FOURIER INTEGRAL OPERATORS WITH FOLD SINGULARITIES

ALLAN GREENLEAF AND ANDREAS SEEGER

1. Introduction

Suppose that X and Y are C^{∞} manifolds of dimension d_X and d_Y , respectively, and that

$$\mathcal{C} \subset T^*X \setminus 0 \times T^*Y \setminus 0$$

is a homogeneous canonical relation. By $I^{\mu}(X,Y;\mathcal{C}')$ we denote the class of Fourier integral operators of order μ associated to \mathcal{C} . Here as usual $\mathcal{C}' = \{(x,\xi;y,\eta) : (x,\xi;y,-\eta) \in \mathcal{C}\}$; if σ_X , σ_Y are the canonical two forms on T^*X and T^*Y , respectively, then \mathcal{C} is Lagrangian with respect to $\sigma_X - \sigma_Y$ and \mathcal{C}' contains the wavefront sets of the kernels.

We shall be concerned with $L^2_{\alpha} \to L^q_{\beta}$ mapping properties of operators in $I^{\mu}(X,Y;\mathcal{C}')$ (here L^q_{β} denotes the L^q Sobolev space). These are well known in case that \mathcal{C} is locally the graph of a canonical transformation; this means that the projections $\pi_L: \mathcal{C} \to T^*X$, $\pi_R: \mathcal{C} \to T^*Y$ are locally diffeomorphisms. In particular $d_X = d_Y := d$. Then $\mathcal{F} \in I^{\mu}(X,Y,\mathcal{C}')$ maps $L^2_{\alpha,\text{comp}}(Y)$ into $L^2_{\beta,\text{loc}}(X)$ if $\beta \leq \alpha - \mu$. This was shown by Hörmander as a consequence of the calculus in [7]. By composing \mathcal{F} with a fractional integral operator it is easy to see that $\mathcal{F} \in I^{\mu}(X,Y,\mathcal{C}')$ maps $L^2_{\alpha,\text{comp}}$ into $L^q_{\beta,\text{loc}}$, $2 \leq q < \infty$, if $\beta \leq \alpha - \mu - d/2 + d/q$. More general if $d_X \leq d_Y$ and $d\pi_L$ has maximal rank $2d_X$ then the same mapping properties hold for Fourier integral operators in the class $\mathcal{F} \in I^{\mu+(d_X-d_Y)/4}(X,Y,\mathcal{C}')$.

If one of the projections π_L , π_R becomes singular it follows that the other is singular as well, see [7]. However the nature of the singularities of π_L and π_R may be quite different and this is reflected in the estimates one gets. Sharp L^2 estimates are known if \mathcal{C} is a folding canonical relation; one assumes that both projections are either nondegenerate or Whitney folds (again $d_X = d_Y = d$). Then there is a loss of 1/6 derivatives in the L^2 estimates; namely $\mathcal{F} \in I^{\mu}(X,Y,\mathcal{C}')$ maps $L^2_{\alpha,\text{comp}}$ into $L^2_{\beta,\text{loc}}$ if $\beta \leq \alpha - \mu + 1/6$ (see [10], and [15] for a nonhomogeneous version).

In this paper we mainly consider the case of one-sided fold singularities; in the case $d_X = d_Y$ we require that one projection (say π_L) is either nondegenerate or a Whitney fold but we do not impose any condition on the other projection. If $d_X \leq d_Y$ then we require that π_L is a submersion with folds. We recall the definition: Let M and N be C^{∞} manifolds of dimensions m, n, respectively, where $m \geq n$. Then a C^{∞} map $F: M \to N$ is a submersion with fold at $x_0 \in M$ if rank $F'(x_0) = n - 1$ (and therefore dim Ker $F'(x_0) = m - n + 1$ and dim Coker $F'(x_0) = 1$) and if the Hessian of F at x_0 is nondegenerate. The Hessian is invariantly defined as a

Research supported in part by grants from the National Science Foundation

quadratic form on Ker $F'(x_0)$ with values in Coker $F'(x_0)$. One can always choose local coordinates x in M vanishing at x_0 and local coordinates y in N vanishing at y_0 such that in the new coordinates

$$F(x_1, \ldots, x_m) = (x_1, \ldots, x_{n-1}, Q(x_n, \ldots, x_m))$$

where Q is a nondegenerate quadratic form in \mathbb{R}^{m-n+1} (see [4, ch. III.4]) and also [9, III, p.493]). We note that the variety \mathcal{L} where F' is degenerate is a smooth surface in M of codimension m-n+1. Another way of defining a submersion with folds is identifying \mathcal{L} and saying that F drops rank simply by one (at least one $n \times n$ minor of dF vanishes of only first order) and that $F|_{\mathcal{L}}$ is an immersion. In particular $F(\mathcal{L})$ is a smooth hypersurface of N. In the case m=n a submersion with folds is simply a Whitney fold.

Theorem 1.1. Suppose that $d_X \leq d_Y$ and that $C \subset T^*X \setminus 0 \times T^*Y \setminus 0$ is a homogeneous canonical relation such that the projection $\pi_L : C \to T^*X$ is a submersion with folds. Suppose that $\mathcal{F} \in I^{\mu+(d_X-d_Y)/4}(X,Y,C')$. Then \mathcal{F} maps $L^2_{\alpha,\text{comp}}(Y)$ into $L^2_{\beta,\text{loc}}(X)$ provided that

- (1) $\beta \leq \alpha \mu 1/4 \text{ if } d_Y = d_X$,
- (2) $\beta \le \alpha \mu \epsilon$, any $\epsilon > 0$, if $d_Y = d_X + 1$,
- (3) $\beta \leq \alpha \mu \text{ if } d_Y \geq d_X + 2.$

These results had been conjectured in [2], [3] where they are proved for the special case of fibered folding canonical relations (this corresponds to an assumption of maximal degeneracy on π_R). In this case there is a composition calculus which is not available in the general situation.

For averaging operators in \mathbb{R}^2 and some model cases in higher dimensions the L^2 estimates are already in [17]. We remark that in the case $d_X = d_Y$ Theorem 1.1 is sharp without further assumption; however it can be improved if one imposes an additional finite type condition on π_R (cf. [18], [19]). It is also sharp if $d_Y > d_X$; see [3] for an example in the case $d_Y = d_X + 1$ where ϵ has to be positive.

Our next result concerns $L^2_{\alpha} \to L^q_{\beta}$ estimates.

Theorem 1.2. Suppose that $d_X \leq d_Y$ and that $\mathcal{C} \subset T^*X \setminus 0 \times T^*Y \setminus 0$ is a homogeneous canonical relation such that the projection $\pi_L : \mathcal{C} \to T^*X$ is a submersion with folds. Moreover suppose that the projection $\pi^X : \mathcal{C} \to X$ is a submersion. Let $\mathcal{F} \in I^{\mu+(d_X-d_Y)/4}(X,Y;\mathcal{C}')$. Then \mathcal{F} maps $L^2_{\alpha,\text{comp}}(Y)$ into $L^q_{\beta,\text{loc}}(X)$ provided that $\beta \leq \alpha - \mu - d_X(\frac{1}{2} - \frac{1}{q})$ and

- (1) $4 \le q < \infty \text{ if } d_Y = d_X$,
- (2) $2 < q < \infty \text{ if } d_Y = d_X + 1,$
- (3) $2 \le q < \infty \text{ if } d_Y \ge d_X + 2.$

We note that sharp $L^2 \to L^4$ estimates for averaging operators in the plane are in [17], [19]. There is always a range of q's $(4 \le q < \infty \text{ if } d_X = d_Y)$ where the $L^2_\alpha \to L^q_\beta$ estimates are sharp and in fact the same as in the nondegenerate case. The range $[4,\infty)$ is sharp if one does not impose additional assumptions. One considers on $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d-1}$ the phase function $\Phi_0(x,y,\theta) = (x_1-y_1+\frac{1}{2}x_dy_d^2)\theta_1+\sum_{i=2}^{d-1}(x_i-y_i)\theta_i$ in the region $\{\theta \in \mathbb{R}^{d-1}: |\theta_1| \ge |\theta| > 0\}$. It parametrizes the canonical relation

$$C_0 = \{ (y_1 - x_d y_d^2 / 2, y'', x_d, \theta, y_d^2 \theta_1 / 2; y, \theta, -x_d y_d \theta_1) : (y, \theta, x_d) \in \mathbb{R}^d \times \mathbb{R}^{d-1} \times \mathbb{R}, |\theta_1| \ge c|\theta|, x_d \ne 0 \}$$

where we write $y = (y', y_d) = (y_1, y'', y_d)$. This is a model case for a fibered folding canonical relation, considered in [2] (here π_L is a fold and π_R is a blowdown). One can check (arguing as in [2], [19]) that Theorem 1.2 is sharp in this case.

In order to improve Theorem 1.2 one imposes additional curvature assumptions. Let us suppose that $d_X = d_Y$ and let \mathcal{L} be the fold hypersurface. We assume that the projection $\pi^X : \mathcal{L} \to X$ is a submersion. Then for each $x \in X$ the image of the projection $\pi^{T_x^*X}$ of \mathcal{L} to the fiber T_x^*X is a d-1 dimensional conic hypersurface Γ_x . For the above example these hypersurfaces are hyperplanes.

Theorem 1.3. Let $d_X = d_Y = d$ and suppose that C is as in Theorem 1.2. Suppose that $\pi^X : \mathcal{L} \to X$ is a submersion and suppose that for each $x \in X$ and each $\zeta \in \Gamma_x = \pi^{T_x^*X}(\mathcal{L})$ at least ℓ principal curvatures do not vanish. Suppose $(2\ell + 4)/(\ell+1) \leq q < \infty$ and $\beta \leq \alpha - \mu - d(\frac{1}{2} - \frac{1}{q})$. Then $\mathcal{F} \in I^{\mu}(X,Y;\mathcal{C}')$ maps $L^2_{\alpha,\text{comp}}$ into $L^q_{\beta,\text{loc}}$.

The additional curvature condition on the fibers is close to the cone condition in [12], formulated for a class of Fourier integral operators that comes up in the study of wave equations.

