A WEAK TYPE BOUND FOR A SINGULAR INTEGRAL

ANDREAS SEEGER

ABSTRACT. A weak type (1, 1) estimate is established for the first order
d-commutator introduced by Christ and Journé, in dimension d > 2.

1. INTRODUCTION

Let K be regular Calderén-Zygmund convolution kernel on R?, d > 2, i.e.
K € &', locally bounded in R%\ {0} and satisfies

(1.1) K ()] < Alz|™ 2 #0,

and, for some ¢ € (0, 1],

(1.2) |K (x + h) — K(z)| < Ah5|z| 797 if |z| > 2|Al;
moreover

1K]loo < A < 0.

Let a € L®(R?). The so-called d-commutator T = Ta] of first order asso-
ciated with K and a is defined for Schwartz functions f by

1
Tlal(2) = pv. [ Ko=) [ alsz+ (1= s)ds )y
0
In dimensions d > 2 this definition yields a rough analog of the Calderén
commutator [1] in one dimension. Christ and Journé [3] proved that 7" and
higher order versions extend to bounded operators on LP(R?), for 1 < p <
oo. We prove that the first order d-commutator is also of weak type (1,1).

Theorem 1.1. There is Cy < 0o so that for any f € LY(R?) and any
a € L®(R?),

sup Ameas({x € R”: [T{a]f(@)] > 1)) < Caat1og()lallol 11
>

In two dimensions this result has recently been established by Grafakos
and Honzik [6] (assuming € = 1). Their approach relies on a method devel-
oped in [2], [4] and [7] for proving a weak type (1, 1) bound for rough singular
convolution operators. A dyadic decomposition T'[a] = > T} is used on the
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kernel side, and the argument relies on the fact that in two dimensions the
kernels of the operators T}"T; have certain Holder continuity properties. This
argument is no longer valid in higher dimensions. It is conceivable that for
d > 3 one might be able to develop the more complicated iterated T*T argu-
ments introduced by Christ and Rubio de Francia [4] and further extended
by Tao [11], but this route would lead to substantial technical difficulties and
we shall not pursue it. Our approach is different and relies on an idea intro-
duced in [8]. An orthogonality argument for a microlocal decomposition of
the operator is used. The implementation of this idea in the present setting
is more complicated in the convolution case as the Christ-Journé operators
can be viewed as an amalgam of operators of generalized convolution type
(for which there is a suitable calculus of wavefront sets) and operators of
multiplication with a rough function.

Notation. We write &1 < & to indicate that & < Cy&; for some ‘constant’ C
that may depend on d. We also use the notation <y to indicate dependence
on other parameters N. We denote by for F f the Fourier transform of f,
defined for Schwartz functions by f(f) = f(y)e @€ dy.

This paper. In §2 we outline the proof of Theorem 1.1 with three technical
propositions 2.2, 2.3, 2.4 proved in §3, 84, §5, respectively. In §6 we shall
mention some open problems.

2. DECOMPOSITIONS AND AUXILIARY ESTIMATES

We may assume that A < 1, |laljcc < 1 and write T = T[a]. Fix f €
L'(R%). We use the standard Calderén-Zygmund decomposition of f at
height A (see [10]). Then

f=g+b=g+ Z bQ
Qe

where [|g]loc < A, [lg]1 S |1 f]l1, each bg is supported in a dyadic cube @
with sidelength 24(@) and center yg, and 9, is a family of dyadic cubes with
disjoint interiors. Moreover [|bg[l1 < A|Q] for each @ € Qy and Y 5 q, [Q] <
A7Y|f]l1. For each @ let Q* be the dilate of ) with same center and L(Q*) =

L(Q) + 10, and let E = Jgeq, @ Then also
meas(E) £ A7|f|1.

