A FAMILY OF SINGULAR OSCILLATORY INTEGRAL OPERATORS
AND FAILURE OF WEAK AMENABILITY

MICHAEL COWLING, BRIAN DOROFAEFF, ANDREAS SEEGER, AND JAMES WRIGHT

ABSTRACT. A locally compact group G is said to be weakly amenable if the Fourier algebra A(G) admits
completely bounded approximative units. New results concerning the family of semidirect products
Gn = SL(2,R) X Hn, n > 2 together with previously known results are used to settle the question of
weak amenability for all real algebraic groups. The groups G, fail to be weakly amenable. To show this
one follows an idea of Haagerup for the case n = 1, and one is led to the estimation of certain singular
Radon transforms with product type singularities. By representation theory matters are reduced to a
problem of obtaining rather nontrivial L2 bounds for a family of singular oscillatory integral operators
in the plane, with product type singularities and polynomial phases.

1. Weak amenability and A(G)

Let G be a locally compact Hausdorff topological group, equipped with a left-invariant Haar
measure, written dz or dy in integrals. We write L?(G) for the usual Lebesgue space of (equivalence
classes of) functions on G. In this section, the symbol A will denote the left regular representation
of G on L*(G), and f * g will denote the convolution of functions f and g on G.

1.1. The Fourier algebra and pointwise multipliers.
A matrix coefficient of the left regular representation is a function of the form

£ (A@)h k) = / Wz y) k() dy

where h and k lie in L?(G). The Fourier algebra of G, denoted by A(G), is defined to be the Banach
space of all these, that is,

(which is actually a linear space), equipped with the norm
lolla = mf{{|All2llkl[2 : ¢ = (A()R, k) }.

The infimum is in fact attained, see [12]. If G is abelian, a function in A(G) is the Fourier transform
of a function in Ll(é), where G is the dual group of G.

All functions in A(G) are continuous and vanish at infinity. The Fourier algebra forms a com-
mutative Banach algebra under pointwise operations, with Gel’fand spectrum G. It has a unit (the
function 1) if and only if G is compact. For proofs of these results and for much more information
about the Fourier algebra, see the original article by Eymard [12] or the book by Pier [29].
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The group von Neumann algebra VN(G) is defined to be the set of all bounded linear operators
on L%(G) commuting with right translations. Suppose that f € L'(G). We associate to f the left
convolution operator A[f] on L?(G), defined by

AfJh(z) = /G Aw)h(z) fy) dy =  * h(z).

This operator lies in VN(G). The function f also gives rise to an element of the topological dual
space A(G)* of A(G), by integration: one defines Ly in A(G)* to be the linear functional ¢ —
Jo o(x) f(x) dz. The association between the operator A[f] and the linear functional Ly extends to
identify the group von Neumann algebra VN (G) with the dual space A(G)*. More precisely, for any
F in A(G)*, there exists a unique F’ in VN(G) such that

(F'(h), k) = F((\(-)h, k)) Vh,k € L*(G).

The mapping F +— F” is an isometric isomorphism; it also carries the weak-star topology of A(G)*
to the ultraweak topology of VN(G). The set {L;: f € L'(G)} is weak-star dense in A(G)* and
the set {\[f] : f € L*(G)} is ultraweakly dense in VN(G). The correspondence between F and F’
is the unique continuous extension of the map A[f] — L¢. For proofs of these facts, see [12] or [29].

On a Lie group G, D(G) C A(G), where D denotes the space of compactly supported smooth
functions. We may think of elements of A(G)* as distributions on G, and of elements of VN(G)
as convolutions by these distributions. For general locally compact groups A(G)* = PM,(G), the
space of pseudo-measures introduced by Herz [17].

We shall need the notion of a completely bounded operator on a von Neumann algebra. Suppose
that M is a von Neumann algebra and 7 : M — M is a continuous linear operator. Let M) be
the algebra of n x n matrices with entries in M and let I,, be the n x n identity matrix. Define the
extension T ® I,, to M™ by (T ® I,F);; = T(F;;). Then T is said to be completely bounded if

¢, =sup [T ® I, < oo.

We write || T'||» for the completely bounded operator norm c,.. Much more about completely bounded
operators may be found in [28].

