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1. Introduction

Let ¥ be a smooth convex hypersurface in R?, d > 3, and denote surface measure on ¥ by do.
Let x be a compactly supported C'*° function and let

Y =supp xNX.

For t > 0 define the convolution operator A; by

(1.1) Aef@) = [ o=t N)do ()
and an associated maximal function

(1.2) Mf(z) =sup | A f(z)]
>0

The main issues in this paper are the LP boundedness of the maximal operator M and the
regularity properties of the averaging operator A = A;.

Stein [22] showed that if ¥ is a (d — 1)-dimensional sphere in R?, d > 3, then M is bounded on
LP(R?) for p > d/(d — 1) and unbounded for p < d/(d — 1). Greenleaf [11] proved similar results
under the conditions on the decay of the Fourier transform do. In particular if ¥ is a hypersurface
and the Gaussian curvature of ¥ does not vanish, one obtains the same result as for the sphere. The

two dimensional version of Stein’s result was proved by Bourgain [1].

If the Gaussian curvature is allowed to vanish one would like to determine the best possible
value of py such that LP boundedness holds for p > pg. Cowling and Mauceri [7] showed that there
are surfaces where py € (2,00) and Sogge and Stein [21] showed that such py < oo exists if the
Gaussian curvature is assumed to vanish of only finite order. The extension of Bourgain’s result to
plane curves of finite type was obtained in [12] using scaling; this method does not readily apply in
higher dimensions.

In this paper we consider a convex surface ¥ of finite line type in R¢, d > 3, i.e. it is assumed
that each tangent line has finite order of contact. Bruna, Nagel and Wainger [2] expressed the decay

of the Fourier transform do using the caps
B(z,0) ={y € ¥ : dist(y, H.(X)) < d};

here H,(X) denotes the tangent plane at € ¥ (considered as an affine subspace of R? passing
through z). The estimate is

|do(€)] < C[|B(z4, [€7)] + |B(z—, [€]7H)]]
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where 1 are the points on ¥ for which £ is a normal vector and |B| denotes the surface measure
of B. The behavior of the maximal operator M is not just determined by the size of the balls of
given height &, but also by the number of balls of height § and fixed diameter > 6(4=1/2. Taking
this into account Nagel, Wainger and the third author [18] proved maximal theorems on R?, d > 3,
using the quantity

(13) r,(6) = ( / |B(z,8)" do(x))/"

for 7 > 1. Note that if sup, |B(z,0)| = O(6%) then T',.(6) = O(6**~1/"); however if a < (d —1)/2
then T',.(0) tends to be significantly smaller. The first theorem in [18] addresses the case p > 2.
Suppose that

1
(1.4) / 5*1/PFL(5)%5 <A<oo and p>2
0 P2

then M is bounded on LP(R?).

Another theorem was proved by the first two authors in [14] and [13], completely settling the
case p > 2. Namely let d(y, H, (X)) be the distance of y € ¥ to the tangent plane H,(X) through x;
then the maximal operator M is bounded on LP(R%), for p > 2, if

(1.5) d(-, Hy(X))~'/? € LY(D)

for every z € f); conversely, the condition (1.5) at points with x(z) # 0 is necessary for LP bounded-
ness. In §4 we shall use a variant of the argument in [14] to show that the sufficiency of (1.5) actually
follows from the sufficiency of (1.4). It follows a posteriori that for p > 2 the LP boundedness of M,
the finiteness of the integral (1.4) and the condition (1.5) are equivalent if ¥ is closed and x = 1.

We remark that the hypothesis (1.4) implies L? boundedness for a class of convex hypersurfaces,
with the LP bounds depending only on A and certain admissible constants (for the definition of
admissibility see §2). On the other hand, for a single convex body the assumption (1.5) is often
easier to verify.

The analogue of (1.4) for p < 2 is the condition

(1.6) /0 [log(1 + 671)];_%6_;FL(6)7 < 00;

if p < 2 and (1.6) is satisfied then M is bounded on LP(R?). This statement is (implicitly) contained
in [18] (¢f Theorem 2.5 below). Note that if the curvature does not vanish then |B(z, §)| ~ §(?=1)/2
and T'_»_(6) ~ §(d=1D1-1/P) g0 the integral (1.6) converges if and only if p > d/(d — 1), which is
Stein’s maximal theorem. The nonvanishing of the curvature is not necessary; as one can see by
checking (1.6) for surfaces of the form

d—1
(1.7) md=—0+2|mi|‘“, 2<a; <--<ag 1,
i=1

where the a; are even integers. In this case LP boundedness holds for p > d/(d — 1) if a; < d for
i=1,...,d —1. In §2 a related result will be deduced from (1.6) in §2; namely L? boundedness

holds if the Gaussian curvature belongs to L7 (X) for all v < 1/(d — 2).

It is not presently known whether for p < 2 the condition (1.6) always gives the correct range of
L? boundedness up to endpoints. Moreover it is not known precisely how (1.7) relates to the notions
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of type and multitype. One purpose of this paper is to prove some partial results in this direction
and obtain a fairly complete picture in three dimensions.

In order to formulate our results we now review the definitions of type and multitype. For
convex hypersurfaces in R? a natural notion of multitype has been implicitly introduced by Schulz
[20]. Various related and more general notions of multitype had been previously formulated in
complex analysis, see in particular Catlin’s paper [3]; later Yu [26] has given a simple formulation
of Catlin’s multitype condition for convex domains in C", building on the results in [20].

We first consider a smooth real valued function ® defined in a neighborhood of the origin in an
n-dimensional vector space E,, so that ®(0) = V®(0) = 0. We say that a vector v in E" has contact
of order m + 1 if

®(sv) = O(s™™) if s —0.

Let
(1.8) S™ ={v € E" : v has contact of order m + 1.}
It is shown in [20] that S,, is a linear subspace of E" and that there are even integers m;,...,mg

so that my < ---<myg, 1 <k <nand mg:=m; —1>1and
0=8™C...C S™mo =[";
and the sequence is maximal, i.e.

ST =8" if mp_1 <m < my.

The largest number my, is the type of ® at 0. Let dim S™ = n;, so that ng = n and ny = 0.
Fori=1,...,n let

ai=m; if n-nj_1<i<n-—n; j=1,...,k
the n-tuple a = (ai, . .., a,) is then called the multitype of ® at 0. Clearly this definition is indepen-

dent of the linear coordinate system on E, .

