. For 7% the manifold EILT’O is the d — r dimensional
plane given by £4_,+; = 0, j = 1,...,r. For 73 this manifold is of type m (with respect to n)
where £ = 0 and of type 2 where & # 0. For 7} it has { nonvanishing principal curvatures with
respect to n.

3. Estimates for oscillatory integrals with strong one-sided cusps

Let X, Z be open subsets of R? and let ® € C°°(X x Z) be a real valued phase function and
a € C§(X x Z). Define, for A > 0, the oscillatory integral operator T’ as in (2.8), and let Cg

be the associated symplectic relation. Recall the definition (2.21) of the image Ei’lxo of the cusp
surface to the fibers.

13



Theorem 3.1. Suppose that (2°,2°) € X x Z, &® € Cg with mx® = 2°, 75" = 2% and let
0 = @/ (2°,2°). Then there is a neighborhood U of (z°,2°), depending on ® so that the following
holds provided that a is supported in U.

(i) If T1, has an Sil—,l,o singularity at ¢ then

A
(3.1) T\ 22(z)—La(x) S :
(20 S P

0
(ii) Suppose that 7y, has an Sil—,l,o singularity at ¢* and that Ei’lx has { nonvanishing principal
curvatures with respect to n € coker dry, ;o. Then

A_d;1_1¥ %_%)_3’1_4, 9 S q < 63[2——'_260
(3.2) I TM2(z)—Ls(x) S 4 6420 o o
q
; 3ir6 =15

respect to n € coker dmy, ,o. Then

NG ~3 2 < g < 10kt6
SO 33
(3.3) I Dol 2(z)—rpa(x) S 4 10k+6 '
AT, k13 =4S

We shall see that the L? — L? estimates hold with just the assumption of an 57 1 o singularity, see
§4; however the L2 — L7 estimate (3.1) may fail to hold without the assumption of a strong cusp;
see the example in Remarks 3.5 below.

The estimate should be compared with the corresponding estimates for folds which were either
explicitely stated in [7] or follow by the arguments of [7]. Assuming that 7 has a fold singularity
then one obtains that

d—1 1 1 1
AT GO 2 < g < glb
(3.4) 1TM2(z)—Lex) S _a (
AT, q(b) < ¢ < o0

where b = 1/2 and ¢(b) = 4. If the image Ef’xo in the fiber has ¢ nonvanishing curvatures then

b= ({+1)/2 and ¢(b) = (20 + 4)/({+ 1), and if Ef’xo is of finite type < k with respect to the
normal n € coker dry, then b =1/2+4 1/k and ¢(b) = 4(k+ 1)/(k + 2).

The estimates of Theorem 3.1 can be extended to more general oscillatory integrals with
nonhomogeneous phase functions depending on frequency variables. This will be useful in §4; the
arguments leading to this extension are contained in [7, §3].

Let X,Y be open sets in R”, and let  be an open set in R¥. Let S, be defined by

(3.5) Suf(z) = //RD . ei“w(l”y’ﬁ)b(x,y,ﬂ)f(y)dydz

14



where the phase 1) is smooth and real valued in X x Y x € and the amplitude b is smooth and
compactly supported in X xY xQ. We assume that dLyﬂgQﬁ%i, t=1,..., NV arelinearly independent,
so that

Crity = {(z,y,9) : ¥}y(z,y,9) = 0}

is a 2D dimensional immersed manifold (in other words, 1) is assumed to be nondegenerate in the
sense of Hérmander [13], although no homogeneity is required). Consequently

Cll/ = {($7¢;7y7 _ngl/) : 1%9 = 0}
is a smooth symplectic relation.
Corollary 3.2. Let ¢ = (20,9 (2%,4°,9°),4°, =} (2%, 4°,9°)) with (2°,4°) € X x Y, 9° € Q,
so that ¢ (z°,y°,9°) = 0.

Suppose that the projection wr : Cy — T*X has an Sil—,l,o singularity at ¢°. Then there is a
neighborhood U of (2°,y°,9°) such that

_D4N-1_ 1
19ull2(vy—r2(x) S ERR:

provided that b is supported in U.

Likewise one can formulate versions of the L? — L7 estimates of Theorem 3.1 for the operators
S, to obtain L? — L7 estimates; one sets d = D, p = X and multiplies the resulting expressions in
(3.1-3.3) by p=N/2.

Corresponding estimates for Fourier integral estimates with homogeneous phase functions can
be deduced from (3.1-3.4) using standard arguments involving partial Fourier transforms and
Littlewood-Paley type estimates [13, 24, 27, 7]. The result is

Corollary 3.3. Let X and Y be d dimensional manifolds, C" C (T*X\0) x (T*Y\0) be a ho-
mogeneous canonical relation. Let A € I™(C; X,Y) with compactly supported Schwartz-kernel
Ky Let ¢ = (2°,£9,¢4°, —n%) € C and suppose that w; has an Sil_,l,o singularity at ¢V. Then
the following holds provided that the wavefront relation WF(K 4)' is contained in a suitable conic
neighborhood of ¢°.

(i) A maps L* (Y') boundedly to LY | (X) if m+3—a < d(%—%)—l—l—% and2 < ¢ <10/3,

a,comp 2 3

orifm—l—ﬁ—agd(%—%)and10/3§q<oo;

(ii) Suppose that Ei’lxo has ( nonvanishing principal curvatures at £ with respect to n €
coker dry, yo. Then A maps L2, (Y) boundedly to Ll (X) if m < d(% — Ly H2 310 5pg

comp loc 2 4 6g

60420 . 11 60420
2<qg< 3[‘:_6,or1fm§d(5—§)and 3[‘:_6 < g < oo.

(iii) Suppose that Ei’lxo is of finite type k at £ with respect to n € coker dry, ,o. Then A
maps L2, (Y) boundedly to L{ (X) if m < d(% — 4y B 5;“};"(13 and 2 < ¢ < 130kk_|‘_"36, or if

m < d(% — 1) and 130kk_|‘_"36 < g < .

The restricted X-ray transforms discussed in the introduction are Fourier integral operators of
order —1/2, with the projection 7 : N*Z¢ —  having strong cusp singularities; this is shown in
§5. Thus the following can be applied to obtain estimates for these operators.
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Corollary 3.4. Suppose that X and Y are manifolds of dimension d = 4 and C' C T*X\0xT*Y\0
is a homogeneous canonical relation such that the projection g : Ce — T*Y have singularities
that are at most strong simple cusps, i.e., at every point of Cg, mr is either a diffeomorphism,
a Whitney fold, or an Sil_,l,o- Suppose also that the projection my : Si(7r) — Y has surjective
differential everywhere in Sy(7g). Let R be a Fourier integral operator in the class I7V/*(C; X,Y).
Then

(i) R maps L comp(Y) to L2 1 | (X) and Lo (Y) to L?