We define MA(G), the space of (pointwise) multipliers of A(G), to be the set of all continuous
functions ¢ on G such that the pointwise product ¢ lies in A(G) for all ¢ in A(G). A multiplier
¢ € MA(G) may be identified with the multiplication operator m, on A(G) given by my, : ¢ — @i,
and we equip MA(G) with the corresponding operator norm.

We also define MyA(G), the space of completely bounded multipliers of A(G), also called Herz—
Schur multipliers (see, e.g., [4]), to be the set of all continuous functions ¢ on G such that the
adjoint operator m} is completely bounded as an operator on VN (G). We define ¢ a5, 4(c) to be
the completely bounded operator norm ||mJ||cs. This space is smaller than MA(G), and the norm
is larger than the MA(G)-norm. For further information about these spaces, see the articles by
Cowling [4] and De Canniere and Haagerup [8]; in particular it is shown in [8] that [[m|[ara(q) =
supy ||m ® 1x | ara(ax i)y where the supremum is taken over all locally compact groups H.

Both MA(G) and MyA(G) form Banach algebras under pointwise multiplication. We have the
inclusions A(G) C B(G) C MyA(G) C MA(G) where B(G) is the Fourier—Stieltjes algebra consisting
of matrix coefficients of unitary representations. If the group G is amenable, i.e., there exists
a left invariant mean on L°°(G), then both of these algebras coincide with the Fourier—Stieltjes
algebra B(G); in fact the equality B(G) = M A(G) is a characterization of amenability, see [26].
In general, these inclusions are proper; in fact, specific examples of functions in MyA(G) arise as
matrix coefficients of uniformly bounded representations which need not be equivalent to unitary
ones (see [25], [30]).
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1.2. Approximate units.
Let L be a positive real number. Then A(G) is said to have an approzimate unit bounded by L if
there exists a directed set I and a net {¢; : i € I'} of functions in A(G) such that

(1.2.1) lm ¢~ pala =0 € AG)
and
(1.2.2) lpilla < L Viel.

It is known that A(G) has an approximate unit bounded by a positive real number L if and only if
A(G) has an approximate unit bounded by 1; this is one of the many equivalent conditions for G to
be amenable (Leptin [24], see also Herz [17]). When G is amenable, the existence of the approximate
unit implies that

lella = llellana = llellaa Vo € A(G).

For more information about amenability, see [29].

One may weaken the existence criterion on the approximate unit as follows. Given a positive real
number L, we say that A(G) has an L-completely bounded approzimate unit, if there exists a net
{i i € I} of functions in A(G) such that (1.2.1) holds and

(123) H(piHMOA <L Viel

We define the number A(G) to be the infimum of all the numbers L for which there exists an L-
completely bounded approximate unit on A(G), with the convention that A(G) = oo if no such
approximate unit exists. The group G is said to be weakly amenable if A(G) < oc.

Finally we say that A(G) has an L-multiplier bounded approximate unit, if there is anet {¢; : i € I'}
of functions in A(G) such that (1.2.1) holds and

H‘Pi”MASL Viel.

A multiplier bounded approximate unit is simply an L-multiplier bounded approximate unit, for
some L < oo.

Clearly A(G) € [1,00], because || -[[co < [ [la,4¢c), but in every known case, A(G) is an extended
integer. Much of what is known about A(G) for locally compact groups is summarized in the
following list. For details see the articles by Haagerup [13], [14], Cowling [4], [5], De Canniére and
Haagerup [8], Cowling and Haagerup [6], Lemvig Hansen [23], Szwarc [34], Valette [35], Bozejko and

Picardello [1], Dorofaeff [9], [10].

1.2.1. Suppose that G, G1, and G2 are locally compact groups.

(i) If Gy is isomorphic to Ga, then A(G1) = A(G2).

(i) If K is a compact normal subgroup of G, then A(G) = A(G/K).

(i3) If Gy is a closed subgroup of G2, then A(G1) < A(G2), with equality if Go/G1 admits a finite
Go invariant measure.

(iv) If G is the direct product group Gy x Ga, then A(G) = A(G1) A(G2).

(v) If G is discrete and Z is a central subgroup of G, then A(G) < A(G/Z).

(vi) If G is amenable, then A(G) = 1.

(vii) If G is a free group, then A(G) = 1.

