CONVOLUTION POWERS OF SALEM MEASURES
WITH APPLICATIONS

XIANGHONG CHEN AND ANDREAS SEEGER

ABSTRACT. We study the regularity of convolution powers for measures
supported on Salem sets, and prove related results on Fourier restric-
tion and Fourier multipliers. In particular we show that for « of the

form d/n, n = 2,3,... there exist a-Salem measures for which the L?
Fourier restriction theorem holds in the range p < 2d2fa. The results

rely on ideas of Korner. We extend some of his constructions to obtain
upper regular a-Salem measures, with sharp regularity results for n-fold
convolutions for all n € N.

1. INTRODUCTION

Given a finite positive Borel measure ;1 on R? satisfying the condition

@)l =0(lel™)

for some b > 0, the Fourier transform maps LP(R?) to L?(du) for some
p > 1. This is the Fourier restriction phenomenon discovered by Stein in
the 1960’s. Much research in Fourier analysis has been done regarding the
case of u being surface measure on the sphere where sharp results are due
to Tomas and Stein [32], [33]. A general version of Tomas’ theorem is due
to Mockenhaupt [23] and also Mitsis [22]. These authors showed that under
the above assumption and the additional regularity condition

u(B) = O(diam(B)*)

for all balls B the Fourier transform maps LP(R?) to L?(du) for 1 < p <
Pap = %. It was shown in [1] that the result is also valid for p = pq .
The Fourier decay assumption implies that the regularity condition holds
for a = b. Moreover, If the support of i is contained in a set of Hausdorff
dimension « then b < /2, and a < a. See [35, ch.8], [22] for these facts. Of
particular interest are measures supported on sets F of Hausdorff dimension
a for which the Fourier decay condition holds for all b < «/2; such sets are

commonly called Salem sets. The existence of Salem sets is due to Salem
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[26], see also the book by Kahane [13], and papers by Kaufman [14], Bluhm
(2], [3]) and Laba and Pramanik [20] for other constructions.

Here we are also interested in the special Salem sets E which carry proba-
bility measures for which the endpoint bound |fi(€)] = O(|¢|~H™(E)/2) holds
for large £, and make the following definition.

Definition. (i) A Borel probability measure i is called an c-Salem measure
if it is compactly supported, the support of u is contained in a set of Hausdorff
dimension o, and if

(1) sup (1 + [¢))*/2|f(8)] < o0
£cRe

(ii) An a-Salem measure is called upper reqular (or a-upper reqular) if

(B)
2 — <

@) Slflgp diam(B)~ >
where the sup is taken over all balls.

Examples of upper regular a-Salem measures were constructed by Koérner
(cf. [15]), see also the work by the first author [7] for various refinements.

If 14 is an upper regular a-Salem measure then the Fourier transform maps
LP(RY) to L?(p) for 1 < p < ig:gg, by the result in [1]. In analogy to results
and conjectures for surface measure on the sphere, Mockenhaupt conjectured
that the Fourier transform should map LP(R?) to L'(u) for the larger range
1<p< 2d2ila. By [22, Prop. 3.1] such an LP — L? result cannot hold for

p > 2d2‘_ia. Furthermore, he remarked that for suitable examples there is

a possibility that even the stronger Stein-Tomas LP — L?(u) bound could
hold in this range. Recently Hambrook and Laba [11] gave, for a dense set
of a’s (and d = 1), examples of Salem sets of dimension «, which show
that the p range for the LP — L?(u) bound in [1] cannot be improved
in general. Their examples carry randomness and arithmetic structures at
different scales. The first author [7] has extended this idea to provide, among
other things, for all « € [0, 1] examples of upper regular a-Salem measures
on the real line, for which F does not map L? to L?(u) for any p > ig:gg.
These examples still do not exclude the Mockenhaupt scenario of a larger
p-range for the L? restriction estimate for other types of Salem measures.
The question was explicitly posed in a recent survey paper by Laba [19]. We
show an optimal result when « is of the form d/n with some integer n.

Theorem A. Given o = d/n where n € N, n > 2, there exists an upper
regular a-Salem measure so that F : LP(R?) — L2(u) is bounded in the
optimal range 1 < p < %.

Remarks.

(i) Shmerkin and Suomala [28] have, independently, obtained a similar
result, for d = 1, @ > 1/2. Their method also covers the cases d = 2,3,
d/2 < o < 2. Their approach is quite different from the methods used here.
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(ii) It would be of great interest to find Ahlfors-David regular a-Salem
measures, i.e. besides (1), (2) we would also have a lower bound u(B) 2,
rad(B)“ for all balls B with radius < 1 which are centered in the support of
w. This question has been raised by Mitsis [22], see also the list of problems
in Mattila [21]. We remark that the examples by Shmerkin and Suomala
[28] for the non-endpoint L? — L* restriction estimate (with a@ > 1/2)
are Ahlfors-David regular. However the measures satisfying Theorem A are

necessarily not Ahlfors-David a-regular, see §4.

A variant of Theorem A can be used to derive some new results on a class
of Fourier multipliers of Bochner-Riesz type as considered by Mockenhaupt
[23]. In what follows we let M, to be the space of all m € S'(R?) for which
f=F _l[mA] extends to a bounded operator from LP(R?) to LI(R?). The
norm on M, is the operator norm, i.e.

Imilyg = sup [[Fm |
feSRY)
lIfllp<1
In [23] Mockenhaupt introduced a class of Fourier multipliers associated with
general measures which reflect the properties of Bochner-Riesz multipliers
in the case when p is the surface measure on a smooth hypersurface.
Given a compactly supported a-upper regular Borel measure, A > o — d
and x € C°(R?) the function

Q ma©) = [ x€=n)le =l "dutn

is well defined as an L' function. In §4 we prove among other things

q

Theorem B. Let o = d/n where n € N, n > 2 and X\ > 0. There ezists an
upper regular a-Salem measure on R so that for 1 < p < %, p<qg<2

we have L1 p
-«
q > o _ .

my € M — A_d(q 2) 5

Let *" be the convolution of n copies of y; more precisely we set 1*0 = g
(the Dirac measure at 0), u*' = p and
M*n _ M*M*(n—l)
for n > 2. The proof of the Fourier restriction result of Theorem A for
a = d/n is based on a regularity result for the self convolutions of suitable
Salem measures and the inequality

(@ [ 1aPrae < o [ 19 Pd)"

(4) is a special case of an inequality in [6], closely related to a result by
Rudin [24].

For n = 2, Korner [16] proved the existence of a compactly supported
probability measure on R, supported on a set of Hausdorff dimension 1/2 for
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which p*p is a continuous function. Moreover, given % < «a < 1, there exists
a Borel probability measure p on R supported on a compact set of Hausdorft
dimension a such that pu* u € Co -1/ 2(IR). These substantially improved
and extended previous results by Wiener-Wintner [34] and Saeki [25] on
convolution squares for singular measures. Note that by taking adjoints
inequality (4) for n = 2 shows that F : L*? — L?(u); for a < 2/3 this
yields a range larger than [1, j:%g], the largest range that could be proved
from [1]. It is not stated in Korner’s paper that the measures constructed
there have the appropriate Fourier decay properties but as we shall see this
is not hard to accomplish.

For integers k > 0 let C™(R?) be the space of functions whose derivatives
up to order n are continuous and bounded; the norm is given by

Ifllen = > 110%F oo

o<k

Let 9 : [0,00) — [0,00) be a nondecreasing bounded function satisfying
e _

(5) }%t P(t) =00, Ve >0

and, for some Cy > 0,

(6) P(t) < Cyp(t/2), t>0.

For a function f on R%, define

_ [f(x) = ()]
TFY
and

C’p’w(Rd) ={fe C’(Rd) wpp(f) < oo}
If p > 1, define
CrYRY) = {f e CIRY) : 97 f € cr-LPlv(mY), 18] = |p]}.

For 0 < p < 1 the choice of ¥(t) = 1 yields the usual Holder spaces. Only
the definition of i for small ¢ is relevant. Other suitable choices for 1 are
(i) ¥(t) = exp(—+/logt=1) for t < et (ii) ¥(t) = 1/(logt™!) for t < e}
or (iii) (t) = 1/(loglogt™!) for t < e~*.

We extend Koérner’s constructions to prove the following result for higher
convolution powers of upper regular a-Salem measures.

Theorem C. Given d > 1 and 0 < « < d, there exists a Borel probability
measure i on R satisfying the following properties.

(i) w is supported on a compact set of Hausdorff and lower Minkowski
dimension «.

(ii) For all € € R4, [¢] > 1,

BE)] S w(gl Mg~
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(i4i) For allz € RL0 <r < 1,1 <n<d/a,

p(B(z,r)) S o(r)r"e.
(iv) Forn > d/a,

na—d
M*n c CC 2 711}(

RY).

Note that under the dimensional restriction the Fourier decay exponent,
the upper regularity exponents na and the Holder exponent %‘d for p*
are all optimal (cf. §2.6 below for the latter).

Notation. We write [J; < s to indicate that [J; < C[y for some constant
0 < C < o independent of the testing inputs which will usually be clear
from the context. For a measurable subset E of R? or T¢ we let |E| denote
the Lebesgue measure of E.

Structure of the paper. The proof of Theorem C is given in the next two
sections. The restriction and multiplier theorems are considered in §4.

2. KORNER’S BAIRE CATEGORY APPROACH

This section contains the extensions of Koérner’s arguments adapted and
extended to yield Theorem C. The results will be stated in the periodic
setting and followed by a relatively straightforward transference argument.