Finally, for each @), the mean value of by vanishes:

/bQ(y)dy =0.
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Since T is bounded on L? ([3]) we have, as in standard Calderén-Zygmund
theory, the estimate for the good function g

ITgll3 < T2, 2ll9ll3 < Ngllllglloe S Mlglh
and by Tshebyshev’s inequality,
[{z € R?: [Tg()| > A/10}[ < 100A"2|Tgll3 S A glh S A fL

We use a dyadic decomposition of the kernel. Let ¢ be a radial C*°
function, so that ¢(z) =1 for |z| <1 and ¢(x) = 0 for |x| > 6/5. Let

Kj(z) = (p(2772) — p(27772)) K (2)

so that K = " Kj in the sense of distributions on R\ {0} and K; is
supported in the annulus {z : 2771 < |z| < £27}. Let 7} be the integral
operator with Schwartz kernel

1
Kz — y)/o a(sz+ (1 —s)y)ds.

For m € Z let

Bn= Y_ bo.
QEN)
L(Q)=m
Observe that for each j, m the function 7} B, belongs to L', and that
supp(TjBya) C B, m > j.

Moreover, for each n,

D ITiBj—alh S U £lh
j

and thus, if
n(e) = 10%de " logy (267 1)
we have by Tshebyshev’s inequality

(2.1) meas ({z € R? : Z Z |T;Bj_n(x)| > A/10})

0<n<n(e) j
< e Mlog(2eT AT fh-

It thus suffices to show that ., ) (3_; TjBj-n) converges in the topology
of (L' 4+ L?)(R?\ E) and satisfies the inequality

(2.2) meas ({z € RN\ E: Z ‘ZT]B]—n(m)‘ > 4X\/5}) S A7

n>n(e) J
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Finer decompositions. We first slightly modify the kernel K; and sub-
tract an acceptable error term which is small in L'. In what follows assume

n > n(e) as defined above. Let

{(n) = [2logy(n)] + 2
(2.3) o1
le(n) = [2e” " logy n] + 2.

Let ® be a radial C§° function supported in {|z| < 1}, and satisfying
[ @(z)dz = 1. Let ®,,(x) = 27™4®(27™z). Define

an = K] * (I)j—fs(n) .
Then K7' is supported in {x : 2772 < |z| < 27%2}, and, by the regularity
assumption (1.2),
I = K7l s 2700t [ K@) - Ko - bl dedi

‘h|§2*(1’*1*55(n))
2072 <2912

(2.4) < g le(m)e < g2
By differentiation and (1.1)

o g —jdy (e (n)—j)la
(2.5) 6% K7 (2)| < Cu22(te(m=i)lal,

Let 9, € C*®(R) be supported in (n=2,1 — n~2), such that 9,(s) = 1 for
s € [2n72,1 — 2n72], and such that the derivatives of 9,, satisfy the natural
estimates

(2.6) 195V [loo < Cnn?™
We then let 77" be the integral operator with Schwartz kernel

(x—vy /19 a(sz+ (1 —s)y)ds.

The following lemma is an immediate consequence of estimate (2.4) and the
support property of .

Lemma 2.1. The operator T; — T} s bounded on L', with operator norm

Ty — T\ 1y Sn2

The lemma, implies

meas ( Z ‘Z T;Bjn(z) — T{'Bj_n(x )| > A/10})

n>n(e)
SUIDY Z!TB] n=T7Bjnl|
n>n(e) J

S A 1Zn_ZZHB] nH1 _1”f”1

n>1
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and therefore it is enough to show

(2.7) meas ({z : Z Z|T"Bj —n(@)] > EA) S AT fI

n>n

For the proof of (2.7) we subtract various regular or small terms from
the operators T7'. Let £(n) be as in (2.3) and denote by P, the convolution
operator with convolution kernel ®,, (defined following (2.3)). We have

Proposition 2.2. Forn > 1,

H —n+Ll(n Tn Bj_ nlli Sn” 210%””33 nllt-

The proposition will be proved in §3. It yields

meas ({z €RI\E: Y | Piyiyn)I'Bj—n(x))| > A/10})

n>n(e) J
S 1A DT S P o) T Bjnlh
n>n(e) Jj
SA 12” 210gnZHB] nllt S AT IHful
n>1

and thus it remains to con51der the term

(2.8) Z Z ntt(m)) ] Bjn(®)

n>n(e)
and to estimate the measure of the set where [(2.8)] > 3\/5. We shall
need to exploit the fact that the integral fol a(sx + (1 — s)y)ds smoothes
the rough function a in the direction parallel to x — y, and use a microlocal
decomposition which we now describe.