(viti) If G is an amalgamated product G = xoG;, where each G; is an amenable locally compact
group, and A is a compact open subgroup of all G;, then A(G) = 1.
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(iz) If G is the automorphism group of a locally finite tree then A(G)
(x) If G is locally isomorphic to SO(1,n) or to SU(1,n), then A(G) =
(zi) If G is locally isomorphic to Sp(1,n), then A(G) = 2n — 1.

(zii) If G is locally isomorphic to Fy_og), then A(G) = 21.

(ziii) If G is a simple Lie group of real rank at least two, then A(G) = oo.

1

For generalizations of these ideas to von Neumann algebras, see Haagerup [13], [14], Cowling and
Haagerup [6] and for generalizations to ergodic systems and dynamical systems, see Cowling and
Zimmer [7] and Jolissaint [19]. These ideas are loosely related to Property (T) and the Haagerup
Property, which are investigated in detail in the books by Zimmer [38], by de la Harpe and Valette
[16] and by Chérix, Cowling, Jolissaint, Julg and Valette [3].

We shall make use of the following results, without further reference.

1.2.2. Suppose that H is a closed subgroup of the locally compact group G, that T is a pseudo-
measure on H (i.e., T € A(H)*), and that ¢ is a function on G. Then:

(i) If p € A(G), then |, € A(H) and ||, llac) < llella)
(ii)) T € A*(H) extends to a pseudo-measure on G, i.e., T € A(G)* and ||T || aqy- = ||| Ay~

(iii) If ¢ € MoA(G), then ¢|, € MoA(H) )y < Nlellanac)-
(iv) If o € MA(G), then |, € MA(H) and ||¢| ;| macn) < lellmace)
See [17, Thm. 1] and [8, Prop. 1.12] for the proofs.

1.2.3. If{p; : i € I} is an L-completely bounded approzimate unit on A(G), then ¢; — 1 uniformly
on compact subsets of G. Conversely, if there exists a net {¢; : i € I} of A(G)-functions such that
llillmoace) < L and o; — 1 uniformly on compact sets, then there exists an L-completely bounded
approzimate unit of compactly supported A(G)-functions, {@; : j € J} say. If G is a Lie group, then
we may also assume that ¢; € D(G) for all j in J.

This result also holds when “L-completely bounded” is replaced by “L-multiplier bounded”.

For the proof, see [6, Prop. 1.1].

1.2.4. Let K be a compact normal subgroup of the locally compact group G.

(i) Let m € M A(G) and define for m(gK) = [, m(gk)dk (where dk is normalized Haar measure).
Then m € MA(G/K) with ||m||ypac/r) < |mllava)-

(i) The statement (i) remains true for MA(G) replaced with M Ay(G); moreover the space
MAy(G/K) may be isometrically identified with the subspace of functions in M Ao(G) which are
constants on the cosets of K in G. Furthermore A(G/K) = A(G).

(i) is immediate. For (ii) see [6, Prop. 1.3] (one uses the definition [6, (0.3)] to verify the nontrivial
part of (ii)).

1.2.5. Suppose that G = SK is a (set) decomposition of G as a product of an amenable closed
subgroup S and a compact subgroup K, and that v is normalized Haar measure on K. Suppose
further that A(G) is one of A(G) or MoA(G) or MA(G). Then for any ¢ € A(G) the average ¢,
defined by

By = [kl dvli) du(i),

belongs to A(G). Further, 9l 4y < el 4

For the proof, see [6, Prop. 1.6]. The point of the lemma is that, by averaging, we may assume that
any given approximate unit of A(G)-functions bounded in the A(G)-norm is K-biinvariant, with the
same bound. The above lemma also holds if we choose compactly supported smooth functions, and

these properties are preserved by averaging.
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What lies ahead.

For a connected noncompact simple Lie group G with finite center and real rank at least two, the
invariant A(G) takes the value infinity. This result was proved by Haagerup [14]. His proof involves
investigating certain semidirect products, namely SL(2,R) x R? and SL(2,R) x H!, where H! is
the Heisenberg group of dimension three. He shows that these semidirect products do not admit
multiplier bounded approximate units, and hence deduces that A is infinite for both the semidirect
products and then, by structure theory, for any noncompact simple Lie group GG with finite center
and real rank at least two. These semidirect products are the smallest members of two families of
semidirect products, for which it turns out to be interesting to calculate A (see Section 8). The first
family is formed with the action of the unique irreducible representation of SL(2,R) on R™. It was
shown by Dorofaeff [9] that all these groups have infinite A; this was used to show that that the
original hypothesis of finite center in Haagerup’s proof of 1.2.1 (xiii) is redundant ([10]). The second
family is where SL(2,R) acts on the Heisenberg group H” of dimension 2n + 1 by fixing the center
and operating on the vector space R?" by the unique irreducible representation of dimension 2n.