To fix notations, we write T = R/Z and T% = T x - - - x T. We occasionally
denote by A the uniform probability measure on T¢. X is usually identified
with the function 1 and we shall also identify a continuous function g with
the measure gA. A subset J C T is called an interval if it is connected. A
rectangle is of the form R = J; X --- x J; where J; are intervals; R is called
a cube if these intervals have the same length. If y is a finite Borel measure
on T%, the Fourier transform of y is defined as

i) = [ et

where r € Z%. Here as usual we have identified T¢ with [0,1)?. Note that
7(0) = p(T?) and \(r) = do(r). Let 1 and v be two finite Borel measures on
T¢, 1+ v is the finite Borel measure on T with Fourier transform j(r)o(r).

Finally, we equip T¢ with the usual group structure and the intrinsic metric
which will be denoted by

d
1/2
v =yl i= (D o — il
i=1

where z = (21, - ,24),y = (y1, -+ ,yq) and |z; — y;| denotes the intrinsic
metric on T. We will also fix an orientation of T so that derivatives are
uniquely defined. With this distance the expression w, 4 (f) in (7) and the
spaces C”¥ can be defined in the same way on T¢.
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For each integer n > d/a we fix a finite smooth partition of unity on T,
indexed by 2 € 7,

(8) 0" = {xV}ea,

so that each X,(n) is supported on a cube of side length smaller than (2n)~!
2.1. A metric space. Let & be the collection of closed subsets of T¢ which
form a complete metric space with respect to the Hausdorff distance

da(K1, K2)) = sup dist(z, K2) + sup dist(y, K1)
zeK, yeKo

9
©) = sup inf |z —y|+ sup 1nf |z — yl;

z€K; YEK?2 yEK2
see e.g. [29]. We now consider metric spaces of pairs (K , i) where K is a
compact subset of T% and y is a nonnegative Borel measure supported on

E. These measures are assumed to satisfy
[ */2|a(r)]

(10) lim =0,

Moreover, for n > d/a and for each n-tuple i = (21, ...,12,) € 37, the n-fold
convolution (XX‘) [ERERE (ng) ) is absolutely continuous and we have
(11) (XZ(:L) ) ceek (ng)u) = gg’?)\, with gffi) € C%id’w.

We let 20 be the set of all (K, u) where K C T? is closed,  is a nonnegative
Borel measure supported in K satisfying (10) and (11). A metric on 20 is
given by

(12)  dy (K1, ), (K2, p2))

a/2| A
= da(K1, Ka) + [11(0) = i2(0)| +  sup I |“1(r)_1 fra(r)]
TEZd\{O} (I~

+ Z 2_nmln{1, Z ”gfﬁ7 qu’ cha d w}

n>d/a 1eJn

Lemma 2.1. (i) (20, dyy) is a complete metric space.

(ii) For every nonnegative C*° function f and every compact set K such
that K D supp(f) the pair (K, f) belongs to 28.

(iii) Let 0 be the subspace of W consisting of (K, ) satisfying

(13) H(Q) < w(QDIQI"
for all cubes @Q and 1 < n < d/a. Then B (with the metric inherited from
W) is a closed subspace of 2.

(iv) Let Uy be the subset of U consisting of pairs (K,g) € U with g €
C’OO(']Td) and let By be the closure of Vo in Y with respect to the metric dyy.
Then By is a complete metric space and for every nonnegative g € C™(T4)
there is a C > 0 so that for all compact K D supp(g) the pair (K,g/C)
belongs to V.
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Proof. To identify a limit measure of a Cauchy sequence the theorem of
Banach-Alaoglu is used. The proof is a straightforward modification of the
arguments in [16], [17], see also [5], [18] and [29]. O

In order to prove a version of Theorem C we wish to show that there
are pairs (K, 1) € Pp such that y is supported in a set of lower Minkowski
dimension and Hausdorff dimension «. This will be deduced from a Baire
category argument, as follows.

Theorem 2.2. Suppose a < < d and ¢ > 0. Let B¢ be the subset of Vy
consisting of pairs (K, p) for which there are cubes Q1,--- ,Qnr with

M

(14) KclJQ and Qi = =|Qu| <M.
j=1

Then BV is open and dense in V.

The Baire category theorem gives
Corollary 2.3. N3, Qot/NIN G5 o dense Gs set in D.

Let dimy;(K), dimg (K) denote the lower Minkowski dimension and Haus-
dorff dimension, respectively. Then dimp(K) < dimy(K). If (K,u) €
NX_; BeH/NN then dimy(K) < o and hence also dimy(K) < a. On
the other hand, (10) implies dimp(K) > « (see e.g. [35, Corollary 8.7]).

Thus we obtain

Corollary 2.4. The set of (K, ) € By satisfying
dimy;(K) = dimp(K) = «
is of second category in V.

Concerning the proof of Theorem 2.2, it is easy to see that the sets U, .
are open subsets of V. The remainder of this section is devoted to proving
that they are dense.

2.2. Awverages of point masses. For large N let 'y be the finite subgroup of
T of order N, consisting of {k/N : k =0,1,...,N — 1}. Let I'%4 the d-fold
product, a subgroup of T¢,

The following result yields measures on T¢ which are sums of point masses

supported on points in Fﬁiv and satisfy properties analogous to (10), (11) and
(14).

Proposition 2.5. Given 0 < 5 < d and an integer n > 2, there exist
No(ﬁ,n) > 1, 01 = Cl(d), 02 = CQ(ﬁ,d), 03 = C3(5,d, 1‘1) such that fO’/“ all
N > No(B,n) with ged(n!,N) = 1, P := | N?| there is a choice of x1,...,xp
with x; € Fﬁl\,, such that the following properties hold for the measure

| P
B= 52%-
=1
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(i) For all v € T4\ {0},

(15a) [A(N7)| < CLN P2 (log N1/
(ii) For 1 < £ < d/B and for all cubes Q with |Q| < N—%,
(15b) Q) < CoN~Plog N .

(iii) For d/B < £ <n,

N-4(log N)&

*Z —d
(15¢) max i ({u}) = N7 < Cs—g 75—

Fd

While this result is not optimal (in particular with respect to the powers
of the logarithm), it is all we need for the proof of Theorem 2.2. See §3.

2.3. Transference. For N > 1, we will write

|_|N = Nd]l[_l/271/2)d (Nt)dt

TN:$Z5

-Td
JeEry

and

Recall that A is the uniform probability measure (i.e. normalized Lebesgue
measure) on T<.
We start with some simple observations.

Lemma 2.6. The following holds true for N > 1:
(i) My =\ for £=1,2,- -
(ii) TN (r) = 1 for r € (NZ)?, and 75 (r) = 0 otherwise.
(i) Oy (r) = 0 for r € (NZ)4,r # 0.

Proof. (i) follows by direct computation of the convolution (it is also a con-
sequence of (ii) and (iii)). For (ii) notice that if » ¢ (NZ)?,

d —2mirg 1

1 e
—2mir-j/N __ o
N(r) = Nd Z " H N e—2mirg/N _ 1 0.
JE[N]4 k=1

Otherwise 75 (r) = 1. For (iii) just notice that My(r) = Hk 1 Smﬂ:}:%,m. O

In what follows we let v be a nonnegative smooth function supported
n (—1/2,1/2) such that [wv(t)dt = 1, and let vy = N%(N-). Thus vy
generate a standard smooth approx1mat10n of the identity. We now convolve
the point masses obtained in Proposition 2.5 with My and the mollifier vy.

Lemma 2.7. Let p be as in Proposition 2.5 and let f = vy * My * . Then
f is a smooth function satisfying the following properties.
(i) For 1 =0,1,...,

IV! flloe < CON.
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There are cubes Qj,j =1, , |NP| with side length 2/N such that

NP

supp(f)  |J @;-
j=1

(ii) For r € Z\{0}, A >0

(16a) 17(r)| < C(log N)~Y/2N—8/2 min (CO(|22\NA’1>
(iii) For all cubes Q
(16Db) /Qf*"(t)dt <29Q["P/Mog N, 1<n<d/B.
(iv) For1=0,1,2,...
i1

(log N) =~
N(nB—d)/2
Proof. The assertion about the support follows immediately from the defi-
nition. Let

(16c)  [V(f" = Dllos < C(HC(B,m) N', d/p<n<n.

gtt) =Ny v ) = [

AN (t — s)du(s).
Td

The mollifiers satisfy vy (r) < N¢max{1,C(A)(N/|r|)*} for any A > 0. We
thus observe that the estimates for f are implied by the following estimates
for g.

(17a) sup [g(r)| < C(log N)/2N=0/2,
rez\{0}
17 g (t)dt <2 og N, n < ,
Q
for all cubes Q,
n+1
“n log N) 2
(1) sl =1 < COo) TE e d/s <<
and
(17d) sup [g(t)] < N7.
teTd

To show (17a), notice that g(r) = My (r)fi(r). If r € (NZ)?, then g(r) = 0,
by Lemma 2.6, (ii). Otherwise use the trivial bound |y (r)| < 1 and (15a),
together with the observation that i is N-periodic.

To show (17b), we consider separately the three cases |Q| < N4, N~% <
QI < N7, and |Q] > N7,

Case 1: |Q| < N~%. Notice that, as in the proof of (17d), we have
log N
NnB -

My p™(8) = N ({u}) < NTM(B)
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Thus
log N
Ty 40"(Q) < |QINM(B) o
= [Q"P(|QINY) BN (B)log N < M(B)|Q["/¥log N

by our assumption on |Q|.