Now let ¥ be a convex hypersurface in R? and let P € ¥. Then near P the surface is a graph
over its tangent plane at P. For a suitable choice of the unit normal vector np at P the surface can
be parametrized by

TpY - R

(1.9) v P+ov+®v)np

where @ is a convex function vanishing of second order at the origin. We say that X is of multitype
a = (a,...,aq—1) at P if ® has multitype a at the origin. This notion is invariant under affine
transformations in R?. Moreover, if ¥ is given as a graph w,, = ¥(w') then it is easy to see that the
multitype at P = (w', ¥(w')) is equal to the multitype of the function

y' = Y +y') = (') = (Y, Ve T(w)).

Calculations in [18] on examples of the form (1.7) suggest the following

Conjecture: Let ¥ be a convex surface in R?™! let P € ¥ and let a = (ay,...,aq_1) be the
multitype at P. Define v by

1
(1.10) v, = E Pyt k=1,...,d—1; vg = 0.
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We conjecture that M is bounded on LP(R?) if the support of x is contained in a sufficiently small
neighborhood of P and if

k
1.11 _—
(L.11) P> X

Note that among the numbers (1.11) only the one corresponding to £ = 1 can be > 2 so that
the condition for LP boundedness for p > 2 reduces to

-1

Gk
(1.12) P>

a;’
i—1 1

As observed in [14] the condition (1.12) is equivalent to the integrability condition (1.5) for © = P
so that the equivalence of (1.5) and (1.4) mentioned above amounts to the equivalence of (1.12)
and (1.4). More generally, one may also conjecture that LP boundeduness holds if for every [ €
{0,1,...,d — 1} and for every [l-plane E through P the function = — [dist(z, E)]~! belongs to
L4=0/P (here the 0-plane through P is just {P}).

In the present paper we shall concentrate on the simplest case, d = 3.

Theorem 1.1. Let ¥ be a smooth conver hypersurface of finite line type in R®. Let P € ¥, let
a = (ay,az) be the multitype at P and let K(z) be the Gaussian curvature at x.

Let M be the mazimal operator as defined in (1.2). There is a neighborhood U of P in X so that
the following statements hold if x is supported in U.

(i) Suppose that a1 > 2. Then M is bounded if and only if p > (a—l1 + %)_1.
(ii) Suppose that a; = 2,0 < v < 1 and K=" € L*(U). Then M is bounded if p > 222(l=04244y

as(1=7)F2+27
(iii) If a; = 2 then M is bounded for p > max{2, az‘fl .

We note that (i) is already contained in [14], but we shall give a different proof in §4 by deducing
it from (1.4). Also note that (i) and (iii) together verify the above conjecture in three dimensions;
however there are cases where (ii) gives a better result (see §4). Statement (iii) follows from statement
(ii) by using

Theorem 1.2. Let ¥ be a smooth convex hypersurface of finite line type < m in R?, and let K be
the Gaussian curvature function on X. If v < (m — 2)~! then K~ is locally integrable on 3.

We now discuss the regularity properties of the averaging operator A = A;. A positive and
apparently quite precise result for Besov spaces’ BY , and Sobolev spaces Lf can be formulated in
terms of the balls B(x,d), using a condition similar to (1.4), (1.6).

Theorem 1.3. Suppose ¥ C R? is convex, smooth and of finite line type. Suppose that 1 < p < 2
and suppose that

11 2q(p—1) % %
(1.13) suptﬁfﬁ*g‘(/~ |B(x,5)|P+Q*qua(x)) < 00
5>0 s

holds for some (p,q) with p < q. Then A maps the Besov space Bﬁ,r boundedly to Bé

+a,r’

IRecall that HfHBZ L (332 o[2%8) L% fl1p])7) /™ with suitable Littlewood-Paley cutoffs £* localizing frequencies

to annuli || & 2% if k > 0.
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Moreover, if 1 < p <2, p<q< oo, then A is bounded from LP(R?) to L% (R?) if ¢ > 2 and
bounded from LP(R?) to L4 *(R?) if p< ¢ < 2.

Clearly the second assertion about Sobolev estimates is a consequence of the first assertion for
Besov spaces, by standard embedding theorems (i.e. Littlewood-Paley inequalities).

Again one can try to relate the condition (1.13) to the multitype. Consider the model example
(1.7) where a; < --- < ag—1 are even integers, v, as in (1.10). We note that for this example
a complete description of the LP — L7 estimates for A has been given by Ferreyra, Godoy and
Urciuolo [10] (without the restriction that the a; are even integers), see also the paper by Sang Hyuk
Lee [16]. Both proofs relied on a method introduced by Christ [5].

A calculation for the model example shows that (1.13) is satisfied when

k+l/k+1/k+].
q

(1.14) o< min [v+k—1- I,
1<k<d

— ; Ly vetkl _ wpbk—l, (s s PSR .
see §3. For a = 0 this becomes > fiop s — 22225 this s the condition given in [10]. Concerning

the case p = ¢ one obtains (for the model example) that A is bounded from pr,, to BY

B+a,r and

from Bg:r to Bg;aﬂ, provided that a < v41 + k/p, if ar, < p < ag41.

To formulate a conjecture for Lg — L%. 1o regularity (or related Besov-type estimates) in the
general case one simply replaces (ai,...,a4—1) in the model example by the multitype at P and
assumes that x has small support near P. Then (1.14) should imply the LP — L% boundedness
for the averaging operator, if p < ¢, and 1 < p < 2. Clearly by duality the boundedness region is
symmetric with respect to the diagonal 1/p+ 1/¢q = 1, so it suffices to consider the case p < 2. One
expects that at least for the case p = ¢ boundedness may fail at the vertices of the boundedness
region, see [6] for counterexamples in two dimensions. We note that complete LP — LY results in

two dimensions are in [19], [5].

In three dimensions we prove the conjecture up to certain endpoint results.

Theorem 1.4. Let ¥ be a smooth compact convex hypersurface of finite line type in R3, let P € ¥
and let a = (a1, ay) be the multitype of © at P. Let vy = a;* +ay*, vo = ay* and let T(P) be the
set of all (%,1 «) with p < q satisfying the conditions

P’a

1+I/1+1+l/1

(1.15.1) a<vy —
q
240y 14
(1.15.2) a<l/2+l—ﬂ+%
3 1
(1.15.3) a<2-2 4=
P q
and
1 1
(1.16.1) o<+ 4 ;"1
T
(1.16.2) a<pmy it 2t
p
3 1
(1.16.3) a<Z->
g p

Then there is a neighborhood U of P such that A is bounded from Bgﬂ,(]l@) to ng_a,r(]RB) if supp x €
U and (1/p,1/q, ) belongs to T (P).
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Moreover A is bounded from Lg(]l@) to LY, (R®) if (1/p,1/q, ) belongs to the interior of T (P).