«,comp loc

(X))

0
he(X), under the additional assumption that the surfaces Ei’lx are
of type < 3 everywhere with respect to n € coker dry, zo.

(ii) R maps LL5(Y) to L?

Corollary 3.4 follows from Corollary 3.3 by splitting R = R+ Ro where the wavefront relation
of Ry is localized near the cusp surface 51 1(7g), and therefore Corollary 3.3 can be applied to the
adjoint Ry. The operator R; is a Fourier integral operator of order —1/2 for which 7, has only
fold singularities. It follows from Theorem 1.2 in [7] and interpolation that Rj is bounded from L?
to L(44=1/(2d=3) hence, since d = 4, for ¢ < 12/5. We remark that typically the latter estimate
can be improved since in view of the strong cusp assumption the images of the fold surface have
curvature at least near the cusp points. However we shall not have to make use of this observation
here.

Remarks 3.5. Concerning the sharpness of these estimates we consider various restricted X-ray
transforms.

1. Let R¢ be the restricted X-ray transform as in (1.1) for the translation-invariant complex
of lines with parametrizations

v(v,t) = (v1 + vat,v3 + vft, 03 + Vit 1) 1 t €R,

Test Re on the cut-off Heaviside function f = H(ws3)x(w). Then f € L2
2
and no better. On the other hand,

(R*), for all € > 0,

—e,comp

Ref(v) = / X2 (01 + vat, v + Vit vs 4 vt 1)de,

v3—|—v2t20

from which it is easy to see that Re¢f(v) is smooth in v, v, and approximately homogeneous of
degree 0 in v3,v4 with respect to the nonisotropic dilations (v3,v4) — (r®vs, rvg). Thus, its Fourier
transform is Schwartz in &1, & and approximately homogeneous of degree -4 in &3, &, with respect

to these same dilations. From this, it is straightforward to see that Re f € L22_E, loe» Tor all € >0,
3 1
and no better, and thus R¢, smooths by no more than 1/6 derivatives.

2. The L7/* — L? estimate of Corollary 3.4 cannot be improved without adding further
assumptions (such as well-curvedness). To see this, consider again the restricted X-ray transform
Re with line complex given by

v(v,1) = (v + vat, 2 + vit, v3 + V105 1),

Then, if fs is the characteristic function of the rectangle {|wy| < §, |ws| < 8%, |ws| < %, |wy| < 1},
we have || fs||or ~ §% , while Refs > 1 on {|vg] < ¢é,|va| < €82, |v3] < 8%, |vg] < cé}, so that
IRellre > cb. Letting 6 N\, 0, we must have % > % ; in particular, for ¢ = 2 we must have p > %.

Hence, R¢ : LT — L?, and no better.
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3. For ¢ # 2 the L? — L% estimates of Corollary 3.3 cannot hold in general without the strong
cusp assumption. In R3, consider the restricted X-ray transform given by

Ref(v) = /f(vl + t(vavz + v3), va, )X (t)dt.

The associated canonical relation is

C = {(wy — ws(wavs + v3), wa, v3, 1, & + w3vs&y, wa(wa + 303 )&

w17w27w37£17£27 —(w2v3 + v??;)fl) Tw e RB?”?) € R7(£17£2) € R2\0}7

from which we see that 7 : ' — T*R3\O has at most 5,0 singularities where & # 0, but
those S71,0 singularities are not strong. We take fs(w) = xs(wa, ws)(é >wy) where y; is the
characteristic function of {|wy| < 62, |ws] < 1}, and ¢ is a C§° function with cancellation. The
cancellation allows us to microlocalize R¢ to frequencies with & # 0. Then |Refs(v)] > ¢ on a
fixed fraction of {|v1| < 62, |va]| < 82, |vs| < &}, so that ||fs|, ~ §7 and |Re fs]]2 ~ 6. Hence, the
L? — L? boundedness of (the microlocalized version of) R¢ implies p > 5/3 and R : L? — L only
if ¢ < 5/2. The corresponding result for Fourier integral operators with strong cusps (Corollary
3.3) would imply a better L? — L8/ estimate. O

In order to prove Theorem 3.1 we now wish to follow the proof [7] of the corresponding results
for Whitney folds. Some of the arguments are in fact valid under the assumption that 7 is a
strong cusp of order r < d — 2 everywhere, so we will work under this assumption at first. We will
have to be able to prove an estimate for particular families of oscillatory integrals of the form (3.5)
with phases and amplitudes depending smoothly on a parameter v; the canonical relations will

have two-sided Sy, _, singularities. The conjectured L? estimates ||T3]| < A=4=1=1/(27+2) could be
D4N-—-1

proved if one could show that ||S,||r2—r2 Sp=" 2 ~* witha =1/(r+41) (see (3.14,) below.) If
Cy is a folding symplectic relation (so r — 1 = 1 and both 77, 7 have only Whitney folds or 57 o
singularities) then this estimate does hold with @ = 1/3. This is is shown in [22] (see also [17] for
the corresponding result for homogeneous canonical relations, and [24], [29], [4], [8] for different
proofs); these bounds are uniform with respect to parameters as follows for example by combining
arguments in [7, §3] and [8].

We shall perform the change of variables discussed in §2, and from now on work close to the
origin; the general assumption is that ® satisfies (2.10-2.13) and Cg has a strong 57, singularity at
¢ above (0,0). According to Lemma 2.9 we can assume that (2.14), (2.17) and (2.18) hold. The
amplitude a is supposed to be supported where |z| + |z| < g9 < ¢, the parameter ¢ is small (the
argument below determines how small these parameters are to be chosen).

We now argue as in §2 of [7, p.42 ff.], to reduce matters to estimates involving oscillatory integral
1/2

operators such as in (3.5) acting on functions in R%~. To bound ||T)||;2_ ., < NI s

one writes Th\T5 f(2',24) = [ Ku, .y, [f(-sya)](2") dyg where

(3.6) Kegyag(z') = /Kx(w’,wd,y’,yd) g(y') dy'
with
(3.7) Ky(2',2a,y',90) = /eik[q)(xl’xd’z)_q)(yl’yd’z)]a(ac,z)a(y,z)dz.
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The kernel of K,,,, can be split as H,, ., (z',y') + Ry, 4, (2", y") so that H,, , (2',y") = 0 if
|o" — y'| > €lwg — ya| or if |xg — ya| < A7L. Here ¢ < 1 but € > ¢g. Observe that by (2.12), (2.13)

q);”(xlvxdvz) - q);”(ylvydvz) = wl - Z/I + 0(50|$ - 3/|)7

therefore we integrate by parts with respect to z’ and obtain that the operator R, ,, with kernel
Ry, oy, is LP — L? bounded with

(3.8) IRewallomror S AP 4 Ny —ya )™, 1<p<2

By (2.17), ., . ,.,(0,0) # 0. Therefore we can apply the method of stationary phase to
obtain that

[Ka(eszasy'sya)l S (L+ Maa —ya) ™ if o' = y'[ > el — yal;
a better estimate is valid in the complementary region by (3.8). Therefore we have

](ﬂb’mdeLl—i‘X’ 5 (1 + ’\|xd - yd|)_ﬁv

(395) |

with 8 = 1. This may be improved if one imposes additional curvature assumptions on the images
of cusp surfaces (see Lemma 3.8 below).