Case 2: N~4 < Q| < N8 1In this case, by (15b)
g*"tdt:/ My« (t)dt <  max  p™™(Q
o= [ mespmwies ) max @)
< M(B)N"™log N < M(3)|Q["*/%1og N.
Case 3: |Q| > N2, In this case we can split @ into no more than

24 N8| Q| cubes of size at most N~™7. Applying (15b) to each cube we may
bound p*"*(Q) by
log N
NnB
Since g = M * p*", (17b) follows also in Case 3.

To show (17c), notice that by Lemma 2.6 (i) and (15¢),

g = T Ty + TR (0™ = 7v) = A+ TR 5 (0™ — 1)

IN"1Q) M (8) =2"M(B)|Qllog N < 2/M(8)|Q["*" log N.

and it
- (logN) =
| — 7| < O(ﬁvn)WTN-
Now ¢*" is continuous and we get
n+1
“n (log N) 2
_1l < Mot T
g =1 < CBm R

and thus (17c).

To show (17d), notice that for any t € T, g(t) = N%u({u}) where u is the
unique point in I'4, contained in the cube (t — 1/(2N),t + 1/(2N)]¢. Now
(17d) follows from (15b) with n = 1 and @ containing u. O

Definition. Let f be a smooth function on T¢ and let p € N. We let
the p-periodization Per,f be the unique smooth function on T¢ which is
1/p-periodic in each of the d variables and satisfies

Per,f(t) = f(pt) for0<t;<p ' i=1,....d

The following lemma is analogous to a crucial observation about peri-
odized function in [16].

Lemma 2.8. Let p € N.
(i) Let f € C®(T4). Then

Per, f (kp) = f(k), k € Z¢,

and @(T) =0 if r € Z% is not of this form.
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(ii) Let R = [a1,a1 + p) X --- X [ag,aq + p), for some a € R? and, for
v =1,...n let P, be a trigonometric polynomial with frequencies in R,
i.e. P, is a linear combination of the functions x +— exp(2mwi(k,x)) with
ke RNZL Let fi,..., fn be smooth functions on T and let G, = Per, f..
Then

(G1Py) %% (GpPp) = (Gy*--- % Gp)(Pyx--- % Py).

Proof. This follows easily by Fourier expansion using the fact that every
k € Z% can be written in a unique way as k = pl + k' where [ € Z¢ and
K eR. O

Lemma 2.9. Letn > 0, 8 > « and let k be an integer with k > g‘_% Then
there exists mg = mo(a, B,n,m,, k) > No(B,n) such that for all m > myg
with ged(n!,m) = 1 the following hold with N = m* and f as in Lemma
2.7.
(i) The (2m + 1)-periodization of f,
Fm = Per2m+lf7
is smooth with [pq Fp(t)dt =1, and, for 1 =0,1,...,L

(18a) IV (Fn)lloe < C(Lym* @ EFLL,

Moreover, there are cubes Q; j = 1,---,(2m + 1)¢|m*P|, of side length
m~*=1 such that

(2m+1)¢ [ m*? ]

(18b) supp(Fy,) C U Qj .
j=1

(ii) For r € Z4\{0},
7|2 | Er ()]

19a =7
(1 w1 /Ir)
(iii) For all cubes Q with side length at most 2/\/m.
(19b) | Eod <avQbi@r, 1<n < dfa
Q

(iv) For n > d/a let p, = "%, Then
(19¢) IE = Ulgonw <m, dfa<n<n,
(v) For all rectangles R of side lengths at least 1/y/m.

(19d) /RF,;;"(t)dt < (1+n)Rl, n<d/a

Proof. Part (i) is straightforward given Lemma 2.7. We thus just need to
give the proof of (ii).
We first recall from Lemma 2.8 that

Fon((2m + 1)k) = f(k)
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for k € Z4, and E\n(r) = 0 for r not of this form. Thus for r # 0, by (16a)

V8log!/?(8mkd) min (C’(A)mkA(Zm + 1A 1)

|Fm(7‘)| < mkﬁ/2 |T’|A

12, (kDA
< 25 Pin (22—
< Cha e i (F 1)

oo dogZm pmTF )T p(mE
T Ak k(B—a)—a) /4 p(k(B—a)—a)/4 (k)2

T,Z)(m_k_l)_l T,Z)(m_k_l) ) mE+1A
a7 s ™ ER 1)

provided that > m > mg and mg is chosen large enough. We separately
consider the cases 0 < |r| < m**! and |r| > m**1. In the first case we
obtain (19a) directly from (20), provided that my is large enough. Now let
2l < r/m*+1 < 241 with | > 0. Then by the monotonicity of 1 and the
doubling condition (6),

Y(m ) <@ < (T

m+DA

min( [ ,1)

(20) <n

and we see in this case (20) is estimated by

1/} m—k—l —1 N B - Y
n—mfkw_a)_l)/ﬁ““’ Co 2 (fr| =] ~o/2.

Thus if above we choose A so large that 20‘+2_AC’¢ < 1 we may sum in /.
Then by choosing my large we obtain (19a) for all r # 0.

Proof of (iv). Notice that by (16¢) and our assumption on k,
1E = Ul gtpny < N7n=lond)=e
for some € > 0 and sufficiently large m. Setting
G=vll(Fm—1)
it remains to show

Wop—|pn) i (G) < 1/2

for m > mg and large enough my.
Again by (16¢), we have

Gl + N7 VG|oo < N~ (nlon])e
for some € > 0 and sufficiently large m. Now if 0 < |h| < 1/N, then by the

mean value theorem, for any = € T¢,
|G(z +h) - G(z)|  |G(x+h)—G(z)] |h|1=(Pn=Lpn])
|R|en=lonJyp(|n]) A ¥([h[)
< Nl—(pn—Lan)—ECW’h‘l—(pn—tan)—eﬁ < C¢,EN_E/2 <n/2




CONVOLUTION POWERS OF SALEM MEASURES 13
provided that mg is chosen large enough. If |h| > 1/N, then
 NPn—lonl

Gla + h) — G(a) 20Glloe .
oN~(en=lenl=e T < /2
BT (]) = e g (R]) = sy <

provided that myg is chosen large enough. This proves (19c).

Proofs of (iii) and (v). In what follows we say that a fundamental cube
is a cube of the form H?Zlbnﬁi—l’;;l——:-ll) where v; € {0,...2m} for each
i=1,...,d.

We first consider the claim (v). Let R be a rectangle with side lengths
[1 > -+ > 1y, and assume that {5 > m~1/2. Notice that R is contained in a
union of no more than

2m 4+ 1)y -1y + Cy(2m + 1)y -1y 4

many fundamental cubes of size 1/(2m + 1)¢. Since the integral of F*™ over
any fundamental cube is equal to (2m + 1)™¢, we see that

/F;n(x)dx <l lg+ Cd(2m + 1)_111 ey
1

_CGa Cq
(2m + 1)l 2/m

Thus (19d) is satisfied if my is chosen large enough.
In order to show (iii) we separately consider the two cases where the side
length of @ is larger or smaller than (2m + 1)~1.

= Rl + |R| < |R[+ |Rl.

Case 1: (2m +1)1 < |Q|"? < 2m~1/2. In this case the argument above
shows

/ F(z)de < (14 ClQ)
Q
and (19b) will follow if

(1+Ca)lQI < n(IQDIQI™4.

But this is indeed the case if |Q| < 2/y/m < 2/,/mg and my is large enough.

Case 2: |Q|Y¢ < (2m 4 1)~'. We first assume that Q is contained in a
[0, (2m + 1)~1)4. Then by (16b)
1

F,Znilﬁd:l?:i/ ()t
/Q (@) @Cm+1)? Jomino Q

< 1

~ (2m+1)d

29k logm

= W\Q’nﬁ/d <|Qm/

24((2m + 1)%Q)) """ log N

provided that mg is chosen large enough. (19b) will follow if
QI < QIR
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But this is the case if |Q|Y/¢ < 1/(2m+1) < 1/my is small enough. By peri-
odicity the above argument holds true if () is contained in any fundamental
cube of size (2m + 1)~ Moreover if @ is any cube of size < (2m + 1)~¢
then we may split Q in 2% rectangles supported in fundamental cubes and

apply the same argument to each such rectangle. This finishes the proof of
(19Db). O

2.4. Approzximation. We are now ready to prove Theorem 2.2. It remains
to show that, for every v € («a, d) and every €1 > 0 the set 67! is dense in
By. This reduces to approximating (K, g) € %y where g is smooth. We may
further assume that there exists a small constant ¢ > 0 such that g satisfies

(21) /Q g (@)dz < (1 - (|Q)IQ™e/

for all cubes @ and 1 < n < d/a. This is because otherwise we can approx-
imate (K, g) by (K, (1 —¢)g) and let ¢ — 0.

Lemma 2.10. Suppose a <y <d, g1 >0, c€ (0,1), (K,g) € By where g
is a smooth function satisfying (21). Let € > 0. Then there exists a compact
set F' and a smooth function f such that (F, fg) € BV and

dQﬁ((K,g), (F7 fg)) < €.

Proof. We let € = ¢€/100. Fix 8 with @ < f < 7. Choose n = n(e) =
1+ [logy 17 so that

(22) R

Fix an integer k such that

With these parameters we consider the functions F,, as constructed in
Lemma 2.9. We let A, to be a finite ¢’-net of K; i.e. a finite set of points
in K such that K is contained in the union of balls of radius € centered at
points in Ays. We shall show that if n > 0 is chosen small enough and if
m > mo(a, 5,1,1, k) is chosen large enough, then the choice

(H,F,g) with H =supp(F,g)U Ae
will give the desired approximation of (K, g).