We now consider averaging operators in three dimensions. Suppose that X and Y are three dimensional manifolds and suppose that $\mathcal{M} \subset X \times Y$ is a four dimensional manifold such that the projections onto X and Y are submersions; furthermore assume that

$$\mathcal{N}^*\mathcal{M} \subset T^*X \setminus 0 \times T^*Y \setminus 0$$

where $N^*\mathcal{M}$ is the normal bundle of \mathcal{M} . Then $\mathcal{M}_x = \{y : (x,y) \in \mathcal{M}\}$ is a curve in Y for each $x \in X$; similarly for each y define \mathcal{M}^y which is a curve in X. Let $d\sigma_x$ be a smooth density on \mathcal{M}_x depending smoothly on x. Then the averaging operator defined by

$$\mathcal{A}f(x) = \int_{\mathcal{M}_x} f(y) d\sigma_x(y)$$

belongs to the class $I^{-1/2}(X, Y; N^*\mathcal{M})$ (see e.g. [6]). Therefore Theorem 1.3 and interpolation yield

Corollary 1.4. Suppose that dim $X = \dim Y = 3$ and \mathcal{M} is as above. Suppose that the projection $\pi_L : N^*\mathcal{M} \to T^*X$ is either nondegenerate or a Whitney fold with fold hypersurface \mathcal{L} , such that the projection of \mathcal{L} onto X is a submersion. Suppose that for each $x \in X$ and at each $\zeta \in \Gamma_x = \pi^{T_x^*X}(\mathcal{L})$ a principal curvature does not vanish. Then \mathcal{A} is bounded from $L^p_{\text{comp}}(Y)$ into $L^q_{\text{comp}}(X)$ if (1/p, 1/q) belongs to the closed triangle with corners (0,0), (1,1), (1/2,1/3).

Clearly by applying this to \mathcal{A}^* we get a similar result involving assumptions on π_R . The typical example that demonstrates the sharpness of Corollary 1.4 is the X-ray transform for the family of light rays in \mathbb{R}^3 (considered in [2], [5], [11], [16]). The light rays are parametrized by their intersection with the (x_1, x_2) -plane and an angle α , and the averaging operator (taking the role of \mathcal{A}^*) is given by

$$\mathcal{R}f(x_1, x_2, \alpha) = \int f(x_1 + s\cos\alpha, x_2 + s\sin\alpha, s)\chi(s) ds$$

with an appropriate cutoff function χ . $(N^*\mathcal{M})'$ is a fibered canonical relation (now π_R is a fold and π_L is a blowdown) and the fold hypersurface for π_R is

$$\mathcal{L} = \{(x_1, x_2, \alpha, \mu \cos \alpha, \mu \sin \alpha, 0; x_1 + s \cos \alpha, x_2 + s \sin \alpha, s, \mu \cos \alpha, \mu \sin \alpha, \mu)\}.$$

The sharpness of Corollary 1.4 can be seen by testing \mathcal{R} on characteristic functions of balls (to get the restriction $q \leq 2p/(3-p)$) and on characteristic functions of rectangles with dimensions $1, \delta, \delta^2$ (to get the restriction $q \leq 4p/3$); see [2]. The operator \mathcal{R} is an example of a more general class of restricted X-ray transforms where one averages over lines in a well-curved hypersurface of $M_{1,d}$ (the space of lines in \mathbb{R}^d). This will be taken up below.

In the case of folding canonical relations one may apply Corollary 1.4 to \mathcal{A} and \mathcal{A}^* to get

Corollary 1.5. Let \mathcal{M} be as in Corollary 1.4 and suppose that $(N^*\mathcal{M})'$ is a folding canonical relation. Moreover suppose that the cones $\Gamma_x^L = \pi^{T_x^*X}(\mathcal{L})$ and the cones $\Gamma_y^R = \pi^{T_y^*Y}(\mathcal{L})$ are curved in the sense that at every point one principal curvature does not vanish. Then \mathcal{A} is bounded from $L_{\text{comp}}^p(Y)$ to $L_{\text{loc}}^q(X)$ if (1/p, 1/q) belongs to the closed trapezoid with corners (0,0), (1,1), (2/3,1/2) and (1/2,2/3).

In particular suppose that $t \mapsto \gamma(t)$ defines a curve in \mathbb{R}^3 with nonvanishing curvature $\kappa(t)$ and nonvanishing torsion $\tau(t)$. Then the translation invariant operator

$$\mathcal{A}f(x) = \int f(x - \gamma(t))\chi(t)dt$$

falls under the scope of Corollary 1.5. In this case $\mathcal{M} = \{(x, x + \gamma(t))\}$ and $(N^*\mathcal{M})'$ is a folding canonical relation with fold hypersurface

$$\mathcal{L} = \{(x, \mu B(t), y, -\mu B(t)) : x - y = \gamma(t), \mu \in \mathbb{R}\};$$

here B(t) denotes the binormal vector. The principal curvatures of the cone $\Gamma = \{(\mu B(t))\}$ at $\mu B(t)$ are 0 and $-\mu \kappa(t)\tau(t)$. So Corollary 1.5 extends Oberlin's result [13] on translation invariant curves with nonvanishing curvature and torsion (proved in full generality by Pan [14]). It is sharp as one can see by testing \mathcal{A} on characteristic functions of rectangles with dimensions $\delta, \delta^2, \delta^3$.

We shall consider more general oscillatory integral and Fourier integral operators with not necessarily homogeneous phase functions. $\S 2$ contains the main estimates for oscillatory integral operators. In $\S 3$ we apply these results to Fourier integral operators with general phase functions; the homogeneous case arises as a special case if one uses Littlewood-Paley theory. In $\S 4$ we apply our theorems to obtain new estimates for restricted X-ray transforms. Throughout the paper c, C will denote positive constants which may assume different values in different lines.

2. Estimates for oscillatory integrals

Suppose X and Z are open sets in \mathbb{R}^d and \mathbb{R}^{d+r} , respectively. We consider oscillatory integral operators of the form

(2.1)
$$T_{\lambda}f(x) = \int e^{i\lambda\Phi(x,z)}a(x,z)f(z) dz$$

where the phase function $\Phi \in C^{\infty}(X \times Z)$ is not necessarily homogeneous and $a \in C_0^{\infty}(X \times Z)$. Let

(2.2)
$$C_{\Phi} = \{(x, \Phi'_x; z, -\Phi'_z)\}$$

be the associated canonical relation.

It is well known ([8]) that the $L^2 \to L^q$ operator norm of T_λ is $O(\lambda^{-d/q})$ provided the differentials of the projections $\pi_L : \mathcal{C} \to T^*(X), \, \pi_R : \mathcal{C} \to T^*(Z)$ have maximal rank d. This hypothesis is equivalent with the condition rank $\Phi_{xz}^{"} = d$.

In this section we prove $L^2 \to L^q$ bounds for T_λ , under the assumption that the only singularities of the projection π_L are fold singularities; no assumption on π_R is made.

Theorem 2.1. Suppose that dim X = d, dim Z = d + r and that the projection $\pi_L : \mathcal{C}_{\Phi} \to T^*X$ is a submersion with folds. Then if r = 0 we have for $\lambda \geq 2$

$$||T_{\lambda}f||_{q} \leq C\lambda^{-\frac{d-1}{q}-\frac{1}{4}}||f||_{2}, \quad \text{if } 2 \leq q \leq 4$$

 $||T_{\lambda}f||_{q} \leq C\lambda^{-\frac{d}{q}}||f||_{2}, \quad \text{if } 4 \leq q \leq \infty.$

If r = 1 then

$$||T_{\lambda}f||_{2} \leq C\lambda^{-\frac{d}{2}}(\log \lambda)^{\frac{1}{2}}||f||_{2},$$

 $||T_{\lambda}f||_{q} \leq C\lambda^{-\frac{d}{q}}||f||_{2}, \qquad 2 < q \leq \infty.$

If r > 2 then

$$||T_{\lambda}f||_q \le C\lambda^{-\frac{d}{q}}||f||_2, \qquad 2 \le q \le \infty.$$

Phong and Stein [17] noticed that the case dim $X = \dim Z = 1$ already follows if one applies van der Corput's Lemma to the kernel of TT^* . An improvement in higher dimension may be obtained under some additional curvature assumption. Suppose r = 0 and denote by \mathcal{L} the fold hypersurface for the projection π_L . Again if $\pi^X : \mathcal{L} \to X$ is a submersion then for each x the projection of \mathcal{L} onto the fiber, $\Sigma_x = \pi^{T_x^*X}(\mathcal{L})$, is a hypersurface in T_x^*X .

Theorem 2.2. Suppose that dim $X = \dim Y = d$ and that the projection π_L : $\mathcal{C}_{\Phi} \to T^*X$ is either nondegenerate or a Whitney fold. Suppose in addition that for each $x \in X$, for each $\zeta \in \Sigma_x$ at least ℓ principal curvatures do not vanish. Then for $\lambda \geq 1$

$$||T_{\lambda}f||_{q} \leq C\lambda^{-\frac{d-1}{q} - \frac{\ell+1}{4} + \frac{\ell}{2q}} ||f||_{2}, \quad if \ 2 \leq q \leq \frac{2\ell + 4}{\ell + 1}.$$

$$||T_{\lambda}f||_{q} \leq C\lambda^{-\frac{d}{q}} ||f||_{2}, \quad if \ \frac{2\ell + 4}{\ell + 1} \leq q \leq \infty.$$

We shall use a general result on nondegenerate Fourier integral operators with not necessarily homogeneous phase functions. We consider operators of the form

(2.3)
$$S_{\lambda}f(x) = \iint e^{i\lambda\Psi(x,y,z)}b(x,y,z)dz f(y)dy$$

where $b \in C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^N)$ and Ψ is a C^{∞} -function defined in a neighborhood of supp b satisfying

(2.4)
$$\det \begin{pmatrix} \Psi''_{xy} & \Psi''_{xz} \\ \Psi''_{zy} & \Psi''_{zz} \end{pmatrix} \neq 0.$$

This says that the associated canonical relation (see (3.2) below) is locally the graph of a canonical transformation.

The following lemma is well known; it is contained in [8] for the case N=0which corresponds to operators of type (2.1). We sketch a proof for the reader's convenience.

Lemma 2.3. Suppose that Ψ satisfies (2.4). Then S_{λ} is a bounded operator on $L^2(\mathbb{R}^n)$ and the operator norm is $O(|\lambda|^{-(n+N)/2}), |\lambda| \geq 1$.