We now turn to L? estimate of H,, ,,; recall that only x4,y with |24+ |ys| < € are of interest.
For fixed x4, yq one splits Hy, y, = > cpu—n H!, , Where

HY (') = ﬁ(el_1|xd — yd|_1x' -n)H(a',y"), ne /A

TdYd
and £7 is small. The kernels Hg .. are localized to cubes with center ¢, = neq|zy — yq4| and
diameter O(eq|zq — yql), so as in [7], because of the localization and therefore by (almost) ortho-
gonality, it suffices to prove the required bounds for the individual operators H7,  —(with kernels
H;dyd(x’, y')); in fact
—2d

H;Hgmyd L2 L2 551 SlipHHgmdeL?—i?'

One introduces rescaled operators ﬁgdyd with kernels
HE, () = H(en + uleg = yal)s en + vlwa = ya));
then 13, ,,9(2) = |va — yal*"HE,,, [f(J2a = yal - +0)) (5557 — ) and
2(d—1)/p’

(3-10) HHa?d,ydHLP(Rd—l)—>LP’(Rd—1) = |$d - yd| ( e HHZdydHLP(Rd—l)ﬁLPl(Rd—l);

notice also that H?  (u,v) =0 for |u— v| > Cey.

Td,Yd

+

. u,v) depend-
“’7’770( ? ) p

The kernels ﬁa?d,yd can be imbedded in two families of oscillatory integrals &
ing on the large parameter

H= /\|$d - @/d|
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and the small parameters

Y= (71,72) = (|ta — val, va); ¢ = ner|ag — yal

notice that v = O(¢g), ¢ = O(¢g). The oscillatory integrals are given by

/“’7’)/70

(3.11) Rt (u,v) = /ei“q’i(“’“’zw’c)b%c(u,v,z) dz
where the amplitudes b, .(u, v, z) belong to bounded subsets of C'"*°, and depend smoothly on the

parameters ¢, v; the phases are given by

q)(u71 + C, 72 + 7172) B q)(v71 + 077272)
T

\Ili(u,v,z;’y,c):

1
= /0 (u— v, @) (071 + s(u—v)y1 + eya £ s71,2) £, (v71 + s(u — v)y1 4 ¢,72 £ 571, 2)ds.

Of course this last formula makes sense for 49 = 0. Expanding in v; and «2 about 0 yields
\Ili(u, v, z39,¢) =(u—v,®,)(0,¢,2) £ B, (0,¢,2)
(312) +71pit(uvv72;77c)+72p§t(uvv72;770)7

so that U* are perturbations of phases which occur in a translation invariant situation.
Define

(3.13) Stcotw) = [ (w0g()de

with At asin (3.11).

We shall work under the following

—(d—1—a)

(3.14,) Hypothesis: ||Sycllrz—r2 S p for small v and ¢, and large p.

As mentioned above it is conjectured that (3.14) holds with ¢ = 1/(r + 1); in fact we shall
prove this estimate for the limiting case v = 0 (see Lemma 3.9 below). Moreover we shall verify
that the operators 5, . are oscillatory integrals associated to smooth symplectic relations, with
the projections 77, Tr being S{"T_ho singularities (see Lemma 3.7 below). In particular we know
then that (3.14,) holds if » = 2 and @ = 1/3 (of course it also holds with » = 1 and @ = 1/2; this
is the situation of [7]).

Lemma 3.6. Hypotheses (3.14,) and (3.93) imply that

_ . 2 1—
(3.15) T\ llere S AT PGE-0D8 2<¢< w
N
(316) HT)\HL2_>Lq 5 A a, % S q s 0.
Proof. Continuing the reasoning of [7, §2] we obtain, using (3.14), and taking (3.10) into account,
that
(3.17) 2y o llzempe S AL+ Mg — yal) ™"
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and hence the same estimate for || K, 4, ||r2—712-

Interpolating between (3.95) and (3.17) for H,, ,, replaced by K, ,, vields

(3.18) 1K il SATOTV 04 Aea = 9™, 1<p <2,
where ) )
B(p) = ﬁ(; -1+ e
If % - i < 1— (p) one may use fractional integration as in [7] to obtain that
(3.19) TS e S AFO707P0, ZRAE0) < p <
2(f+1-a)

which implies (3.15). Interpolating the resulting 1> — L~ 7  estimate with the trivial estimate
IT\|lL2— = < C, we obtain (3.16). O

We shall now analyze the oscillatory integrals in (3.11).

Lemma 3.7. Let ¥ be as in (3.12) and let

CFe = {(u, (UF )0, =(UF)))  (¥F)L = 0, u, v, 2 near 0}
For c near 0, v near 0, Cic is a smooth symplectic relation, with two sided S{"T_ho singularities.

Proof. In order to simplify the notation we write ¥ for ¥*. We shall also assume thaty = 0, ¢ = 0
which is no loss of generality in view of the invariance of our statements under small perturbations.

We first show that the set of critical points Critg+ = {(u,v,z) : \IJ'Zj(u,v,z) =0,57=1, ...,d}

is a smooth manifold. By (2.12), we know that ¥! , = &, , is nonsingular, moreover since
uw—v=0(¢e)
+
(320) (qj );’Idzd_r+1 = ié;;zdzd_r+1(07 0) —I_ 0(5)
By (2.17) (\Ili)’Z’dZd_TH is bounded below so the gradients V, , .V’ are linearly independent and

Critg+ are smooth manifolds. Note that we had to use the assumption of a strong S;, o singularity
here.