Notation: In this proof we shall write By < By for two nonnegative
quantities By, By if B < OBy where C may only depend on «, 3, v, €1, k,
d and € and on the function g (so C' will not depend on 1 or m). We shall

call such a C' an admissible constant.
To show that (H, F,g)\) € B!, we only need to verify (13) and (14).
We postpone (13) to a later part of the proof and now verify (14). By (18b)

supp(Fmg) € | JQ;
j
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where Qj, j = 1,---,(2m + 1)4|m*?|, are cubes with side length m~*~1.
Thus H = supp(F,,g) U A can be covered by

M = (2m + 1) m" | + (#A0)

cubes of side length m %=1, To verify (14), it now suffices to show m=%~1 <
e1M~1/7 which follows from 3%m*5+d 1 (#A) < £,7m**7. Since k > fyl:—g,
the last inequality holds provided that m is large enough.

We need to show that for sufficiently large m

doy ((K, g\), (H, Fg\)) < e.

Since supp(Fi,g) C supp(g) C K, we have H = supp(F,,,g) UAs C K. Thus
the Hausdorff distance of H and K satisfies

(23) de(H,K) < €.
To handle the other components of dgy, we set
(24) L = 10nkd

and we will use the fact that, since g is smooth, there exists an admissible
constant C' > 0 such that

(25) Z Ir|Eg(r)] < Cm—(k+2)L

Irloo 2m

for all m > 1. By the periodicity of F},,, we have
[50) = Frng()] = | > Fu(-wglw)| < 3 [5w)| < Cm™!
u#0 |t oo =m

and hence

(26) 15(0) — Frng(0)] < €

provided that m is large enough.
For the nonzero Fourier coefficients we have,

[50) = Fug(r)] = | > Bl = w)g(w)
ustr

< > Far—wi)]+ > [Fulr —w)j(u))-
|u|<]r|/2 |ul>]r|/2

By (19a), this is estimated by

nCyu(r| =222 r| 702 Y7 glu)l + () D [g(w)]

jul<irl/2 ul>1rl/2
S (D= e[ 7) S () e 707
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and this is < 9 (|r|~!)|r|~*/2€¢ provided that 5 > 0 is chosen small enough.
With this choice of 1 we have proved

rlo/2 N o
(27) sip T 16() — Fg(r)] < €'
reza\{o} Y(Ir[71)

if n is sufficiently small and m is sufficiently large.
It remains to show that (13) holds for pu = Fi,,g, i.e.

(28) /Q(Fmg)*"(w)dw <y(IQNIQ™/?, 1< n<d/a
and that, for d/a <n <n
29) Y [[0g) ok (M g) = () Fong) %% (0 Fon) | oms < €

in
11, in
provided that 7 is small enough and m is large enough. Notice that by the
definition of the metric dgy and by (22) the corresponding terms for n > n

can be ignored.
Proof of (28). Following [16] we write
Pale)= Y (e,
7o <m.

By (25) we have, for sufficiently large m

(30) g — Pullcr < Cm~ 2L <1,
We first verify that for every n =1,...,n,

(31a) g™ = (Pr) ™[l cr < m™,
(31b) 1(Fing)™ = (FrnPrn)™ oo < m ™",

provided that m is chosen large enough. To see this we write

= (9= Pn)™ + né <Z> (9 = Pn) " % (P)™.

Therefore, using (Z) = (";1) for 1 <v <n-—1and (30),

n—v

n—1
*N *n n v
1™ — (B ™ot < g~ Pullor 3 (V)\\Pmuoo

v=0
1

-1 _ _
<lg- PmHCL(l + ”PmHOO)n nsm 2”(2 + HQHOO)n
and this gives (31a) provided that m is large enough.
By (18a) and the first estimate in (30) we have
[Em (P = 9)llcr S 1 Fmlloz |1Pm — gllor

< kd DLy (4L < Opkd=L <
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for sufficiently large m The same argument as above then gives

*n *1, n—1
[(FonPr)™ = (Fmng) " llcr < | Fn(Prn = g)llozn (L + [ Fingllec)” 1

— -1 — -1
S mFE (L mMlgllo)™ T S mM (L4 lgllee)" T n

and this gives and this gives (31b) provided that m is large enough.
As a consequence of part (ii) of Lemma 2.8 we have

(32) (FnBn)™ = ()™ (Pn) ™"
Now for fixed n < d/a and a cube @, we have by (32) and (31b)

[ Enoy @ <| [ By @ye] + | [ ((Fug) ™) = () @) o
<[ [ @By @yis] +m

< /(Fm)*"(a?)(Pm)*"(w)dw +Cm~ Q@
Q

<| [ @) @] + Suapiare

for sufficiently large m. Thus, in order to finish the proof of (28) we must
show

B3 [ @) @ < (1 el
Q
If the side length of @ is < 2/y/m, then
| [ (B @) (P @)a] < P " [ (B (@)
Q Q
< (1+llg™ oo Ine(IRDIQI™ < (1 = Hw(lRNIQl™

where in the last inequality 7 is chosen sufficiently large (the second inequal-
ity follows from (19b)).

If the side length of @ is > 2/y/m, then @ can be split into rectangles R
of side lengths between 1//m and 2/y/m. Writing

an = ][ ¢ (@)dr,  bp = ][ (Pr)™ (2)da,
R R
we then have
1) — bl gy < m V2 (P ™ o < m Y2

and
br — arl < lg™" — (Pn)*™[lec <m™,
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by (31a). Now

‘/Q(Fm)*"( )*( dm‘ < ‘Z/ aRd:E‘

+‘Z/ (br — ar dm‘ +‘Z/ ) (br — (Pm)*"(l’))dl"
< S anlh iR+ (a G

<(+n) /Q " (2) fm /Q (F) ™ (2)d

where C’ is admissible. By (19d) and (21) the last expression is less than or
equal to

%(1+n)IQ|

Juti@DIQr e/ < (- Syu(eplQr

(1 +m)(1 = w(QNQI™/* +
C//
Jm

provided that 7 is small enough and m is large enough.
In either case we have verified (33), and this concludes the proof of (28).

S((l—%c)—i—

Proof of (29). Fix n with d/a <n <mnandi= (11, - ,1,) € (Jp)". Write

g9 =x\Mg,

forj=1,---,n, and

Pjm(z) = Z @(T)e2ﬂ<r’m>-

I7]oo <m
(29) reduces to estimating

g1 % -+ % gn — (Fing1) x - % (Fingn)llcon v

Slgr#--%gn — Prm* - % Pomllconw

+ | Prm %+ % Ppam — (EnPrm) % -+ % (Fp P || con v

+ [[(FnPrm) * -+ % (Fin Pum) — (Fing1) * - -+ % (Fign) |l conv-

Arguing as before (¢f. (25)), we have for sufficiently large m
1Pim = gillor < Cm~¢2E <1

and

| Fm (P, m,j _gJ)HC'L < Cmbtt <L
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Using the continuous embedding CT ~» CP¥ we get therefore, for suffi-
ciently large m,

||91 *"'*gn_Pl,m*"' *Pn,mHCpn,w

< Cm~ IR T+ llgjlle) < m™!
j=1

and
‘(FmPl,M) * ook (B Pym) — (Fingr) * -+ % (Fmgn)|lcon v

n
<Om™ T+ llgjllee) < m ™
j=1

On the other hand, using Lemma 2.8, (ii), again we have
(EPrm) %% (FPrm) = (Fi)" (Prym % -+ % Ppm).
Thus, by (19c¢)
||P1,m koook Py — (Fmpl,m) *oeeox (FmPn,m)HCPnW
=Cl|(1 = F")(Prm * -+ % Pon) | con v
S = Exlgonwl[Prm % -+ % Pomllcon.o
SllPrm s Pamllor S 01+ llgr - xgnllor) Sn

provided that m is sufficiently large.
Combining the above estimates, we get

g1 # -+ % gn — (Fg1) * -+ % (Fngn) lgonwe Sm™ +1.

This guarantees (29) if 7 is chosen sufficiently small and m is chosen suffi-
ciently large. This completes the proof of Lemma 2.10. O

2.5. Conclusion of the proof of Theorem C. The result is about measures on
R? rather than T?¢. We use that every measure on T which is supported on
a cube of sidelength < 1 can be identified with a measure that is supported
on a cube of diameter < 1 in R%. We take a measure y as in Corollary 2.4.
After multiplying it with a suitable C¢° function we may assume that it is
supported on a cube of diameter < 1. For each n we may decompose u
using the partition of unity (8). The regularity properties (iii) and (iv) in
Theorem C follow immediately from (11) and (13). The compact support
of u and the decay property (10) on Z? imply the decay property in (ii).
This is a standard argument (see e.g. [13], p.252, with slightly different
notation). O

2.6. Optimality of Hélder continuity. Following the argument in [16], we
show that the Holder continuity obtained in Theorem C is best possible.

Proposition 2.11. Let p be a Borel probability measure on R supported
on a compact set of Hausdorff dimension 0 < a < d. Suppose u*™ € C*(R?)
wheren € Nyn > 2 and 0 < \ < oo. Then)\g%l.
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Proof. Define by &, () = [[ |z —y| du(x)du(y) = ¢ [ |i(€)?[€[~dE the v-
dimensional energy of . Recall from [35, p.62] that the Hausdorff dimension
of E is equal to the supremum over all v for which there is a probability
measure v supported on E with £,(rv) < oo. Thus it suffices to show that
&y (p) is finite for v < (d + 2A)/n.