Let 1/10 < v < 9/10 (say v = 1/2), and let ©,, be set of unit vectors with
the property that if v # v/, v,/ € ©,, then |[v — /| > 27477 and assume
that ©,, is mazimal with respect to this property. Note that

card(©,,) < 2M@-1

For each v we may choose a function Y, , on C>=(S91) with the property
that X, (z) > 0, Xnp(0) = 1if |0 —v| <2737 X, ,(0) =0 if |0 — v| >
2727 and such that for each M € N the functions 2~""My Xn, form a
bounded family in C*(S%1). For each 6 there is at least one v such that
Xn,v(0) = 1, by the maximality assumption, moreover by the separatedness
assumption the number of v € ©,, for which Xy, () # 0 is bounded above,
uniformly in 6 and n. Define, for v € 0,

T
Ve, %n,u’(ﬁ) '

Xn,u(x) = Z



6 ANDREAS SEEGER

Then > co, Xnuv(z) = 1 for every = € R?\ {0}) and by homogeneity we
have the following estimates for multiindices o and x # 0,

(0, V)M X (2)] < Carle| ™,
10X (@)] < Co2mlel|g] ol

Let K"Y(2) = KJ'(x)xn(2) and let T;"" be the operator with Schwartz
kernel

K" (z —y) / Un(s) a(sz + (1 —s)y)ds.

o= T

vEB®,
Let ¢ € C*°(R) so that ¢(u) =1 for |u| < 1/2 and ¢(u) = 0 for |u| > 1 and
define the singular convolution operator &,, ,, by

We then have

~

S f(§) = (2" " (v, 1)) F(©).

T™" can be dealt with by L' estimates. In

The terms involving (I —&,,,,) J

84 we shall prove
Proposition 2.3. Forn > n(e), v € O,,

| S0 = P = 80T By 02270 ]
J

For the rougher terms involving Gn,uTjW we shall prove in §5 the following
L? estimate.

Proposition 2.4. For n > n(e),

H Z Z(I_Pj—n—l—f(n))Gn,qu’VBj_n z

veEO, J

S 270N £l

Given the propositions we can finish the outline of the proof of Theorem
1.1. Namely by Tshebyshev’s inequality,

meas ({x : | Z Z —n+l(n )TgnBj—n(ﬂf)‘ >§)‘})

n>n

> EIESU—fa%MMXI—Gm»ﬁWBrnl

n>n(e) V€O J

n 25)\‘2H S S S U P )Sn T By

n>n(e) vVEO, J
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and by the propositions and Minkowski’s inequality this is bounded by a
constant times

1HfH1(Zn_22 (4= card (0 +Zz ™ ) <AYI£]s

3. PROOF OF PROPOSITION 2.2

Let Q € Q) with L(Q) = j — n. We apply Fubini’s theorem and write

[/ij_nM(n)(x —w)K}'(w —y)a(sw + (1 — s)y) dw| dyds.
Changing variables z = w + ﬁy we get

Pj_ o) T0g (z /19 / a(sz /.A:”s y)dy dzds

where
A;?7,§’S(y) = q>j—n+£(n)($ — 2z + l—gsy)KJ”(z _ 2)'

S

We expand A;C,fs(y) about the center yg of @ and in view of the cancel-
lation of by we may write

’ —n+L(n T bQ )

/ |9 (s)a(sz) \‘/ (AT szs(yQ))bQ(y)dy‘dzds.

Using
1
A0~ A we) = (v | VAT g + oty = v)) do)
in the previous display one obtains after applying Fubini’s theorem
1
1Pyt T bl < diam(@) [ [ 19,54

/|bQ |/ | K7 (2 — 1er0Umva)y) g, gy
125 st [ oo | —WK;%z—w)!dzdy} dsdo

Now use [[VE} |1 <27 J+l=(n) and fo [9,,(s)|s~'ds < logn, and since diam(Q) <
2/7" we obtain

| Pj—nsemy b, Slogn [2740 4 2007 |l ||y
<n2logn|bglli.