Proof. We may assume that the support of b is small. We prove that $S_{\lambda}S_{\lambda}^{*}$ is a bounded on $L^{2}(\mathbb{R}^{n})$ with norm $O(\lambda^{-n-N})$. The kernel K_{λ} of $S_{\lambda}S_{\lambda}^{*}$ is

$$K_{\lambda}(v,w) = \iiint e^{i\lambda[\Psi(v,y,z+h)-\Psi(w,y,z)]}b(v,y,z+h)\overline{b(w,y,z)}\,dy\,dz\,dh.$$

Observe that

$$\begin{pmatrix} \nabla_y [\Psi(v,y,z+h) - \Psi(w,y,z)] \\ \nabla_z [\Psi(v,y,z+h) - \Psi(w,y,z)] \end{pmatrix} = \begin{pmatrix} \Psi_{yx}'' & \Psi_{yz}'' \\ \Psi_{zx}'' & \Psi_{zz}'' \end{pmatrix} \Big|_{(w,y,z)} \begin{pmatrix} v-w \\ h \end{pmatrix} + O(|v-w|^2 + |h|^2).$$

Therefore an integration by parts shows that

$$K_{\lambda}(v,w) \leq C_M \int (1+\lambda|v-w|+\lambda|h|)^{-M} dh$$

$$\leq C'_M \lambda^{-N} (1+\lambda|v-w|)^{-M+N}$$

where M > N + n. It follows that

$$\sup_{v} \int |K(v,w)| dw + \sup_{w} \int |K(v,w)| dv \le C\lambda^{-n-N}$$

which implies $||S_{\lambda}S_{\lambda}^*|| = O(\lambda^{-n-N})$. \square

Remark 2.4. Suppose X, Y are open sets in \mathbb{R}^n and Z is an open set in \mathbb{R}^N . Suppose there is a family of phase functions and symbols $\{(\Psi_{\nu}, a_{\nu})\}$ such that the Ψ_{ν} belong to a bounded family of $C^{\infty}(X \times Y \times Z)$ and the a_{ν} belong to a bounded family of $C_0^{\infty}(X \times Y \times Z)$. Suppose that the determinant (2.4) is bounded away from 0, uniformly in ν . Then the associated oscillatory integral operators S_{λ} are L^2 -bounded with norm $O(\lambda^{-(n+N)/2})$ uniformly in ν . This is a consequence of the above proof. \square

We now turn to the proofs of Theorem 2.1 and 2.2. We split coordinates x = $(x',x_d) \in \mathbb{R}^{d-1} \times \mathbb{R}$ and $z=(z',z'') \in \mathbb{R}^{d-1} \times \mathbb{R}^{r+1}$ and claim that without loss of generality we can assume that $(0,0) \in X \times Y$ and

(2.5)
$$\det \Phi_{x'z'}''(0,0) \neq 0$$

(2.6)
$$\det \Phi_{x_d z'' z''}^{\prime\prime\prime}(0,0) \neq 0;$$

moreover

$$\Phi_{x'z''}''(0,0) = 0$$

$$\Phi_{x_dz'}''(0,0) = 0$$

$$\Phi_{x_d z' z''}^{\prime\prime\prime}(0,0) = 0.$$

In fact if $C = \{u, \phi'_u(u, v), v, \phi'_v(u, v)\}$ and π_L is a submersion with fold at $(u, v) = (x_0, y_0)$ then assume that $0 \neq a \in \operatorname{Coker} \phi''_{uv}(x_0, y_0)$ and that $\{b_1, \dots, b_{r+1}\}$ is a basis of $\operatorname{Ker} \phi''_{uv}(x_0, y_0)$. Set $\Phi(x, y) = \phi(x_0 + B_1 x, y_0 + B_2 y)$ where we require that $B_1 \in GL(d, \mathbb{R})$, $B_2 \in GL(d+r, \mathbb{R})$ with the following properties. First $B_1 e_d = a$ (here $\{e_1, e_2, \dots\}$ is the standard orthonormal vectors in \mathbb{R}^d or \mathbb{R}^{d+r}). Next $B_2 e_{d-1+i} = b_i$ and for $j = 1, \dots, d-1$, $B_2 e_j$ is orthogonal to $\langle a, \phi'_u \rangle''_{vv} b_i$, for $i = 1, \dots, r+1$. The fold condition which is the nondegeneracy of the quadratic form $\eta \to \langle \langle a, \phi'_u \rangle''_{vv} \eta, \eta \rangle$ on $\operatorname{Ker} d\pi_L$ implies that B_2 can be made invertible. Clearly $e_d \in \operatorname{Coker} \Phi''_{xz}(0, 0)$ and $e_{d-1+i} \in \operatorname{Ker} \Phi''_{xz}(0, 0)$ for $i = 1, \dots, r+1$; this is (2.7), (2.8) and the fold condition implies (2.5), (2.6). Since $\Phi'''_{x_d z_j z_{d-1+k}}|_{(0,0)} = (B_2 e_j)^t \langle a, \phi'_u \rangle''_{vv}|_{(x_0, y_0)} b_k$ we get (2.9) as well.

We shall always assume that a is supported in a ball of radius ϵ and center (0,0) and we shall choose ϵ small (independent of λ). Observe that

$$\Phi_{x'z''}'', \ \Phi_{x_dz'}'', \ \Phi_{x_dz'z''}''' = O(\epsilon)$$

in the support of a.

In order to prove our results we use an argument due to Tomas [22] according to which for $p \leq 2$

$$||T_{\lambda}||_{L^2 \to L^{p'}} \le ||T_{\lambda}T_{\lambda}^*||_{L^p \to L^{p'}}^{1/2}.$$

We write

$$T_{\lambda}T_{\lambda}^*f(x',x_d) = \int K_{x_dy_d}[f(\cdot,y_d)](x') \, dy_d$$

where

$$K_{x_d y_d} g(x') = \int K_{\lambda}(x', x_d, y', y_d) g(y') dy'$$

with

$$K_{\lambda}(x',x_d,y',y_d) \,=\, \int e^{i\lambda[\Phi(x',x_d,z)-\Phi(y',y_d,z)]} a(x,z)\overline{a(y,z)}\,dz.$$

The basic L^2 estimate is

Proposition 2.5. For fixed x_d, y_d there is the estimate

$$||K_{x_d y_d}g||_{L^2(\mathbb{R}^{d-1})} \le C\lambda^{-(d-1)}(1+\lambda|x_d-y_d|)^{-(r+1)/2}||g||_{L^2(\mathbb{R}^{d-1})}.$$

Proof. Define

$$T_{x_d z''} h(x') = \int e^{i\lambda \Phi(x', x_d, z', z'')} a(x', x_d, z', z'') dz'.$$

Then

(2.10)
$$K_{x_d y_d} g = \int T_{x_d z''} T_{y_d z''}^* g \, dz''.$$

By (2.5) it follows from Lemma 2.3 (with N=0) that $T_{x_dz''}$ is bounded on $L^2(\mathbb{R}^{d-1})$ with norm $O(\lambda^{(1-d)/2})$, uniformly in x_d . Then we see from (2.10) that $K_{x_dy_d}$ is bounded on $L^2(\mathbb{R}^{d-1})$ with norm $O(\lambda^{1-d})$. This is the desired estimate in the case $|x_d - y_d| \leq C\lambda^{-1}$.

Henceforth assume $|x_d - y_d| \ge \lambda^{-1}$. Note that in view of (2.5) and (2.8)

$$|\nabla_{z'}[\Phi(x', x_d, z) - \Phi(y', y_d, z)]| \ge c[|x' - y'| - C_0\epsilon|x_d - y_d|].$$

Therefore an integration by parts argument shows that

$$(2.11) |K_{\lambda}(x,y)| \le C_N (1+\lambda|x'-y'|)^{-N} \text{if } |x'-y'| \ge 2C_0 \epsilon |x_d-y_d|.$$

Let

$$\chi_{\epsilon}(x,y) = \chi(3C_0\epsilon^{-1}\frac{|x'-y'|}{|x_d-y_d|})$$

and let

$$H(x', y') \equiv H_{x_d y_d}(x', y') = \chi_{\epsilon}(x, y) K_{\lambda}(x, y)$$

and

$$R_{x_d y_d}(x', y') = (1 - \chi_{\epsilon}(x, y)) K_{\lambda}(x, y).$$

From (2.11) we obtain

$$\sup_{y'} \int |R_{x_d y_d}(x', y')| dx' + \sup_{x'} \int |R_{x_d y_d}(x', y')| dy' \le C_N (1 + \lambda |x_d - y_d|)^{-N + d - 1}.$$

Choosing N > d + (r - 1)/2 we see that the operator with kernel $R_{x_d y_d}$ is bounded on L^2 with the desired bound.

