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1. Introdu
tion

Let � be a smooth 
onvex hypersurfa
e in R

d

, d � 3, and denote surfa
e measure on � by d�.

Let � be a 
ompa
tly supported C

1

fun
tion and let

e

� = supp � \ �:

For t > 0 de�ne the 
onvolution operator A

t

by

(1.1) A

t

f(x) =

Z

f(x� ty

0

)�(y

0

)d�(y

0

)

and an asso
iated maximal fun
tion

(1.2) Mf(x) = sup

t>0

jA

t

f(x)j:

The main issues in this paper are the L

p

boundedness of the maximal operator M and the

regularity properties of the averaging operator A � A

1

.

Stein [22℄ showed that if � is a (d� 1)-dimensional sphere in R

d

, d � 3, then M is bounded on

L

p

(R

d

) for p > d=(d � 1) and unbounded for p � d=(d � 1). Greenleaf [11℄ proved similar results

under the 
onditions on the de
ay of the Fourier transform




d�. In parti
ular if � is a hypersurfa
e

and the Gaussian 
urvature of � does not vanish, one obtains the same result as for the sphere. The

two dimensional version of Stein's result was proved by Bourgain [1℄.

If the Gaussian 
urvature is allowed to vanish one would like to determine the best possible

value of p

0

su
h that L

p

boundedness holds for p > p

0

. Cowling and Mau
eri [7℄ showed that there

are surfa
es where p

0

2 (2;1) and Sogge and Stein [21℄ showed that su
h p

0

< 1 exists if the

Gaussian 
urvature is assumed to vanish of only �nite order. The extension of Bourgain's result to

plane 
urves of �nite type was obtained in [12℄ using s
aling; this method does not readily apply in

higher dimensions.

In this paper we 
onsider a 
onvex surfa
e � of �nite line type in R

d

, d � 3, i.e. it is assumed

that ea
h tangent line has �nite order of 
onta
t. Bruna, Nagel and Wainger [2℄ expressed the de
ay

of the Fourier transform




d� using the 
aps

B(x; Æ) = fy 2 � : dist(y;H

x

(�)) < Æg;

here H

x

(�) denotes the tangent plane at x 2 � (
onsidered as an aÆne subspa
e of R

d

passing

through x). The estimate is

j




d�(�)j � C

�

jB(x

+

; j�j

�1

)j+ jB(x

�

; j�j

�1

)j

�
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where x

�

are the points on � for whi
h � is a normal ve
tor and jBj denotes the surfa
e measure

of B. The behavior of the maximal operator M is not just determined by the size of the balls of

given height Æ, but also by the number of balls of height Æ and �xed diameter � Æ

(d�1)=2

. Taking

this into a

ount Nagel, Wainger and the third author [18℄ proved maximal theorems on R

d

, d � 3,

using the quantity

(1.3) �

r

(Æ) = (

Z

e

�

jB(x; Æ)j

r�1

d�(x))

1=r

for r > 1. Note that if sup

x

jB(x; Æ)j = O(Æ

a

) then �

r

(Æ) = O(Æ

a(1�1=r)

); however if a < (d � 1)=2

then �

r

(Æ) tends to be signi�
antly smaller. The �rst theorem in [18℄ addresses the 
ase p > 2.

Suppose that

(1.4)

Z

1

0

Æ

�1=p

�

p

p�2

(Æ)

dÆ

Æ

� A <1 and p > 2

then M is bounded on L

p

(R

d

).

Another theorem was proved by the �rst two authors in [14℄ and [13℄, 
ompletely settling the


ase p > 2. Namely let d(y;H

x

(�)) be the distan
e of y 2 � to the tangent plane H

x

(�) through x;

then the maximal operator M is bounded on L

p

(R

d

), for p > 2, if

(1.5) d(�; H

x

(�))

�1=p

2 L

1

(

e

�)

for every x 2

e

�; 
onversely, the 
ondition (1.5) at points with �(x) 6= 0 is ne
essary for L

p

bounded-

ness. In x4 we shall use a variant of the argument in [14℄ to show that the suÆ
ien
y of (1.5) a
tually

follows from the suÆ
ien
y of (1.4). It follows a posteriori that for p > 2 the L

p

boundedness ofM,

the �niteness of the integral (1.4) and the 
ondition (1.5) are equivalent if � is 
losed and � � 1.

We remark that the hypothesis (1:4) implies L

p

boundedness for a 
lass of 
onvex hypersurfa
es,

with the L

p

bounds depending only on A and 
ertain admissible 
onstants (for the de�nition of

admissibility see x2). On the other hand, for a single 
onvex body the assumption (1.5) is often

easier to verify.

The analogue of (1.4) for p < 2 is the 
ondition

(1.6)

Z

1

0

[log(1 + Æ

�1

)℄

1

p

�

1

2

Æ

�

1

p

�

p

2�p

(Æ)

dÆ

Æ

<1;

if p < 2 and (1.6) is satis�ed thenM is bounded on L

p

(R

d

). This statement is (impli
itly) 
ontained

in [18℄ (
f. Theorem 2.5 below). Note that if the 
urvature does not vanish then jB(x; Æ)j � Æ

(d�1)=2

and �

p

2�p

(Æ) � Æ

(d�1)(1�1=p)

so the integral (1.6) 
onverges if and only if p > d=(d � 1), whi
h is

Stein's maximal theorem. The nonvanishing of the 
urvature is not ne
essary; as one 
an see by


he
king (1.6) for surfa
es of the form

(1.7) x

d

= �
+

d�1

X

i=1

jx

i

j

a

i

; 2 � a

1

� � � � � a

d�1

;

where the a

i

are even integers. In this 
ase L

p

boundedness holds for p > d=(d � 1) if a

i

� d for

i = 1; : : : ; d � 1. In x2 a related result will be dedu
ed from (1.6) in x2; namely L

p

boundedness

holds if the Gaussian 
urvature belongs to L




(

e

�) for all 
 < 1=(d� 2).

It is not presently known whether for p < 2 the 
ondition (1.6) always gives the 
orre
t range of

L

p

boundedness up to endpoints. Moreover it is not known pre
isely how (1.7) relates to the notions

2



of type and multitype. One purpose of this paper is to prove some partial results in this dire
tion

and obtain a fairly 
omplete pi
ture in three dimensions.

In order to formulate our results we now review the de�nitions of type and multitype. For


onvex hypersurfa
es in R

d

a natural notion of multitype has been impli
itly introdu
ed by S
hulz

[20℄. Various related and more general notions of multitype had been previously formulated in


omplex analysis, see in parti
ular Catlin's paper [3℄; later Yu [26℄ has given a simple formulation

of Catlin's multitype 
ondition for 
onvex domains in C

n

, building on the results in [20℄.

We �rst 
onsider a smooth real valued fun
tion � de�ned in a neighborhood of the origin in an

n-dimensional ve
tor spa
e E

n

so that �(0) = r�(0) = 0. We say that a ve
tor v in E

n

has 
onta
t

of order m+ 1 if

�(sv) = O(s

m+1

) if s! 0:

Let

(1.8) S

m

= fv 2 E

n

: v has 
onta
t of order m+ 1.g

It is shown in [20℄ that S

m

is a linear subspa
e of E

n

and that there are even integers m

1

; : : : ;m

k

so that m

1

< � � � < m

k

, 1 � k � n and m

0

:= m

1

� 1 � 1 and

0 = S

m

k

( � � � ( S

m

0

:= E

n

;

and the sequen
e is maximal, i.e.

S

m

= S

m

k

if m

k�1

< m � m

k

:

The largest number m

k

is the type of � at 0. Let dimS

m

i

= n

i

, so that n

0

= n and n

k

= 0.

For i = 1; : : : ; n let

a

i

= m

j

if n� n

j�1

< i � n� n

j

; j = 1; : : : ; k;

the n-tuple a = (a

1

; : : : ; a

n

) is then 
alled the multitype of � at 0. Clearly this de�nition is indepen-

dent of the linear 
oordinate system on E

n

.