[T
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Finally we sum over all Q € Q) with L(Q) = j — n to obtain the asserted
bound. 0

4. PROOF OF PROPOSITION 2.3

Let @Q € Qy with L(Q) = j —n, and let yg be the center of Q. Fix a unit
vector v, and let WVL be the projection to the orthogonal complement of v,

ie. Tt (z) =z — (x,v)v. In view of the support properties of the kernel it

suffices to show that for n > n(e)

(A1) || = P (I = 80)T] b | S n 7227 Dlbg] 1

under the additional assumption that the support of a is contained in
{v: 1y =y ) <2Hd, |my (y — y)| < 27H7™d .

Note that with this hypothesis

(4.2) [alloo S 24711

We introduce a frequency decomposition of a. Let ¢ be a radial C*
function as in §2, but now defined in &-space, so that ¢(§) =1 for |{] < 1

and () = 0 for [¢] > 6/5. Define f1,(§) = ¢(2"¢) — p(2¥1€); then B,
is supported in {¢:27F 1 < ¢ < 827F) Let 3 be a radial C* function

so that 3 is supported in {{ : 1/3 < [{| < 3/2} and B(&) =1 for 1/2 <
€] < 6/5, and define Bj,(€) = B(2%€). Then fBiB8s = Bi. Define convolution
operators Vj, Ay, Ay with Fourier multipliers ¢(2%-), S, Bk, respectively;

then AkAk = Ay and, for every m € Z, the identity operator is decomposed
as I =V, + Zk<mAk’

For fixed y € Q we define an operator X7/’ acting on a by

K0 () = / In(s)a(se + (1 — s)y)ds

1Y

so that

(1.9 17 bo(a) = [ by lal(a) dy.

We use dyadic frequency decompositions and split

(44) (I-6,,)I - P'—n-i—Z(n))T‘n’VbQ =

S A0 (1= SuRes 1= Frnia ) [ baly

k1
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and then further split in (4.4)

(4.5) a= Vj_nM(n)a + Z Ag,a
ko<j—n+L(n)

We prove three lemmata with various bounds for the terms in (4.4), (4.5).

Lemma 4.1.

| [ b0 Vi sl o], 072274 Dogl).

Proof. We use the cancellation of by to estimate the left-hand side by

[ b0l [ 155 Vil @) = Ky Vsl @) e dy.
For y € (Q we may estimate
183 Wi s al@) = 5 Vit @] do < E1(3) + E2(0)
where
10) = Vel [ 1K@ =) = K} - o)l do
and, abbreviating
LY se(@:9:2) =

1
/O (y — v, VFIp(2 0 )] (52 + (1 — 5) (g + oy — Q) — 2)) do,

&y is given by

/\K"Vx—yQ ‘/’19 \/]a HPJ ntb(n (a;,y,z)]dzdsda:.

Now by (2.5), and since [0z Xn.,(7)] < 277 |x|~1 we get
E1W)] < |y = yolll VK] | S 277" [25(W 7 4 2mdjgmmla=h),

Notice that for n > n(e) and v > 1/10 we have 2% < 277 and thus we see
that |1 (y)| < 274 Dp=2. Moreover, with xj := F~![p(2"-)],

EW) S IKT Iy = vl VX —ntemlln S 271 Di—mon=d =t
which is < 277(d=1p=2 Integrating in y, we get
[ (&) + i) Powldy < 27D gl

and the assertion follows. O
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Lemma 4.2. Let y € Q and a be as in (4.2).

(i) Let k1 > ko + £(n) + 10. Then

HAkl Ak2 Hl < CNQ—n’Y(d—l) min{l, n2d+2N2n’Y2(k2—j+n-\/)N}

(ii) Let k1 < ko — 10. Then

1Ak KTy AR allly + (A Xy Vizallly
< COn2 ny(d—1) min{l’2n72(k1—k2)d2(k1—j+nv)N}‘

Iy

Proof. Clearly [|XC7[alll1 < 27m1(d=Dlg]| o, and since the operators Ay, Vj
are uniformly bounded we get the bound O( (=1} in (i) and (ii). We
seek to prove the two other bounds for AklfK “[Ag,a] under the assumptions
k1 < k‘g —10, and k1 > ko +4(n)+10. In (11) the corresponding estimate for
Ak15< ”[Vi,a] is entirely analogous and will be omitted.