In view of the symmetry at v = 0, ¢ = 0, it suffices to check that, 7y, : Coi,o — T*X has Sil—r_1
singularities at the point ¢ = (0,0,0,0); notice that ®/.(0,0) = ®.(0,0) = 0 by (2.10).
We solve the equations ¥/, (0,0,2) = @7 _ (0,0,2) =0 and in view of (2.17) we see that z4_,41

TdzZd
can be expressed as a function of 2 = (21,..., 24—, Zd—yp42,- .., 2d), 50 that

(3.21) Q! (0,021, 2gm s 21 (2) Zampg2s - 2a) = 0.
We then have to show that

Z F(2):=9,(0,21,..., 24—, zf_r+1(2), Zderg 2y ey 2d)
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has an S, _, singularity at 0. To do this we use Lemma 2.4 (for functions of d — 1 variables), the
appropriate version of (2.6), (2.7) being

k
F,
(3.22) %k(o):o, 1<k<r—1,vtd—r+1
“d
O F,
(3.23) ———(0)=0, 2<k<r—-1,v#d—r+1.
82’8251

Given (3.22), (3.23) we shall then have to verify that

OFFy_ i1 {0, ifl<k<r-—1
3.24 — T (0) = .
( ) dzk (0) 1, k=7
and
O Fy_ i1 0, if2<k<r—1,i#¢d-—r+k
(3:25) 82’“—1824(0): 1 if2<k<r—1,i=d—r+k
d 7 ’ = = ’ -

Differentiating (3.21) yields

+
(3 26) (I)/// 8Zd—r-l—l + (I)/// -0
. Ta2d2d—r41 82’d zwgz%

where the derivatives of ¢ are evaluated at z4_,41 = zf_r+1(2). Similarly

" 8k'zlc:ll:—r-H (k+2)
(327) P ) + (I)x SR+l € jk—l

TdZ2d2d—r+1 82’5 azy

Z:l:
where J,_1 is the ideal generated by the functions 82‘7}“, for 1 < j<k-1.(3.26),(3.27) imply
Za
together with (2.14), (2.17) that

0=k 1, k=7

Differentiating the relation (3.26) with respect to z; yields

8k2’i (k 1)
" d—r+1 +
—= 4+ ¢ € T
Ta2dZd—r41 k—1 zgzt Tz
82’d d=q

so that
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a%iﬂl_{o, f2<k<r itd—r+k

3.29 — = .
( ) 325_13% 1, if2<k<r,i=d—-r+k

We now differentiate I and use that @7, (0,z) =0 (by (2.13)). It follows that

akFl/ " 8kzc:ll:—r+1
(330) 82’5 - (I)l’uzd—r+1TZ§ € jk—la 1 S k S T
oFF, 02T
3.31 L _ — Aol e gy, 2< k<
( ) 82’5 Ty Zd—r+1 82’5_182’2‘ jk 1 ~ ~T

Now (3.30), (3.31) together with (2.12) imply (3.22), (3.23), (3.24) and (3.25). O

We now show how our various curvature assumption imply improved decay estimates in (3.9);
this is analogous to the role of curvature in proving restriction theorems for the Fourier transform.

Lemma 3.8. Assuming r > 2 then
(i) Estimate (3.95) holds with 3 = 1.

(i) If Ei’lxo is of finite type k at £° with respect to n € coker dry, o then estimate (3.95) holds
with = (k+1)/k.

0
(iii) If Ef’lx has { nonvanishing principal curvatures with respect to n € coker dny, o at £0

then (3.93) holds with § = ({4 2)/2.

Proof. We split variables as z = (2", 24,41, %, z4) (so that the Z-part is not present if » = 2). We
begin by solving in (z4—,41,24) the equations @ =®"” =0 for Z=0. This is possible

TdZd—r+1 TdzZd
(! K
since rank —zatizers ety _ 2, by (2.17), (2.14).

Nzd—ry1,2d)
We obtain functions Z4_,41, Z4 depending on z" and vanishing at 0 so that

TdZd—r+1

) (N Zae1(27),0,Z4(2")) =

TdZd

o (2" Za—r1(2"),0, Z4(2")) = 0
0

We examine the derivatives of Z;_,11 and Z4. Implicit differentiation yields that for P,(z") =

ar .., Cd—r
“1 Zi—r

(3.32
Pa(az”)Zd—T—I—l + q)lll Pa(az”)Zd = Rd—r—l—l,a

TdZd—r+1 TdZd—r+12d—r+1 TdZd—r+17d

32)
Pa(az“)éu _I_ @III
(3.33)

Pa(az“)éu _I_ @III

TdZd TdZd2d—r+1

Pa(az”)Zd—T—I—l + o Pa(az”)Zd = Rd,oz

Trd ZZ

where Rj_r41.0 = Rqo = 01if o] = 1 and where otherwise Ry_,11 , and R, , belong to the ideal
generated by all Pg(0.1)Zg—r41, P3(0.1)Zy with || < |a|. Applying (3.33) for |a| = 1 yields
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82%%“(0) =0, in view of (2.17) and (2.14). Applying then (3.32) yields %(0) = 0, in view of

(2.17) and (2.18)¢; here i = 1,...,d — r. Inductively we obtain for all multiindices a
(3.34) Po(0:) Z4—r41(0) = Po(0.)Z4(0) = 0.

In view of (3.8) we have to verify the estimate (3.935) only for |2' — y'| < elay — yq4|. Expand
(2 24,2) = (Y, ya, 2)

(335) 99($,y,2’) = Tq— Ya = q);’d(()?Z”de—T-I-hOde) + ,0(96,3/,2)
where
2 yl )
,0(96,3/,2) = <$d _ ydvAl(xvyvz» + <$17A2($7y72)> + <ylvA3($7y72)> + <27A4($7y72)>

the latter is a small perturbation as a function of (2", z4—,41, 24), in the C'* topology.
We can solve the equations c,o’Zd_TH = ¢, = 0 obtaining functions 34_,41, 34 of (z,y,2", %)
so that
99[2’d—r+1 ($, Y, 2”7 3d—7’—|—1 9 27 3d) =
S‘szd (x7 Y, ZII? 3d—7’-|—1 9 27 Bd) = 07

here the functions 34—,4+1 — Z4—r4+1 and 35— Z4 and their 2" derivatives are O(|z'|+ |y’ |—|— e ydll +

|2]). Moreover we have ¢ . . (0,0)# 0 and ¢7 . (0,0) = 0 so that rank m = 2. We
may therefore apply the method of stationary phase. Set

¢($7 Y, 27 ZII) = QO($, Y, 21173d—T+1($7 Y, 2”7 2)7 273d($7 Y, 2”7 2))
Then

M
K@ wa,y' ya) = Y (Awa— yal)” /Ij($7y727A)dg+ O((Alzg — yal)™™)
7=0
where

Ii(z,y,5,)\) = /eZ‘A(avd—yd)11}(9073»/,272”)%.(967 y, %, 2" dz"

with compactly supported smooth ;.