We consider this family of semidirect products and show they do not admit multiplier bounded
approximate units; in particular A(SL(2,R) x H™) = oo. Given this and earlier results, and some
structure theory, it is now possible to compute A(G) for any real algebraic Lie group G, or indeed
for any Lie group G whose Levi factor has finite center.

Main Theorem. Let G be a real Lie group with Lie algebra g, and let s@t be the Levi decomposition
of g, where v is the mazimal solvable ideal of g and s is a semisimple summand, and let 51 - - - D s,
be the decomposition of s as a sum of simple ideals. Let S be a mazimal analytic semisimple subgroup
of G corresponding to s, and let S; be the subgroup associated to s;, where i = 1,...,m. Suppose
that S has finite center.

Then G is weakly amenable if and only if one of the following two conditions is satisfied for each
t=1,....,m:
Either

(*) S; is compact
or

(**) S; is noncompact, of real rank 1, and the action of s; on ¢ is trivial, i.e., [s;,t] = 0.

If for every i € {1,...,m}, either (*) or (**) is satisfied then A(G) = []~, A(S;) and A(G) can
be computed by consulting the list (1.2.1).

If for at least one i € {1,...,m} neither (*) nor (**) holds, then A(G) does not admit any
multiplier bounded approximate unait.

Structure of the paper. The main part of this paper (Sections 2-7) is devoted to the proof that
the Fourier algebra of SL(2,R) x H" does not admit multiplier bounded approximate units, and
consequently we have A(SL(2,R) x H") = oco. Using a modification of Haagerup’s approach for the
case n = 1 [14], one can reduce matters to the estimation of a singular oscillatory integral operator;
this reduction is described in Section 2. The estimation of the integral operator, which is rather
nontrivial, is carried out in Sections 3—-7. In Section 8 we consider general Lie groups under the
assumption that the Levi part has finite center. Here we use facts from the structure theory of
Lie groups to show that if for at least one ¢ € {1,...,m} neither condition (*) nor condition (**)
in the Theorem holds, then G does not admit multiplier bounded approximate units. This will be
combined with previously known results to complete the proof of the main theorem.

2. A family of semidirect products
Fix a positive integer n. Throughout this chapter we shall consider the group

G, = SL(2,R) x H",
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where SL(2,R) acts on the Heisenberg group H™ by the unique irreducible representation of dimen-
sion 2n, fixing the center. We shall reduce the proof that A(G,,) = oo to the estimation of a family
of singular oscillatory integral operators. The four subsequent sections will then be dedicated to
estimating these operators.

2.1. The action of SL(2,R) on the Heisenberg group.
Recall that H" is a Lie group whose underlying manifold is R?" x R. The group multiplication
may be given by the formula
(u,t) (v, ') = (u+u', t +t +u’ Bu),
where the symplectic matrix B is defined by

B — (—1)j ifi+j=2n+1
Y10 otherwise.

We shall write {e1,...,ez,} for the standard basis of R?".
We shall now describe the action of SL(2,R) on R?*" by the irreducible representation o, of
dimension 2n which is unique up to isomorphism (see, e.g., [22, p. 107]). For j =1,...,2n, let

2n — 1\ "/
o = .
J ,] ~1
We identify R?" with the space Py, of homogeneous polynomials in two variables of degree 2n — 1
by associating (u1, ..., us,) with the polynomial

2n
(2.1.1) P:(z,y) — Zajujx%*]yjfl,
j=1

and define the action of A in SL(2,R) by

mon(A)P(x,y) = P((z,y)A) = Plaz + cy,ba +dy)  V(z,y) €R?,
where A = <Z Z) (see [20]). If P is as in (2.1.1), then a computation shows that

2n

Ton(A)P(x,y) = Z [Z(A)u] iaix%_iyi_l,

i=1
where the 2n x 2n matrix Z(A) is given by
2n i1 oy — i . . o
(2.1.2) (Z(A))ij = Z (J l ) (2n L i l) ai—laj q2n—i=lpl Gitl—i gi—i-1
1=0

(see [9]). Here we use the standard convention that (llc) = 0 if [ is negative or [ > k.
In order to extend the action on R?” to an action on H" we need to show that the action on R?"
is symplectic.