Since p*" is compactly supported it also belongs to the Besov-space B)Z\ ~
and thus, by Plancherel, we have, for R > 1, 7

[ laPrae s r
|€|~R
Now let 0 < v < d. By Holder’s inequality,

~ 2 n
/ |/L(£)| d¢ 5 Rw—d(/ ’ﬂ(f)’znd§> 1/ Rd(l—l/n) S.; Rﬁ/—d/n—2)\/n.
13 A

~r €197 n
Letting R = 27, j = 0,1,---, we see that &, () is finite if v < (d + 2\)/n
and the proof is complete. O

3. RANDOM SPARSE SUBSETS

The purpose of this section is to establish a more quantitative version of
Proposition 2.5.

3.1. Assumptions and Notations: In this chapter x1, o, ... will be indepen-
dent random variables uniformly distributed on I‘ﬁl\,. That is, for any m € N
and subsets Aq,..., A, of F‘fv the probability of the event that x, € A, for
v=1,...,mis equal to N~ [ card(A, NT%). We denote by Ty the
trivial o-algebra and by J; the o-algebra generated by the (inverse images)
of the random variables 1, ..., z;.

Given random Dirac masses §,,, ¥ = 1,...,m we define the random
measures (i, and o, by oo = o =0,

m
-1
am:E 0z, b =M Omy, m=12,....
v=1

3.2. A Fourier decay estimate. The Fourier transform p is defined on Zﬁl\,
or, after scaling, on I‘ﬁl\, and we have

1 ;
m (Nu) = p— Z e~ 2miNuwa;) g e g
j=1

Lemma 3.1. Let h > 1. The event

N 4log'/?(8Nd+h)
<
(34) { e lm (V0] < =50}

has probability at least 1 — N—".
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Proof. The proof is essentially the same as in the classical paper by Erdés
and Rényi [9]. Fix u € T'%\{0}, and consider the random variables X, =
e~ 2miN(wzv)  Then X, v = 1,...,m are independent with |X,| < 1 and
EX; = 0. Thus by Bernstein’s inequality (see e.g. Corollary A.4), for all
t>0
P(A(Nu)| > t) < 4e-m/1,

Setting t = 2m~"/2log!/2(ANt") we get P{|i(Nu)| >t} < N=9". Allow-
ing u € F‘fv to vary, we see that IP’{(34) fails} < N~h, O

3.3. Regularity of self convolutions. We begin with a few elementary obser-
vations. Let

(35) Njg=o' =0t

so that

(36) o= Ajy.
j=1

Lemma 3.2. (i) For j > 1, Aj, is a positive measure, and we have, for
{>2,

-1
¢ .
(37&) Aj’g = (5ng + Z <k‘> 5(€—k)mj * O-jﬁl
k=1
-1 /
(570) SLRD I 64 IED DENE TRt
k=1 1<vy,..vp<j—1

(ii) Assume that ged(l!, N) = 1. Let m > 2 and let QQ be a cube of
sidelength > N~Y. Then for j1 < --- < ji

P{A; Q) £0,..., 0, 4(Q) # 0} < 2T Qm K.

: d
In particular, for each u € I'§

P{Ajhg({u}) #0,... =Aj1<,€({u}) + 0} < (2N_dm£_1)K_
(iii) Assume that ged(¢!,N) = 1. For j = 0,...,m — 1 let & be a given
event in F;. Let

(38) v _ ot — ot = N7 = (G -1 on &,
J 0 on SJE_I.

Then E[Y;|Fj-1] = 0. Let Wo = 0 and W; = 30 _\ Yy, forj =1,...,m.
Then {W;}TL is a martingale adapted to the filtration {F;}7,.

Proof. Part (i) follows immediately from the binomial formula. For part (ii)
note that by the assumption ged (¢!, N) = 1 the random variables (¢ — k)x;,
1 < k < ¢, are uniformly distributed. Observe that for any fixed a the
probability of the event {(¢ — k)xqy — a € Q} is at most 2¢|Q|. Thus the
probability of the event that (¢{ — k)xgy —a € @ for some choice of a =
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Ty + 42y, 1 < v, < j — 1, does not exceed 2%|Q|(j — 1)k 1.
Hence IP’{AM ) # 0} < 2d|Q| S ms < 21 Qm!~! . Now the assertion
in part (ii) follows. The second assertion in (ii) is proved similarly.

For (iii), clearly {W;}7" is adapted to the filtration {JF;}* . By assump-
tion the random variable gx; is uniformly distributed on I‘ﬁl\,, for 1 < g </
Given fixed x1,--- ,x;_1, then by (37b)

E[o} ({u}) — o3 ({up)|a1, -+ 1]
_ IAYS 4. )
=N <q>(ﬂ—1)q=N 4t — (G —1)h.

Since £;_1 € F;_1 we get E[Y] Lg; ]ffj_l] = 0 in this case. On SC 1 we have

Y; = 0, which also implies E[Yj]lEg 1\3"]-_1] = 0. Hence E[Yj\fﬂ_l] =0 and
o

this shows {W;}., is a martingale. O

We shall use (a small variant of) an elementary inequality from Kérner’s

paper ([16, Lemma 11]) which is useful for the estimation of sums of inde-
pendent Bernoulli variables.

Lemma 3.3 ([16]). Let 0 <p <1, m>2 and 2mp < M < m. Then
m M
> ok < 2(mp)
k M!
k=M
In particular, if mp <1 and if Y1,--- , Y, are independent random variables
M
with P{Y; = 1} = p, P{Y; = 0} = 1 —p then P{Y1, V; > M} < 2000
Proof. Set w, = (7)p¥, then wyiq1/u, = k+1p < <3 Lfor bk > M

and thus the sum is estimated by Zkz MUk < 2upy < 2(mp ) . The sec-
ond assertion follows since P{> ", Y; > M} = > 3;% ,, IP’{EFl Y; =k} <

Y or g Uk O
For £ = 0,1,2,..., 0 < € < d, and h € N define recursively positive
numbers M (¢, e, h) by
M(0,e,h) =1
(39a)
M(l,e,h) =Ul(e,h)k(E, h), €=1,
where
(39b) Ule, h) == max{[e?*?], [e71(2d + h + 1)1},
l—1 /
(39¢) k(L h) = Z <q>M(q,d(1 —q/l),h+1).
q=0

The growth of these constants as functions of £ and h is irrelevant for our
purposes. For the sake of completeness we give an upper bound.
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Lemma 3.4. Let € NU{0}, 0 < e <d, and h € N. The numbers defined
in (39) satisfy

M(le,h) < e Hel32(h + 1))

Proof. We argue by induction, with the case £ = 0 being trivial. For the

induction step we use (5) = ﬁ (521) and estimate

— ¢ <e— 1> (eT3¢2(h + 1+ q))"
q d(1—9)
2 (-1 ed+3 _1)2 q
(40) <t O( ) )( (C—12(h+ 0)

<2312 h+0)+1)""

where in the last line we have used (14 2)%/® < e® for 0 < z < 1. Thus

(41) H(ﬁ, h) < 61/252(6[“_352(}14-5))6_1.
Now one checks that U(e, h) < e?*2he™1 and (41) yields for £ > 1
M(le,h) < etT2he™ k(0 h) < e 1 (32 (h +0))". 0

Lemma 3.5. Let { € NU{0}, 0 < e <d, and h € N. Let M({,e,h) be as
in (39a). Let N be an integer such that N > 2¢ and ged(N,¢!) = 1. Let
E..(¢,e,h) be the event that

or(Q) < M(L,e,h)

holds for all cubes of measure at most m~*N~¢, and let E(f,e,h) be the
intersection of the E,(¢,e, h) where m < NT. Then E(l,e,h) has proba-
bility at least 1 — N~".

Proof. We argue again by induction on ¢. When ¢ = 0, 0* = §; and the
statements clearly holds with M(0,e,h) =1, for e > 0 and h € N. Assume
that the statements hold for 0,1,--- ,¢ — 1; we prove that it also holds for
£. Let
-1
42)  F=F(—1,h)=()E(¢eqe.h+1), witheg=d(l- %).
q=1
By the induction hypothesis, the event F C has probability at most /N ~h—1 <
%N ~h since we assume N > 2/. We now proceed to estimate the probability

of E(f,e,h)* N F.

Fix m < N%, and fix a cube Q, with N=¢ < |Q| < N~*m~*. Notice
that d/¢ = (d—eg)/q. Therefore, if k(¢, h) is as in (39c) we see, using (37a),
that A;(Q) < k(£,h) holds on F, for j = 1,--- ,m. Now let U > 2%+2 be
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an integer and let A(qu,m be the event that
(43) > A(Q) = Ukl h).
j=1

Now by (36) and (39a) the event E,, (¢, e, k)b is contained in the union over

Q —L
the ‘AU(a,h),m .

Let £ be the collection of all cubes of measure N ~¢m ¢, which have corners
in T'%. Then #(9Q) < (2N)?. Notice that every cube of measure less than

N—em~t is contained in at most 3% cubes in . Hence
(44) P(Em(¢,e,h)E N F) < (6N)4 max P(AY
€

when @) ranges over the cubes with measure at most N ~*m

(ehym F).
Now in order to estimate ]P’(.Agm N F) we observe that if (43) holds on F'
then there are at least U indices j with A;,(Q) # 0 thus we may assume
m > U. Now we see from Lemma 3.2, (ii), that for U < k < m and for any
choice of indices 1 < j; < -+ < ji < m, that

P{A;,0(Q) #0,v=1,....k} < 2T |QIm" )"

Thus

m

PAZ, NF) <Y <7Z> (2411Qm )"
k=U
Now let p := 29+1|Q|m*~1. Since |Q| < m~* we have mp < 29+1. Since we
assume U > 29+2 we get from Lemma 3.3,

" m a1 1k 2(mp)Y 2(24FIN—=)U
E 2 Q < < .
= (k‘) ( | |m ) - U! - U!