In view of the support properties of the kernel H it is appropriate to introduce another localization. Let $\beta \in C_0^{\infty}(\mathbb{R}^{d-1})$ be supported in $[-1,1]^{d-1}$ with $\sum_{n\in\mathbb{Z}^{d-1}}\beta(\cdot-n)\equiv 1$. We split

$$H(x', y') = \sum_{n \in \mathbb{Z}^{d-1}} H^n(x', y')$$

where

$$H^{n}(x',y') = \beta(|x_d - y_d|^{-1}x' - n)H(x',y').$$

Note that $H^n(x',y') = 0$ if $|x'-n|x_d-y_d|| \ge 2\sqrt{d-1}|x_d-y_d|$ or if $|y'-n|x_d-y_d|| \ge C_1|x_d-y_d|$ (with $C_1 = 2\sqrt{d-1} + (3C_0\epsilon)^{-1}$). Let \mathcal{H}^n denote the operator with kernel H^n ; then $\mathcal{H}^n(\mathcal{H}^{n'})^* = 0$, $(\mathcal{H}^n)^*\mathcal{H}^{n'} = 0$ if $|n-n'| \ge C$, for suitable C, and therefore it suffices to prove the required bound for an individual \mathcal{H}^n . We define rescaled operators $\widetilde{\mathcal{H}}^n$ with kernels

$$\widetilde{H}^{n}(u,v) = H^{n}(|x_{d} - y_{d}|(n+u), |x_{d} - y_{d}|(n+v)).$$

Then

(2.12)
$$\mathcal{H}^{n}g(x') = |x_{d} - y_{d}|^{d-1}\widetilde{\mathcal{H}}^{n}[f(|x_{d} - y_{d}| \cdot + n)](\frac{x'}{|x_{d} - y_{d}|} - n).$$

Let

$$\Psi_{n,x_d,y_d}(u,v,z) = \frac{\Phi((u+n)|x_d-y_d|,x_d,z) - \Phi((v+n)|x_d-y_d|,y_d,z)}{|x_d-y_d|}.$$

Then $\Psi = \Psi_{n,x_d,y_d}$ is a C^{∞} phase function which satisfies the assumptions of Lemma 2.3, uniformly in x_d , y_d and n. In fact we have

$$\begin{split} &\Psi_{uv}''(u,v,z) = 0 \\ &\Psi_{uz}''(u,v,z) = \Phi_{x'z}''(u+n|x_d-y_d|,x_d,z) \\ &\Psi_{zv}''(u,v,z) = -(\Phi_{x'z}'')^t(v+n|x_d-y_d|,y_d,z) \\ &\Psi_{zz}''(u,v,z) = \frac{\Phi_{zz}''((u+n)|x_d-y_d|,x_d,z) - \Phi_{zz}''((v+n)|x_d-y_d|,y_d,z)}{|x_d-y_d|}. \end{split}$$

In view of (2.5), (2.6) and the support properties of χ_{ϵ} ($|u-v| \ll |x_d-y_d|$) we see that $|\Psi''_{z''z''}| \ge c > 0$. Taking also into account (2.7) and (2.9) we obtain

$$\det \begin{pmatrix} \Psi''_{uv} & \Psi''_{uz} \\ \Psi''_{zv} & \Psi''_{zz} \end{pmatrix} \Big|_{(u,v,z)} \neq 0$$

in the support of χ_{ϵ} if ϵ is chosen sufficiently small. Observe that

$$\widetilde{H}^n(u,v) = \int e^{i\lambda|x_d - y_d|\Psi_{n,x_d,y_d}(u,v,z)} b_{n,x_d,y_d}(u,v,z) dz$$

where b_{n,x_d,y_d} is a C^{∞} -function with bounds independent of n, x_d and y_d . Hence we may apply Lemma 2.3 and it follows from Remark 2.4 that

$$\|\widetilde{\mathcal{H}}^n\|_{L^2 \to L^2} \le C(\lambda |x_d - y_d|)^{-d - r/2 + 1/2}$$

where C does not depend on x_d , y_d or n. Therefore by (2.12)

$$\begin{aligned} \|\mathcal{H}^n g\|_2 &= |x_d - y_d|^{(d-1)/2} \|\widetilde{\mathcal{H}}^n [g(|x_d - y_d|(n+\cdot))] |x_d - y_d|^{d-1} \|_2 \\ &\leq C \lambda^{-d+1} (\lambda |x_d - y_d|)^{-(r+1)/2} \|g\|_2. \end{aligned}$$

This is the desired estimate since we assume $|x_d - y_d| \ge \lambda^{-1}$. \square

In order to complete the proof of the $L^2 \to L^q$ estimates for T_λ we need an $L^1 \to L^\infty$ estimate for $K_{x_d y_d}$.

Proposition 2.6. Let C_{Φ} be as in Theorem 2.1 and assume r = 0. Then

$$(2.13) ||K_{x_d y_d} g||_{L^{\infty}(\mathbb{R}^{d-1})} \le C(1 + \lambda |x_d - y_d|)^{-1/2} ||g||_{L^{1}(\mathbb{R}^{d-1})}.$$

Suppose that C_{Φ} satisfies the additional curvature assumption of Theorem 2.2. Then

Proof. We first prove (2.13). Split $K_{x_dy_d} = H_{x_dy_d} + R_{x_dy_d}$ as in the proof of Proposition 2.5. The appropriate inequality for the operator with kernel $R_{x_dy_d}$

follows at once from (2.11). An application of the method of stationary phase which uses only the fold condition (2.6) (and (2.8)) yields

$$|H_{x_dy_d}(u,v)| \le C(1+\lambda|x_d-y_d|)^{-1/2}$$

and (2.13).

If \mathcal{C}_{Φ} is as in Theorem 2.2 then Σ_x can be parametrized by $z' \mapsto \Phi'_x(x, z', g(z'))$ for suitable smooth g and e_d is a normal vector for Σ_0 at z' = 0. The curvature condition on Σ_0 at z' = 0 is

$$\operatorname{rank} \Phi_{x_d z' z'}^{\prime\prime\prime} = \ell.$$

In order to see this one uses (2.8) and (2.9). By (2.6) and (2.9) it follows that

$$\operatorname{rank} \Phi_{x_d z z}^{\prime\prime\prime} = \ell + 1.$$

In this case the application of the method of stationary phase yields

$$|H_{x_d y_d}(u, v)| \le C(1 + \lambda |x_d - y_d|)^{-(\ell+1)/2}$$

and therefore (2.14). \square

Proof of Theorems 2.1 and 2.2. We first assume that r = 0. Using complex interpolation we deduce from Propositions 2.5 and 2.6 that for $1 \le p \le 2$

$$||K_{x_d y_d} g||_{L^{p'}(\mathbb{R}^{d-1})} \le C \lambda^{-2(d-1)/p'} (1 + \lambda |x_d - y_d|)^{\ell/p' - (\ell+1)/2} ||g||_{L^p(\mathbb{R}^{d-1})}$$

where $\ell=0$ in Theorem 2.1 and $0<\ell\leq d-1$ in Theorem 2.2. Of course $K_{x_dy_d}=0$ if $|x_d-y_d|\geq 1$. By the theorem on fractional integration we know that for 0< a< 1 the integral operator $|x_d-y_d|^{a-1}\chi(x_d-y_d)$ (where χ is a cutoff function) maps $L^p(\mathbb{R})$ into $L^{p'}(\mathbb{R})$ if $2/(a+1)\leq p\leq 2$. We want to apply this with $a-1=\ell/p'-(\ell+1)/2$ which yields the limitation $2\leq p'\leq (2\ell+4)/(\ell+1)$. For this range we obtain (using an idea by Oberlin [13])

$$||T_{\lambda}T_{\lambda}^*f||_{L^{p'}(\mathbb{R}^d)}$$

$$\leq C \left(\int \left[\int \left\| K_{x_d y_d}[f(\cdot, y_d)] \right\|_{L^{p'}(\mathbb{R}^{d-1})} dy_d \right]^{p'} dx_d \right)^{1/p'} \\
\leq C \lambda^{-2(d-1)/p' - (\ell+1)/2 + \ell/p'} \left(\int_{-1}^{1} \left[\int_{-1}^{1} \frac{\|f(\cdot, y_d)\|_{L^p(\mathbb{R}^{d-1})}}{|x_d - y_d|^{(\ell+1)(1/2 - 1/p) - 1/p + 1}} dy_d \right]^{p'} dx_d \right)^{1/p'} \\
\leq C \lambda^{-2(d-1)/p' - (\ell+1)/2 + \ell/p'} \|f\|_{L^p(\mathbb{R}^d)}.$$

Consequently T_{λ} is bounded from L^2 into $L^{p'}$ with operator norm $O(\lambda^{-(d-1)/p'-(\ell+1)/4+\ell/(2p')}$. This settles the case r=0.

If dim X=d, dim Y=d+r then we replace Proposition 2.6 by the trivial estimate $||K_{x_dy_d}||_{L^1\to L^\infty}=O(1)$ and obtain

$$||K_{x_d y_d} g||_{L^{p'}(\mathbb{R}^{d-1})} \le C \lambda^{-2(d-1)/p'} (1 + \lambda |x_d - y_d|)^{-(r+1)/p'} ||g||_{L^p(\mathbb{R}^{d-1})}.$$

Let $w_{\lambda,p}(t) = \lambda^{-2/p'} (1 + \lambda |t|)^{-(r+1)/p'} \chi(t)$. If $r \geq 1$, p' > 2 or if r > 1, $p' \geq 2$ then the convolution with $w_{\lambda,p}$ defines a bounded operator from $L^p(\mathbb{R})$ into $L^{p'}(\mathbb{R})$, with norm independent of λ . If r = 1, p = 2 the L^2 operator norm is $O(\log \lambda)$. This together with the argument above settles the case $d_X < d_Y$. \square

3. Application to Fourier integral operators

Let X, Y be open sets in \mathbb{R}^{d_X} and \mathbb{R}^{d_Y} , respectively. We consider operators of the form

(3.1)
$$S_{\lambda}f(x) = \iint e^{i\lambda\Psi(x,y,z)}b(x,y,z)\,dz\,f(y)dy$$

where $b \in C_0^{\infty}(\mathbb{R}^{d_X} \times \mathbb{R}^{d_Y} \times \mathbb{R}^N)$ and Ψ is a not necessarily homogeneous nondegenerate phase function in the sense that Ψ is C^{∞} in a neighborhood of supp b and the gradients $\nabla_{x,y,z}\Psi'_{z_i}$, $i=1,\ldots,N$ are linearly independent if N>0. We allow N=0 to include operators of type (2.1); in this case the nondegeneracy condition is void. If N>0 it implies that

(3.2)
$$\mathcal{C}_{\Psi} = \{(x, \Psi'_x; y, -\Psi'_y) : \Psi'_z = 0\}$$

is an immersed Lagrangian submanifold of $T^*X \times T^*Y$, i.e. a canonical relation.

We shall show that L^2 estimates for operators of type (2.1) can be reduced to L^2 estimates for operators of type (3.1). The same is true for $L^2 \to L^q$ estimates if one assumes that the projection $\pi^X : \mathcal{C} \to X$ is a submersion. We note that similar arguments come up in the calculus for Fourier integral operators [7], [9, vol.IV], and in fact one can develop a similar theory for operators with nonhomogeneous phase functions of type (3.1). Since we are not attempting to develop a calculus we prefer to give more elementary arguments using only linear canonical transformations. We begin with some simple facts from symplectic linear algebra.

Lemma 3.1. Suppose that $C \subset T^*X \times T^*Y$ is a canonical relation. Then for each $\rho \in C$ the subspace $d\pi_L(T_{\rho}C)$ of $T_{\pi_L\rho}T^*X$ contains a Lagrangian subspace.