Lemma 2.1.1. The map Z is a symplectic action on R?", i.e.,
(2.1.3) Z(A)"'BZ(A) =B
for each A € SL(2,R). Define Z(A) : H* — H" by
Z(A)(u,t) = (Z(A)u,1);
then Z(A) is an automorphism of H® and Z is an action of SL(2,R) on H".
)1/2

Proof. Recall that a; = (2;1_’11

. From (2.1.2) and our choice of « one checks that
Z(ATY = Z(A)T.
Observe also that
0 1
B=7Z(J) where J_(—l O)'
For any A in SL(2,R), a direct matrix calculation shows ATJA = J and so

Z(A)T BZ(A) = Z(A)T Z(N)Z(A) = Z(ATJA) = Z(J)

and therefore (2.1.3) holds. The fact that Z(A) is an automorphism of H" follows immediately from
(2.1.3); hence Z is an action on H*. [

We may now describe the semidirect product group Gy,. As a manifold, this is SL(2,R) x R?" x R.
The product in G,, is defined by

(Ayu, t) (A ' 1) = (AA ,u+ Z(A)u' t +t +u" BZ(AW)
and the inverse is given by
(2.1.4) (Ayu, t)™ = (A7, —Z(A Yu, —t),
for all (A,u,t) and (A’,u',#') in G,,. The closed subgroups {(I,u,t) : v € R*", t € R} (where I
is the identity of SL(2,R)) and {(A4,0,0) : A € SL(2,R)} may be identified with H" and SL(2,R).
Given (A’ u,t) and (4,0,0) in G, it follows that
(4,0,0) (A4, 1)(4,0,0) "1 = (AA'A™L, Z(A)u, 1),

which shows that H™ is normalized by SL(2,R).

There are several important subgroups and elements of GG,, which we now identify. We denote

by K the compact subgroup SO(2,R) of SL(2,R), considered as a subgroup of G,,. For b in R, we
define

k‘f_iﬁ(b)l(b—/f b}2)’ m’_<(1) [1)> e hb_<—58’>1 ﬁéb)>’

where 3(b) = (1+b%/4)"/2. Then ki € K. We write N for the nilpotent subgroup {ny : b € R}. For
future purposes, we observe the following lemma.
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Lemma 2.1.2. For all b in R, we have

k;_ Ny kb_ = N_yp,

(215) nb/2 k;_ nb/2 = hb.
Further,
Z(hp)(unen + tuntient1) = (—1)"(ﬁ(b)_1unen+1 — B(b) un+1€n).
Finally,
R L
(2.1.6) (Z(m)),; =4 1 ifj=1i

0 ifj<i
and, in particular, Z(np)n nt1 = nb.
Proof. These are all straightforward computations which will be omitted. O

2.2. Two nilpotent subgroups.

We write G for G,,, and H for the subgroup of G of all elements of the form (n;, u,t), where b € R
and u € R?". Let Vj denote the subspace span{ei,...,ex} of R?" (when k = 1,...,2n). Since N
is a subgroup of SL(2,R) and the matrix Z(n;) is upper triangular for all b in R, this subspace is
invariant under all the maps Z(n;), and the subset of G of all elements of the form (ny, v,t), where
b€ R and v € Vj, is a subgroup of H. We write Hy for the subgroup of G obtained in this way
when k =n + 1.

We need to understand the behavior of the restrictions of K-bi-invariant functions on G to H. It
follows from formula (2.1.4) that

(2.2.1) (K ,0,0) (o, w4, £) (k7 0,0) = (s, Z (k" Ju ).
We define the diffeomorphism 2 : H — H by the formula
(2.2.2) Q(np, u,t) = (n_p, Z(ky u, t).

Lemma 2.2.1. If p € D(G) and ¢ is K-bi-invariant, then o|g o Q= ¢|g.