Thus we get from (44)

J 2(2d+1N—€)U(e,h)

(45) P(Em((,e,h)" N F) < (6N) el

It is not difficult to check that
6d .9 (2d+1)U
U!
this can be verified by taking logarithms and replacing log U with the smaller
constant flU_l In(t)dt. Since in addition U = U(e, h) > (26[4'7?“] then we
get N4—¢U < %N‘d_h and thus

<1for U >elt?—1;

1
P(Em(t,e,h)ENF) < 5N—h—d.
We have already remarked that P(FC) < $N~". Thus,

P(E(,e, b)) <P(FY+ Y P(Bu(le,h)nF) <N

d—e
m<N ¢
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This completes the proof. O

Lemma 3.6. Let { € N, 0 < 5 < d/l, and h € N. Let N be an integer such
that N > max{2/(, e} and ged(N,¢!) = 1. Let &, (¢, B,h) denote the event
that

¢ log N

7@ < (BN (0T A 1)

holds for all cubes of measure at most N=5¢, and let

EW,B,h) = () Em(t,B,N)

m<N?B
Then E(¢, 3, h) has probability at least 1 — N~".
Proof. Let

(46) (0,8, h) : §<> —q),h+1)

and let V > €298} be a positive integer. Let Em(f, h,V') denote the event
that

Q

~ log N
THQ) SR A WV

holds true for all cubes with measure at most N, We shall show that for
sufficiently large V' the complement of this event has small probability.
We condition on the event

(41 F= ﬂsq, b+ 1)

= {a:;z@) < M(q, 86— ) h+1)
VQ with [Q| < m ™ INTAE-D 1 <m < NW}'
By Lemma 3.5,
P(FC) < (N1 <t LN,

We shall now estimate P(Ey, (¢, h, V)t N ) The assumptions m < NB,
7[3(6 9)
Q| < N~ with 8 < d/¢ imply for ¢ < £ — 1 that m < N (since
d— B0 >0)and |Q < m IN~( ‘1)5. Thus we can use (37a) to see that
Aj (Q)<m(€ﬂh)onF for j =1,.
Let -Av be the event that

log N J

) > = - o'
(48) Z; A o(Q) > Vvk(L, B, h), where Vi Lvlog log N
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Let JZV,m be the event that (48) holds for some cube with measure at most
N~ Arguing as in the proof of Lemma 3.5 we find that

~ ~ 9(d+1)Vn
P(Ay,, NF) <2 (6N)?——
’ V!
We need to verify that
(d+1)Vn
(49a) 2. (6N)d27 < N—d-1-h
V!

for V > €2¥8h and N > €. We take logarithms and replace log Vy! with
the lower bound flvN_l logtdt = (Vi —1)log(Vy —1) — Viy + 2. Then (49a)
follows from

(49b) log2+dlog6 + VN (1 + (d+1)log2) —2 — (VN —1)log(Vy — 1)
< —(h+1+d)logN.

Since by assumption V > €210 and N > e crude estimates show that
(49b) is implied by

(49¢) % log(Viy — 1) > (d+ h + 1) log .

For N > e we have logloglog N < %log log N and therefore log(Vy — 1) >
$loglog N. Thus (49c) is implied by V > 4(h + 2 + d) which holds since
we assume V > e*¥8h and N > €. Thus (49a) holds. We thus get
P(Ep(¢,h, V)t N F) < N~4=h=1 and hence

P(Upane B (6,0, V)8 SPES) + > P(En(C,h,V)ENF)
m<NB
—h —d—h—1 —h
SAINTh 4 NP <N

It remains to show that

(50) VE(, B, h) < — (1071 2(£ + h))*

E
B
for V' = ¢24+10, For k(¢, 3, h) we have, by Lemma 3.4,

_ S -1\ (@R + 1+ )
0,8,h =
Rl )§1+;€—q< q > Bt —q)

and the right hand side is estimated by (3¢)~'k.(¢, h) where k. (¢, h) is the
expression in line (40). The estimation that follows in the proof of Lemma
3.4 yields

(51) (0B h) < elﬂé(ed”ﬁ(h o))

and thus clearly (50) follows. O
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Lemma 3.7. Let f € N, h € N and B > 1. There exist positive constants
No(B,{) and My(B, ¥, h,d) so that for N > No(¢, B) the event

max max o ({u}) < My(¢, B, h,d)log N
m<(BN@log N)1/¢ uel,

has probability at least 1 — N~".

Proof. If £ > 2 we may assume that

(52) Blog N < NTT for N > No(¢, B).
Let
/—1
~ 0 d
(53) R(L,h) = ()M<q,—<1—€>,h+1>.
q 2 l

q=0
and let
(54) V> 2d+h+1+20B.

Let Ep, (¢, h,V) denote the event that
om({u}) <R h)Viog N
holds true for all u € F‘fv. We condition on the event

-1

(55) P ﬂE(q,g(l—%),thl),
q=1

again with the sets on the right hand side defined as in the statement of
Lemma 3.5. Then the event FC has probability at most /NP1 < %N‘h.
It remains to estimate ZmS(BNd log N)1/¢ P(E. (¢4, h, V)E NF). If we apply

the condition FE(q, %(1 —9),h + 1) only for cubes of measure N~ then we
see that

) d. 4
(56) o3(fu}) < Mg, 201~ %),
In order to apply it for all m < (BN%log N')'/* we must have (BN%log N)'/¢ <
d d
N2a"2¢ which is implied by (52).
By (37a) we have Aj,({u}) < R((,h) on F, for j =1,...,m. Let A}
be the event that

h+1), m< N3t 1<qg<i—1.

(57) ot ({u}) = f:AM ({u}) > VnE(¢, h), where Vi = [V1og N |

and let .AV m be the event that (57) holds for all u € I'¢,.
Now we estimate -Av m 01 F. Notice that if (57) holds on F there are at
least Vv indices j so that A /({u}) # 0 (and we may assume m > Vy). We
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argue as in the proof of Lemma 3.5 using Lemma 3.2, (ii), to see that
" (m
—~ ~ —d I—1nk
P(AY,, N F) < I;_V <k>(2N mthk .

In order to apply Lemma 3.3 we must have Vy > 2mp with p = 2N ~%m~1,
and this is certainly satisfied if ¥V > 8 B. Under this condition we thus get

~ ~ 202N ~4mHV~n  2(2Blog N)VN
58 P(AY,, NF) < < )
(59) (R0 F) < 225 < SR8
We use the inequality
(59) — <e™ forT>1andn > éT.

n! —

To verify this one takes logarithms and uses log(n!) > nlogn —n + 1. Thus
the inequality follows from n(log T'—logn) < —2n which is true for n > €27

We apply (59) with "= 2Blog N and n = V. Note that by the assump-
tion (54) we get Vv > €2T. Therefore

2(2Blog N)¥~ < 9¢- VN < 9l ViogN o N—(2d+h+1+10B)

V!
Thus
P(U,<(BNatog N/t Em(lh, V)B)
<P(F) + > > P4, NF)
m<(BN@log N)1/¢ ueld,
S%N—h + (BNd log N)l/ZNdN—lOBN—Qd—h—l S N—h
and we get the assertion of the lemma. O

Remark. It is also possible to give a proof of Lemma 3.7 based on the second
version of Hoeffding’s inequality (81b) in the appendix (cf. [8]).

The following proposition can be seen as a discrete analog to statement
(iv) in Theorem C.

Proposition 3.8. Given integers k > 1, £ > k+ 1 and h > 1, there
exists Ny(¢,h) > 1 and M (¢, h,d) > 0 such that for all N > Ny(¢, h) with
ged(l!, N) =1 the event

(60) max max [ () —m N

145
<(Nd1 N)% uel'd, (mfN—d)1/2 < Mi(4,h,d)(log N)" "2
m= og —K

has probability at least 1 — N—".
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Proof. We prove this by induction on k.

The case k = 1. Let By > d+ h + 1, sufficiently large. We first remark that
for m* < ByN%log N inequality (60) is implied by Lemma 3.7, provided
that N is sufficiently large. We thus may assume that

(61) m > (BoN%log N)'*.

Following [16], we will treat the telescopic sums of,({u}) — m!N~? =
>y 0’;5 - ;fl — N~9(j* = (j — 1)%) as a sum of martingale differences with
respect to the filtration of o-algebras F;, with F; generated by the random
variables x1,--- ,x;, see Lemma 3.2, (iii).

By Lemma 3.7, there is a constant My = My (¢, By, h,d) so that

62 ]P’< max max max o.1({u}) < Mylo N)
( ) 1<q<l-11<<(BoN4log N)1/ 9 uel'g, J ({ }) = Hotos
S 1 N-2d+ht1)
provided that IV is large enough. Note that
(63) (BoN%log N)/* < min (ByN%log N)'/4
1<g<t-1

provided that IV is large enough. Let £;_; denote the event
(64) &1 = {U;q_l({u}) < MplogN for 1 <g</{—1andall u e Fﬁiv}.
Then
(65) IP’( U 5]C> < N—2d+ht1)
1<) < (N log N) T
Define for fixed u € T'%,
v,Z ¥, = {ajg — ot =N —(j-1)") on £t
0 on & _4.
We shall apply Lemma 3.2 (iii) to the martingale {W;}2, with Wy = 0
and W; =37 Y, for j > 1. We prepare for an application of Hoeffding’s

inequality (Lemma A.1) and estimate the conditional expectation of e*i
given fixed x1,...,2;_1.