Now let � be a 
onvex hypersurfa
e in R

d

and let P 2 �. Then near P the surfa
e is a graph

over its tangent plane at P . For a suitable 
hoi
e of the unit normal ve
tor n

P

at P the surfa
e 
an

be parametrized by

(1.9)

T

P

�! R

v 7! P + v +�(v)n

P

where � is a 
onvex fun
tion vanishing of se
ond order at the origin. We say that � is of multitype

a = (a

1

; : : : ; a

d�1

) at P if � has multitype a at the origin. This notion is invariant under aÆne

transformations in R

d

. Moreover, if � is given as a graph w

n

= 	(w

0

) then it is easy to see that the

multitype at P = (w

0

;	(w

0

)) is equal to the multitype of the fun
tion

y

0

7! 	(w

0

+ y

0

)�	(w

0

)� hy

0

;r

w

0

	(w

0

)i:

Cal
ulations in [18℄ on examples of the form (1.7) suggest the following

Conje
ture: Let � be a 
onvex surfa
e in R

d�1

, let P 2 � and let a = (a

1

; : : : ; a

d�1

) be the

multitype at P . De�ne �

k

by

(1.10) �

k

=

d�1

X

j=k

1

a

j

; k = 1; : : : ; d� 1; �

d

= 0:
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We 
onje
ture that M is bounded on L

p

(R

d

) if the support of � is 
ontained in a suÆ
iently small

neighborhood of P and if

(1.11) p > max

k=1;:::;d

k

k � 1 + �

k

:

Note that among the numbers (1.11) only the one 
orresponding to k = 1 
an be � 2 so that

the 
ondition for L

p

boundedness for p > 2 redu
es to

(1.12) p >

d�1

X

j=1

1

a

i

:

As observed in [14℄ the 
ondition (1.12) is equivalent to the integrability 
ondition (1.5) for x = P

so that the equivalen
e of (1.5) and (1.4) mentioned above amounts to the equivalen
e of (1.12)

and (1.4). More generally, one may also 
onje
ture that L

p

boundedness holds if for every l 2

f0; 1; : : : ; d � 1g and for every l-plane E through P the fun
tion x 7! [dist(x;E)℄

�1

belongs to

L

(d�l)=p

(here the 0-plane through P is just fPg).

In the present paper we shall 
on
entrate on the simplest 
ase, d = 3.

Theorem 1.1. Let � be a smooth 
onvex hypersurfa
e of �nite line type in R

3

. Let P 2 �, let

a = (a

1

; a

2

) be the multitype at P and let K(x) be the Gaussian 
urvature at x.

Let M be the maximal operator as de�ned in (1.2). There is a neighborhood U of P in � so that

the following statements hold if � is supported in U .

(i) Suppose that a

1

> 2. Then M is bounded if and only if p > (

1

a

1

+

1

a

2

)

�1

.

(ii) Suppose that a

1

= 2, 0 < 
 < 1 and K

�


2 L

1

(U). ThenM is bounded if p >

2a

2

(1�
)+2+4


a

2

(1�
)+2+2


.

(iii) If a

1

= 2 then M is bounded for p > maxf

3

2

;

2a

2

a

2

+1

g.

We note that (i) is already 
ontained in [14℄, but we shall give a di�erent proof in x4 by dedu
ing

it from (1.4). Also note that (i) and (iii) together verify the above 
onje
ture in three dimensions;

however there are 
ases where (ii) gives a better result (see x4). Statement (iii) follows from statement

(ii) by using

Theorem 1.2. Let � be a smooth 
onvex hypersurfa
e of �nite line type � m in R

3

, and let K be

the Gaussian 
urvature fun
tion on �. If 
 < (m� 2)

�1

then K

�


is lo
ally integrable on �.

We now dis
uss the regularity properties of the averaging operator A = A

1

. A positive and

apparently quite pre
ise result for Besov spa
es

1

B

p

�;q

and Sobolev spa
es L

p

�


an be formulated in

terms of the balls B(x; Æ), using a 
ondition similar to (1.4), (1.6).

Theorem 1.3. Suppose � � R

d

is 
onvex, smooth and of �nite line type. Suppose that 1 � p � 2

and suppose that

(1.13) sup

Æ>0

Æ

1

q

�

1

p

��

�

Z

e

�

jB(x; Æ)j

2q(p�1)

p+q�pq

d�(x)

�

1

p

+

1

q

�1

<1

holds for some (p; q) with p � q. Then A maps the Besov spa
e B

p

�;r

boundedly to B

q

�+�;r

.

1

Re
all that kfk

B

p

�;r

� (

P

1

k=0

[2

k�

kL

k

fk

p

℄

r

)

1=r

with suitable Littlewood-Paley 
uto�s L

k

lo
alizing frequen
ies

to annuli j�j � 2

k

if k > 0.

4



Moreover, if 1 < p � 2, p � q < 1, then A is bounded from L

p

(R

d

) to L

q

�

(R

d

) if q � 2 and

bounded from L

p

(R

d

) to L

q�"

�

(R

d

) if p � q � 2.

Clearly the se
ond assertion about Sobolev estimates is a 
onsequen
e of the �rst assertion for

Besov spa
es, by standard embedding theorems (i.e. Littlewood-Paley inequalities).

Again one 
an try to relate the 
ondition (1.13) to the multitype. Consider the model example

(1.7) where a

1

� � � � � a

d�1

are even integers, �

k

as in (1.10). We note that for this example

a 
omplete des
ription of the L

p

! L

q

estimates for A has been given by Ferreyra, Godoy and

Ur
iuolo [10℄ (without the restri
tion that the a

i

are even integers), see also the paper by Sang Hyuk

Lee [16℄. Both proofs relied on a method introdu
ed by Christ [5℄.

A 
al
ulation for the model example shows that (1.13) is satis�ed when

(1.14) � � min

1�k�d

�

�

k

+ k � 1�

k + �

k

p

+

�

k

+ 1

q

℄;

see x3. For � = 0 this be
omes

1

q

�

�

k

+k

�

k

+1

1

p

�

�

k

+k�1

�

k

+1

; this is the 
ondition given in [10℄. Con
erning

the 
ase p = q one obtains (for the model example) that A is bounded from B

p

�;r

to B

p

�+�;r

and

from B

p

0

�;r

to B

p

0

�+�;r

provided that � � �

k+1

+ k=p, if a

k

� p � a

k+1

.

To formulate a 
onje
ture for L

p

�

! L

q

�+�

regularity (or related Besov-type estimates) in the

general 
ase one simply repla
es (a

1

; : : : ; a

d�1

) in the model example by the multitype at P and

assumes that � has small support near P . Then (1.14) should imply the L

p

! L

q

�

boundedness

for the averaging operator, if p < q, and 1 < p � 2. Clearly by duality the boundedness region is

symmetri
 with respe
t to the diagonal 1=p+1=q = 1, so it suÆ
es to 
onsider the 
ase p � 2. One

expe
ts that at least for the 
ase p = q boundedness may fail at the verti
es of the boundedness

region, see [6℄ for 
ounterexamples in two dimensions. We note that 
omplete L

p

! L

q

results in

two dimensions are in [19℄, [5℄.

In three dimensions we prove the 
onje
ture up to 
ertain endpoint results.

Theorem 1.4. Let � be a smooth 
ompa
t 
onvex hypersurfa
e of �nite line type in R

3

, let P 2 �

and let a = (a

1

; a

2

) be the multitype of � at P . Let �

1

= a

�1

1

+ a

�1

2

, �

2

= a

�1

2

and let T (P ) be the

set of all (

1

p

;

1

q

; �) with p � q satisfying the 
onditions

� � �

1

�

1 + �

1

p

+

1 + �

1

q

(1.15.1)

� < �

2

+ 1�

2 + �

2

p

+

1 + �

2

q

(1.15.2)

� � 2�

3

p

+

1

q

(1.15.3)

and

� � �

1

+

1 + �

1

q

�

1 + �

1

p

(1.16.1)

� < �

2

+

2 + �

2

q

�

1 + �

2

p

(1.16.2)

� �

3

q

�

1

p

(1.16.3)

Then there is a neighborhood U of P su
h that A is bounded from B

p

�;r

(R

3

) to B

q

�+�;r

(R

3

) if supp � 2

U and (1=p; 1=q; �) belongs to T (P ).

5



Moreover A is bounded from L

p

�

(R

3

) to L

q

�+�

(R

3

) if (1=p; 1=q; �) belongs to the interior of T (P ).

Remark 1.5. If p � 2 � q and the B

p

0;r

! B

q

�;r

estimate holds for a given p, q with p � 2 � q then

the L

p

�

! L

q

�+�

estimate follows; this yields partial endpoint results for the Sobolev estimates.

Remark 1.6. (i) A natural 
onje
ture for L

p

! L

q

estimates is given in terms of distan
es to

tangent lines and planes. Let �

j

(p; q) = 1=p � j=q and �

l

(d; p; q) = d � l � 1 + �

d�l

=(1 � �

1

).

Suppose that for l = 0; 1; : : : ; d�1 and for all l-planes E through P the fun
tions x 7! [dist(x;E)℄

�1

belong to L

�

(�) for � = �

l

(d; p; q). One may 
onje
ture that A maps L

p

(R

d

) to L

q

(R

d

) (provided,

of 
ourse, that � is supported in a suÆ
iently small neighborhood of P ).