B+

Remark 1.5. If p < 2 < ¢ and the Bg,r — B{ , estimate holds for a given p, ¢ with p < 2 < g then
the L’é - L +p estimate follows; this yields partial endpoint results for the Sobolev estimates.

Remark 1.6. (i) A natural conjecture for LP — L7 estimates is given in terms of distances to
tangent lines and planes. Let Aj(p,q) = 1/p — j/q and pi(d,p,q) = d—1 -1+ Agi/(1 — Ay).
Suppose that for [ = 0,1,...,d—1 and for all [-planes E through P the functions z — [dist(x, E)]~*
belong to L?(X) for p = pi(d,p,q). One may conjecture that A maps LP(R?) to LY(R?) (provided,
of course, that x is supported in a sufficiently small neighborhood of P).

If d = 3 then the description of multitype together with estimates in §3 can be used to show
that the above conditions are equivalent with the conditions given in Theorem 1.4.

(ii) It is easy to see that the condition for [ = d—1 in (i) is necessary, by testing .4 on characteristic
functions of cylinders with base B(P,¢) and height 4.

(iii) Analogously, one can formulate a conjecture for the LP boundedness of the maximal operator
in terms of distances to tangent planes and lines. The conjecture is that M maps L?(R?) to L?(R?)
if for { =0,...,d — 1 and for all [-planes E through P the functions z — [dist(z, E)]~! belong to
L% (D).

The paper is organized as follows. In §2 we shall derive estimates for operators associated to
certain classes of convex functions, emphasizing uniformity of these estimates. In §3 we shall discuss
various properties of the multitype and the associated scaling; in particular we prove versions of
Theorem 1.2. The proofs of Theorems 1.1 and 1.4 are contained in §4, and some examples are
considered in §5.

2. Operators associated to convex functions of finite line type

In this section we collect facts which are either immediate consequences of estimates for classes
of convex functions of finite type in [2], [9] or [18], or can be obtained by modifications of arguments
in those papers.

Let By C R" denote the open ball of radius 7" centered at 0. In what follows it is always assumed
that T < 1. For 0<b< M, N € Z*,2 <m < N, let S%(b, M,m,N) be the class of all Cn(Br)
functions g with the property that for all x € By

9(0) =Vg(0) =0

d n
Wg(az + t9)|t:0 >0forallfesS
ngnjzgn‘(a) g(x +t0)|t:0‘ >bforallfe S
0 \a
— <M
max, |(57) 0@ <
Next let a = (a1,as,...,a,) an n-tuple with even integers so that 2 < a; < --- < a,,. We define
SE(b, M,a,N) to be the class of all functions in S}:(b, M, a,,, N) with the property that
9 \i
. >b.
(2.2) 21311]3;; (8.’5@) g(az)‘ 20
We also set
"1
(2.3) Vk:rzka—j, k=1,...,n, and Up+1 = 0.



We note that if ¥ is convex and of finite line type and if P € ¥ is of multitype a then there is a
neighborhood of P in ¥ where ¥ can be parametrized by (1.9) and so that ®o L € S%_l(b, M,a,N)
for a rotation L and suitable constants T',b, M.

Constants in estimates which will depend only on the parameters n, b, M, m or a, N are called
admissible. All constants in this section will be admissible, but statements involving the multitype
in §3 and §4 below will contain “nonadmissible” constants.

Notice that if ® € SF.(b, M, m, N) the functions
w = @y +w) — 2(y) — (w, Ve(y))

belong to the class SE(b,3M,m,N) for all |[y| < T. A similar remark applies to the class
Sr(b,M,a,N).

We now recall an important inequality from [2] (see also variants in [9], [18]). Let |w| < T and
let

- m 1 i Sj Sm+1
Puy(5) _;ﬁ@u,w W)+ M
N - m 1 ; Sj Sm+1
Puy(s) -;ﬁuw,w WS+ M

Then there exists an admissible constants Cy, so that for |y| < T, |w| <T,0<s <1,
(2.4) Cflﬁw,y(s) <Oy + sw) — B(y) — (w, Ve(y)) < C1 Py y(s).

Notice that by (2.4) there exists an admissible constant ¢y > 0 so that for all

(25) (5 S C()Tm =. (50
the sets
(2.6) B(z,0) ={y: [yl <T; |2(y) — ®(z) — (VO(2),y — )| <4}

are contained in {|z| < 27T'}. If ¥ = graph(®) then these sets are comparable to projections of the
balls B(y,d) defined in the introduction.

Proposition 2.1. Let ® € Sg;% (b,M,a,N), m = ay,, N >m+ 1. There are admissible constants
Ci,...,Cs, pp1 > 1, Co > cy*, so that the following statements hold.

(i) Let 1 < 1 < n and let E be an I-plane through the origin. Let § < Cy'T™, py <
p < Gt Y™, Then for all |lw| < T the set B(w,ud) is contained in {|w| < 2T'}. Moreover
if Vie(z,wo,ud) is the l-dimensional volume of the cross sections (x + E) N B(wo, ud), then for
w, w2 € B(wp,d) one has
(2.7)
i

l/m /2
C;l(z) Ve(wi,wo, p16) < VE(wi,wo, ué) < CsVE(ws, wo, pd) < C2Cs(%) Vi (w2, wop 6).

(ii) Let 6 < Cy*T™, and let B(x,0) be as in (2.6), vy as in (2.8). Then for |z| < T,

(2.8) B(x,8)| < C16".
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(iii) For k=1,...,n let

Byp, .. By
(2.9) K (z) = det : :
By0r .. By
Then for § < Co_le
(2.10) 1B(z,0)] < Cs08 70 [ sup [K(w)]] .
yeB(z,d)

Proof. The chain of inequalities (2.7) is an easy consequence of [18, Corollary 2.6] which in turn was
based on (2.4). Inequality (2.8) is proved by induction over the dimension. It is true for n = 1 by
(2.4). Let n > 1. Then again by (2.4) one sees that the set

(2.11) J(0) = {xy : thereis 2’ € R* ! so that (z/,z,) € B(z,8)}

is contained in an interval of length < (4. The functions y' ~ ®(y,y,) belong to
S;,_,llT(b, M,d',N), with o' = (a1,...,a,—1). By the induction hypothesis the n — 1-dimensional
slices through B(z,d) at height y, € I have volume < C§'/91+-1/an-1_ The assertion follows by
integrating over 7 (9).