We use the Fourier inversion formula for a and for the convolution kernel
of Ay, , write

MKy hraale) = G [ 9060) [ [ B ©B i »

7T
/ ez z—w, &)+ sw+(1—8)y,77>)K;L’V(w — y) dw d§ dT] ds R

and integrate by parts with respect to w and £. The integral can then be
rewritten as !

W / 9,(5) / Be, (m)a(n) / [ / pilla—w,&)+{sw+(1-s)ym)) o

(I =272 A) ™M By, ()I€ — snl >N ) (= Ay) NV K] (w — )
(1+ 27201z —w|2)M
and we choose Ny = [d/2] + 1. Note that for s € supp(d,,),

27 k2=l) if by > ky 4+ £(n) + 10
—sn| 2 C(ky, ko,n) := ’
& = sl 2 Clk1, kaym) {2—'f1—2 if iy < ky — 10.

d€ dnds,

Now (27%19¢)Ns 8, = O(1) and thus one computes
(1 =272 D)™ B, (1€ = sn 71| < [Clkr, ko, )] 72

Moreover
||(_Aw)N2 K;'L’VHI S 2—2N2j(22N2n'y + 22N2£g(n))2—n'y(d—l)

< 9=m(d=1)g2Na(ny—)

I Thanks to Xudong Lai who pointed out an error in the original version of this formula.
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We integrate in 7 and use that the size of the support of By, is 27524,

Then we integrate in x,£ and use that

/ /(1+2—2’f1\x—wy2)—N1 drdé = 0(1).
supp(Bk; )
Using (4.2) we then get

[ Ak 3G Akl Snve 2752 @llooll (= A)N2 K 1 [C (R, ka, )] 2

< QCM( n)=ny(d=2) 9@No—=d) (k2= +L()+17) §f ) > gy + €(n) + 10,
~Nz 2= y(d=2)9(2N2=d) (k1 —j+ny)g(k1—k2)d if [ < ko — 10.

If we put N = 2N, — d this gives the asserted bound for ||Ak1 [Ak2 I,-
For k1 < kg — 10 the corresponding expression with Ay, replaced by Vi, is
estimated in exactly the same way. O

Lemma 4.3. Let ko — 10 < kg < ko + ¢(n) + 10. Then
[Ag, (I = &™)K ) [Akyallh
< On2 ™1 min{1, n2(N+d)/€2(d+3)n72(k1—j+m)N}
for every y € Q.

Proof. We may again assume that (4.2) holds. Define the convolution oper-
ator S, , by

St7g(n) = 6(2" (v, 2))G(n)
and split @ = S™Ya + (I — S™")a. We shall prove the following estimates,

(4.6) Ak, (I — &™")KT [Ak, S™ a1
< Oy n(Z W) gty —ka)dg (k1 —j+ny)N
and
(A7) [|Ag, (I = &™) [Ay (I = S™)al|ly < Cy - 2d2tmralkamstn )N
which imply the somewhat weaker estimate asserted in the lemma.
Proof of (4.6). Set
b (€) = Bry (§) (1 = 62" (v, 7))

and write

(2m)* Ay, (I — &™) K (A, S a] () =
[0 [ [ st ©Bramozmn, g)at)

[/ i((m—w,€)+(sw(1— s)yn>)K"V(w y)dw | dédnds.
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If (¢,7) is in the support of the amplitude then for n > 10'°

‘(5 - 377=V>| > ‘5H<%7lj>‘ - ’T,H<‘_Z|7V>‘
> ’5‘ (2—n—y—1n5 - 2\k1—k2\+22—n7n2)
(48) > |£|2—n'y—1(n5 _8. 2Z(n)+10n2) > 9—k1—ny,5
Now we can integrate by parts as in the proof of Lemma 4.2, except we use

the directional derivative (v, V,,) instead of A,,. The above integral is then
estimated by

[ 18ectiamioeno. &)
|

(1272 A sty

(E—snp) N2 Ny -1,V
=T —uwp)™ (v, Vi) K (w—1y)|dwddnds.