If d = 3 then the des
ription of multitype together with estimates in x3 
an be used to show

that the above 
onditions are equivalent with the 
onditions given in Theorem 1.4.

(ii) It is easy to see that the 
ondition for l = d�1 in (i) is ne
essary, by testingA on 
hara
teristi


fun
tions of 
ylinders with base B(P; Æ) and height Æ.

(iii) Analogously, one 
an formulate a 
onje
ture for the L

p

boundedness of the maximal operator

in terms of distan
es to tangent planes and lines. The 
onje
ture is that M maps L

p

(R

d

) to L

p

(R

d

)

if for l = 0; : : : ; d � 1 and for all l-planes E through P the fun
tions x 7! [dist(x;E)℄

�1

belong to

L

d�l

p

(�).

The paper is organized as follows. In x2 we shall derive estimates for operators asso
iated to


ertain 
lasses of 
onvex fun
tions, emphasizing uniformity of these estimates. In x3 we shall dis
uss

various properties of the multitype and the asso
iated s
aling; in parti
ular we prove versions of

Theorem 1.2. The proofs of Theorems 1.1 and 1.4 are 
ontained in x4, and some examples are


onsidered in x5.

2. Operators asso
iated to 
onvex fun
tions of �nite line type

In this se
tion we 
olle
t fa
ts whi
h are either immediate 
onsequen
es of estimates for 
lasses

of 
onvex fun
tions of �nite type in [2℄, [9℄ or [18℄, or 
an be obtained by modi�
ations of arguments

in those papers.

Let B

T

� R

n

denote the open ball of radius T 
entered at 0. In what follows it is always assumed

that T � 1. For 0 < b � M , N 2 Z

+

, 2 � m < N , let S

n

T

(b;M;m;N) be the 
lass of all C

N

(B

T

)

fun
tions g with the property that for all x 2 B

T

(2.1)

g(0) = rg(0) = 0

d

2

(dt)

2

g(x+ t�)

�

�

t=0

� 0 for all � 2 S

n

max

2�j�m

�

�

�

�

d

dt

�

j

g(x+ t�)

�

�

t=0

�

�

�

� b for all � 2 S

n

max

j�j�N

�

�

�

�

�

�x

�

�

g(x)

�

�

�

�M

Next let a = (a

1

; a

2

; : : : ; a

n

) an n-tuple with even integers so that 2 � a

1

� � � � � a

n

. We de�ne

S

n

T

(b;M; a; N) to be the 
lass of all fun
tions in S

n

T

(b;M; a

n

; N) with the property that

(2.2) max

2�j�a

i

�

�

�

�

�

�x

i

�

j

g(x)

�

�

�

� b:

We also set

(2.3) �

k

=

n

X

j=k

1

a

j

; k = 1; : : : ; n; and �

n+1

= 0:

6



We note that if � is 
onvex and of �nite line type and if P 2 � is of multitype a then there is a

neighborhood of P in � where � 
an be parametrized by (1.9) and so that � ÆL 2 S

d�1

T

(b;M; a; N)

for a rotation L and suitable 
onstants T; b;M .

Constants in estimates whi
h will depend only on the parameters n, b, M , m or a, N are 
alled

admissible. All 
onstants in this se
tion will be admissible, but statements involving the multitype

in x3 and x4 below will 
ontain \nonadmissible" 
onstants.

Noti
e that if � 2 S

n

2T

(b;M;m;N) the fun
tions

w 7! �(y + w) � �(y)� hw;r�(y)i

belong to the 
lass S

n

T

(b; 3M;m;N) for all jyj � T . A similar remark applies to the 
lass

S

n

2T

(b;M; a; N).

We now re
all an important inequality from [2℄ (see also variants in [9℄, [18℄). Let jwj � T and

let

P

w;y

(s) =

m

X

j=2

1

j!

hw;ri

j

�(y)

s

j

j!

+M

s

m+1

(m+ 1)!

e

P

w;y

(s) =

m

X

j=2

1

j!

jhw;ri

j

�(y)j

s

j

j!

+M

s

m+1

(m+ 1)!

Then there exists an admissible 
onstants C

1

, so that for jyj � T , jwj � T , 0 � s � 1,

(2.4) C

�1

1

e

P

w;y

(s) � �(y + sw)� �(y)� hw;r�(y)i � C

1

P

w;y

(s):

Noti
e that by (2.4) there exists an admissible 
onstant 


0

> 0 so that for all

(2.5) Æ � 


0

T

m

=: Æ

0

the sets

(2.6) B(x; Æ) = fy : jyj � T ; j�(y)� �(x) � hr�(x); y � xij � Æg

are 
ontained in fjxj � 2Tg. If � = graph(�) then these sets are 
omparable to proje
tions of the

balls B(y; Æ) de�ned in the introdu
tion.

Proposition 2.1. Let � 2 S

d�1

2

n

T

(b;M; a; N), m = a

n

, N � m+ 1. There are admissible 
onstants

C

1

; : : : ; C

5

, �

1

� 1, C

0

> 


�1

0

, so that the following statements hold.

(i) Let 1 � l � n and let E be an l-plane through the origin. Let Æ � C

�1

0

T

m

, �

1

�

� � C

�1

1

Æ

�1=m

. Then for all jwj � T the set B(w; �Æ) is 
ontained in fjwj � 2Tg. Moreover

if V

E

(x;w

0

; �Æ) is the l-dimensional volume of the 
ross se
tions (x + E) \ B(w

0

; �Æ), then for

w

1

; w

2

2 B(w

0

; Æ) one has

(2.7)

C

�1

2

�

�

�

1

�

l=m

V

E

(w

1

; w

0

; �

1

Æ) � V

E

(w

1

; w

0

; �Æ) � C

3

V

E

(w

2

; w

0

; �Æ) � C

2

C

3

�

�

�

1

�

l=2

V

E

(w

2

; w

0

�

1

Æ):

(ii) Let Æ � C

�1

0

T

m

, and let B(x; Æ) be as in (2.6), �

k

as in (2.3). Then for jxj � T ,

(2.8) jB(x; Æ)j � C

4

Æ

�

1

:

7



(iii) For k = 1; : : : ; n let

(2.9) K

k

(x) = det

0

B

�

�

x

1

x

1

: : : �

x

1

x

k

.

.

.

.

.

.

�

x

k

x

1

: : : �

x

k

x

k

1

C

A

:

Then for Æ � C

�1

0

T

m

(2.10) jB(x; Æ)j � C

5

Æ

k

2

+�

k+1

�

sup

y2B(x;Æ)

jK

k

(y)j

�

�1=2

:

Proof. The 
hain of inequalities (2.7) is an easy 
onsequen
e of [18, Corollary 2.6℄ whi
h in turn was

based on (2.4). Inequality (2.8) is proved by indu
tion over the dimension. It is true for n = 1 by

(2.4). Let n > 1. Then again by (2.4) one sees that the set

(2.11) J (Æ) = fx

n

: there is x

0

2 R

n�1

so that (x

0

; x

n

) 2 B(x; Æ)g

is 
ontained in an interval of length � CÆ

1=a

n

. The fun
tions y

0

7! �(y; y

n

) belong to

S

n�1

2

n�1

T

(b;M; a

0

; N), with a

0

= (a

1

; : : : ; a

n�1

). By the indu
tion hypothesis the n � 1-dimensional

sli
es through B(x; Æ) at height y

n

2 I have volume � CÆ

1=a

1

+:::1=a

n�1

. The assertion follows by

integrating over J (Æ).

We now turn to the estimate (2.10), and 
onsider �rst the 
ase k = n. In [9℄ it is shown for

arbitrary polynomials of degree � q + 1 that

(2.12) max

juj�n

j detP

00

(u)j � C

n;q

max

juj�1

jP (u)j

n

where C

n;q

is an absolute 
onstant. Now by estimates for fun
tions in S

n

2T

(b;M;m;N) ([2, x3℄) there

are 
onstants 


0

, C

0

and a polynomial P

Æ;x

of degree � m, vanishing of se
ond order at x, so that

(2.13) fy : P

Æ;x

(y) � 


0

Æg � B(x; Æ) � fy : P

Æ;x

(y) � C

0

Æg;

here the 
onstants 


0

, C

0

do not depend on x and Æ. Following [9℄ we apply a result of John to

wit there is a translation �

�x

and a symmetri
 positive de�nite linear transformation T so that

B(1) � T (�

�x

B(x; Æ) � B(n) where B(1) and B(n) denote the balls of radii 1 and n, 
entered at

the origin. By (2.13)

detT

�1

max

juj�n

j detP

00

Æ;x

(x

0

+ T

�1

u)j

1=2

� C

n;m

max

juj�1

jP

Æ;x

(x

0

+ T

�1

u)j

n=2

and sin
e detT

�1

is 
omparable with the measure of B(x; Æ) the assertion follows for k = n.