We now turn to the estimate (2.10), and consider first the case k¥ = n. In [9] it is shown for
arbitrary polynomials of degree < ¢ + 1 that

(2.12) max | det P"(u)| < Cp 4 max |P(u)|™
lul<n lu|<1

where C,, 4 is an absolute constant. Now by estimates for functions in S3-(b, M, m, N) ([2, §3]) there

are constants cg, Cp and a polynomial Pj, of degree < m, vanishing of second order at z, so that

(2.13) {y: Psa(y) < cod} CB(w,0) C{y: Fsa(y) < Codl;

here the constants ¢y, Cp do not depend on z and . Following [9] we apply a result of John to
wit there is a translation 7_, and a symmetric positive definite linear transformation 7" so that
B(1) C T(1—3B(x,0) C B(n) where B(1) and B(n) denote the balls of radii 1 and n, centered at
the origin. By (2.13)

det T max |det Py’ (z0 + T u)|"/? < Cpom max | Ps (0 + T~ tu) |/
ul<n ’ <1

|l

and since det 7! is comparable with the measure of B(z,d) the assertion follows for k = n.

To show (2.10) we argue by induction on n, the case k = n is already taken care of. Let n > k.
Pick z € B(z,6) so that Ky(z) < 2minyep(,.5) Ki(y). Let Vi(yn,d) be the n — 1 dimensional slice
of B(x,0) at height y,. Then by the induction hypothesis

Ve (2, 118)] < COF/ TS0 el K((#,2))
Vi (20, 20)] < + [zr:<zf,zf>13§(x,m> k(2 20)]
k/2+37 0 et -1/2,
<Co i=e+1% [ max  Ky(z)] ;
z:2€B(x,0)

in this formula the sum in the exponent is not present when k = n — 1. By (2.7)

Ve (yn:(s) <V (yn:ﬂfl(s) <OV, (Zn:IJIl(S)
8



and integrating over y,, € J(8) yields another factor of 6'/%, as in the proof of (2.8). O

We now let n = d — 1 and consider the regularity properties of the following integral operator
acting on functions in R¢,

(2.14) Af(z) = / F@ — o wa— H(20) + ca)x(')dy'-

Here ® € S?~1(b, M, m,N), and the smooth cutoff function y is supported in {z' : |¢'| < T},
T < 2741 We shall not try to minimize smoothness and therefore always assume that N is large;
by “large” we mean N > 10dm, which is assumed in the remainder of this section.

Our first result is an estimate for A4; after a localization in frequency space. Let 6 > 0 be small,
and let 8 € C§°(R?) be supported in {¢:1/2 < |¢| < 2}. Define L5 by

~

(2.15) LsF(€) = B5E) f(9).

Proposition 2.2.
Suppose that 1 <p<2and 1/r=1/p+1/q—1. Then

1_1 r(l—lily_ 1r
(2.16) I£s Al < C855 /| _, B oI i,

for all f € LP(R?).

Proof. The proof follows a pattern of [18] and we shall be brief. Observe A; f = du * f where dy is
a smooth density on X. We split du = Zj dpj where each dp; is supported in a cap B; of height
~ 0 and the caps (or “balls”) have finite overlap. This splitting is done by using a partition of
unity subordinated to the B;, see [2] for the metric properties of the caps and [18] for the necessary
quantitative bounds for the partition of unity.

For sequences v = {v;} consider the bilinear operator

Ts[y, f1 =Y viLsldp; * f].
;

The inequality (2.16) follows by choosing v = (1,1,1,...) from from the following more general
estimate, valid for p < 2:

1_1 _1 A\ 1 1 1
@11 ATl Sl < 088 (Il B2 5T) Tl =
J

Indeed (2.17) is clear for p =1 = ¢, and also for p = 1, ¢ = co (where r = 00). The nontrivial part
is the case p = 2 = ¢ (again then r = 00); but this estimate is a consequence of Theorem 2.2 in [18].
The general case follows by interpolation. O

The next result is an immediate consequence, and also proves Theorem 1.3.

Corollary 2.3. Suppose that 1 < p < 2 and suppose that

4= el
(2.18) sup 5%—%—a(/ [B(w,6)| 5= duw) <A< oo
5>0 {lw|<T}
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holds for some (p,q) with p < q. Then A maps the Besov space prr(]Rd) boundedly to Bg,_i_am(]Rd)

Remark 2.4. For the model example (1.7), i.e. 4 = cq — Z‘;;% |zj]% one has

(k—1)n

/|B(w,6)|’7dw < C max §UHmMvt =
1<k<d

see [18, formula (5.2)]. From this the sharp estimates for the maximal operator have been deduced

in [18]; moreover Corollary 2.3 implies that the averaging operator maps Bﬁ,r to Bg-i-a,r ifp<2

and (1.14) is satisfied. Concerning LP — L7 estimates this the endpoint estimates in [10], but only
in the case p <2 <q.

In order to prove the maximal Theorem 1.1 we shall rely on the following result implicitly in
[18].

Theorem 2.5. Let A;f be as in (2.14) and define the associated mazimal function by M f(x) =
Supysg |Aef(x)]. Suppose that

Do (9) = ( [ 1Bw.d)[ % au) .
and the inequality

1
/ [log(1 + 571)]%_%5*1/”1"2%(6)%6 <A<
0 P

holds. Then M is bounded on LP; the operator norm is dominated by C Al|x|| where C is admissible
and ||x|| is a suitable Sobolev norm of x.

Proof. Let Hj(x) = t"Ls[dp](tz) where Ly is as in the proof of Proposition 2.2. By [18, (4.4)]

|| sup |Hs s * f|| < C[logé_l]%_%é_l/pfi(é)
>0 P e

for small d and the statement of the theorem follows by introducing a dyadic decomposition for large
frequencies and summing the estimates for the operators corresponding to the pieces. O

A consequence of Theorem 2.5 and Proposition 2.1 is

Proposition 2.6. Let ® € ngl(b,M, a,N), N >m+1 and let B(w,?) be defined as in (2.6). Let
ke{l,...,d—1}, >0 and n > 1/2. Suppose that

(2.20) |B(w,d)| < C8"

(in particular we can choose n = vy if v > 1/2) and
(2.21) /K,c(x)*ﬁda(x) <A

Then the following statements hold.