(66)
For |\ < (2°Mylog N) ™,
E[eMi| 2, ..., 2j-1] < exp (3m5_1N_d(25M0)2(10g N)*X?) .

Proof of (66). Given (x1,...,x;_1), if inequality (64) does not hold then we
have Y; = 0 and thus E[e’7|zy,...,2;_1] = 1. Thus in this case (66) holds
trivially. We thus need to bound (66) on £;_;. First observe

NG = (= 1)) <t 'N~ < tm "IN~ < flog N

Claim:
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by assumption. By (37a) and (64),

-1
a;fé({u}) -0 1 ({u}) < Z < >MO log N < 2°Mylog N .
k=0

Hence we get |Y;| < 2°Mylog N. On the other hand, writing

Zj = Njo{u}) = o3 ({u}) — o7 ({u}),
we have, by (37b),

/-1
P(Z; # Olwy,-+,21) SN (G- 1F <2m 7N
k=0

We use these observations to estimate, for 0 < |A| < (2!Mylog N)™!, the
term E[eM7] which in the following calculation is an abbreviation for the
expectation conditional on x1,...,x;_1. Since the expectation of Y; with

respect to x; is zero we obtain

_ 2 AFE[YF] < AE[YF]
E[e’\yﬂ]:Zszl—i—ZTj:
k=0 k=2
FE[Y;1%|Z; FE[|Y;1*|Z;
|+ P(Z ZIAI I I\ ] Z;éozlkl I || #0]‘

We have m{~IN—4 < log N and thus

Z IAFE[ \Yy \Z =0] _ i (A[fmf L N—d)*

|
—~ k!
g = [Mlog N |F o
< (MmN d)2ZT < (MmfTINTD2
k=2
Also

AFE[|Y;[%|Z; # 0 ¢ k
Z#OZH I H # ]<PZ%021A2M010gN\

<2m'7IN~ (A%MO log N)2.
Combining the two estimates we get

E[eMi|2y, ..., zj-1] < 1+ 3mIN~9(2¢ Mg log N)?
< exp(3m* N2 My log N)?),

thus proving (66).
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We now apply Hoeffding’s inequality (c¢f. (81a) in Lemma A.1 in the
appendix) with the parameters

a? = 6m* N2 My log N)?
A=Y a3 =6m N 42" Mylog N)?
j=1
6= (2Mylog N)~*
t =2\/A(d+h+1)log N = My(m‘N=%2(log N)3/?

where
My = My2°\/24(d + h + 1).

For (81a) to hold we must have ¢ < A which one checks to be equivalent
with (d+ h + 1)log N < 3mfN~%, and thus valid by (61). Thus, by (81a),

(3

< 2exp(—t2/2A) =2exp(—2(d+h+1)log N) = o N —2(d+h+1)

> My (m N~ (log N)*?)

Allowing u € F‘fv and m < (N%log N)ﬁ to vary, we see that

‘ Z;n:1 YV%“‘

(67) ]P’( max max N1

d 1
UELN < (Nd log N)T-T (

> Mi(log N)*/?)
< 2N—d—2h—2Nd(Nd IOg N)ﬁ < N_2h_l

if N is large enough. Now J;f,f({u})—mgN_d—z;”_l Yiu=00nNcjcm -1
and thus o

(68)
m
P(max  max  [ont({u} —m!N 0= 3" v, £0)
UELN 1< (N log N) =T j=1
< Z P(g][:—l) < (Nd log N)ﬁN—2(d+h+1) < N—2h—1

1<j—1<(N log N) 7T
if N is large enough. This establishes the assertion for k = 1.

The induction step. We now assume x > 2, £ > k+ 1 and that the assertion
1
holds for 1 < x’ < k. Let h > 1 and fix j with 1 < j < (N%log N)#=.
By Lemma 3.7 and by the induction hypothesis there exist N,_1 =
Nyi—1(f) and C = Cx—1(¢, h,d) > 1 so that for all N > N,,_; the event
Ej—l = Ej—l(g, K — 1, N),

given by the following three conditions (69a), (69b), (69¢c) has probability
at least 1 — N—2(h+d+1),
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Definition of Ej_q:

(69a) maxa 7, ({u}) <ClogN for 1 <qg</{—k.
uel?,

(69Db) max 0 7, ({u}) <ClogN  for those g with
uely,

l—k+1<qg<il-1, andj—lg(NdlogN)l/q.

(69¢) 52?5 0;31({71}) - (j]:ridl)q‘ < C<('7 ;[dl)q>1/2(log N)H%/

for those ¢, & with &' < k, ¢ < 4,

1 1
(Nlog N)a=++1 < j —1 < (N%log N) o=+,

We define
e Jotup) ot ({ul) - NG - (G- 1) on By,
Ti=7j,:= A
’ 0 on Ej_1
and claim that
Z 1 1/2 wtl
(70) Tyl < €252 () (log V)

To see (70) we decompose using (37a)

05 —0j-1— Nd

l—kK l—kK .
=X <€> Sio—gye, #00L | — <€> U= 1)
- —q)z; i—1 d

q=0 q ’ ’ q=0 q N

/-1 .
1 . (j—1)

i _Z <Q> Se—aga; + (031 N )

q=l—kr+1

Now we have m < (N%log N)ﬁ and thus Zﬁ;g (5)%—? < 28mfN? <
2¢1og N. On E*_; we have by (69a) Zq 0 (4)5(5 D *a;q (({u}) < 2°Clog N.
Ifl—k+1<qg<{—1eachj Wlthj 1< (NdlogN)‘Z " satlsﬁes either (5 —

1) < (NdlogN)l/q or (N%log N)a—r"+1 Ces <j—1< (Nelog N)a—+ 7 for some K’
with 1 < &' < k. If (j—1) < (N%log N)'/4 we use (69b) to bound \a]_l{u}—
(j;,—?q| by (C + 1)log N. If (NdlogN)ﬁ <j—-1< (NdlogN)Flﬁ’ we
use (69c¢) to bound ]J* Hu}— U=1) q\ by C((j —1)IN~4)1/2(log N)**'/2 and

hence by C(m‘'N%)/2(log N ) . Now sum and combine everything to get
(70).
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Now given (70) we can apply the Azuma-Hoeffding inequality (Corollary
A.3) with

1{1/2 .
a; = 2£+2C(—> (logN) = N

A= Z a3 = (2"72C)*m N ~(log N)"**",
j=1

t = /2A(2d + 2h + 2)log N = M, (m‘N~%)/2(log N)'*+3
with M, (0, h,d) = (2d + 2h + 2)V/2242C,._1 (0, h,d). We get

P(é%

< 2exp(—t2/2A) =2exp(—2(d+h+1)logN) = o N —2(d+h+1)

> M(m"N =)/ (log N)' )

To conclude we argue as in the beginning of the induction. Allowing u € F‘fv
1
and m < (N%log N)7= to vary, we see that

[ 21 Vil

(71) ]P( max max L W

> My(log N)'+%)
uel'y m<(Ndlog N) -

< 2N—2d—2h—2Nd(Nd lOg N)ﬁ < N—Qh—l

if IV is large enough. Moreover

]P’( max max o ({u}) — ‘ > M, (log N)'*2 >
uel'y m< (N4 log N)
< (N1 Z P(ES ) <N "
1<) < (N log N) %
if N > N, (¢) large enough. O

Proof of Proposition 2.5. Let P = m = |NP|, with N large. Then the
inequalities for op and P~'op in Lemma 3.1, Lemma 3.6 and Proposition 3.8
hold with positive (and high) probability. Proposition 2.5 is an immediate
consequence. O

4. FOURIER RESTRICTION AND MULTIPLIER ESTIMATES

4.1. Proof of Theorem A. The restriction estimate is equivalent with the
bound

(72) H@”Lp’(Rd) S HQHL%L)-

If p** € L®(R?) then (72) for p = 257_‘1 follows from a special case of an
inequality in [6], namely

(73) 1703 < N loollglI73 0 -
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In conjunction with Theorem C this proves Theorem A. U

4.2. Multipliers of Bochner-Riesz type. For p < q < 2 we formulate LP — LY
versions of the multiplier theorem B stated in the introduction. The main
result is

Theorem 4.1. Let 1 <p < q <2, and let N > d(1/q —1/2) be an integer.
Let p1 be a Borel probability measure on R%, and assume that the Fourier
restriction theorem holds, i.e.

. 1/2
(74) sup </|f|2d,u) <A, < oo.
[fllp<1
Forr <1 let
(75) w(r) = sup u(B(z,r)),
r€ER?

and let n, € C* be supported in {£ : r/4 < || < r} and satisfy the dif-
ferential inequalities r'P1||0Pn, || < 1 for all multiindices B with |3| < N.
Let

h =mn, x .
Then, for all f € LP(RY),

—_ N d—4d
(76) |F A, S Ap@ () I f Nl
where the implicit constant is independent of r and 7.

Proof. The proof is an adaptation of the argument by Fefferman and Stein
in [10]. Let ® € C*®(R%) supported in {z,|z| < 1} so that ®(z) = 1 for
|z| <1/2. Let

Qo (z) = O(ra),
D, (x) = D27 "rz) — B2 rx), n>1.

Then we decompose h =}, - hn, where FHhn)(z) = FHR)(2) @y (2).

We first examine the L* norm of h, = h * @n,r. Observe, by the support
property of 7, and |7, ]|c < 1,

(W) < u(B(E, 7)) < w(r).