To show (2.10) we argue by indu
tion on n, the 
ase k = n is already taken 
are of. Let n > k.

Pi
k z 2 B(x; Æ) so that K

k

(z) � 2min

y2B(x;Æ)

K

k

(y). Let V

x

(y

n

; Æ) be the n � 1 dimensional sli
e

of B(x; Æ) at height y

n

. Then by the indu
tion hypothesis

jV

x

(z

n

; �

1

Æ)j � CÆ

k=2+

P

n�1

i=k+1

a

�1

i

�

max

z

0

:(z

0

;z

n

)2B(x;�

1

Æ)

K

k

((z

0

; z

n

)

�

�1=2

� CÆ

k=2+

P

n�1

i=k+1

a

�1

i

�

max

z:z2B(x;Æ)

K

k

(z)

�

�1=2

;

in this formula the sum in the exponent is not present when k = n� 1. By (2.7)

V

x

(y

n

; Æ) � V

x

(y

n

; �

1

Æ) � CV

x

(z

n

; �

1

Æ)
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and integrating over y

n

2 J(Æ) yields another fa
tor of Æ

1=a

n

, as in the proof of (2.8). �

We now let n = d � 1 and 
onsider the regularity properties of the following integral operator

a
ting on fun
tions in R

d

,

(2.14) A

t

f(x) =

Z

f(x

0

� y

0

; x

d

� t(�(y

0

) + 


d

))�(y

0

)dy

0

:

Here � 2 S

d�1

r

(b;M;m;N), and the smooth 
uto� fun
tion � is supported in fx

0

: jx

0

j � Tg,

T < 2

�d+1

r. We shall not try to minimize smoothness and therefore always assume that N is large;

by \large" we mean N � 10dm, whi
h is assumed in the remainder of this se
tion.

Our �rst result is an estimate for A

1

after a lo
alization in frequen
y spa
e. Let Æ > 0 be small,

and let � 2 C

1

0

(R

d

) be supported in f� : 1=2 < j�j � 2g. De�ne L

Æ

by

(2.15)

d

L

Æ

f(�) = �(Æ�)

b

f(�):

Proposition 2.2.

Suppose that 1 � p � 2 and 1=r = 1=p+ 1=q � 1. Then

(2.16) kL

Æ

A

1

fk

q

� CÆ

1

q

�

1

p

�

Z

jwj�T

jB(w; Æ)j

r(1�

1

p

+

1

q

)�1

dw

�

1=r

kfk

p

for all f 2 L

p

(R

d

).

Proof. The proof follows a pattern of [18℄ and we shall be brief. Observe A

1

f = d� � f where d� is

a smooth density on �. We split d� =

P

j

d�

j

where ea
h d�

j

is supported in a 
ap B

j

of height

� Æ and the 
aps (or \balls") have �nite overlap. This splitting is done by using a partition of

unity subordinated to the B

j

, see [2℄ for the metri
 properties of the 
aps and [18℄ for the ne
essary

quantitative bounds for the partition of unity.

For sequen
es 
 = f


j

g 
onsider the bilinear operator

T

Æ

[
; f ℄ =

X

j




j

L

Æ

[d�

j

� f ℄:

The inequality (2.16) follows by 
hoosing 
 = (1; 1; 1; : : : ) from from the following more general

estimate, valid for p � 2:

(2.17) kT

Æ

[
; f ℄k

q

� CÆ

1

q

�

1

p

�

X

j

[j


j

j jB

j

j

1�

1

p

+

1

q

℄

r

�

1=r

kfk

p

;

1

r

=

1

p

+

1

q

� 1:

Indeed (2.17) is 
lear for p = 1 = q, and also for p = 1, q =1 (where r =1). The nontrivial part

is the 
ase p = 2 = q (again then r =1); but this estimate is a 
onsequen
e of Theorem 2.2 in [18℄.

The general 
ase follows by interpolation. �

The next result is an immediate 
onsequen
e, and also proves Theorem 1.3.

Corollary 2.3. Suppose that 1 � p � 2 and suppose that

(2.18) sup

Æ>0

Æ

1

q

�

1

p

��

�

Z

fjwj�Tg

jB(w; Æ)j

2q(p�1)

p+q�pq

dw

�

1

p

+

1

q

�1

� A <1

9



holds for some (p; q) with p � q. Then A maps the Besov spa
e B

p

�;r

(R

d

) boundedly to B

q

�+�;r

(R

d

)

Remark 2.4. For the model example (1.7), i.e. x

d

= 


d

�

P

d�1

j=1

jx

j

j

a

j

one has

Z

jB(w; Æ)j

�

dw � C max

1�k�d

Æ

(1+�)�

k

+

(k�1)�

2

;

see [18, formula (5.2)℄. From this the sharp estimates for the maximal operator have been dedu
ed

in [18℄; moreover Corollary 2.3 implies that the averaging operator maps B

p

�;r

to B

q

�+�;r

if p � 2

and (1.14) is satis�ed. Con
erning L

p

! L

q

estimates this the endpoint estimates in [10℄, but only

in the 
ase p � 2 � q.

In order to prove the maximal Theorem 1.1 we shall rely on the following result impli
itly in

[18℄.

Theorem 2.5. Let A

t

f be as in (2.14) and de�ne the asso
iated maximal fun
tion by Mf(x) =

sup

t>0

jA

t

f(x)j. Suppose that

�

p

2�p

(Æ) = (

Z

e

�

jB(w; Æ)j

2p�2

2�p

dw)

2�p

p

;

and the inequality

Z

1

0

[log(1 + Æ

�1

)℄

1

p

�

1

2

Æ

�1=p

�

p

2�p

(Æ)

dÆ

Æ

� A <1

holds. Then M is bounded on L

p

; the operator norm is dominated by CAk�k where C is admissible

and k�k is a suitable Sobolev norm of �.

Proof. Let H

Æ;t

(x) = t

n

L

Æ

[d�℄(tx) where L

Æ

is as in the proof of Proposition 2.2. By [18, (4.4)℄







sup

t>0

jH

Æ;t

� f







p

� C[log Æ

�1

℄

1

p

�

1

2

Æ

�1=p

�

p

2�p

(Æ)

for small Æ and the statement of the theorem follows by introdu
ing a dyadi
 de
omposition for large

frequen
ies and summing the estimates for the operators 
orresponding to the pie
es. �

A 
onsequen
e of Theorem 2.5 and Proposition 2.1 is

Proposition 2.6. Let � 2 S

d�1

2T

(b;M; a; N), N > m+1 and let B(w; Æ) be de�ned as in (2.6). Let

k 2 f1; : : : ; d� 1g, � > 0 and � > 1=2. Suppose that

(2.20) jB(w; Æ)j � CÆ

�

(in parti
ular we 
an 
hoose � = �

1

if �

1

> 1=2) and

(2.21)

Z

K

k

(x)

��

d�(x) � A:

Then the following statements hold.

(i) M is L

p

bounded for p >

1+2�

2�

.

(ii) If � �

1

k�1+2�

k+1

then M is L

p

bounded for p >

k+1+2�

k+1

k+2�

k+1

.