(i) M is L? bounded for p > %

g . k142
(i) If B > m then M is LP bounded for p > W:J’:rl

) 21— 28kt D g
(ii3) If B < m then M is LP bounded for p > po(5,n,k) = 12?7152(?:&;;:1?25”)‘

Proof. First note that the restriction n > 1/2 implies that % < 2 and po(B,n, k) < 2 if

B8 < 16_1;72%“ Therefore it suffices to check the condition (1.6). (i) follows immediately from
Theorem 2.5; however this special case follows already from Greenleaf’s paper [11].
10



We may therefore assume that (K + 1+ 2vg41)/(k 4+ 2vk41) <p < (2n+1)/2n. Let

o=1+5- -
p—1
(p— Dk +2v41) — 1

(p = D(k + 2041 — 2n)°

Note that 6 > 0 since (k+ 1+ 2vg11)/(k + 2vj41) < p and f < 1 since p < (27 + 1)/2n. Moreover a
computation shows that the inequality § < € is equivalent with

(2.22) 14 2n = 28(k + 2vp41 — 2n) < p(2n — B(k + 2vp41 — 21)).

If g > m then (2.22) holds for all p € (%,2) and if 8 < m then (2.22) is
satisfied preciEely for p > po(B,m, k). In either case it is therefore possible to choose 0 < § < 1 such

that 8 < 6 < 6. We now estimate using Proposition 2.1
2—-p

(/|w|g'8(w"”'2%”_ldw)2;p B (/wST|B(w>5)|2;‘P2(1_0)+22p—p20dw)2;?

< (o E 0 (st e 3700 [ (i, ) BEFO D) 7
lw|<T

2-p

< s (10 ( / (K (w)] 5700 dw) 7

lw|<T

The integral is finite if %(1 —0) < B; a short computation shows that this is equivalent to the
condition 6 > @ hence satisfied in view of our choice of §. Now according to Theorem 2.5 the LP
boundedness holds if (278 + (k + 2vk4+1)(1 — 0))% > % and another computation shows that this

is precisely the restriction § < 4. O
As an easy consequence we obtain

Theorem 2.7. Let ¥ C R?, d > 3, be a convex hypersurface of finite line type and let K(x) the
Gaussian curvature. Suppose that

/E[K(I)]_ﬁda(x) <oo forall B < ﬁ

Then the mazimal operator in (1.2) is bounded on LP(R?), for p > d/(d —1).

Proof. After localization we may assume that the averaging operator is of the form (2.14). Note
that |B(z, )| ~ |B(y,9)| if y € B(z,d). Therefore by Proposition 2.1

|B(z,6)[""* < / |B(y, 8)[*?do(y) S 618 / K (y)| =P do(y)

Therefore |B(z,6)| < 6" with ng = % and ng > 1/2 if B > (2d — 4)~'. The assertion follows
from an application of Proposition 2.6 with £ = d — 1, n = na, the critical exponent in case (ii) is
then p = ngl and for # =1 — € we see that %—1 =d/(d-1)+0(). O

11



3. Auxiliary Results

According to a result of Schulz [20] one can decompose a convex function at a given point into
a main term, which after an affine change of variable exhibits some homogeneity, and a remainder
term. We first need the following

Definition. Define the dilations A, by

(3.1) Asz = (s%xl,... ,S%In).

We say that a smooth function () : R* — R is mixed homogeneous of degree (a1, as, ... ,a,), a; >0,
if

(3.2) Q(Asx) = sQ(x),s > 0.

The following Proposition summarizes and extends a result of [20]; the fact (3.5) below was
already applied in the proof of Theorem 10 in [14].

Proposition 3.1. Let ® € S%(b, M, m,3N + 2), where N > m. Suppose that a; < --- < ap, <m
and a = (ay,as,...,a,) is the multitype of ® at 0. Then the following statements hold.

There is a rotation L on R" so that
(3.3) &(Lz) = Q(x) + R(x), |a| < T

where Q) is a convex mized homogeneous polynomial of degree (ai,...,a,), the a; are even positive
integers with ay < -+ < ay, the graph of Q is of finite line type < an, < m and (a1,...,a,) is
the multitype at O of the graph of ® (considered as a subset of R"™'.) If aj < ajq1 then the linear
subspace S% consisting of all v such that ({(v,V))/[® o L](0) = 0 for j < aj+1 is the image of
span{eji1,...,en} under L=, Moreover

(3.4) Qx)>0 ifzc#0
and
2 0%Q
(3:5) Q)] < CLlalIVQ@)| < Calal Y | 55— (@)].
i Li0Tj
The remainder term R satisfies
-1 8‘04 A <C 1/m

(3.6) ‘s 5 (R( sm))‘ < Cum,Ns
for |z| < T and all multiindices o« = (a1,...,aq—1) with |a| < N; A, is as in (3.1).

If ay = --- = a, = 2 for some k, then the rotation L can be chosen so that
(3.7) Qz) = 12l + - + cpat + Q(@ps1,- - Tn)

~ ~ 1

where () is mized homogeneous of degree (ag+1,...,an); G.e.  Q(s**+1Tpiq,..., sﬁazn) =

S@(mk+1, ... Ty) for all z € R™.

Remark. We note that if ® belongs to SE(b,M,a,3N + 1) then @ belongs to a family

St (Z, CM,m,3N + 1), with b> 0, but unfortunately there is no good lower bound for b in terms of
b.
12



Proof of Proposition 3.1. The decomposition (3.3) was obtained by Schulz [20] and the construction
involved the subspaces S™i mentioned in the introduction. The polynomial @) was obtained as a
Taylor-polynomial ) ¢,a” of ® o L where each multiindex v satisfies Y., 7;/a; = 1; the convexity
and (3.4) is verified in [20]. As observed in [14], (3.5) is a consequence of Euler’s homogeneity
relation Q(z) = 3 z;a; ' Q,, (x). To see (3.6), fix o, and use Taylor’s formula to write

R(z) = Pyy () + Ron ()

where Py () is a linear combination of monomials Gg(z) := ¥ with |8] < 2N and Y_;_, g—’; > 1.
If a; < B, i =1,...,n it follows immediately that

Hlel
oz«

n B
[SilGﬁ(AsiL')] = caﬁmﬁ—aS*lJer:l ﬁ

which is < C's'/™ since (), assume only integer values and m ' < a,, . Thus

glel
oz«

|:S_1P2N(ASZL')] ‘ S CM7N81/m.
Finally, the remainder Ry (z) satisfies |0aRon (z)] < O |z[*N 1712l for |a| < N. Therefore

ol
Oz
by the definition of N. This finishes the proof of (3.6).