Observe that
‘8év3bk17n,u(f)‘ < C«Nl(2n“/n—5)N32k1N3

and thus
(4.9)
— bk‘ N4 5 n — - n —
(1 = 272k g [ P8 ) < O (@ ety
Moreover,

H <V, vw>N2K;l7V“1 S CN22(€E(H)—j)N22—n'y(d_1) )
We assume 2N; > d, integrate in x and &, and use (4.8). Then we obtain

[ Ay (1 = &™)K5 ) [Ak, S™ a1
(£ (m)—3) N2 g —mry(d—1)
(2—k1 —n’yn5)N2

2
§N1,N2 (22”777‘_5)2]\[1 Hauooz_kZd

We use (4.2) and that the support of n + B, (n) has measure O(27%29).
Thus the expression in the previous display can be crudely estimated by

CNl Nzn(2€71—4)N2—10N1 2TL’\/(2N1—d+2)2(k1—kg)dz(kl—j-i-’n’y)(NQ—d)
and, if we chose the integer Ny € {93!, 4f2} and N = N, — d we obtain
(4.6).

Proof of (4.7). Set

Ekz,n,u("?) = ﬁkz (77)(1 - ¢(2nﬁ/n_2<y’ |%\>))
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and write

(2m) Ay (I = &™) Ky [Ay (I — S™)a ()

~ [57"@=0) [ [ bnsl st

Now if w —y € supp(K" ") then | = T~ v| <27 and if n € supp(bkgm V)
we get

[{w—y,m)| > w—y| ((v,n) = [27"7) > |w —y| [n27"7 (30 = 1)
and hence
(4.10) [(w —y,m)| > 20— kemr=4p2,
Integration by parts with respect to s yields

(2m) Ay (I — &™) Ky [Ay (I = S™)a](z) =

nu 1—2_2k1A5)N1bk nu(g) (5w
/K (w—y // bk (1 (1+2_2k1’x_w1’2)m oi(@—w,8)+ym)

N3 pis(w—y,n)
x | [ O (5) " ds]| dg dduw .

[/ ) (w —y,m)"s ]
We apply this with N; > d/2 and, using (4.2), (4.9), and (4.10), obtain

[ Ak, (T = &"™")K Ay (I = S™)ally
N,
195" 1

(2j—k2—’n’y—4n2)N3
—2-10N19ny(2N1—d+2) o (k2—j+n7y)(N3—d)

SNyvs (2707l 2] o

SNy Ny

Inequality (4.7) follows if we choose N = N3 —d and N; € {‘H'1 d+2} O

Proof of Proposition 2.3, conclusion. Let, for fixed n,v,j and for a fixed
cube Q € Q) with L(Q) = j —n,

Ty = Ay (I = P g Ay (1 — G ) [ / bQ(y)jCZZ[Vj—n—M(n)a]dy] ;
and
IIkl,kz = Kkl (I P —n+L(n ))Akl (I Gn,, /bQ [Akza](:n)dy} .

By (4.4), (4.5) it is enough to show that
(4.11) Z el +) 0 >0 Mkl S 072277 bg s

k1 ko<j—n+L(n)
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We have
(4.12) Ak, (I = Gnp)llpisp <C

uniformly in n,v, k1, and using the support and cancellation properties of
the kernel of I — P;_, | y(,) We also have

(413) Ak (T = Pyl g S minf1, 297k

Lemma 4.1 together with (4.13), (4.12) immediately gives

(4.14) > a1 S 2277 g 1.
k1>j—n+£(n)—10

It remains to verify that the other terms satisfy better bounds, namely

(4.15) > kalHlJrZ > M wlh

k1<j—n-+£(n)— k1 ka<j—n+e€(n)
S ONnA1N2A2n2n('y—1)N ||bQ||1

for all N, and suitable 47 < 10d/e, A3 < 10. Choose N = 100d. Taking
into account that v < 9/10 one may check that the bound in (4.15) is
< n7227 @D g |y for all n with n~'logn < 10~%¢/d, which is satisfied
for n > n(e).