(iii) If � <

1

k�1+2�

k+1

then M is L

p

bounded for p > p

0

(�; �; k) =

1+2��2�(k+2�

k+1

�2�)

2���(k+2�

k+1

�2�)

:

Proof. First note that the restri
tion � > 1=2 implies that

k+1+2�

k+1

k+2�

k+1

< 2 and p

0

(�; �; k) < 2 if

� <

1

k�1+2�

k+1

. Therefore it suÆ
es to 
he
k the 
ondition (1.6). (i) follows immediately from

Theorem 2.5; however this spe
ial 
ase follows already from Greenleaf's paper [11℄.
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We may therefore assume that (k + 1 + 2�

k+1

)=(k + 2�

k+1

) < p � (2� + 1)=2�. Let

� = 1 + � �

�

p� 1

� =

(p� 1)(k + 2�

k+1

)� 1

(p� 1)(k + 2�

k+1

� 2�)

:

Note that � > 0 sin
e (k+1+ 2�

k+1

)=(k+2�

k+1

) < p and � � 1 sin
e p � (2�+1)=2�. Moreover a


omputation shows that the inequality � < � is equivalent with

(2.22) 1 + 2� � 2�(k + 2�

k+1

� 2�) < p

�

2� � �(k + 2�

k+1

� 2�)

�

:

If � �

1

k�1+2�

k+1

then (2.22) holds for all p 2 (

k+1+2�

k+1

k+2�

k+1

; 2) and if � <

1

k�1+2�

k+1

then (2.22) is

satis�ed pre
isely for p > p

0

(�; �; k). In either 
ase it is therefore possible to 
hoose 0 < � < 1 su
h

that � � � < �. We now estimate using Proposition 2.1

�

Z

jwj�T

jB(w; Æ)j

p

2�p

�1

dw

�

2�p

p

=

�

Z

jwj�T

jB(w; Æ)j

2p�2

2�p

(1��)+

2p�2

2�p

�

dw

�

2�p

p

�

�

(A

1

Æ

�

)

2p�2

2�p

�

(A

2

Æ

k

2

+�

k+1

)

2p�2

2�p

(1��)

Z

jwj�T

[K

k

(w)℄

�

1

2

2p�2

2�p

(1��)

dw

�

2�p

p

� CÆ

(2��+(k+2�

k+1

)(1��))

p�1

p

�

Z

jwj�T

[K

k

(w)℄

�

p�1

2�p

(1��)

dw

�

2�p

p

:

The integral is �nite if

p�1

2�p

(1 � �) � �; a short 
omputation shows that this is equivalent to the


ondition � � � hen
e satis�ed in view of our 
hoi
e of �. Now a

ording to Theorem 2.5 the L

p

boundedness holds if (2�� + (k + 2�

k+1

)(1� �))

p�1

p

>

1

p

and another 
omputation shows that this

is pre
isely the restri
tion � < �. �

As an easy 
onsequen
e we obtain

Theorem 2.7. Let � � R

d

, d � 3, be a 
onvex hypersurfa
e of �nite line type and let K(x) the

Gaussian 
urvature. Suppose that

Z

e

�

[K(x)℄

��

d�(x) <1 for all � <

1

d� 2

:

Then the maximal operator in (1.2) is bounded on L

p

(R

d

), for p > d=(d� 1).

Proof. After lo
alization we may assume that the averaging operator is of the form (2.14). Note

that jB(x; Æ)j � jB(y; Æ)j if y 2 B(x; Æ). Therefore by Proposition 2.1

jB(x; Æ)j

1+2�

.

Z

jB(y; Æ)j

2�

d�(y) . Æ

(d�1)�

Z

jK(y)j

��

d�(y)

Therefore jB(x; Æ)j . Æ

�

�

with �

�

=

(d�1)�

1+2�

and �

�

> 1=2 if � > (2d � 4)

�1

. The assertion follows

from an appli
ation of Proposition 2.6 with k = d � 1, � = �

�

, the 
riti
al exponent in 
ase (ii) is

then p = �

�1

�

and for � = 1� " we see that �

�1

�

= d=(d� 1) +O("). �
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3. Auxiliary Results

A

ording to a result of S
hulz [20℄ one 
an de
ompose a 
onvex fun
tion at a given point into

a main term, whi
h after an aÆne 
hange of variable exhibits some homogeneity, and a remainder

term. We �rst need the following

De�nition. De�ne the dilations A

s

by

(3.1) A

s

x = (s

1

a

1

x

1

; : : : ; s

1

a

n

x

n

):

We say that a smooth fun
tion Q : R

n

! R is mixed homogeneous of degree (a

1

; a

2

; : : : ; a

n

), a

j

> 0,

if

(3.2) Q(A

s

x) = sQ(x); s > 0:

The following Proposition summarizes and extends a result of [20℄; the fa
t (3.5) below was

already applied in the proof of Theorem 10 in [14℄.

Proposition 3.1. Let � 2 S

n

T

(b;M;m; 3N + 2), where N > m. Suppose that a

1

� � � � � a

n

� m

and a = (a

1

; a

2

; : : : ; a

n

) is the multitype of � at 0. Then the following statements hold.

There is a rotation L on R

n

so that

(3.3) �(Lx) = Q(x) +R(x); jxj � T

where Q is a 
onvex mixed homogeneous polynomial of degree (a

1

; : : : ; a

n

), the a

i

are even positive

integers with a

1

� � � � � a

n

, the graph of Q is of �nite line type � a

n

� m and (a

1

; : : : ; a

n

) is

the multitype at 0 of the graph of � (
onsidered as a subset of R

n+1

.) If a

j

< a

j+1

then the linear

subspa
e S

a

j


onsisting of all v su
h that (hv;ri)

j

[� Æ L℄(0) = 0 for j < a

j+1

is the image of

spanfe

j+1

; : : : ; e

n

g under L

�1

. Moreover

(3.4) Q(x) > 0 if x 6= 0

and

(3.5) jQ(x)j � C

1

jxjjrQ(x)j � C

2

jxj

2

X

i;j

�

�

�

�

2

Q

�x

i

�x

j

(x)

�

�

�

:

The remainder term R satis�es

(3.6)

�

�

�

s

�1

�

j�j

�x

�

�

R(A

s

x)

�

�

�

�

� C

M;N

s

1=m

for jxj � T and all multiindi
es � = (�

1

; : : : ; �

d�1

) with j�j � N ; A

s

is as in (3.1).

If a

1

= � � � = a

k

= 2 for some k, then the rotation L 
an be 
hosen so that

(3.7) Q(x) = 


1

x

2

1

+ � � �+ 


k

x

2

k

+

e

Q(x

k+1

; : : : ; x

n

)

where

e

Q is mixed homogeneous of degree (a

k+1

; : : : ; a

n

); i.e.

e

Q(s

1

a

k+1

x

k+1

; : : : ; s

1

a

n

x

n

) =

s

e

Q(x

k+1

; : : : x

n

) for all x 2 R

n

.

Remark. We note that if � belongs to S

n

T

(b;M; a; 3N + 1) then Q belongs to a family

S

n

T

(

e

b; CM;m; 3N +1), with

e

b > 0, but unfortunately there is no good lower bound for

e

b in terms of

b.
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Proof of Proposition 3.1. The de
omposition (3.3) was obtained by S
hulz [20℄ and the 
onstru
tion

involved the subspa
es S

m

i

mentioned in the introdu
tion. The polynomial Q was obtained as a

Taylor-polynomial

P







x




of � ÆL where ea
h multiindex 
 satis�es

P

n

i=1




i

=a

i

= 1; the 
onvexity

and (3.4) is veri�ed in [20℄. As observed in [14℄, (3.5) is a 
onsequen
e of Euler's homogeneity

relation Q(x) =

P

x

i

a

�1

i

Q

x

i

(x). To see (3.6), �x �, and use Taylor's formula to write

R(x) = P

2N

(x) +R

2N

(x)

where P

2N

(x) is a linear 
ombination of monomials G

�

(x) := x

�

with j�j � 2N and

P

n

k=1

�

k

�

k

> 1.

If �

i

� �

i

, i = 1; : : : ; n it follows immediately that

�

j�j

�x

�

h

s

�1

G

�

(A

s

x)

i

= 


�;�

x

���

s

�1+

P

n

k=1

�

k

�

k

whi
h is � Cs

1=m

sin
e �

k

assume only integer values and m

�1

� a

�1

n

. Thus

�

�

�

�

j�j

�x

�

h

s

�1

P

2N

(A

s

x)

i

�

�

�

� C

M;N

s

1=m

:

Finally, the remainder R

2N

(x) satis�es j�

�

R

2N

(x)j � C

N

jxj

2N+1�j�j

, for j�j � N . Therefore

�

�

�

�

j�j

�x

�

h

s

�1

R(A

s

x)

i

�

�

�

� Cjxj

N+1

s

�1

max s

(N+1)=a

i

� C

0

jsj

1=m

by the de�nition of N . This �nishes the proof of (3.6).

We now turn to proving (3.7) and dis
uss �rst the 
ase k = 1. Split x = (x

1

; x

0

) with x

0

=

(x

2

; : : : ; x

d�1

). Then Q 
an be de
omposed as

Q(x) = 


1

x

2

1

+ x

1

A(x

0

) +B(x

0

);

where B is mixed homogeneous of degree (a

2

; : : : ; a

d�1

), and A is mixed homogeneous of degree

(a

2

=2; : : : ; a

n

=2). In order to prove that A = 0 it suÆ
es to show that the partial derivatives A

x

i

x

j

vanish for all i; j � 2. To see this we use homogeneity. De�ne

Æ

s

x

0

= (s

1=a

2

x

2

; : : : ; s

1=a

n

x

n

)

and observe that

(3.8)

B

x

i

x

j

(Æ

s

x

0

) = s

1�1=a

i

�1=a

j

B

x

i

x

j

(x

0

)

A

x

i

x

j

(Æ

s

x

0

) = s

1=2�1=a

i

�1=a

j

A

x

j

x

j

(x

0

)

for s > 0.