We now turn to proving (3.7) and discuss first the case k = 1. Split ¢ = (z1,2") with o’ =
(z2,...,24-1). Then @ can be decomposed as

[sflR(Asm)] ‘ < Clz/N st max sV /e < 05|t/ m

Q(z) = c12? + 2, A(2') + B(a'),

where B is mixed homogeneous of degree (as,...,a4-1), and A is mixed homogeneous of degree
(a2/2,...,an/2). In order to prove that A = 0 it suffices to show that the partial derivatives A;,,;
vanish for all ¢,j > 2. To see this we use homogeneity. Define

bz’ = (s'/%2ay, ... s % x,)

and observe that

Bmwj (5sxl) — 51_1/ai_1/ajBxixj (iL'I)

3.8
( ) Axixj (6Sml) — 81/2_1/ai_1/ajijzj (l’l)

for s > 0.
By the convexity of () we have

(3.9) (n, V2Q(z)n) > 0
for all  near 0 and all . With n =e;, j =2,...,n this yields

(310) 0 S Bz]-xj (I’) + Ilejzj (‘T,)

Suppose now that A,,,, (') # 0; then G; = By, /Ay, o, satisties Gj(6,2") = s'/2G(a') for '
near #'. Using this homogeneity property we see from (3.10) that if A, ., is not identically zero, then
13



ez-VZQ(m)ej changes sign arbitrarily close to the origin, a contradiction. Therefore A, ;,; vanishes
identically, for j = 2,...,n

Next we show that A, ., =0 for i # j. We apply (3.9) with n = {e; + §je;. Since A, ., =0,
(3.10) becomes

(311) 0 S Bﬂviﬂvi (37’)65 + 2Bwiwj (m,)fzfj + Bijj (ml)f]2 + 2371Aziwj (m’)£z€]

Assume that A,,.;(Z') # 0; by homogeneity we have then A, (dsz) # 0 for 2’ near &'. By (3.8)
and (3.11) it follows that

(n, V B(5 z")n)

(n, V2 A(352")m)

B,, ( )62 1/2—-1/ai+1/a; +2-Bx z]( I)fifj 1/2+ijzj(xl)£?51/2+1/ai—1/a]—
2400, (@')&i&;

0<z +

:1’1

and this expression tends to x; as s — 0 since |a; ' — aj_1| < 1/2. Thus for each s sufficiently small,
we can find a value of z;, such that the right side of (3.11) vanishes. We see that the expression
changes sign arbitrarily close to the origin, a contradiction. Hence A, also vanishes.

We now turn to the case k > 1. Split z = (2',z") with &’ = (z1,...,z;); then

k
Q(z) = Qo(z) + inAi(x”) + B(z").

where Qo(z') is a positive definite quadratic form on R, the functions A; are mixed homogeneous

of degree (ag+1/2,...,a,/2) and B is mixed homogeneous of degree (ag+1,.-.,a,). By performing

a rotation in the z' variables we can assume that Qo(z') = Zle c;z?. Then we can apply the case

k =1 already proved to the functions (z;,z") — Q(z;e;,z") and deduce that 4; =0. O

Lemma 3.2. Suppose that ® € S (b, M,m,N), N > 4m, as > 2, and suppose that

0% 02 d P .
8—;v%(0)7é0’ D2 (0) £0, 8—955(0)_0 if j < a.

Let Ko[®] = 4,0, Paszy — (Payzs)?. Then

0922 [, [®]

3.12 -
( ) 6%;272

(0) # 0.

Moreover there is € > 0, § > 0 and C.,, (all depending on ®) so that

5
(3.13) sup / (K, [¥)(z)) "dzy < Cs, ify<(m—2)"1,
CEEa

for all ¥ € Sﬁ(b/?,ZM,m,N) with ||‘1> - \I’||CN(|x|S,,) <e.

Proof. We define ¢(y1,y2) = ®(y1,y2,0). Then (1,0,...) is an eigenvector of the Hessian of ¢ and
we can apply Proposition 2.1 to ¢, without performing a rotation. Thus

C1 a
d(y) = 53/%’ + cays® + R(y)
14



where ¢; > 0, co > 0 and R satisfies (3.6). Now

K> (y) = cicaaz(a — 1)y§2_2 + E(y)
where the error E(y) is given by

E=(c+ Ry1y1)Ry2y2 + c2a2(az — 1)Ry1y1y(21271 - R;Znyz

Expanding R we see that

(3.14) R(y) = > sy’ + Raza (v);
5

here we sum over multiindices 3 so that |8| < m and $1/2 + f2/az > 1. All derivatives of order

< as of Rg,41 vanish for y = 0.

In order to show (3.12) we shall show that 92> E(0) = 0. To see this let G4(y) = y®. We have
to verify that

02 Gg
w =0
e (y)

a2+€G6 6a2—€Gﬁl
- = 0(y), {<as—2
dyidys oy " W =

0*Gs

8‘+1G5 as
=0 1<t < —=
6y18y§ (y): S5

82+2G,3 Baz—fgﬁ,
dyioys oyiz "
unless f1 = 2, fo = (, B} =0, B3 = ap — L and B; = B; = 0 for j > 3. But this implies that
az — [ = ay, hence Gg(y) = y#, but y? is not an admissible term in (3.14). We argue similarly for
each of the other terms and (3.12) is proved.

whenever 3 or ' occur in the sum (3.14). Considering the term

it is clearly O(y)

To see the second assertion we use a result related to van der Corput’s lemma which is due to
M. Christ [4] (alternatively one may use the Malgrange preparation theorem). It states that for any
k € Z there is a constant Ay, such that for any interval I C R, any f € C*(I) and any v > 0

(3.15) {tel:|f(D)] <} < Ay irelfIIDkf(S)l_l/k-

92 % K>
a5 —2
0z,

By continuity we know that
obtain (3.13) O

(z) # 0 for small x and we can apply (3.15) with k = a> — 2 to

Proposition 3.3. Let n = 2, ® € S%(b,M,m,N) for large N and suppose that (ay,as) is the
multitype at 0; moreover assume

i P
%(0) =0 forj<a
(3.16) 82“"_@'(}
.07 0 #0,
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fori=1,2. Let p(x) = z{* + z3* and let
= fw:2 0 < pa) < 2°).

Let v =1/a; + 1/as. There is €y > 0 so that for £ > {y

(3.17) / | det 8"(2)|~Tdo () < C,252=2%=0) for < .
Q, as — 2

Moreover [det ®"]7 is integrable over a neighborhood of the origin.

Proof. In view of assumption (3.16) we may decompose ® = () + R where ) is mixed homogeneous
of degree (a1, az), in fact Q(x) < ¢1p(x) < c2Q(x) for small z, by the homogeneity and positivity of
@ and p. The function @ is of type < ay near 0 and by homogeneity considerations it is easy to see
that @ is of type < ay everywhere. Moreover, by (3.5) the rank of @) in ; is at least 1.