By Lemma 2.11 and (3.34), (3.35) the assumption of £ nonvanishing principal curvature of EIL&O
implies that the Hessian of 2" — (x,y, 2,2") has rank {. Another application of the method of
stationary phase yields I;(z,y,A) = O((A|zg — ya)~?). Similarly the assumption of finite type k
and an application of van der Corput’s lemma using (2.23) yields I;(z,y, \) = O((Mza — ya|)~H/*)
in this case. Putting the previous estimates together yields the assertion of the lemma. O

Proof of Theorem 3.1. We specialize to the case of a strong one-sided cusp (r = 2) and apply
Lemma 3.6. Since Cic is a folding canonical relation, by Lemma 3.7, we know that the required
(3.14,) holds with @ = 1/3. The appropriate bounds (3.94) are given in Lemma 3.8. O

We shall now conclude this section showing that the inequality (3.14,) for « = 1/(r + 1) holds
at least if ¥ = 0. In order to prove the sharp bound ||Ty|p2—p2 < ATE"D=1C™H2) for operators
with one sided Sil;,o singularities, r > 3, one would have to extend this result to small values of ~.
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Lemma 3.9. Let Si%c be as in (3.13) and suppose that ¢ is small. Then for p > 1

1
HSM7070HL2—>L2 5 ,u_(d_l_ 1),

Proof. Consider the multiplier
m () = / X, z)et®ar 002 =@ (0620 gy

where x € Cg°. Let ¥(u,2) = (u, ®,1(0,¢,2)) £ @, (0,c,2) then the rank of the Hessian of ¢ with
respect to the variables u, 2" is 2(d—1), and this Hessian is equal to the Hessian of 1 (u, ) — (u, /).
We apply the method of stationary phase in these variables to see that

M
myx(n) = Zﬂ_(d_1+j) /Xj(Zd, n)e#Cam dzy 4 O(p=M)

j=0

where Z;jll 0L, &(zq, )| # 0 and the bounds are uniform in 5. This follows from the assumption
(2.14) (¢f. also the calculation in the proof of Lemma 3.7). Van der Corput’s Lemma shows that
the integrals are O(pu~1/("+1)). Therefore

—(d—1— 1
(3.36) [ [ T

To obtain the conclusion of the Lemma write

1

b07c(u, ?J, Z) = W

/3070(u7 0, z)e' ) dg

where the C norms of z +— @(6, z) are O((1 4+ |6])~™) for all M, N. We now apply the estimate

o~

(3.36) for the multiplier with cutoff function x(u, 2) = by .(u,8,¢). O

4. L? estimates for oscillatory integrals with nonstrong cusp singularities

The purpose of this section is to prove Theorem 1.1. By [7, §3] it is an immediate consequence
of the corresponding estimate for oscillatory integral operators (2.8) which we shall now formulate.

Theorem 4.1. Let T\ be asin (2.8), Co as in (2.9). Suppose that (z°,2°) € X x Z, ® € Cg with
Txc? = 2% w70 = 20 and let £ = @/ (2°,2°). Suppose that 7, has a Whitney cusp at ¢°. Then
there is a neighborhood U of (2°,2°), so that

ol

_4d
1T\l 22y —r2(x) S AT=F
provided that the amplitude a is supported in U.

Proof. We may assume that 2% = z° = 0 and that ® satisfies (2.10-2.13). By Proposition 2.8 we
have that (2.14) and (2.15) hold for r = 2. We may assume that ®!” _ (0,0) is large compared to
@III

,..(0,0) since otherwise we can use Theorem 3.1. Moreover we may assume that ®'’ , (0,0)
T2 2q ? rqx' 2g ?
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is large compared to @;%Zd(o, 0) since otherwise 7 has a fold singularity at (0,0) and the estimates

are better (at least || 1|22 < A™2T5, by [7]).

Replacing ® by ®(B'z', 24, B712, z4) for a suitable rotation B in R¢~! we can assume that

" " "
(4.1) @ (0,0)] = 10]® (0,0)] + 10[®z ., (0,0)]

T4T124 ra2 2g 1’3

then the properties (2.10-2.13), (2.14), (2.15) are still satisfied. We shall also assume that the
neighborhood ¢/ in the statement of Theorem 4.1 is chosen as a subset of {(z,2) : |z|+|2] < 1072},

We will construct a unitary operator which reduces the study of C's to the strong cusp situation
we already understand by the results of §3. First split the variables as ¢ = (21,%) and define

1 < €3 -
F;—Lf(x) — > // eM[(ah—m,£1>i7]al51 flw, 3)dun

where the & integral is to be interpreted as conditionally convergent oscillatory integral. By
rescaling one reduces the L? behavior for I'* to the study of the Fourier multipliers exp(£i\¢7/2)
and it is easy to see that /\Ff are in fact unitary operators on L*(R%), and F;F'A" = \72Id. Tt
therefore suffices to show that

(4.2) DTy pempe S ATITEHS,

Note that composing T with F‘A" corresponds to applying a linear canonical transformation in 7*X
and composing its graph with the relation Cg.

Let xo € C*°(R) so that xo(s) = 1 for |s| < 1/20 and x(s) = 0 for |s| > 1/10. We localize in
the z1 and & variables and split F‘A" = F‘A"l + F‘A"2 where

. 5% ~
2r1 ) f() = xo(21) // Xo(&)eMm et qe, fwy, #)duy

We first show that the operator Fi’2TA is negligeable. Let x;(&1) = x0(27761) — xo(277F1&)).
The kernel of F'A"2 can be decomposed as

Ry(z,2) = Gri(z, 2) + Z Groj(z,2) + Z Gargs,j(z,2)

i=1 i=1

where

) ¢? -
2rGa (7, 2) = (1 = xo(21)) // Yo (& )eMEr—wrr 5 4@(wn&2) g (4 G 2)dEy duwy
) ¢? -
217Gy (2, 2) = xo(21) // Xj(fl)ew‘ul’l_wl7§1>+7+¢(w1,x,z)]a(w17ij)dfdw

. ¢? . ~
27 G s (2, 2) = (1 xola1)) / / Vit e a2l g 5 )i duo,

First consider Gy 1. Integrating by parts in wy we gain arbitrary negative powers of A|zq — wy|
and in view of the support properties of @ and xo we have |zy — wy| > 1/100 here. From this it is
easy to see that |Gy 1(2,2)| < CMI’M_2/\_M1(1 + @y ) 7M.
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The kernel G 5 ; is < Car(270)™™ since we can integrate by parts with respect to &, the &
derivative of the phase function is A(#1 — wy + & ) which is of the order of A in view of the support
properties of @ and g.

To handle iy 3 ; we integrate by parts first with respect to z; and, if |z;| < 27/100, with
respect to & and zq. The result is that |Gy 3 ;(z,2)| < CMI’MQQ_j/\_Ml(l + |21])™™=. These
estimates clearly imply that |TT7T)||p2—r2 = O(A™™) for any M.

We now consider the operator Sy := I'y;7%; then §) is of the form (3.5) with frequency
variables ¥ = (wy, &) € R* and phase

2
Bz, ) = (o — oy, 6] + 5L @, 7, 2),

The canonical relation Cy is given by

Cy = {(w,q);,(wl,ﬁv,z);z, —@;(wl,i,z)) tx —wy + q);l(wl,ﬁv,z) =0}
We solve

(4.3) xy—wp + @, (w1,%,2)=0 <= w = g(z,2)

with ¢(0) = 0. This is possible since ®/, is small near (0,0) by (2.10) (we assume that I is chosen
so small that (4.3) holds for (w,2) € U and 21 € supp xo)-

We verify that 7y, : C, — T*X has a strong cusp at ¢ = (0,0,0,0). In order to do this we
have to show that the map
Fiz—0(g(0,2),0,2)

is a cusp at z = 0; to do this we use Lemma 2.4.