For the terms involving Iy,, with k; > 7 —n + £(n) + 10 we get by the
second estimate in part (ii) of Lemma 4.2, with ko = j — n + £(n),

> [k 12

k1<j—n+£(n)—10

<y 27(d=2) Z 9(k1—j+n—t(n))do(k1—j+ny)N 6o
k1<j—n+£L(n)—10

Sy 27D @) N bg 1.

Next consider >y i |11y, k,[l1 where the ko-summation is extended over
ko < j—n+4£(n). For k; > j—n+ £ — 10 we can sum a geometric series in
k1, with a uniform bound, due to (4.13). By Lemma 4.2, part (i)

> 111k, o |11

k1>j—n+£L(n)—10
(k1,k2): k2 <min{ki —£(n)—10,j—n+L(n)}

< 2—n~/(d—2)n2d+2N Z 2(k2—j+n'y)NHbQH1
ko<j—n+l(n)
< 2—n~/(d 2) 2d+4N2n N”bQ”l
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and by Lemma 4.3

> L 1ky o1

k1>j—n+£(n)—10
k1—£(n)—10<ko<k1+10
ko<j—n+Ll(n)

S lbgllib(nyn®N /ety N gt
k1 <j—n+2((n)+10
S lball IOg(n)n2(N+d)(€*1+2)2n(7_1)N.

The case ky > k1 + 10 does not occur when ky > j —n + £(n) — 10 because
of the restriction ko < j —n+£€(n). Thus in all cases of (4.15) which involve
the restriction k1 > j —n + ¢(n) — 10 we obtain the required estimate.

Now sum the terms || Il k|1 with k1 < j —n + ¢ —10. By Lemma 4.2,
part (i)

> 1L 1ky o1

ki<j—m+£(n)—10
(k1,k2): ko<ki—£(n)—10

< 2N (-2 2. A T

k1<j—n+L(n)—10
(k1,k2): ka<ki—£(n)—10

S.; n2d+2N2—n’y(d—2) 2n('y—1)N”bQ”1 7

by Lemma 4.2, part (ii)

> 1L 1ky o1

. k1<j—n+€(n)—10
(bLok2)i ) 4 10<ky<j—ntb(n)—10

< g—ny(d=2) Z o(k1—j+ny)N Z 2k1=k2)d 1o |,
k1<j—n+€(n)—10 ko>k1+10
< n2N2—n’y(d—2) 2n('y—1)N”bQ”1 7

and finally, by Lemma 4.3,

> 11T ky ey |11

. ki<j—nm+L(n)—10
(Bk2) ) o(n)—10<ka <ky+10

S log(mn? MRt S 2N by
k1<j—n+l(n)
SJ n2(N+d)(a*1+l)24n72n('y—1)N”bQ”l )

This finishes the proof of (4.15). O
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5. PROOF OF PROPOSITION 2.4

We use a slightly modified version of an argument in [8]. The main ob-
servation is that, for fixed n > 0, we have

(5.1) sup Z (2" 'n —5( ‘>)| < on(d—2) )5

£#0 veEO,

To see this it suffices, by homogeneity, to take the supremum over all £ €
Sa=1. Now if |¢] = 1 and ¢(2"7n~°(0,&)) # 0 then the distance of v to the
hyperplane ¢ is at most Cn®2~" and since the vectors in ©,, are c27"-
separated there are O(2"7(4=2)n®) such vectors, hence (5.1) holds.

From (5.1) it follows that

2
» Gnv j=nre) ;" Bi-n,
Ve,
S 20 YIS T = Pya) T Byl
vEO, 7

and since #0,, < 2"(@=1) the asserted inequality is a consequence of

2
62 | 0= P T By S 270N £
J

for each v € ©,,.

For the proof of (5.2) the cancellation of Bj_, plays no role. Let
Hjp"(2) = 277 o ():
where
7= s ) S P e — (o) <270,
Then from (1.1) we get
(I = Py o)) T} Bj—n(2)| S H}" * | Bj_y| ().