Let I' = {z € Q : det®'(xz) = 0} and fix 2° € . Then there is a rotation L,o so that
¥ (y) = Q(x°+ L,oy) satisfies the assumption of Lemma 3.2 and therefore we can integrate [det Q"]
over a small neighborhood of z°; moreover the bound persists for small C™ perturbations of ). Using
compactness arguments we see that there is € > 0 so that

(3.18) /Q [det ¥ 7dx < C

if |¥ - Qlle~v(Q,) <eand vy <1/(az —2).
Let, for large ¢
Oy) = 2°@(2 ryy, 27 02yy).

Then
(3.19) by =Q+ Ry

and all derivatives of R, tend to 0 uniformly in {y : p(y) < 1}. Therefore there is £y, 27% < 1 so
that (3.18) applies for ¥ = &y, £ > {y, with a bound independent of . Since

(3.20) det @) (y) = 22¢=) det @ (27 /a1y, 27/ 2y,)

we obtain for £ > £

| det & (y)| "dy = / 27| det (27 “ryy, 2 ryy)| Vdy

Qg Q1

(3.21) — 9—tvo2vt(1-v) | det ® ()|~ dy.
Q1

If v < (a2 —2)~! we can dominate the integrals by a constant independent of ¢ and the estimate
(3.17) is proved.

Since a1 < as we see that —v +2y(1—v) < [3—2(((12 —2)y—1) < 0 and therefore we can sum the
estimates (3.21) to obtain the integrability of [det ®"]~7 near the origin. O

Proof of Theorem 1.2. Immediate from Proposition 3.3 O

We now examine the size of the balls in (2.6) near a point of given multitype.
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Proposition 3.4. Let ® € S}(b, M,m,N), where N is large, and let a = (a1,az,...,ay) be the
multitype of ® at 0. We assume that (3.16) holds fori =1,...,n.

Letv = 37, a%_, let p(y) = i yd and Q = {z : 2741 < p(z) < 2}, Then there are
constants C1, Cy so that for C16 <27t < Oy, y € Q

11
(3-22) By, 0)] < Cad®2 ™) if a<g+—.

Proof. Decompose ® = ) + R as in (3.3). By our assumptions this holds with the rotation L being
the identity. By the metric properties of the balls B(y,d) (in particular the triangle inequality for
the pseudo-distance associated to these balls [2]) it follows that there are constants C; > 1, Cy > 1
so that

B(y,8) C {z: 01 'Qz) <Qy) < C1Q(x)} i  Q(y) > Caé.

Now let Q(y) > C»d and set ®¢(w) = 2/®(A,—.w); note that &, = Q + R, where R, tends to
zero in the C> topology. Let £ be large so that 27¢~1 < Q(y) < 27¢. Then one computes that with
W={y:C;'/2<Q)<Cr}and Yy = Apey € W

{Azez A B(y,é)} = {w : @[(w) - @f(Yk) - (w - YZ,V‘IM(Y[)) S 2({(5} = Wl,y,d

and Wy, s is contained in W. By Proposition 3.1 there is Co > 0 and ¢y > 0 such that for any
y € W there is a unit vector 6 with (8, V)>®,(y) > C, for all £ > £,. Moreover ®; is of line type
< ap, with uniform bounds for £ > {g, since this is the case for (). This implies that

Weysl < C(29)°
for 0 < a < 1/2+1/a,,. Since the Jacobian of the change of variable z — A, is 2 we obtain that
B(y, )] < Cao2itet
and since Q(y) ~ p(y) the assertion follows. O

Remark. Let @ < 1/2 + 1/a,. The estimate |B(y,d)| < Co*[®(y)]"~*, for small y, is an easy
consequence of Proposition 3.4.

4. Estimates involving the multitype

We shall first give a different proof of the following Theorem proved by the first two authors in
[14].

Theorem 4.1. Let M be as in (1.2). Suppose that (ay,as,...,aq) is the multitype at P and that
v = Z;l;ll % < % . Then there is a neighborhood U of xy so that M is bounded on LP(R?) if
p > v, provided that supp x C U.

Proof. We may assume that our averages are of the form (2.14) and P = (0,¢,4). Since v~ > 2 we
just have to verify (1.4). We now use Proposition 3.4, with a = v in the first term below and a < v
in the second, and obtain

p—2

FP%(&) = (/p(w)SCuS |B(w,6)|ﬁdw) o Z (/P(w)w2‘1 |B(w’6)|ﬁdw) P

01(5§27e<<1
<o+ S (@2e)isT) <ot

C10<2-1<L1
17



This implies (1.4) since v > 1/p. O

Proof of Theorem 1.1. If a; > 2 then v < 1/4 + 1/as < 1/2 and the assertion (i) follows from
Theorem 4.1 (the necessity of the condition had also been shown in [13]). Now let a; = 2. Assertion
(ii) follows from Proposition 2.6 (with k = 2, v3 =0, n = 1/2+4 1/az), and by Proposition 3.3 the
hypothesis of (i) is satisfied with 3 < (az — 2)7!; this shows assertion (iii). O

Proof of Theorem 1.4. It is sufficient to assume that A is of the form (2.14) so that the multitype
at 0 is a = (a;,a2) and yx is supported near the origin; moreover we may assume that (3.16) holds
fori=1,2.

We have boundedness for the cases p = 1 = ¢ trivially. Since |B(y,0)| < Cd" for small y and §

it follows from Theorem 1.3 that A maps BY, to B, , if1<p<2 a>-vand L 1< e

This is the asserted estimate for 1/p+1/¢ = 1. We remark that this result is well known and follows
just from the assumption that c/ig(f) =0(|&]7"), see e.g [23, p. 371] and also the original references
251, [17].

We shall now consider the case 1/p + 1/¢ < 1 and prove boundedness under the conditions
(1.15.1-3); boundedness for 1/p + 1/¢ > 1 under the conditions (1.16.1-3) follows then by duality.
We shall verify the condition (1.13) by estimating the volume of the balls B(w,d) using Proposition
2.1 and then apply either Proposition 3.3 or Proposition 3.4 or both.

In what follows define r and o by

1 1 1

_:__|___]_

r p g

_ 2q(p-1)
P+4q-—pgq

so that o/r = 2/p'. First observe that by Proposition 2.1

v+l | vl

(4.1) 5‘”_%+5(/ |B(w,5)|adw); < QoV(EF)—a—pty — ggmotv-t
p(w)<C2d

which is bounded uniformly in §, by 1.15.1. Here we assume that C, is as in the statement of
Proposition 3.4.