J

Let 7, is the ideal generated by S—g, 1 <j < m. Then (4.3) yields

7
dg dyg
< @II e @,, _ 0
8Zd —I_ r1Xq 8Zd —I_ r124
9y 0*q .
B 822‘825[ 11{11’1 82d82i —I_@Il{;Zde 6117 1= 1,...,d
dg dyg
_ Ay 4" =
82’1 —I_ r1Tq 821 —I_ r121

and all derivatives of ® are evaluated at z1 = ¢(0, z).

Using (2.13)

dg 0%g
4.4 = = = =
(1.4 90 = 520 = 529 (0)
fore=1,...,d, and
dg B
(4.5) o (0) = 1.
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Differentiating F’ yields

e, ey,

074 Y dzd

82Fd 829

922 :th5244%23+31
OF, 03q (4)

823 = q);{dl’la—zg + q)l’dzs + R2

where Ry € 7; and R, € I,. From (4.4), (4.5) and (2.10), (2.14) it follows that % and 8;%
d
vanish at 0, but 2% does not (that is (2.3), (2.5) hold).

oz
Next
9* Iy m dg 9y
— —J @III @II R
82182d FdZa® 82’1 + Fdzas + T 82d821 + 3
where R3 € 7;. Since we assume that ®'  (0,0) is large compared to @' it follows from
(4.5), (2.10) that 82??2 (0) # 0, i.e. (2.4) is satisfied. By Corollary 3.2 the operator norm of

It Ty is O(A™1=%+%) which implies the required (4.2). O

5. The X-ray transform for well curved line complexes

In this section we shall show that the strong cusp assumptions holds for the canonical relations
associated to line complexes in R* that are well curved in the sense of Definition 1.2, and then
prove Theorem 1.3. Finally we shall show optimal L? — L? estimates for a translation invariant
line complex in higher dimension which serves as a model example for the class of well-curved line
complexes (see (5.8), (5.9) below).

Proposition 5.1. If € C M, 4 is a well-curved line complex over Q C R?, then the singularities
of the projection Tr : N*Zy — T*Q are all Sil;,o singularities with r < d — 2.

Proof. By choosing local coordinates v on € vanishing at 7o € €0 and (linear) w on R% we may
assume that w® = 0 and that the line 70 is the wy-axis, so that locally the incidence relation is
given by

Ze ={(v,w) eER xR : w' = v’ + wyo(v';vq) },

with ¢ : R x R — R%! a smooth family of nondegenerate curves parametrized by the last
variable. By the well-curvedness of the line complex we have

do 9 1la

1 k{—,...,——~
6. ok (G g

J=d-1

By a linear change of variables in o', w', we replace a(v',v4) by A71o(Av',vy). We can therefore
assume that
do

(5.2) o

(0)26]', jzl,...,d—l.
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We may then write the restricted X -ray transform as

(53) RQf(?]) = // ei(vl—wl-l-wda'(’UI;Ud))'ela(v7 w7 0')f(w)dwd0' ,
RE—1 xRd

with amplitude a € SO(R? x R x (R%~1\0)) and o satisfying (5.2).

The nondegenerate phase function
(v, w,0") = (v — w +wyeo(v';vy)) -0
has critical manifold Crity, = {(v/,v4,v" + wao(v';v4), we, ') : v € R4, wy € R, 0" € RY71\0} and
thus parametrizes the canonical relation
(5.4) C'=N*Zs = {(v,vq, (I + wqdy o) 0" ,wad,,0 - 050" + wgo,wy,0',—c - §')}.

For |wy| sufficiently small, we may solve for v’ in terms of w, and thus obtain

(5.5) TRC = {(w',wg, &', —&(w,vy) - &) :w € R, vy € R, ¢ € RN0}
for suitable &. Notice that

D do

W(wl,wd,vd) = W(v',vd) + O(wy) if w' =0 + wyo(v',vy)
L L
Therefore
5
(5.6) a—qg(wo,o):ej, j=1,...,d—1.
d

To show that 7g € Sf’r 0> we need to show that the map

P (flvvd) — (517 _5(w07vd) . 5/)

has only 57, o singularities with » < d — 2, at v4 = 0. This map is given in adapted coordinates
(2.2) with h(&',vg) = —a(w®, vy) - ¢

Let & be fixed. By (5.6), either 5(w0;0) <& # 0, in which case F' is a diffeomorphism near
(€5,0), or there is a least integer r , 1 < r < d—2, such that (") (w®;0)-& = 0for 1 < k < r and
gD (w0;0) - &) # 0, so that (2.3) and (2.5) are satisfied. Denoting derivatives of & with respect
to vy by & etc., we also have

oh d"h
a_m)"“’d(avg
> rank [de (G- £'),...,de (57 - €] = rank [5,...,6] = r

rank [d( )] = rank [d(G - ¢'),...,d(5") - €")]

by (5.6). Thus, (2.4) is also satisfied, and F' has only S, o singularities, with r < d —2. O
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Proof of Theorem 1.3. By Corollary 3.4 we have to verify that the image of the cusp surface
in the fibers of T*Q satisfies a finite type condition. We shall use the notation in the proof
of Proposition 5.1. By (5. 5) we see that dmp 0 drops rank by 1 where G -0 =0, and there
ker(dm g .0) is generated by z—. Thus

(5.7) EL’lw ={(0,—5 - 0) :vg near 0,0 € R®\ 0, 5(w°, vg) -8 = 5(w®, vy) - 0 = 0}.
By (5.6)
- a2y Lo 3y L3 4
5(wsve) = (o4 + O(lw] + 1), 503 + O(w| + |oal). 2o + Ol] + o))
and therefore
2 1
s 0) = (14 Ol + fou]). 4+ Ol + ). 505 + O(Jul + ")),

and

5w va) = (O(1), 1+ O] + va), v + O(|w| +47)).