By the 
onvexity of Q we have

(3.9) h�;r

2

Q(x)�i � 0

for all x near 0 and all �. With � = e

j

, j = 2; : : : ; n this yields

(3.10) 0 � B

x

j

x

j

(x

0

) + x

1

A

x

j

x

j

(x

0

):

Suppose now that A

x

j

x

j

(~x

0

) 6= 0; then G

j

= B

x

j

x

j

=A

x

j

x

j

satis�es G

j

(Æ

s

x

0

) = s

1=2

G

j

(x

0

) for x

0

near ~x

0

. Using this homogeneity property we see from (3.10) that if A

x

j

x

j

is not identi
ally zero, then

13



e

t

j

r

2

Q(x)e

j


hanges sign arbitrarily 
lose to the origin, a 
ontradi
tion. Therefore A

x

j

x

j

vanishes

identi
ally, for j = 2; : : : ; n.

Next we show that A

x

i

x

j

= 0 for i 6= j. We apply (3.9) with � = �

i

e

i

+ �

j

e

j

. Sin
e A

x

j

x

j

= 0,

(3.10) be
omes

(3.11) 0 � B

x

i

x

i

(x

0

)�

2

2

+ 2B

x

i

x

j

(x

0

)�

i

�

j

+B

x

j

x

j

(x

0

)�

2

j

+ 2x

1

A

x

i

x

j

(x

0

)�

i

�

j

:

Assume that A

x

i

x

j

(~x

0

) 6= 0; by homogeneity we have then A

x

i

x

j

(Æ

s

x

0

) 6= 0 for x

0

near ~x

0

. By (3.8)

and (3.11) it follows that

0 � x

1

+

h�;r

2

B(Æ

s

x

0

)�i

h�;r

2

A(Æ

s

x

0

)�i

= x

1

+

B

x

i

x

i

(x

0

)�

2

2

s

1=2�1=a

i

+1=a

j

+ 2B

x

i

x

j

(x

0

)�

i

�

j

s

1=2

+B

x

j

x

j

(x

0

)�

2

j

s

1=2+1=a

i

�1=a

j

2A

x

i

x

j

(x

0

)�

i

�

j

and this expression tends to x

1

as s! 0 sin
e ja

�1

i

� a

�1

j

j � 1=2. Thus for ea
h s suÆ
iently small,

we 
an �nd a value of x

1

, su
h that the right side of (3.11) vanishes. We see that the expression


hanges sign arbitrarily 
lose to the origin, a 
ontradi
tion. Hen
e A

x

i

x

j

also vanishes.

We now turn to the 
ase k > 1. Split x = (x

0

; x

00

) with x

0

= (x

1

; : : : ; x

k

); then

Q(x) = Q

0

(x

0

) +

k

X

i=1

x

i

A

i

(x

00

) +B(x

00

):

where Q

0

(x

0

) is a positive de�nite quadrati
 form on R

k

, the fun
tions A

i

are mixed homogeneous

of degree (a

k+1

=2; : : : ; a

n

=2) and B is mixed homogeneous of degree (a

k+1

; : : : ; a

n

). By performing

a rotation in the x

0

variables we 
an assume that Q

0

(x

0

) =

P

k

i=1




i

x

2

i

. Then we 
an apply the 
ase

k = 1 already proved to the fun
tions (x

i

; x

00

) 7! Q(x

i

e

i

; x

00

) and dedu
e that A

i

= 0. �

Lemma 3.2. Suppose that � 2 S

n

2T

(b;M;m;N), N > 4m, a

2

> 2, and suppose that

�

2

�

�x

2

1

(0) 6= 0;

�

a

2

�

�x

a

2

2

(0) 6= 0;

�

j

�

�x

j

2

(0) = 0 if j < a

2

:

Let K

2

[�℄ = �

x

1

x

1

�

x

2

x

2

� (�

x

1

x

2

)

2

. Then

(3.12)

�

a

2

�2

K

2

[�℄

�x

a

2

�2

2

(0) 6= 0:

Moreover there is � > 0, Æ > 0 and C




(all depending on �) so that

(3.13) sup

x

1

;x

3

;:::;x

n

2[�Æ;Æ℄

Z

Æ

�Æ

�

K

2

[	℄(x)

�

�


dx

2

< C




; if 
 < (m� 2)

�1

;

for all 	 2 S

n

r

(b=2; 2M;m;N) with k��	k

C

N

(jxj�r)

� � .

Proof. We de�ne �(y

1

; y

2

) = �(y

1

; y

2

; 0). Then (1; 0; :::) is an eigenve
tor of the Hessian of � and

we 
an apply Proposition 2.1 to �, without performing a rotation. Thus

�(y) =




1

2

y

2

1

+ 


2

y

a

2

2

+R(y)

14



where 


1

> 0, 


2

> 0 and R satis�es (3.6). Now

K

2

(y) = 


1




2

a

2

(a

2

� 1)y

a

2

�2

2

+E(y)

where the error E(y) is given by

E = (


1

+R

y

1

y

1

)R

y

2

y

2

+ 


2

a

2

(a

2

� 1)R

y

1

y

1

y

a

2

�1

2

�R

2

y

1

y

2

Expanding R we see that

(3.14) R(y) =

X

�




�

y

�

+R

a

2

+1

(y);

here we sum over multiindi
es � so that j�j � m and �

1

=2 + �

2

=a

2

> 1. All derivatives of order

� a

2

of R

a

2

+1

vanish for y = 0.

In order to show (3.12) we shall show that �

a

2

�2

y

2

E(0) = 0. To see this let G

�

(y) = y

�

. We have

to verify that

�

a

2

G

�

�y

a

2

2

= O(y)

�

2+`

G

�

�y

2

1

�y

`

2

�

a

2

�`

G

�

0

�y

a

2

�`

2

= O(y); ` � a

2

� 2

�

2

G

�

�y

2

1

= O(y)

�

`+1

G

�

�y

1

�y

`

2

= O(y); 1 � ` �

a

2

2

whenever � or �

0

o

ur in the sum (3.14). Considering the term

�

2+`

G

�

�y

2

1

�y

`

2

�

a

2

�`

G

�

0

�y

a

2

�`

2

it is 
learly O(y)

unless �

1

= 2, �

2

= `, �

0

1

= 0, �

0

2

= a

2

� ` and �

j

= �

0

j

= 0 for j � 3. But this implies that

a

2

� ` = a

2

, hen
e G

�

(y) = y

2

1

, but y

2

1

is not an admissible term in (3.14). We argue similarly for

ea
h of the other terms and (3.12) is proved.

To see the se
ond assertion we use a result related to van der Corput's lemma whi
h is due to

M. Christ [4℄ (alternatively one may use the Malgrange preparation theorem). It states that for any

k 2 Z

+

there is a 
onstant A

k

su
h that for any interval I � R, any f 2 C

k

(I) and any 
 > 0

(3.15)

�

�

�

ft 2 I : jf(t)j � 
g

�

�

�

� A

k




1=k

inf

s2I

jD

k

f(s)j

�1=k

:

By 
ontinuity we know that

�

a

2

�2

K

2

�x

a

2

�2

2

(x) 6= 0 for small x and we 
an apply (3.15) with k = a

2

� 2 to

obtain (3.13) �

Proposition 3.3. Let n = 2, � 2 S

2

T

(b;M;m;N) for large N and suppose that (a

1

; a

2

) is the

multitype at 0; moreover assume

(3.16)

�

j

�

�x

j

i

(0) = 0 for j < a

i

;

�

a

i

�

�x

a

i

i

(0) 6= 0;

15



for i = 1; 2. Let �(x) = x

a

1

1

+ x

a

2

2

and let




`

= fx : 2

�`�1

� �(x) � 2

`

g:

Let � = 1=a

1

+ 1=a

2

. There is `

0

> 0 so that for ` > `

0

(3.17)

Z




`

j det�

00

(x)j

�


d�(x) � C




2

`(2
�2
���)

; for 
 <

1

a

2

� 2

:

Moreover [det�

00

℄

�


is integrable over a neighborhood of the origin.

Proof. In view of assumption (3.16) we may de
ompose � = Q+R where Q is mixed homogeneous

of degree (a

1

; a

2

), in fa
t Q(x) � 


1

�(x) � 


2

Q(x) for small x, by the homogeneity and positivity of

Q and �. The fun
tion Q is of type � a

2

near 0 and by homogeneity 
onsiderations it is easy to see

that Q is of type � a

2

everywhere. Moreover, by (3.5) the rank of Q in 


1

is at least 1.