We use Proposition 2.1 to estimate B(w,d) and our conclusion follows if we can verify the
estimate

1) o(1-0) 1/r 11
(4.2) (/ (7) |B(w,5)|"0dw) <08t
Ca8<p(w)<c det " (w)

for suitable 6 € [0,1] and small c.
In the present relevant case 1/p+ 1/¢ > 1 we distinguish three subcases

1.1 a-1 1

4.3.1 az—1)(1—-)——=—>0 and +-<a —1,

(4.3.1) (a2 — 1)( p) .2 ’ pll
1.1 11

(4.3.2) (@p—1)(1-=)—=>0 and L4 >q -1,
P q P q

(4.3.3) (a-1)1-3-Lco

D 2 p q .

We begin by assuming that the third estimate (4.3.3) holds. Here we check (4.2) with § = 0; by
Proposition 3.3 the desired estimate holds if
1

a2—2

(4.4) o>

11
(4.5) T <a+s—-.

r P q
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It is easily checked that (4.4) is equivalent to (4.3.3) which is presently assumed and (4.5) is equivalent
to the assumption (1.15.3).

Next we assume that the inequalities (4.3.2) hold. In order to carry out the integration in (4.2)
we have to assume that o(1 — ) < (a2 —1)~! which is equivalent to saying that 6 is larger than the
critical value

(4.6) Oer = (a2 —1- @L).

Under the conditions (a2 —1)(1 — 1) — 2 > 0 (i.e. in (4.3.1) and (4.3.2)) we have that e > 0;
moreover one can check that the assumption 1/p + 1/¢ > 1 is equivalent with 8., < 1. We may
therefore choose 6 = 6., + £ < 1 where € is small.

Let Q= {w:27! < p(y) < 27¢}. By Propositions 3.3 and 3.4 we estimate

(] ) e o)

(4.7) < 067a7%+§+@+(%+£)9%2%(7V+U(179)(17V)+(%+ifl/)a'9)

Now one computes

%(—I/+O’(1—0)(1—I/)+(%+i—l/)(79) =

a2

so that (4.3.2) implies the sum »,, 2¢C+) in (4.7) converges. Moreover

1 1 o(1-6 1 1.0 _ as — 2
—a——+—+¥+(— —)0— = —5(2 -«
P q T 2 ay’ r as
where
~ 3 1 5 — 2
Oé=2——+——craz—l
q a2p
az +1 1.1 1.1
=2 -2+ )=+ 1+ )=
as a2 p a2 ¢

Therefore if (4.3.2) is satisfied we can choose € = § — ¢, so small that the exponent of ¢ in (4.7)
becomes nonnegative. This settles the estimate in case (4.3.2).

Finally assume that (4.3.1) holds, and again choose § = 6.,+¢. The assumption ‘“Tfl +% <a;—1

implies that the terms 2¢¢+) in (4.7) form an increasing geometric progression if € > 0 is chosen
small enough. We compute

it 2 U ) e o)

2_2202(5
o(1-6)

< O v tat T et a)0% s (=5 R -0 A=)+ (3 a5 —v) £0)

a2

o+1 ORI S G |

= 067Q7%+%+V7 =C6 P q

We have proved the asserted estimate in the remaining case (4.3.1). O
19



5. Some Examples

As pointed out before Theorems 1.1 and 1.4 are sharp for the surfaces given as a graph z3 =
z]t + z3*. We now discuss a class examples for which the multitype does not suffice to get the best
possible results. In order to prove improved L? — LY results we shall directly apply Theorem 2.5.

Maximal operators. Let ¥ C R?® be the graph of
(5.1) ®(z) = 2] + a5 +aizs — e

over the set |z1]| 4 |z2| < 1/4 and consider the averages (2.14), with x supported where |z, |+ |z2| <
1/8. The Hessian
det " = 4z + 2425(1 + 23) — 162323

is nonnegative in the support of y and since trace(®") > 1 we see that ®" has two positive eigenvalues
away from 0. Therefore ® is convex, of multi-type (2,4) at 0 and of type 2 at (z1,z2) # 0 near 0. The
sufficient condition for L? boundedness which only depends on the multitype yields boundedness for
p > 8/5, by Theorem 1.1 (iii). However | det ®”|~1*¢ is integrable near 0, for all £ > 0, and therefore
we obtain LP boundedness for p > 3/2, which the best possible result.

More generally we consider

(5.2) ®(z) =22 + o) + aab — o

where a and b are positive even integers with a/2 + b/M > 1. The graph of ® is convex near the
origin and the multitype at (0,0) is (2, M). Therefore, if the cutoff function x has small support
one ceratinly obtains boundedness for p > 2(M + 1)/(M + 2). One computes

det " () = cad =2 + dzab™? + o(x) =2 + 282} 7?)

with ¢,d > 0. Then for small
/ [det "] Vdx < o0
le|<e
if
1 1 . M—b }
b—2' M —2  a(M—2)

¥ < Yer = min {

Note that ver > (M —2)7! if b < M. In this case part (ii) of Theorem 1.1 gives us L? boundedness
for p > po where the critical exponent pyg is less than 2(M + 1)/(M + 2).

LP — Li-estimates. Consider again the example (5.1). Let Qo = (6/5,1/2), Q5 = (1/2,1/6), and
R = (5/7,2/7). Then the result of Theorem 1.4 implies LP — L? boundedness in the interior of the
convex hull of the points (0,0), (1,1), Qo, @ and R.

Let ¢ be the line 2—3/p+1/q = 0 and let o be the lower edge of the boundary of the boundedness
region which contains the point (1,1). All points on ¢ with abscissae 1/p € [5/6, 1] belong to 0. We
shall show that this segment is in fact longer and thereby obtain a larger boundedness region. We
use the estimate (2.10) with £ = 2 and vg4; = 0. LP to L? boundedness (p < ¢, p < 2) holds by
Theorem 1.3 if

1 1
1_142¢-11 41 (p—1) ptg—1
55—5+p1§—pq(5+r1)(/|detq>”|—%dl~)” T <0

b))

and the exponent of § is positive. The last requirement is equivalent to the restriction 2—3/p+1/q >

0. Since |det ®"|~7 is integrable for v < 1 we obtain boundedness if the restriction % <1

is satisfied. A computation shows that all points on ¢ with abscissae 1/p € [4/5,1] belong to
20



ag.

Therefore if (1/p,1/q) belongs to the interior of the pentagon with vertices (1,1), (4/5,2/5),

(5/7,2/7), (3/5,1/5) and (0,0) then the averaging operator maps LP to L4. Similar considerations
yield improved L? — LY estimates.

We remark that the preceding LP — L9 estimates for the example in (5.1) could also be obtained

by a scaling argument in the spirit of [15]; one uses isotropic dilations since the curvature vanishes at
an isolated point. The rescaled operators can be embedded in analytic families and the estimations
are variants of those in [17].
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