;From this, it follows that & - 8 = 0 implies that for |vy| small,
3

1 .
01 = —v4by — 5”293 + O(|w| + 2 |v3110;1)
]:
and thus ¢ - 8’ = 0 implies that
02 = —?]403 —|— O(|w| —|— |U4|3|03|).
Therefore

1
{( v403 + O1, —v4b3 + Oy, 05, —gvi’Og + O4) : (w,vg) near (w°,0), 63 € R\0}

. 0
where O; = O(|w| + |v4]7). Intersecting Eﬁ’lw with any transverse hyperplane in T;Q yields a
curve with nonzero curvature and torsion; this is stronger than the type < 3 condition required in
Corollary 3.4. O

Remark. Our estimates can also be applied to operators with two-sided cusp singularities. Consider
the translation invariant operator defined on functions in R* by

/fx— X(t)dt

with T(¢) = (¢,¢%,¢3,t*). Then A € I~z (C;RYLRY). Writing ¢ = (&,63,&4) and ¢(t,&) =
—(2t&y + 3t3&3 + 413¢,) one computes that

C= {(xv —g(t,fl),fl; L= F(t)v _g(tvfl)vfl)}

which exhibits 7 and 77, as strong cusps. The fold surface Sy (7 ) is given by 26, +61€3+12t%&, = 0
and the cusp surface 57 1(7p) by & = 6t%&y, & = —4téy so that for any zo € R?,

SE (=436, 666, —416y, &4) 1 £ € R, &4 € R\O).

Intersecting this with Heo = {&4 = €9} , we get a curve with nonzero curvature and torsion, so that
the type < 3 condition of Corollary 3.4 is satisfied. Since the same applies to m1r we deduce from
Corollary 3.4 and interpolations that A maps L? to L7 if (%, %) € hull{(0,0),(1,1), (%, %), (%, 15—2)}
This falls substantially short of the recent sharp estimates for A obtained by Oberlin [21], but it
does apply to non-translation-invariant variants of A. We shall consider one way of describing such

variants in §6.
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Appendix: A translation invariant line complex. Let d > 3 and consider the operator

defined by

(55 BRI 00) = x(0) [ 0"+ ooy
where
(5.9) v(s) = (s,8%, ..., 1);

moreover y € C§°(R?) with x(0) = 1 and n € C§°(R), both are assumed to be real valued without
loss of generality. Carrying out the analysis in §3 leads to a translation invariant situation as in
Lemma 3.9 and one concludes that R maps L* to Lf/(2d_2).

The natural L? — L conjecture is that R is bounded from L? to L? if and only if (1/p,1/q)

belongs to the triangle 7 = hull(A, B, (') where A = (0,0), B = (1,1), C = (dzdgif, 33;3). It is
necessary that (1/p,1/q) is on or above C'B, that is d/p < 1+ (d — 1)/q. To see this one tests R
on the characteristic function of the ball {|w| < ¢} and lets § — 0. To check that (1/p,1/¢) has
to be on or above AC, that is (d* — d)/p < (d* — d + 2)/q, one tests R on characteristic functions
of the rectangle {w : |w;| < 87,5 = 1,...,d — 1, |w,y| < 1}. The following proposition establishes
the LP — L9 estimate for (1/p,1/¢) in a subtriangle with vertex D on the lower edge AC of 7, so
that the sharp LP — L? estimate is obtained for p > 2 —

4
Z—dt2°
Proposition 5.2. Let R be as in (5.8), (5.9). R maps LP to L? if T = hull(A, B, D) where

A=(0,0), B=(1,1), D= (L£zdt2 1y

2d(d—1)

Proof. It suffices to show that R maps L? to L? where p = Fodrge

show that R*R maps LP to P A computation yields

d > 3. For this it suffices to

wrf() = [[ Ha.s.0) 0! = pr(a).a - Hidads

with a suitable C'*° function h with compact support. Now R*Rf(z) < T'(|f|)(«) where

7f0) = ila o) [ [ xal@na(B11(e" = rte)s - Bdads

with suitable smooth and positive cutoff functions y;. For functions defined in R4~ let

Sw@ﬁz/kawﬂf—ﬁﬂ@mw

Then
Tf(a' 2) = xalaNaea) [ (@S- B3
For v(t) = (t,...,1") McMichael [16] proved that Sy is bounded from LP(R™ — L” (R™)
provided that 2n(n+1)/(n? + n+2) < p <2, here n = d — 1. Since Szg(z’) = S1[f(3-)](2'/3) the
LP — L” operator norm of S5 is < CHA="DO=2/1) for 2(d? — d)/(d* —d +2) < p < 2. We use the
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(by now) standard slicing argument due to Oberlin [20] (see also Strichartz [31].) By Minkowski’s
inequality

1770y < ([ xatea] [ xaNSs1Cora— Blpds] dra)”

(5.10) < ([ @] [a@s 020y 10z p)lya5) dws) "

In order to apply the theorem on fractional integration we need the restriction (d — 1)(1 — %) >
% — % —lord(l- %)—I— 1 > 0; notice that d(1 - %)—I— 1> 922 for p > 2(d* — d)/(d* — d +2). Since
we are assuming d > 3 the right hand side of (5.10) is bounded by C||f||,. O

6. Strong cusps and exponentials of vector fields

We next examine the strong cusp condition in the context of families of curves in R* given by
exponentials of vector fields; the setup is as in [2]. Let X,Y,Z and W be smooth vector fields on
R* and

ve(t) = exp(tX + Y + 37 + t*W)(a),
so that {7, : # € R*} is a smooth family of curves, with 7,(0) = z. Let y € C§°(R). The
generalized Radon transform,

R = [ ot
belongs to I_%(R‘I,R‘l; (), where C' = N*I", the conormal bundle of

I = {(2,7:(0) s 2 € K%, € supp (x).

We assume that supp (x) is small and are concerned with the behavior of the Schwartz kernel of
R close to the diagonal. The following is the analogue for Sil;,o singularities of a result in [24] for
folds in three variables.

Proposition 6.1. Let ¢® € ' be above the diagonal, ¢ = (2°,£°, 20, —n?).
(i) Suppose that the vectors fields

1

l

1 1
(61) X? Yv Z_6X7Y]7 W_Z[sz]—l_ﬂ[Xv[XvY]]

are linearly independent at x°. Then the only possible singularities of the projection g : ¢ —

T*R* at ¢ are Whitney folds and strong Whitney cusps.
(ii) Suppose that the vectors fields

1

(6.2) X, Y, Z4 XY W %[X, 214 S [X,[X, Y]]

24

are linearly independent at 2°. Then the only possible singularities of the projection ny, : C' — T*R*
at ¢® are Whitney folds and strong Whitney cusps.

Proof. We will approximate I', and thus ', to high order near the diagonal, by using the first
terms of the Baker-Campbell-Hausdorff formula: for vector fields A, B,

(6.3) exp(Blexp(A)(x) = exp(A + B + %[A, Bl + 11—2[A CBAB] + .. )(2),
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where ... denotes commutators of four or more terms. Note the order of the product, since
composition of diffeomorphisms is right-to-left. Using (6.3), an elementary calculation leads to

(6.4) exp(tX + 2Y + 2 Z + t'W)(z) = exp(t3Z + W+ 00 Jexp(12Y Jexp(t X )(z),

with

Z:Z—%[X,Y] and W:W—%[X,Z]—I— X, [X, Y]]

1
6
Here, O/ denotes terms which are O(t7) as t — 0 (or O((y1 — 21)7)
second order Taylor polynomial of exp(tA):

below.) We will also need the

(6.5) exp(tA)(z) = + tA(z) + gDA(x)(A(w)) + O°.