Proof. We have to show that $V = d\pi_L(T_\rho \mathcal{C})$ is coisotropic with respect to the symplectic form $\sigma_X = d\xi \wedge dx$ on T^*X . Suppose $\sigma_X((\delta x, \delta \xi), (\delta x', \delta \xi')) = 0$ for all $(\delta x', \delta \xi,) \in V$. This implies that if $t' = (\delta x', \delta \xi', \delta y', \delta \eta')$ is a tangent vector in $T_\rho \mathcal{C}$ and $\sigma = \sigma_X - \sigma_Y$ then $\sigma((\delta x, \delta \xi, 0, 0), t') = 0$. Therefore the span of $T_\rho \mathcal{C}$ and $(\delta x, \delta \xi, 0, 0)$ is isotropic and since $T_\rho \mathcal{C}$ was already Lagrangian we see that $(\delta x, \delta \xi, 0, 0) \in T_\rho \mathcal{C}$ and therefore $(\delta x, \delta \xi) \in V$. \square

Lemma 3.2. Suppose that $C \subset T^*X \times T^*Y$ is a canonical relation and suppose that the projection $\pi^X : C \to X$ is a submersion. Then

$$\mathcal{C}^x = \{(y, \eta) \in T^*Y : (x, \xi; y, \eta) \in \mathcal{C} \text{ for some } \xi\}$$

is an immersed Lagrangian submanifold of T^*Y .

Proof. Since rank $d\pi^X = d_X$ we see that $\mathcal{N}^x = (\{x\} \times T_x^*X \times T^*Y) \cap \mathcal{C}$ is an isotropic d_X -dimensional immersed submanifold of $T^*X \times T^*Y$. We observe that the projection of \mathcal{N}^x to T^*Y at a point ρ has injective differential. Indeed suppose that $(0, \delta \xi, 0, 0) \in T_\rho \mathcal{N}^x$. By our assumption on π^X we may find d_X tangent vectors $t^{(i)} = (\delta x_i, \ldots)$ (with the δx_i being a basis of the tangent space to X at $\pi^X(\rho)$). If we apply $\sigma_X - \sigma_Y$ to the tangent vectors $t^{(i)}$ and to $(0, \delta \xi, 0, 0)$ we find $\langle \delta x_i, \delta \xi \rangle = 0$ for $i = 1, \ldots, d_X$ and therefore $\delta \xi = 0$. We have shown that the intersection of the tangent spaces of \mathcal{N}^x with (the tangent space of) $0 \times T_x^*X \times 0$ is $\{0\}$ and therefore \mathcal{C}^x is an immersed manifold of T^*Y of dimension d_Y . σ_Y vanishes on \mathcal{C}^x and hence \mathcal{C}^x is Lagrangian. \square

We now consider operators of type (3.1).

Lemma 3.3. Suppose that $\Psi'_z(x_0, y_0, z_0) \neq 0$ and $M \in \mathbb{N}$. Then there is a neighborhood W of (x_0, y_0, z_0) such that $||S_{\lambda}||_{L^p \to L^p} = O(\lambda^{-M})$ for all M and $1 \le p \le \infty$ provided that b is supported in W.

Proof. Let K_{λ} be the kernel of S_{λ} . Since $\Psi'_z \neq 0$ near (x_0, y_0, z_0) we may use integration by parts to see that $|K_{\lambda}(x,y)| \leq C_M \lambda^{-M}$ provided that the support of b is contained in a small neighborhood of (x_0, y_0, z_0) .

Proposition 3.4. Let Ψ be nondegenerate and suppose that $\Psi'_z(x_0, y_0, z_0) = 0$. Then there is a neighborhood W of (x_0, y_0, z_0) such that if b is supported in W we can write

$$(3.3) S_{\lambda} = \lambda^{d_X/2} G_{\lambda} V_{\lambda} + R_{\lambda}$$

and G_{λ} , V_{λ} , and R_{λ} are as follows: G_{λ} is an unitary operator on $L^{2}(\mathbb{R}^{d_{X}})$. The kernel of V_{λ} is given by

(3.4)
$$K_{\lambda}(x,y) = \int e^{i\lambda\phi(x,y,\vartheta)} \gamma(x,y,\vartheta) \, d\vartheta$$

where $\gamma \in C_0^{\infty}(\mathbb{R}^{d_X} \times \mathbb{R}^{d_Y} \times \mathbb{R}^{N+d_X})$ and ϕ is nondegenerate in a neighborhood of supp γ ; moreover the projection π_X to X of the associated canonical relation \mathcal{C}_{ϕ} is a submersion. C_{ϕ} is given by

(3.5)
$$C_{\phi} = \{(x, \phi_x; y, -\phi'_y); \phi'_{\vartheta} = 0\}$$
$$= \{(x, \xi; y, \eta) : (x, \xi) = \chi(w, \zeta), (w, \zeta; y, \eta) \in \mathcal{C}_{\Psi}\};$$

here χ is a linear canonical transformation. Finally R_{λ} is bounded on L^p , $1 \leq p \leq$ ∞ with operator norm $O(\lambda^{-M})$.

Proof. Let $\rho_0 = (x_0, \xi_0; y_0, \eta_0) = (x_0, \Psi_x'(x_0, y_0, z_0); y_0, -\Psi_y'(x_0, y_0, z_0))$. By Lemma 3.1 there is a Lagrangian subspace L_0 of $d\pi_L T_{\rho_0} \mathcal{C}_{\Psi}$. Consider the fiber $L_1 =$ $\{(0,\delta\xi)\}$ as a Lagrangian subspace of $T_{(x_0,\xi_0)}T^*X$. Then one can choose another Lagrangian subspace L_2 which is transversal to both L_0 and L_1 (see [9, p.289]). Therefore $L_2 = \{(\delta x, A \delta x)\}$ for some symmetric A. Let $B_1, B_2 \in Sp(d_X, \mathbb{R})$ be defined by

$$B_1 = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} I & 0 \\ -A & I \end{pmatrix}$$

and consider $B_i(L_j) = \{v \in T_{(x_0,\xi_0)}T^*X : B_i^{-1}v \in L_j\}$. Then $B_2(L_2) = \{(\delta x,0)\}$ and $B_1B_2L_0$ is transversal to $B_1B_2(L_2)=L_1$; hence $B_1B_2L_0=\{(\delta x,A_0\delta x)\}$ for some A_0 .

Next define

$$F_{\lambda}g(x) = \int e^{-i\lambda[\langle x,w\rangle + \frac{1}{2}\langle Aw,w\rangle]}g(w) dw$$

Then the operator $(\lambda/2\pi)^{d_X/2}F_{\lambda}$ is a unitary operator on $L^2(\mathbb{R}^{d_X})$, by Plancherel's theorem.

Let $\chi(w,\zeta)=(-Aw+\zeta,-w)$; that is $\chi=B_1B_2$ if we consider B_1,B_2 as acting on T^*X . Let

$$(\tilde{x}_0, \tilde{\xi}_0) = \chi(x_0, \xi_0) = (-Ax_0 + \Psi_x'(x_0, y_0, z_0), -x_0)$$

and let $\beta \in C_0^{\infty}(\mathbb{R}^{d_X})$ be equal to 1 in a neighborhood U of \tilde{x}_0 . Let $G_{\lambda} = (\lambda/2\pi)^{-d_X/2}F_{\lambda}^{-1}$ and let

$$V_{\lambda}f(x) = (2\pi)^{d_X/2}\beta(x)F_{\lambda}S_{\lambda}f(x)$$
$$\widetilde{R}_{\lambda}f(x) = (2\pi)^{d_X/2}(1-\beta(x))F_{\lambda}S_{\lambda}f(x)$$

Then we have the decomposition (3.3) with $R_{\lambda} = \lambda^{d_X/2} G_{\lambda} \widetilde{R}_{\lambda}$. The kernel of V_{λ} is (3.4) with $\vartheta = (w, z)$ and

$$\phi(x, y, (w, z)) = -\langle x, w \rangle - \frac{1}{2} \langle Aw, w \rangle + \Psi(w, y, z)$$
$$\gamma(x, y, (w, z)) = (2\pi)^{d_X/2} \beta(x) b(w, y, z)$$

Then

$$\mathcal{C}_{\phi} = \{(x, -w; y, \Psi'_{y}(w, y, z)) : -x - Aw + \Psi'_{y}(w, y, z) = 0, \Psi'_{z}(w, y, z) = 0\}.$$

Hence C_{ϕ} is given by (3.5) with $\chi = B_1 B_2$. Let $\tilde{\rho}_0 = (\tilde{x}_0, \tilde{\xi}_0, y_0, \eta_0)$. Then the space $d\pi_L(T_{\tilde{\rho}_0}C_{\phi}) \subset T_{(\tilde{x}_0,\tilde{\xi}_0)}T^*X$ contains the Lagrangian subspace $B_1B_2L_0$ and hence the differential of the projection $\pi^X: \mathcal{C}_{\phi} \to X$ is surjective at $\tilde{\rho}_0$. Therefore π^X is a submersion provided the support of b and β are small.