Let � = fx 2 
 : det�

00

(x) = 0g and �x x

0

2 �. Then there is a rotation L

x

0

so that

 (y) = Q(x

0

+L

x

0

y) satis�es the assumption of Lemma 3.2 and therefore we 
an integrate [detQ

00

℄

�


over a small neighborhood of x

0

; moreover the bound persists for small C

N

perturbations ofQ. Using


ompa
tness arguments we see that there is � > 0 so that

(3.18)

Z




1

[det	

00

℄

�


dx � C




if k	�Qk

C

N

(


1

)

� " and 
 < 1=(a

2

� 2).

Let, for large `

�

`

(y) = 2

`

�(2

�`=a

1

y

1

; 2

�`=a

2

y

2

):

Then

(3.19) �

`

= Q+R

`

and all derivatives of R

`

tend to 0 uniformly in fy : �(y) � 1g. Therefore there is `

0

, 2

�`

0

� 1 so

that (3.18) applies for 	 = �

`

, ` > `

0

, with a bound independent of `. Sin
e

(3.20) det�

00

`

(y) = 2

2`(1��)

det�

00

(2

�`=a

1

y

1

; 2

�`=a

2

y

2

)

we obtain for ` > `

0

Z




`

j det�

00

(y)j

�


dy =

Z




1

2

�`�

j det �

00

(2

�`a

1

y

1

; 2

�`a

2

y

2

)j

�


dy

= 2

�`�

2

2
`(1��)

Z




1

j det�

00

`

(y)j

�


dy:(3.21)

If 
 < (a

2

� 2)

�1

we 
an dominate the integrals by a 
onstant independent of ` and the estimate

(3.17) is proved.

Sin
e a

1

� a

2

we see that �� +2
(1� �) �

2

a

2

((a

2

� 2)
� 1) < 0 and therefore we 
an sum the

estimates (3.21) to obtain the integrability of [det�

00

℄

�


near the origin. �

Proof of Theorem 1.2. Immediate from Proposition 3.3 �

We now examine the size of the balls in (2.6) near a point of given multitype.
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Proposition 3.4. Let � 2 S

n

T

(b;M;m;N), where N is large, and let a = (a

1

; a

2

; : : : ; a

n

) be the

multitype of � at 0. We assume that (3.16) holds for i = 1; : : : ; n.

Let � =

P

n

j=1

1

a

j

, let �(y) =

P

n

i=1

y

a

i

i

and 


`

= fx : 2

�`�1

� �(x) � 2

`

g: Then there are


onstants C

1

, C

2

so that for C

1

Æ � 2

�`

� C

2

, y 2 


`

(3.22) jB(y; Æ)j � C

�

Æ

�

2

`(���)

if � �

1

2

+

1

a

n

:

Proof. De
ompose � = Q+R as in (3.3). By our assumptions this holds with the rotation L being

the identity. By the metri
 properties of the balls B(y; Æ) (in parti
ular the triangle inequality for

the pseudo-distan
e asso
iated to these balls [2℄) it follows that there are 
onstants C

1

> 1, C

2

> 1

so that

B(y; Æ) � fx : C

�1

1

Q(x) � Q(y) � C

1

Q(x)g if Q(y) � C

2

Æ:

Now let Q(y) � C

2

Æ and set �

`

(w) = 2

`

�(A

2

�`
w); note that �

`

= Q + R

`

where R

`

tends to

zero in the C

1

topology. Let ` be large so that 2

�`�1

� Q(y) � 2

�`

. Then one 
omputes that with

W = fy

0

: C

�1

1

=2 � Q(y

0

) � C

1

g and Y

`

= A

2

`y 2W

fA

2

`z : z 2 B(y; Æ)g = fw : �

`

(w) � �

`

(Y

`

)� hw � Y

`

;r�

`

(Y

`

)i � 2

`

Æg :=W

`;y;Æ

and W

`;y;Æ

is 
ontained in W . By Proposition 3.1 there is C

2

> 0 and `

0

> 0 su
h that for any

y 2 W there is a unit ve
tor � with h�;ri

2

�

`

(y) � C, for all ` > `

0

. Moreover �

`

is of line type

� a

n

, with uniform bounds for ` > `

0

, sin
e this is the 
ase for Q. This implies that

jW

`;y;Æ

j � C(2

`

Æ)

�

for 0 � � � 1=2+1=a

n

. Sin
e the Ja
obian of the 
hange of variable z ! A

2

`

z

is 2

`�

we obtain that

jB(y; Æ)j � CÆ

�

2

��`+�`

and sin
e Q(y) � �(y) the assertion follows. �

Remark. Let � � 1=2 + 1=a

n

. The estimate jB(y; Æ)j � CÆ

�

[�(y)℄

���

, for small y, is an easy


onsequen
e of Proposition 3.4.

4. Estimates involving the multitype

We shall �rst give a di�erent proof of the following Theorem proved by the �rst two authors in

[14℄.

Theorem 4.1. Let M be as in (1.2). Suppose that (a

1

; a

2

; : : : ; a

d

) is the multitype at P and that

� =

P

d�1

j=1

1

a

j

�

1

2

. Then there is a neighborhood U of x

0

so that M is bounded on L

p

(R

d

) if

p > �

�1

, provided that supp � � U .

Proof. We may assume that our averages are of the form (2.14) and P = (0; 


d

). Sin
e �

�1

� 2 we

just have to verify (1.4). We now use Proposition 3.4, with � = � in the �rst term below and � < �

in the se
ond, and obtain

�

p

p�2

(Æ) �

�

Z

�(w)�C

1

Æ

jB(w; Æ)j

2

p�2

dw

�

p�2

p

+

X

C

1

Æ�2

�`

�1

�

Z

�(w)�2

�`

jB(w; Æ)j

2

p�2

dw

�

p�2

p

� C

�

Æ

�

+

X

C

1

Æ�2

�`

�1

(Æ

�

2

`(���)

)

2

p

Æ

�

p�2

p

�

� C

0

Æ

�

:
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This implies (1.4) sin
e � > 1=p. �

Proof of Theorem 1.1. If a

1

> 2 then � � 1=4 + 1=a

2

� 1=2 and the assertion (i) follows from

Theorem 4.1 (the ne
essity of the 
ondition had also been shown in [13℄). Now let a

1

= 2. Assertion

(ii) follows from Proposition 2.6 (with k = 2, �

3

= 0, � = 1=2 + 1=a

2

), and by Proposition 3.3 the

hypothesis of (ii) is satis�ed with � < (a

2

� 2)

�1

; this shows assertion (iii). �

Proof of Theorem 1.4. It is suÆ
ient to assume that A is of the form (2.14) so that the multitype

at 0 is a = (a

1

; a

2

) and � is supported near the origin; moreover we may assume that (3.16) holds

for i = 1; 2:

We have boundedness for the 
ases p = 1 = q trivially. Sin
e jB(y; Æ)j � CÆ

�

for small y and Æ

it follows from Theorem 1.3 that A maps B

p

�;r

to B

p

0

�+�

if 1 � p � 2, � � �� and

1

p

�

1

2

�

�+�

2(�+1)

.

This is the asserted estimate for 1=p+1=q = 1. We remark that this result is well known and follows

just from the assumption that




d�(�) = O(j�j

��

), see e.g [23, p. 371℄ and also the original referen
es

[25℄, [17℄.

We shall now 
onsider the 
ase 1=p + 1=q < 1 and prove boundedness under the 
onditions

(1.15.1-3); boundedness for 1=p + 1=q > 1 under the 
onditions (1.16.1-3) follows then by duality.

We shall verify the 
ondition (1.13) by estimating the volume of the balls B(w; Æ) using Proposition

2.1 and then apply either Proposition 3.3 or Proposition 3.4 or both.

In what follows de�ne r and � by

1

r

=

1

p

+

1

q

� 1

� =

2q(p� 1)

p+ q � pq

so that �=r = 2=p

0

. First observe that by Proposition 2.1

(4.1) Æ

���

1

p

+

1

q

�

Z

�(w)�C

2

Æ

jB(w; Æ)j

�

dw

�

1

r

� CÆ

�(

�+1

r

)���

1

p

+

1

q

= CÆ

��+��

�+1

p

+

�+1

q

whi
h is bounded uniformly in Æ, by 1.15.1. Here we assume that C

2

is as in the statement of

Proposition 3.4.

We use Proposition 2.1 to estimate B(w; Æ) and our 
on
lusion follows if we 
an verify the

estimate

(4.2)

�

Z

C

2

Æ��(w)�


�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

�+

1

p

�

1

q

for suitable � 2 [0; 1℄ and small 
.