Moreover,
(] < 20 [ B, w)ldy S 0)

since the L' norm of EI;TW is uniformly bounded in n and r. For n > 1 the
last estimate can be improved since then ®,, , vanishes near 0 and therefore
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all moments of EI;n,r vanish. This allows us to write

N—-1
(€)= / B (1) / (€ —w —y) — %«y, V(€ — w)] du(w) dy
j=0 7"

1] _g\N-1
— [ [ [ 96 = s w)dnt) dy s

Assuming N1 > N + d, this gives

lyl\v (27 /r)?
(€] < CO=(r) [ ()Y g
and then
(77) [Bnlloe < CN27Na(r) .

Since F~![h,] is supported on a ball of radius 2"7~! we get the estimate

(78) 17 o] = fllg S @) D F ] ¢ 1.
To see this one decomposes f = ZQ fo,n where the cubes @ form a grid
of cubes of sidelength 2" /r with fg supported in @, and F~1[h,] x f sup-
ported in the corresponding double cube. In view of this support property
10 F Hhnl#fllg < Ca(X g IF~ hn]x f[|§)1/4 and (78) follows by Holder’s
inequality.

Next, by Plancherel’s theorem,

1F 7 hn] * F13 = B f113 < [hnlloo / |F(E) | (€)]dE

and
/ T PIhn(6) e < / For / 0 % B (€ — )] da(w)de
- / % B (6)] / &+ w)Pdu(w)de < A2l B £

where for the last inequality we have applied the assumed Fourier restriction
inequality to the function fe "),

Now ||n, * i\>n7r\|1 < |l £ r? and for n > 1, we also get (using Taylor’s
theorem as above)

117 Pl < / 1Ky, V)l @ (y) | dy S 27N,

The above estimates yield
1F~ ) * fll2 S Imall 727N 2042 A I £
S 27 2w () Al £l
by (77). We combine this with (78) to get

—n(N—d(L_1 _
1F " hn] # fllg S 27" a2 pd=d/a [ (Y A £,
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and finish by summing in n. O

As a corollary we get one direction of the statement in Theorem B for the
multiplier m) as in (3)

Corollary 4.2. Let i be a Borel probability measure on R, @ as in (75)
and assume that w(r) < Cor®~¢ for alle > 0. Let x € C(RY) and define,
for A >0,

ma(§) = /Rd X(& = )€ —n*“du(n).
Assume that 1 < p < q <2 and that (74) holds. Then the inequality

~

(79) 1F = fmaflllg < 1£1lp

holds for A > d(% — }) — 452.
If in addition
! dt
| rewen s <,
0 t
d—o
then (79) holds for A > d(% — 1)
Proof. Decompose x(£)|¢A = > 720 271(A=a)p. (&) where (for a suitable

constant C'y) the function C’K,lnj satisfies the assumption of Proposition 4.1
with r = 277, Thus

H2—j()\—a),’7j * :uHMg S 2—j()\_d(%_%)+1177a)4 /Q—jaw(Q—j)'

The corollary follows. U

We now discuss the necessity of the condition on A\. One may test the
convolution operator on a Schwartz function whose Fourier transform equals
1 on the (compact) support of my. Therefore, the condition my € M}
implies F~1[m,] € L9.

Lemma 4.3. Let p be a Borel measure supported on a set of Hausdorff
dimension o and assume that |fi(z)| < Cy(1 + |z[)™/2 for every v < a.
Let A > o —d, my be as in (3), and x € C with X nonnegative and
X(0) > 0. Let Ky = F'my], 1 < q <2, and assume K, € L. Then
A>d(l— 1) - e
q

Proof. We argue as in Mockenhaupt [23]. The positivity conditions on y
and formulas for fractional integrals imply that for v < «a there exist ¢ > 0,
¢y > 0, such that for |z| > 1

IR R 14 2Qtd=a)
|Kx(@)] > cla|* ()] > o @)

The second inequality follows by the assumption on g and A > « — d.

The displayed inequality and the condition K, € L9 implies i € L", for

r > q(1+2(A+d—a)at). It is shown in [26] that 7i € L” implies r > 2d/a;

indeed this follows from the fact that dimg(suppp) = « implies that the
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energy integral Ig(u) is infinite for § > «, and Holder’s inequality. We
now have the condition % <1+ M)q which is equivalent with A\ >
d(% -1 - d_Ta —(a— ’y)(aiq — 1) . This holds for all v < « and the assertion
follows. O
4.3. Failure of Ahlfors-David reqularity. Before closing this section, we note

that the measures for which the endpoint LEs L?(p) restriction esti-
mate holds cannot be Ahlfors-David regular. This can be seen as a conse-
quence of a result of Strichartz [30]. For the convenience of the reader we
give a short direct proof. We remark that some related results also appear
in the recent thesis by Senthil-Raani [27].

Proposition 4.4. Let p be a Borel probability measure supported on a com-
pact set E C RY and let, for p > 1

B = ([ e

Suppose that there exist 0 < a < d and a constant ¢ > 0 such that
w(B(z,r)) > er®
forallx € E and 0 <r < 1. Then
(i) limsup,,_, o By(p) > 0.
(ii) F does not extend to a bounded operator from L%(Rd) to L?(p).

Proof. Let x be a nonnegative C* function so that y(x) = 1 for |x| < 1 and
x(z) =0 for |x| > 2. Let R > 1 and observe that, by assumption,

ek < [ (Bl (o) < [ [ (e = )ty dutz)

= (fi* p1, X(R /Iu )ERTIR(RTE)dE .

and therefore, R4 < Cy [[a(©)P A +Rg[)~NdE. Let Ag = B(0,1) and
A; = B(0,27)\ B(0,2771) for j > 1 Then

Ri— < CN(/A €)| d§+Zm1n{1 2Rt N}/ \2d§

j>1

(80) < Ch(1+ D min{l, (@R NpIEDBy, ()?),
j=1
by Holder’s inequality.

Now, in order to prove (i) we argue by contradiction and assume that
(i) does not hold, i.e. lim,_o B,(11) = 0. Since p is compactly supported
the expressions B,(p) are all finite and by our assumption it follows that
sup, By(p) < B < oo. We use (80) for some N > d —« and obtain for R > 1

R < Oy, (1+ B2R* + R sup B,(1)?)
p>VR
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and letting R — oo this yields a contradiction.

To prove (ii) we observe that by duality (72) holds with p’ = 2d/a. We
take g € C2° so that g = 1 on supp(u), and it follows that fi € L?¥*. This
in turn implies lim, o B,(x) = 0 in contradiction to the result in (i). O

APPENDIX A. SOME STANDARD PROBABILISTIC INEQUALITIES

For the convenience of the reader we include the proof of some standard
probabilistic inequalities used in this paper. We will need the following
version of Hoeffding’s inequality, a slight variant of the one in [16].

Lemma A.1. Let {Wj}?:o be a bounded real-valued martingale adapted to
the filtration {F;}7L. Suppose that aj >0 for 1 < j <m and that

E[eA(WJ‘—WJ‘fl)’&fj_l] < GN/2 for all |\ < 0.

Let A=Y"""a% Then

J=1"y5"
t2
8la P(|Wy, — Wo| >t) <224, 0<t<AI,
(81a)
(81D) P(|W,, — Wo| > t) < 2e4°/2e70 > A6.

Proof. Observe that, if 0 < A < 9,
Ee)\(Wm_WO) — E[EA(Wmfl_WO)E[E)\(Wm_Wmfl)|3’m_1]:|

< eagn)\z/2E [eA(Wm—l—WO)] .

By iterating this step we get Eer(Wm=Wo) < AN /2.
Now P{Wp, — Wy = t} = P{E)‘(W’”_W‘)) > e’\t} and Tshebyshev’s inequal-
ity gives
P{W,, — Wy > t} < e MEAWm=Wo) < o MHAN 2.

If0<t<Ad weset A\ =t/A, and if t > A we set A = J. For these choices
the displayed inequality gives

+2

e 24 for 0 <t < A9,

82 P{W,, — Wo >t} <
(5 { 0=t {eA52/2e—5t for ¢ > AS.

Similarly, still for 0 < X < &, P{W,, — Wy < —t} = P{e AWm=W0) > At}
and argue as above to see that P{Wm - Wy < —t} is also bounded by the
right hand side of (82). This implies the asserted inequality. O

To verify the assumption in Lemma A.1 the following calculus inequality
is useful. (c¢f. [12, Lemma 1]).

Lemma A.2. Let X be a real-valued random variable with | X| < a < o0
and E[X|F] = 0. Then for any t € R,

E[etXIS:] < ea2t2/2.
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Proof. Replacing t by at and X by X/a it suffices to consider the case a = 1.
By the convexity of the function z + €', for x € [—1,1] we have

1— 1
et < 5 Tty x—2|— e’ = cosht + x sinh(2)
and thus E[e/X|F] < cosht + sinhtE[X|F]. The last summand drops by
assumption. Finally use that cosht < e’/2 for all t € R which follows by

considering the power series and the inequality (2k)! > 2Fk!. ]

A combination of Lemma A.1 and Lemma A.2 yields

Corollary A.3 (Azuma-Hoeffding Inequality). Let {W;}T be a bounded
real-valued martingale adapted to filtration {?j}gnzo. For1 < 5 < m let

a; >0 and suppose that [W; — Wj_1| < aj. Writing A= 377", a?, we have

2
P(|Wy, — Wo| > t) < 2e"24

for allt > 0.
As a consequence, we obtain a version of Bernstein’s inequality.

Corollary A.4 (Bernstein’s inequality). Let X1, -+, X,, be complex valued
independent random variables with EX; = 0 and | X;| < M € (0,00) for all
j=1,---,m. Then, for allt >0

1 — 2
IP((— X»‘>Mt> < fe—mt?/4,
m; = ==
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