In order to complete the proof we have to show that the L^p -operator norm of R_{λ} is $O(\lambda^{-M})$, provided that the support of b is sufficiently close to (x_0, y_0, z_0) . In order to see this we note that

$$\phi'_w(x, y, (w, z)) = -x - Aw + \Psi'_w(w, y, z)$$

$$= -(x - \tilde{x}_0) - \tilde{x}_0 - Ax_0 + \Psi'_w(x_0, y_0, z_0) + O(|w - x_0| + |y - y_0| + |z - z_0|)$$

$$= -(x - \tilde{x}_0) + O(|w - x_0| + |y - y_0| + |z - z_0|).$$

In view of Lemma 3.3 and the support properties of $1-\beta$ we get the required estimate for the kernel of R_{λ} provided that the support of b is sufficiently close to (x_0, y_0, z_0) . \Box

Proposition 3.5. Let Ψ be nondegenerate and suppose that $\Psi'_z(x_0, y_0, z_0) = 0$. Let $\rho_0 = (x_0, \xi_0; y_0, \eta_0) = (x_0, \Psi_x'(x_0, y_0, z_0); y_0, -\Psi_y'(x_0, y_0, z_0)).$ Suppose that near ρ_0 the projection $\pi_X: \mathcal{C}_{\Psi} \to X$ is a submersion. Then there is a neighborhood W of (x_0, y_0, z_0) such that if b is supported in W we can write

$$(3.6) S_{\lambda} = \lambda^{-N/2} T_{\lambda} G_{\lambda} + R_{\lambda}$$

where G_{λ} is a unitary operator on $L^{2}(\mathbb{R}^{d_{X}})$ and R_{λ} is bounded on L^{p} , $1 \leq p \leq \infty$ with operator norm $O(\lambda^{-M})$. T_{λ} is given by

(3.7)
$$T_{\lambda}f(x) = \int e^{i\lambda\Phi(x,y)}b_{\lambda}(x,y)f(y)\,dy$$

where b_{λ} belongs to a bounded set of functions in $C_0^{\infty}(X \times Y)$. The canonical relation (2.2) associated to T_{λ} can be written as

$$C_{\Phi} = \{(x, \xi; y, \eta) : (y, \eta) = \chi(w, \zeta), (x, \xi; w, \zeta) \in C_{\Psi}\};$$

where χ is a linear canonical transformation.

Proof. We use exactly the same reasoning as in the proof of Proposition 3.4 (this time working in T^*Y). Again we want to choose a Lagrangian subspace L_0 of $d\pi_R T_{\rho_0} \mathcal{C}$. By our assumption on π^X and Lemma 3.2 we may choose L_0 to be the tangent space of the Lagrangian manifold $\mathcal{C}_{\phi}^{x_0}$. Arguing as in the proof of Proposition 3.4 we may write

$$S_{\lambda} = \lambda^{d_Y/2} V_{\lambda} G_{\lambda} + R_{\lambda}$$

where the kernel of V_{λ} is given by (3.4) with $\vartheta = (w, z) \in \mathbb{R}^{d_Y} \times \mathbb{R}^N$ and $\gamma \in C_0^{\infty}(\mathbb{R}^{d_X} \times \mathbb{R}^{d_Y} \times \mathbb{R}^{N+d_Y})$. Moreover the projection of \mathcal{C}_{ϕ}^x onto Y has surjective differential at $(\tilde{y}_0, \tilde{\eta}_0) = \chi(y_0, \eta_0) = (y_0, \phi_y'(x_0, y_0, \vartheta_0))$ for x close to x_0 . This means that that the projection $\mathcal{C}_{\phi} \to X \times Y$ has surjective differential at $(x_0, \xi_0, \tilde{y}_0, \tilde{\eta}_0)$. Since ϕ is nondegenerate this implies

(3.8)
$$\det \phi_{\vartheta\vartheta}''(x_0, y_0, \vartheta_0) \neq 0;$$

cf. [7, p.137] (note that (3.8) can never happen if ϕ is a homogeneous phase function). Now if the support of b is sufficiently small we may apply the method of stationary phase with respect to the ϑ -variables (analogous to the reduction of frequency variables in [7]) and obtain

$$V_{\lambda} = \lambda^{-(N+d_Y)/2} T_{\lambda} + R'_{\lambda};$$

here T_{λ} is as in (3.7) and R'_{λ} is bounded on L^p with norm $O(\lambda^{-M})$. The canonical relations associated to T_{λ} and V_{λ} coincide. \square

An immediate consequence of Theorems 2.1 and 2.2 and Propositions 3.4 and 3.5 is

Theorem 3.6. Let S_{λ} be as in (3.1) and suppose $d_Y \geq d_X$. Suppose that the projection $\pi_L : \mathcal{C}_{\Psi} \to T^*X$ is a submersion with folds. Then for $\lambda \geq 2$

$$||S_{\lambda}f||_{L^{2}(X)} \leq C\lambda^{-\frac{N+d_{X}}{2} + \frac{1}{4}} ||f||_{L^{2}(Y)} \qquad if \, d_{Y} = d_{X}$$

$$||S_{\lambda}f||_{L^{2}(X)} \leq C\lambda^{-\frac{N+d_{X}}{2}} (\log \lambda)^{1/2} ||f||_{L^{2}(Y)} \qquad if \, d_{Y} = d_{X} + 1$$

$$||S_{\lambda}f||_{L^{2}(X)} \leq C\lambda^{-\frac{N+d_{X}}{2}} ||f||_{L^{2}(Y)} \qquad if \, d_{Y} \geq d_{X} + 2.$$

Suppose in addition that the projection of C_{Ψ} to X is a submersion. Then

(3.9)
$$||S_{\lambda}f||_{L^{q}(X)} \le C\lambda^{-\frac{N}{2} - \frac{d_{X}}{q}} ||f||_{L^{2}(Y)}$$

provided that $4 \le q \le \infty$ if $d_X = d_Y$ and $2 < q \le \infty$ if $d_Y \ge d_X + 1$. If one imposes the additional assumption that the projection of the fold hypersurface \mathcal{L} to X is a submersion and that at least ℓ principal curvatures of the surfaces $\Sigma_x = \pi^{T_x^* X} \mathcal{C}_{\Psi}$ do not vanish (here $1 \le \ell \le d_X - 1$) then (3.9) holds for $(2\ell + 4)/(\ell + 1) \le q \le \infty$.

Remark. There is a more straightforward reduction to oscillatory integral operators in the case of averaging operators, given by $\mathcal{A}f(x) = \int_{\mathcal{M}_x} f(y) d\sigma_x(y)$. If \mathcal{M}_x is parametrized by y'' = S(x, y'), $y' \in \mathbb{R}^k$, $y'' \in \mathbb{R}^{d-k}$ then one is led to consider S_λ with $\Psi(x, y, z) = \sum_{i=k+1}^d (y_i - S_i(x, y'))z_i$, $z \in \mathbb{R}^{d-k}$, and by an application of a partial Fourier transform in the y''-variables one reduces the study of S_λ to the study of T_λ with $\Phi(x, y) = \sum_{j=k+1}^d S_j(x, y')y_j$; see Sogge and Stein [21].

We now apply Theorem 3.6 to the homogeneous case and use the following Lemma.

Lemma 3.7. Let Ψ be a homogeneous nondegenerate phase function defined in $X \times Y \times \Gamma$ where Γ is an open cone in $\mathbb{R}^N \setminus 0$ and suppose that $\Psi'_x \neq 0$, $\Psi'_y \neq 0$ in Γ . Let U be an open subset of $X \times Y$ with compact closure and let Γ_0 be a subcone of Γ such that $\overline{\Gamma_0} \setminus 0 \subset \Gamma$. Let \mathcal{F} be the Fourier integral operator

$$\mathcal{F}f(x) = \iint e^{i\Psi(x,y,\theta)} a(x,y,\theta) \, d\theta \, f(y) dy$$

where $a(x, y, \theta)$ is a symbol of class $S^m(X \times Y \times \mathbb{R}^N)$ supported in $U \times \Gamma_0$. Let $\beta \in C_0^{\infty}(\mathbb{R})$ be such that $\beta(s) > 0$ if $1/\sqrt{2} \le |s| \le \sqrt{2}$ and $\beta(s) = 0$ if $|s| \notin (1/2, 2)$. For $\lambda > 0$ let

$$a_{\lambda}(x, y, \theta) = \beta(|\theta|/\lambda)a(x, y, \theta)$$

and let \mathcal{F}^{λ} be similarly defined as \mathcal{F} with a replaced by a_{λ} . Suppose that 1 and that

$$\|\mathcal{F}^{\lambda}f\|_{L^{q}(\mathbb{R}^{d_{X}})} \leq A\|f\|_{L^{p}(\mathbb{R}^{d_{Y}})}$$

for all $f \in L^p(\mathbb{R}^{d_Y})$, for all $\lambda > C_0$ (where C_0 is a fixed positive constant). Then \mathcal{F} is bounded from $L^p(Y)$ to $L^q(X)$.

The proof is a well known application of Littlewood Paley theory and easy estimates for oscillatory integrals ([7, p.177]), based on the assumptions $\Psi'_x \neq 0$, $\Psi'_y \neq 0$. For details of this standard argument see [19].

Proof of Theorems 1.1-3. By conjugating \mathcal{F} with pseudodifferential operators $(I - \Delta)^{\gamma/2}$ and standard calculations we see that the estimates involving Sobolev spaces follow from the L^2 or $L^2 \to L^q$ estimates. It suffices to consider \mathcal{F}_{λ} as in Lemma 3.7. A change of variable shows that $\mathcal{F}^{\lambda} = \lambda^{m+N} S_{\lambda}$ where S_{λ} is as in Theorem 3.6. Now the asserted estimates follow easily from Theorem 3.6.

4. Application to restricted X-ray transforms

We now show how the previous results can be applied to obtain local estimates for restricted X-ray transforms on d-dimensional Riemannian or semi-Riemannian manifolds. We shall be interested in hypersurfaces in the (2d-2)-dimensional space \mathcal{M} of geodesics in (M,g). Recall the following description of \mathcal{M} (cf. [1], [3]). For $(x,\xi) \in T^*M \setminus 0$, let $\xi^{\sharp} \in T_xM$ be the corresponding tangent vector (so that $g(\xi^{\sharp},v) = \langle \xi,v \rangle$ for all $v \in T_xM$.) To (x,ξ) we associate the geodesic $s \to \gamma_{x,\xi}(s) = \exp_x(s\xi^{\sharp})$. There are two redundancies in this parametrization of all geodesics: dilation in ξ and translation along the geodesic flow; we take these into account by noting the (locally defined) action of $\mathbb{R}_+ \times \mathbb{R}$ on $T^*M \setminus 0$,

$$U_{(\rho,r)} \cdot (x,\xi) = \exp(rH_g)(x,\rho\xi),$$

where H_g is the Hamiltonian vector field of the metric $g(x,\xi)$. If \sim is the resulting equivalence relation, and $(x',\xi') \sim (x,\xi)$, then $\gamma_{x',\xi'} = \gamma_{x,\xi}$ as sets. Thus, the (locally defined) space of unparametrized geodesics is $\mathcal{M} = (T^*M\backslash 0)/\sim$, which is (2d-2)-dimensional.