Therefore

H Z(I = Pjntew)T; " Bjn z

<2Z/|BJ ()| ST HP % HP B (o) i

1<j

Observe that |H;""[|; <2 “meas(r,"") < 277741 and thus

H s HY () S 270D 2770 (a)
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where 7. is the double of T]’-”'. Hence, for each z € RY, j € Z,

j
ZH;L’V « H" % |Bi_p|(z)

1<j
<2 ny(d— 12 ]dZ/ ’dy
i<j m—l—T v
S2m@lgdy = N /|bQ )| dzz
i<j QEQ):
L(Q)=i—n
QN(z+7;")#0

< 2_”“’(d_1)2_jd)\meas(%ﬁ’y) < 97 2mld=1) ).
~y Vi ~Y Y

here we have used ||bg|l1 < A|Q], and the disjointness of the interiors of the
cubes @ in Q). Thus we get the estimate

nl/ 2
HZ —n+£( )) i Bjn 9

which yields (5.2). O

< 272NN Bl
i

6. OPEN PROBLEMS

6.1. Principal value integrals. Let

1
Tof () = /| Ky /0 a(sz + (1 - s)y) ds f(y) dy

Our proof shows that the operators 7, are of weak type (1, 1), with uniform
bounds; moreover, for f € L', 7, f converges in measure to T'f where T is
weak type (1,1). However it is currently open whether the principal value
lim,_,o 7,.f () exists for almost every z € R?. By Stein’s theorem [9] this
is equivalent to the open question whether the maximal singular integral
sup,q |7 f| defines an operator of weak type (1, 1).

6.2. Principal value integrals for rough singular convolution operators. The
question analogous to 6.1 is open for classical singular integral operators
with rough convolution kernel Q(y/|y|)|y|~¢ where Q € Llog L(S4!), d > 2
and [¢4-1 Q(0)do = 0. These operators are known to be of weak type (1,1),
[8], but the a.e. existence of the principal value integrals is open even for
Q€ Le(s91).
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6.3. Christ-Journé operators. Let F' € C*°(R), let K be a Calderén-Zygmund
convolution kernel, and let a € L>®(R%). Christ and Journé [3] showed that
the operator defined for f € C§°(RY) by

1
Tf(x)= p.v./F(/O a(sz+ (1— s)y)dt) K(z—1y)f(y)dy

extends to a bounded operator on L” (]Rd), 1 < p < oo. It would be inter-
esting to get the weak type (1,1) inequality for nonlinear F', in dimension
d>2.

REFERENCES

[1] A.-P. Calder6n, Commutators of singular integral operators. Proc. Nat. Acad. Sci.
U.S.A. 53 (1965), 1092-1099.

[2] M. Christ, Weak type (1, 1) bounds for rough operators, Annals of Math. 128 (1988),
19-42.

[3] M. Christ, J.-L. Journé, Polynomial growth estimates for multilinear singular integral
operators. Acta Math. 159 (1987), no. 1-2, 51-80.

[4] M. Christ, J.-L. Rubio de Francia, Weak type (1,1) bounds for rough operators, II,
Invent. Math., 93 (1988) 225-237.

[5] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math.
124 (1970), 9-36.

[6] L. Grafakos, P. Honzik, A weak type estimate for commutators, International Math-
ematics Research Notices (2011) doi: 10.1093/imrn/rnr193

[7] S. Hofmann, Weak (1,1) boundedness of singular integrals with nonsmooth kernel,
Proc. Amer. Math. Soc. 103 (1988), 260-264.

[8] A. Seeger, Singular integral operators with rough convolution kernels. J. Amer. Math.
Soc. 9 (1996), no. 1, 95-105.

[9] E. M. Stein, On limits of seqences of operators. Ann. of Math. (2) 74 (1961), 140-170.

, Singular Integrals and Differentiability Properties of Functions. Princeton
University Press, Princeton, New Jersey 1970.

[11] T. Tao, The weak-type (1,1) of Llog L homogeneous convolution operator. Indiana
Univ. Math. J. 48 (1999), no. 4, 1547-1584.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MADISON, MADISON,
WI 53706, USA