Since X # 0, by a local change of variables we can take X = % . Write z = (21,2"),y =

(y1,y') and vector fields as A = (A, A"). Fixing a basepoint y°, one can also assume that Y (y°) =

%. Before applying (6.5) to the vector field Y below, we note that the DY (Y') term is not

invariantly defined. In fact, if ¥ is a diffeomorphism and Y (y) = ¥*Y (y) = (D¥(y))~ (Y (¥(y)))
denotes the pullback of Y, then a calculation yields

DY (V) = (D)~} (DY (V) - D*W(V,¥)).

Setting v = DY (Y)(y°) (and assuming y° = 0), we take ¥(y) = y + %—gv. This preserves the
conditions X = % and Y (3°) = ey, and also D*W(ey,e5) = v hence DY (Y)(3°) = 0, so that we
can assume

(6.6) X=—, Yi(y")=0, DY(Y)(°) =0.

Since X = =2, by (6.3) we have

=5,
I = {(z.exp(£*Z + t*W + O%)exp(2Y )(21 + t,2")) : # € R, 1 € R},

which by (6.5) with ¢ replaced by t* equals

{(,exp(P7 + 417 + O°)(a + (1,0 + £Y (21 + 1,2") + %(DY(Y))(QC1 +1.2)) ]

= (e (L0 + 2V (@ t2) P2 + 1) 4 (T %DY(Y) ror)l.
But,
Z(xy +t,2') = Z(z) + [X, Z)(z) + O?

2

Y(xy +t,2") =Y (2)+¢{X,Y](z) + %[X, [X,Y]](z) + O°

and therefore
D= {(ee 4 (1.0) + 2V 4 27+ [X,Y]) 4 £ + [X. 2] + %[X, X, Y]]+ %DY(Y)) +0)).
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where all the vector fields are evaluated at . Now change coordinates on I' from (z,?) to (z,y1)
via

y1 =21+t + Yy () + (2 + [X, Y] (2);
by the inverse function theorem, we may then express

t=(y — o) = (1 — a1 = (5 — 2 (Z + [X, Y] - 2¥F) + O

2= (1 —21)" = (n —21)” - 2Y1 + (31 — 21)* 5V — 2(Z +[X.Y])1) + O,
and
2= (y1 —21)° — (1 — 21)'3Y1 + O°,
with all vector fields being evaluated at z. Thus,

I'= {(9673/1 + O 4 (g1 — 21))Y 4 (- 2P (2N + Z + [X,Y])
+(yr — 21)* (5Y12Y — A7+ [X, YWY - 3Yi(Z + [X,Y))
e = 1 ! 5 4
+W+[X,Z]+§DY(Y)) + 0 ) re € RYy €R .

To change the point where the vector fields are evaluated to (y;,z'), we expand Y mod O as
above and Z,[X,Y] and Y; - Y mod O%. This leads to

= { (9073/1+(9479€' +(y1 — 21)*Y + (1 — @12 (—271Y + Z)'

= (BYRY = 27+ [X,Y]hY = 3%3(Z +[X, V)

+W X, Z]+ %[X, (X, Y] + %DY(Y)
1

+5[X (X Y]] - [X, 7] - [X,[X, Y]

(6.7) ! 5 4
FIX,YLY + 2Y1[X,Y]) +0°|: 2eRYLy eR

= { (9073/1+(94,96' + (1 —20)?Y + (g1 — 2P (201 Y + Z)'
Hon =) (632 = 27 + [X, Y)Y + M[X, V]

BV Z+ X, YD)+ W +[X, 2] + %DY(Y))') . zeRYy € R},

with the vector fields evaluated henceforth at (yq1,2'). Using (6.7), we may give a set of approximate

defining functions, f'(z,y) = (fa(x,y), fs(2,y), fa(z,y)) , for I'. These will be specified modulo
O° ; since we only need to check the strong cusp condition at y° , the f'(z,y) will suffice for our
purpose.
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One has
I~ {(z,y) e R* xR*: f'(2,y) = 0}

where
flay)=a =y +(n— ) Y + (y —21)>(Z - 2117
— - ~ 1 /
+ (- 21)* (W +(5YE —2Z)Y — Vi[X,Y] - 3Vi7 + 5DY(Y)) .

To calculate the conormal bundle ¢' = N*I' | we really just need to find —d,, f' - ' for o' =
(77277737774) € RB\O :

—dy, [0 = - (2(@/1 —2)Y + (p1 — 21)°(3Z — 6Y1Y +[X,Y])
+ (g1 — 1) (4W + (20 — 8Z,)Y — 4Y1[X,Y] mod ((y — z1)%).
_12Y,Z +2DY(Y) + [X,Z] - 2V3[X, Y] - 2[X,Y]1Y))I -
Changing variables y' = 2’ + ... and s = y; — 2y, we have (not worrying about the (x,&) terms)
C = { (* 5y, — (25Y+s2(32 X, Y] - 611Y)
+SP(AW +[X, Z] — 6Y4[X, Y] + (20Y7 — 87, — 2[X,Y],)Y
_12Y,7 + 2DY(Y)))I : 77’,77’) .y eRLseR,y € R3\0},

with the vector fields evaluated at (y1,2') = (y1,9' +...). Thus, the singularities of 7 : ¢' — T*R*

Z2. The derivatives 88]3-1 mod s*77, 1 < j < 3, are given by

are completely determined by = 0

_%i; - (QY +25(3Z +[X,Y] — 6Y1Y) + 357 (4W +[X.,Z] - 6Y1[X,Y]

!
H(20Y2 — 87, — 2[X, Y)Y — 12V, 7 + 2DY(Y))) )

*n ~ !
e 2((37 +[X, Y] = 6% ) +3s(...)) -7,
8 om ro

D5 =6(...) 7,

where ... denotes the expression above begmnmg with 4W + (X ,Z Evaluating at y =
0

I+
y%, s = 0, these three derivatives are (using Y1(y°) = 0 and DY (Y)(y° ) 0) given by functions
g1 = 2Y’-77’, g2 = 6(7 — é[X,Y])’-n’ and

93:24(W—%[X,ZHi[Xa[X,Y]] (27, + [X y) .

If the vectors in (6.1) are linearly independent, then d,:g1,d,gs,d, g3 are linearly independent
(dy g3 differing from the last term in (6.1) by at most a multiple of ¥".) Thus, (#',71) on TyR* and
(n',s) on 75" ({y}) are adapted coordinates and thus 7x has at most S g or Sil—,l,o singularities. To

obtain the corresponding statement for 7, one simply repeats the above argument with (X,Y, 72, W)
replaced by (=X,-Y,—-Z,-W). O
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