We consider a hypersurface $\mathfrak{C} \subset \mathcal{M}$ with the property that for each $y \in M$ the family of all geodesics in \mathfrak{C} passing through y form a d-2-dimensional smooth

submanifold \mathfrak{C}_y of $\mathcal{M}_{1,d}$. \mathfrak{C} can be locally specified by a defining function $f(x,\xi)$ on T^*M , homogeneous of some degree and and invariant under the Hamiltonian flow: $f(\exp sH_g(x,\xi))=f(x,\xi)$. We may locally make a smooth choice of representative, $\mathfrak{C}\ni\gamma\to(x,\xi)$; in the Riemannian case it is customary to normalize $g(x,\xi)=1$, but in the semi-Riemannian case this is not possible if there are null-geodesics in \mathfrak{C} . In any case for suitable cutoff-functions $\chi_1\in C_0^\infty(\mathfrak{C}), \chi_2\in C_0^\infty(M)$ with small support the restricted X-ray transform,

$$\mathcal{R}_{\mathfrak{C}}\phi(\gamma) = \chi_1(\gamma) \int \chi_2 \phi(\exp_x(s\xi^{\sharp})) ds \quad \gamma \in \mathfrak{C},$$

is well defined. $\mathcal{R}_{\mathfrak{C}}$ is a generalized Radon transform in the sense of [6]. The Schwartz kernel of $\mathcal{R}_{\mathfrak{C}}$ is supported on the point-geodesic relation

$$\mathcal{Z}_{\mathfrak{C}} = \{ (\gamma, y) \in \mathfrak{C} \times M : y \in \gamma \}.$$

 $\mathcal{Z}_{\mathfrak{C}}$ is a smooth, (2d-2)-dimensional submanifold of $\mathfrak{C} \times M$; away from the critical points of $\pi_M : \mathcal{Z}_{\mathfrak{C}} \to M$, $K_{\mathcal{R}_{\mathfrak{C}}}(\gamma, y)$ is a smooth density on $\mathcal{Z}_{\mathfrak{C}}$, and thus $\mathcal{R}_{\mathfrak{C}}$ is a Fourier integral operator, $\mathcal{R}_{\mathfrak{C}} \in I^{-(d-1)/4}(\mathfrak{C}, M; N^*\mathcal{Z}_{\mathfrak{C}})$. It is assumed henceforth that we have localized away from any critical points.

We are going to impose a curvature assumption on \mathfrak{C} . For each $y \in M$ let \mathfrak{c}_y be the cone in T_yM consisting of all lines tangent at y to a geodesic in \mathfrak{C}_y . Then $\mathfrak{c}_y = \{\xi^{\sharp} : f(y,\xi) = 0\}$. Following [3] we say that \mathfrak{C} is well-curved if each cone \mathfrak{c}_y has d-2 nonvanishing principal curvatures. In terms of the defining function f the well-curvedness of \mathfrak{C} means that for all (x,ξ) with $f(x,\xi) = 0$ we have

(4.1)
$$\operatorname{rank} d_{\xi\xi}^2 f(x,\xi) \Big|_{d_{\xi}f^{\perp}} = d - 2.$$

Proposition 4.1. If M has no conjugate points and $\mathfrak{C} \subset M$ is a well-curved hypersurface then $\pi : \mathcal{N}^* \mathcal{Z}_{\mathfrak{C}} \to T^* M$ is a submersion with folds. If $\mathcal{L} \subset \mathcal{N}^* \mathcal{Z}_{\mathfrak{C}}$ is the fold surface, then the projection $\mathcal{L} \to M$ is a submersion and for each $y \in M$, $\Gamma_y = \pi(\mathcal{L}) \cap T_y^* M \setminus 0$ is an immersed conic hypersurface with d-2 nonvanishing principal curvatures.

Corollary 4.2. If $\mathfrak{C} \subset \mathcal{M}_{1,d}$ is as in Proposition 4.1, then $\mathcal{R}_{\mathfrak{C}} : L^2_{\alpha,\text{comp}}(M) \to L^2_{\alpha+s_0,\text{loc}}(\mathfrak{C})$ with $s_0 = 1/4$ if d=3, $s_0 = 1/2 - \epsilon$ if d=4 (any $\epsilon > 0$) and $s_0 = 1/2$ if $d \geq 5$. Furthermore $\mathcal{R}_{\mathfrak{C}} : L^p_{\text{comp}}(M) \to L^q_{\text{loc}}(\mathfrak{C})$ is bounded, provided $1 \leq p \leq \frac{2d}{d+1}$ and $q \leq \frac{dp-p}{d-p}$.

Proof. Given Proposition 4.1, the first part follows immediately from Theorem 1.1 (by duality), and the second part follows from Theorem 1.2 if $d \ge 4$ and Theorem 1.3 if d = 3, and an interpolation with the easy $L^1 \to L^1$ estimate. \square

Remarks.

- 1) The first part of Corollary 4.2 was conjectured in [3] and proved for admissible $\mathfrak{C} \subset M_{1,d}$ (the manifold of lines in \mathbb{R}^d). In this case the projection $\mathcal{C} \to T^*\mathfrak{C}$ has maximal degeneracy.
- 2) Corollary 4.2 applies in particular when (M, g) is a non-Riemannian, semi-Riemannian manifold and \mathfrak{C} is the hypersurface of null geodesics in M. In this

case we take $f(x,\xi)$ to be the metric function $g(x,\xi)$; since this is a nonsingular quadratic form in ξ , it clearly satisfies the criterion of Proposition 4.1.

3) As shown in [2], [3] the L^2 estimates are sharp. The $L^p \to L^q$ estimates are sharp for $p \leq 2d/(d+1)$ as one can see by testing \mathcal{R} on characteristic functions of balls of small radius. However for p > 2d/(d+1) the sharp $L^p \to L^q$ estimates are not known except for d=3.

Proof of Proposition 4.1. It is convenient to work not with \mathfrak{C} , $\mathcal{Z}_{\mathfrak{C}}$ and $\mathcal{C} = (N^*\mathcal{Z}_{\mathfrak{C}})'$, but rather $\widetilde{\mathfrak{C}}$, $\widetilde{\mathcal{Z}} = \mathcal{Z}_{\widetilde{\mathfrak{C}}}$ and $\widetilde{\mathcal{C}}$, where

$$\widetilde{\mathfrak{C}} = \{(x,\xi) \in T^*M \setminus 0 : f(x,\xi) = 0\}$$

$$\widetilde{\mathcal{Z}} = \{(x,\xi;y) \in \widetilde{\mathfrak{C}} \times M : y \in \gamma_{x,\xi}\}$$

$$\widetilde{\mathcal{C}} = (N^*\widetilde{\mathfrak{C}})' \subset T^*\widetilde{\mathfrak{C}} \setminus 0 \times T^*M \setminus 0.$$

As described above, $\widetilde{\mathfrak{C}}$ has two redundant variables, since $\mathfrak{C} = \widetilde{\mathfrak{C}}/\sim$, where \sim is the equivalence relation induced by the action $U_{(\rho,r)}$. The projection $\widetilde{\mathfrak{C}} \to \mathfrak{C}$ is a submersion (with two-dimensional fibers), and so is the projection $\widetilde{\mathcal{Z}} \to \mathcal{Z}_{\mathfrak{C}}$. Letting $\widetilde{\pi}_M$ and $\widetilde{\pi}_{T^*M}$ be the projections from $\widetilde{\mathcal{Z}}$ and $\widetilde{\mathcal{C}}$ into M and T^*M , respectively, we have that $\widetilde{\pi}_M \circ U_{(\rho,r)} = \widetilde{\pi}_M$ on $\widetilde{\mathcal{Z}}$ and so $\widetilde{\pi}_{T^*M} \circ dU_{(\rho,r)} = \widetilde{\pi}_{T^*M}$ on $\widetilde{\mathcal{C}}$. Thus, to show that the projection $\pi_{T^*M} : \mathcal{C} \to T^*M$ is a submersion with folds, it suffices to show that $\widetilde{\pi}_{T^*M}$ is a submersion off a codimension d-2 submanifold $\widetilde{\mathcal{L}} \subset \widetilde{\mathfrak{C}}$; that $\widetilde{\pi}_{T^*M}$ drops rank simply at $\widetilde{\mathcal{L}}$ (i.e., some $2d \times 2d$ minor of $d\widetilde{\pi}_{T^*M}$ vanishes to first order at $\widetilde{\mathcal{L}}$); and $\widetilde{\pi}_{T^*M}|_{\widetilde{\mathcal{L}}}$ is a submersion, with $\mathrm{Ker}(d\widetilde{\pi}_{T^*M}) \cap T\widetilde{\mathcal{L}}$ equaling the tangent space of the fibers of $\widetilde{\mathfrak{C}} \to \mathfrak{C}$.

Now parametrize $\widetilde{\mathcal{Z}}$ by

$$\widetilde{\mathcal{Z}} = \{(x, \xi; \exp_x(s\xi^{\sharp})) : (x, \xi) \in \widetilde{\mathfrak{C}}, s \in I_{x, \xi}\},\$$

where $I_{x,\xi} \subset \mathbb{R}$ is an open interval depending on (x,ξ) . From [3; eqn. (2.15)], we have that $\widetilde{\mathcal{C}}$ is parametrized by $(x,\xi) \in \widetilde{\mathfrak{C}}$, $s \in I_{x,\xi}$, and $\eta \in \xi^{\perp} \subset T_x^*M$, with

$$\tilde{\pi}_{T^*M}(x,\xi,s,\eta) = (\exp_x(s\xi^{\sharp}), (D_v \exp)^{*^{-1}}(\eta)),$$

where D_v exp is the derivative of the exponential map in the tangent vector variable. We now calculate the kernel of $d\tilde{\pi}_{T^*M}$ at $\rho = (x, \xi, s, \eta)$. Note first that for a tangent vector $(\delta x, \delta \xi, \delta s, \delta \eta) \in T_\rho \widetilde{\mathfrak{C}}$, we have

$$\langle \eta, \delta \xi^{\sharp} \rangle + \langle \xi^{\sharp}, \delta \eta \rangle = 0$$

since $\langle \xi, \eta \rangle = 0$. Via the metric, we convert the defining function for $\widetilde{\mathfrak{C}}$ to a function on TM, which we denote by f^{\sharp} (since this involves a fiberwise linear change of variables, it does not affect the criterion of Proposition 4.1). Since we assume that f^{\sharp} is invariant under the geodesic flow, *i.e.*

$$f^{\sharp}(\exp_x(s\xi^{\sharp}), D_v \exp_x^*(s\xi^{\sharp})) = f^{\sharp}(x, \xi^{\sharp})$$

we obtain by differentiation

$$\langle d_{\xi^{\sharp}} f^{\sharp} + D_v \exp^* D_x \exp^{-1} d_x f^{\sharp}, \xi^{\sharp} \rangle = 0$$