In the present relevant 
ase 1=p+ 1=q > 1 we distinguish three sub
ases

(a

2

� 1)(1�

1

p

)�

1

q

� 0 and

a

1

� 1

p

+

1

q

< a

1

� 1;(4.3.1)

(a

2

� 1)(1�

1

p

)�

1

q

� 0 and

a

1

� 1

p

+

1

q

� a

1

� 1;(4.3.2)

(a

2

� 1)(1�

1

p

)�

1

q

< 0:(4.3.3)

We begin by assuming that the third estimate (4.3.3) holds. Here we 
he
k (4.2) with � = 0; by

Proposition 3.3 the desired estimate holds if

� >

1

a

2

� 2

(4.4)

�

r

� �+

1

p

�

1

q

:(4.5)
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It is easily 
he
ked that (4.4) is equivalent to (4.3.3) whi
h is presently assumed and (4.5) is equivalent

to the assumption (1.15.3).

Next we assume that the inequalities (4.3.2) hold. In order to 
arry out the integration in (4.2)

we have to assume that �(1� �) < (a

2

� 1)

�1

whi
h is equivalent to saying that � is larger than the


riti
al value

(4.6) �


r

=

1

a

2

� 2

�

a

2

� 1�

p

(p� 1)q

�

:

Under the 
onditions (a

2

� 1)(1 �

1

p

) �

1

q

� 0 (i.e. in (4.3.1) and (4.3.2)) we have that �


r

� 0;

moreover one 
an 
he
k that the assumption 1=p + 1=q > 1 is equivalent with �


r

< 1. We may

therefore 
hoose � = �


r

+ " < 1 where � is small.

Let 


`

= fw : 2

�`�1

� �(y) � 2

�`

g. By Propositions 3.3 and 3.4 we estimate

Æ

���

1

p

+

1

q

�

Z




`

�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

���

1

p

+

1

q

+

�(1��)

r

+(

1

2

+

1

a

2

)�

�

r

2

`

r

(��+�(1��)(1��)+(

1

2

+

1

a

2

��)��)

(4.7)

Now one 
omputes

1

r

�

� � + �(1� �)(1� �) + (

1

2

+

1

a

2

� �)��

�

=

a

1

� 1

a

1

�

1

p

(

a

1

� 1

a

1

)�

1

a

1

q

�

"

p

0

a

2

� 2

a

2

so that (4.3.2) implies the sum

P

`>0

2

`(::: )

in (4.7) 
onverges. Moreover

���

1

p

+

1

q

+

�(1� �)

r

+ (

1

2

+

1

a

2

)�

�

r

= e�� "(

a

2

� 2

a

2

p

0

)� �

where

e� = 2�

3

p

+

1

q

� �


r

a

2

� 2

a

2

p

0

=

a

2

+ 1

a

2

� (2 +

1

a

2

)

1

p

+ (1 +

1

a

2

)

1

q

:

Therefore if (4.3.2) is satis�ed we 
an 
hoose " = � � �


r

so small that the exponent of Æ in (4.7)

be
omes nonnegative. This settles the estimate in 
ase (4.3.2).

Finally assume that (4.3.1) holds, and again 
hoose � = �


r

+". The assumption

a

1

�1

p

+

1

q

< a

1

�1

implies that the terms 2

`(::: )

in (4.7) form an in
reasing geometri
 progression if " > 0 is 
hosen

small enough. We 
ompute

Æ

���

1

p

+

1

q

X

2

�`

�C

2

Æ

�

Z




`

�

Æ

p

det�

00

(w)

�

�(1��)

jB(w; Æ)j

��

dw

�

1=r

� CÆ

���

1

p

+

1

q

+

�(1��)

r

+(

1

2

+

1

a

2

)�

�

r

Æ

�(�

�

r

+

�

r

(1��)(1��)+(

1

2

+

1

a

2

��)

�

r

�)

= CÆ

���

1

p

+

1

q

+�

�+1

r

= CÆ

��+��

�+1

p

+

�+1

q

:

We have proved the asserted estimate in the remaining 
ase (4.3.1). �

19



5. Some Examples

As pointed out before Theorems 1.1 and 1.4 are sharp for the surfa
es given as a graph x

3

=

x

a

1

1

+ x

a

2

2

. We now dis
uss a 
lass examples for whi
h the multitype does not suÆ
e to get the best

possible results. In order to prove improved L

p

! L

q

�

results we shall dire
tly apply Theorem 2.5.

Maximal operators. Let � � R

3

be the graph of

(5.1) �(x) = x

2

1

+ x

4

2

+ x

2

1

x

2

2

� 


2

over the set jx

1

j+ jx

2

j � 1=4 and 
onsider the averages (2.14), with � supported where jx

1

j+ jx

2

j �

1=8. The Hessian

det�

00

= 4x

2

1

+ 24x

2

2

(1 + x

2

2

)� 16x

2

1

x

2

2

is nonnegative in the support of � and sin
e tra
e(�

00

) � 1 we see that �

00

has two positive eigenvalues

away from 0. Therefore � is 
onvex, of multi-type (2; 4) at 0 and of type 2 at (x

1

; x

2

) 6= 0 near 0. The

suÆ
ient 
ondition for L

p

boundedness whi
h only depends on the multitype yields boundedness for

p > 8=5, by Theorem 1.1 (iii). However j det�

00

j

�1+"

is integrable near 0, for all " > 0, and therefore

we obtain L

p

boundedness for p > 3=2, whi
h the best possible result.

More generally we 
onsider

(5.2) �(x) = x

2

1

+ x

M

2

+ x

a

1

x

b

2

� 


2

where a and b are positive even integers with a=2 + b=M > 1. The graph of � is 
onvex near the

origin and the multitype at (0; 0) is (2;M). Therefore, if the 
uto� fun
tion � has small support

one 
eratinly obtains boundedness for p > 2(M + 1)=(M + 2). One 
omputes

det�

00

(x) = 
x

M�2

2

+ dx

a

1

x

b�2

2

+ o(x

M�2

2

+ x

a

1

x

b�2

2

)

with 
; d > 0. Then for small "

Z

jxj�"

[det�

00

℄

�


dx <1

if


 < 



r

= min

�

1

b� 2

;

1

M � 2

+

M � b

a(M � 2)

	

Note that 



r

> (M � 2)

�1

if b < M . In this 
ase part (ii) of Theorem 1.1 gives us L

p

boundedness

for p > p

0

where the 
riti
al exponent p

0

is less than 2(M + 1)=(M + 2).

L

p

! L

q

-estimates. Consider again the example (5.1). Let Q

0

= (6=5; 1=2), Q

�

0

= (1=2; 1=6), and

R = (5=7; 2=7). Then the result of Theorem 1.4 implies L

p

! L

q

boundedness in the interior of the


onvex hull of the points (0; 0), (1; 1), Q

0

, Q

�

0

and R.

Let ` be the line 2�3=p+1=q = 0 and let � be the lower edge of the boundary of the boundedness

region whi
h 
ontains the point (1; 1). All points on ` with abs
issae 1=p 2 [5=6; 1℄ belong to �. We

shall show that this segment is in fa
t longer and thereby obtain a larger boundedness region. We

use the estimate (2.10) with k = 2 and �

k+1

= 0. L

p

to L

q

boundedness (p � q, p � 2) holds by

Theorem 1.3 if

Æ

1

q

�

1

p

+

2q(p�1)

p+q�pq

(

1

p

+

1

q

�1)

�

Z

e

�

j det�

00

j

�

q(p�1)

p+q�pq

dx

�

1

p

+

1

q

�1

<1

and the exponent of Æ is positive. The last requirement is equivalent to the restri
tion 2�3=p+1=q >

0. Sin
e j det�

00

j

�


is integrable for 
 < 1 we obtain boundedness if the restri
tion

q(p�1)

p+q�pq

< 1

is satis�ed. A 
omputation shows that all points on ` with abs
issae 1=p 2 [4=5; 1℄ belong to
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�. Therefore if (1=p; 1=q) belongs to the interior of the pentagon with verti
es (1; 1), (4=5; 2=5),

(5=7; 2=7), (3=5; 1=5) and (0; 0) then the averaging operator maps L

p

to L

q

. Similar 
onsiderations

yield improved L

p

! L

q

�

estimates.

We remark that the pre
eding L

p

! L

q

estimates for the example in (5.1) 
ould also be obtained

by a s
aling argument in the spirit of [15℄; one uses isotropi
 dilations sin
e the 
urvature vanishes at

an isolated point. The res
aled operators 
an be embedded in analyti
 families and the estimations

are variants of those in [17℄.
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