Since $f^{\sharp}(x,\xi^{\sharp}) = 0$ on $\widetilde{\mathfrak{C}}$, we have

$$\langle d_x f^{\sharp}, \delta x \rangle + \langle d_{\varepsilon^{\sharp}} f^{\sharp}, \delta \xi^{\sharp} \rangle = 0.$$

Now, if the tangent vector also belongs to $Ker(d\tilde{\pi}_{T^*M})$, then

$$(4.5) D_x \exp(\delta x) + s D_v \exp(\delta \xi^{\sharp}) + D_v \exp(\xi^{\sharp} \delta s) = 0$$

and

(4.6)

$$-(D_v \exp)^{*^{-1}} (D_{vx}^2 \exp)^* (D_v \exp)^{*^{-1}} (\eta, \delta x) + s(D_x \exp)^{-1} (D_{vv}^2 \exp) (D_x \exp)^{-1} (\eta, \delta \xi^{\sharp})$$

$$+ (D_v \exp)^{*^{-1}} (D_{vv}^2 \exp)^* (D_v \exp)^{*^{-1}} (\eta, \xi^{\sharp}) \delta s + (D_v \exp)^{*^{-1}} (\delta \eta) = 0.$$

Solving for δx in (4.5) and substituting in (4.4), we obtain

$$(4.7) \quad \langle d_{\xi^{\sharp}} f^{\sharp} - s D_v \exp^* D_x \exp^{-1} d_x f^{\sharp}, \delta \xi^{\sharp} \rangle - \langle D_v \exp^* D_x \exp^{-1} d_x f^{\sharp}, \xi^{\sharp} \rangle \delta s = 0.$$

For $\eta \wedge (d_{\xi^{\sharp}} f^{\sharp} - sD_v \exp^* D_x \exp^{-1^*} d_x f^{\sharp}) \neq 0$, the system of equations (4.2), (4.7), (4.5), (4.6) has rank 2d + 2 (acting on the full tangent space $T_{(x,\xi,s,\eta)}(T^*M \times \mathbb{R} \times T_x^*M)$, $d\tilde{\pi}_{T^*M}$ has a (d-1)-dimensional kernel, and thus $\tilde{\pi}_{T^*M}$ is a submersion there. Now let $\widetilde{\mathcal{L}}$ be the submanifold of $\widetilde{\mathcal{C}}$ given by the equation

$$\eta \wedge (d_{\xi^{\sharp}} f^{\sharp} - s D_v \exp^* D_x \exp^{-1*} d_x f^{\sharp}) = 0.$$

Since f^{\sharp} is homogeneous of some degree Euler's relation yields $\langle \xi^{\sharp}, d_{\xi^{\sharp}} f^{\sharp} \rangle = 0$ on $\widetilde{\mathfrak{C}}$ and from (4.3) we see that $d_{\xi^{\sharp}} f^{\sharp} - s D_v \exp^* D_x \exp^{-1^*} d_x f^{\sharp}$ belongs to $\xi^{\sharp^{\perp}}$. Since also $\eta \in \xi^{\sharp^{\perp}}$ it follows that $\widetilde{\mathcal{L}} \subset \widetilde{\mathcal{C}}$ is a submanifold of codimension d-2. Using (4.1) one checks that $d\widetilde{\pi}_{T^*M}$ drops rank simply at $\widetilde{\mathcal{L}}$.

It remains to show that $d\tilde{\pi}_{T^*M}|_{T\tilde{\mathcal{L}}}$ has a two-dimensional kernel (which must equal the tangent space of the fiber of $\tilde{\mathcal{C}} \to \mathcal{C}$ since that is two-dimensional and in the kernel.) Again, since \tilde{L} is defined by a collineation, we have a redundant family of defining functions: for each C^{∞} -section Ω of $\bigwedge^2 TM$ we have

$$h_{\Omega}(x,\xi,s,\eta) := \Omega(\eta \wedge (d_{\xi^{\sharp}} f^{\sharp} - s D_v \exp^* D_x \exp^{-1} d_x f^{\sharp})) = 0.$$

Then, at \tilde{L} and s=0 (which we can always assume: given x, we can pick all the representatives of the geodesics through x to be of the form $\gamma_{x,\xi}$), the derivative of h_{Ω} is given by

$$dh_{\Omega}(\delta x, \delta \xi^{\sharp}, \delta s, \delta \eta) = d_{\xi^{\sharp} x}^{2} f^{\sharp}(\eta \, \bot \Omega, \delta x) + d_{\xi^{\sharp} \xi^{\sharp}}^{2} f^{\sharp}(\eta \, \bot \Omega, \delta \xi^{\sharp}) - (\Omega(\eta \wedge D_{v} \exp^{*} D_{x} \exp^{-1} d_{x} f^{\sharp})) \delta s - \langle d_{\xi^{\sharp}} f^{\sharp} \, \bot \Omega, \delta \eta \rangle;$$

As Ω_x ranges over $\bigwedge^2 T_x M$, $v = \eta \, \exists \, \Omega$ ranges over $\eta^{\perp} = (d_{\xi^{\sharp}} f^{\sharp})^{\perp}$ (this last equality holds since $\eta \wedge d_{\xi^{\sharp}} f^{\sharp} = 0$ at $\widetilde{\mathcal{L}}$.) Using (4.3), (4.4), the equation $dh_{\Omega} = 0$ (all evaluated at $\rho = (x, \xi, 0, \eta)$) and the H_g invariance of f, one sees after a short calculation that $\operatorname{Ker}(d\tilde{\pi}_{T^*M}) \cap T_{\rho}\widetilde{\mathcal{L}}$ is given by the system of equations

(4.8)
$$d_{\xi^{\sharp}\xi^{\sharp}}^{2}f^{\sharp}(v,\delta\xi^{\sharp}) = l(\delta s), \quad \text{all } v \in (d_{\xi^{\sharp}}f^{\sharp})^{\perp},$$

where l is a linear mapping. Since $d_{\xi\xi}^2f$ has rank d-2 on $d_{\xi}f^{\perp}$, $d_{\xi^{\sharp}\xi^{\sharp}}^2f^{\sharp}$ has rank d-2 on $(d_{\xi^{\sharp}}f^{\sharp})^{\perp}$, and thus (4.8) has a two-dimensional space of solutions, finishing the proof that π_{T^*M} is a submersion with folds.

It is clear from the definition of \mathcal{L} that the projection $\mathcal{L} \to M$ is a submersion. Finally, each cone $\Gamma_{y_0} = \pi_{T^*M}(\mathcal{L}) \cap T^*_{y_0}M$ is parametrized by

$$\{\xi^{\sharp}: f^{\sharp}(y_0, \xi^{\sharp}) = 0\} \to \{(y_0, d_{\xi^{\sharp}} f^{\sharp}(y_0, \xi^{\sharp})\},$$

and thus has d-2 nonvanishing principal curvatures. \square

References

- 1. A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. J. **58** (1989), 205–240.
- 2. _____, Composition of some singular Fourier integral operators and estimates for the X-ray transform, I, Ann. Inst. Fourier (Grenoble) 40 (1990), 443–466.
- 3. ______, Composition of some singular Fourier integral operators and estimates for the X-ray transform, II, Duke Math. J. **64** (1991), 413–419.
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Springer-Verlag, 1973.
- 5. V. Guillemin, Cosmology in (2+1) dimensions, cyclic models and deformations of $M_{2,1}$, Ann. of Math. Stud. 121, Princeton Univ. Press, 1989.
- V. Guillemin and S. Sternberg, Geometric asymptotics, Amer. Math. Soc. Surveys, vol. 14, Providence, RI, 1977.
- 7. L. Hörmander, Fourier integral operators I, Acta Math. 127 (1971), 79–183.
- 8. _____, Oscillatory integrals and multipliers on FL^p, Ark. Mat. 11 (1973), 1–11.
- 9. _____, The analysis of linear partial differential operators III-IV, Springer-Verlag, 1985.
- R. Melrose and M. Taylor, Near peak scattering and the correct Kirchhoff approximation for a convex obstacle, Adv. in Math. 55 (1985), 242–315.
- 11. G. Mockenhaupt, A. Seeger and C.D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Annals of Math. 136 (1992), 207–218.
- Local smoothing of Fourier integral operators and Carleson-Sjölin estimates, J. Amer. Math. Soc. 6 (1993), 65-133.
- D. Oberlin, Convolution estimates for some measures on curves, Proc. Amer. Math. Soc. 99 (1987), 56–60.
- Y. Pan, A remark on convolution with measures supported on curves, Can. Math. Bull. 36 (1993), 245–250.
- Y. Pan and C.D. Sogge, Oscillatory integrals associated to folding canonical relations, Coll. Math. 61 (1990), 413–419.
- D. H. Phong, Singular integrals and Fourier integral operators, Essays on Fourier analysis in honor of Elias M. Stein, edited by C. Fefferman, R. Fefferman and S. Wainger, Princeton University Press, 1993.
- D. H. Phong and E.M. Stein, Radon transforms and torsion, International Mathematics Research Notices 4 (1991), 49–60.
- Oscillatory integrals with polynomial phases, Invent. Math. 110 (1992), 39–62.
- A. Seeger, Degenerate Fourier integral operators in the plane, Duke Math. J. 71 (1993), 685–745.
- 20. H. Smith and C.D. Sogge, L^p regularity for the wave equation with strictly convex obstacles, preprint.
- C.D. Sogge and E.M. Stein, Averages of functions over hypersurfaces: smoothness of generalized Radon transforms, J. Analyse Math. 54 (1990), 165–188.
- P. Tomas, Restriction theorems for the Fourier transform, Proc. Symp. Pure Math. 35 (1979), 111–114.

University of Rochester, Rochester, NY 14627