Proof. Since ¢ is K-bi-invariant, we have

o(np, u,t) = <p((k;r,0,0)(nb,u,t)(kl;,(),()))

for all (ng,u,t) in H and the assertion follows from formulae (2.2.1) and (2.2.2). O

2.3. Some distributions on Hj.

We will define a family of distributions on Hy, using two iterated principal value integrals. To
clarify the sense in which these are to be interpreted, and because it will be useful later, we first
discuss certain principal value integrals on R2. For Schwartz functions ¢ € S(R?), let

DY) =p.v. //% dsy dsg
2751
= lim lim ! (/| Mdsl +/| Mdsl)d@.

e—0+ 6—0+ |sa]>e 259 sa+81]>8 So + 81 sa—s1|>8 52— 51

(2.3.1)



It is routine to show that D is a tempered distribution. We shall also need a modification D defined
by

(2.3.2) D(¢) = D(¥) where ¥(y1, y2) = ¥(y2, y1)-

The distributions D and D satisfy

(2.3.3) D(¥) + D) = w2(0,0)

for all Schwartz functions; this fact was used by Haagerup [14] and called the failure of Fubini’s
theorem, since it can be rewritten in the form

p-v. //M(dtﬁld@ — d82d81) = 729(0,0).
S — 51

The verification of formula (2.3.3) can be found in [9]; it relies on a Fourier transform calculation
and the fact that D(e=*"7)) is equal to 72 if 72 > 75 and to 0 if 77 < 73.
For fixed b € R, define @y : R? — Hy C G by

(2.3.4) Qu(s1,52) = (b, Z(npy2)(s1en + 528(b) ' ens1),0)

where, as before, 3(b) = (1 + b2/4)'/2. For a test function ¢ € D(G), let Q¢ be the pullback of ¢
to R? defined (as usual) by Q;é(s1,s2) = d(Qp(s1,52)). We now define the distribution Dg on G,
for all R in R*, by the formula

R
(2.3.5) Dr(¢) = [ RD(QZ@%

We may view Dpg as a distribution on H or on G, with support in Hy, if we wish.

Lemma 2.3.1. Suppose that ¢ € D(G) and ¢ is K-bi-invariant. Then

(2.3.6) Dr(p) = &

7’ /R <P(”ba070)
> ) p At 2ae

In particular, if {@n}nen is a sequence of K -bi-invariant D(G)-functions, and @, — 1 uniformly on
compact subsets of G as n — oo, then

(2.3.7) lim Dg(p,) = 272 sinh ™ (R/2).

n—oo

Both formulae remain valid if D is considered as a distribution on H or Hy and applied to restric-
tions of K-bi-invariant functions to H or Hy.

Proof. Recall from Lemma 2.2.1 that if ¢ € D(G) and ¢ is K-bi-invariant, then ¢|g = ¢|g o {2
Now we compute for arbitrary ¢ € D(G)

¢ 0 QQp(s1,52)) = (s, Z(k;) Z(npy2)(s1€n + 526(b) ' ens1),0)
(n—b, Z(n_p2)Z(ho)(s16n + 526(b) ' ent1),0)
Z

(n—p, Z(n_y2)(—=1)"(B(b) ' s1€ns1 — S2€4,),0).
9
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Here we have used the definition of 2 and @, and the relation k;nb /2 = N_p/2hy (which follows
from formula (2.1.5)). Since D is even on R?, it follows that

D(Q3(¢0 Q) = D(Q",9),
and therefore, since (3 is even,

R ~
(2.3.8) Dr(oo) = [ D(@io)n) "

Now we assume that ¢ is K-bi-invariant and use (2.3.3). Then

R ~
Di(p) = 1 / (D(Q) + D(Qie))B(b) " db

R

2 R »
-5/ Qiel0.0)30)ab

7T2 R
T etm0.0)50)

as required.

The formula (2.3.7) follows by passing to the limit and evaluating the integral.

The last assertion follows from our computation, since 2 maps the subset of G (or of H or Hy)
consisting of all (np, s1ey, + S2€,41,0) into itself. O

2.4. Failure of weak amenability.
We are now in a position to reduce the question of the weak amenability of G to a question of
boundedness of the operators A[Dg] of convolution with Dp.

Proposition 2.4.1. Suppose that \[Dg| lies in VN (Hy), and that ||\[Dg]|| = o(log R) as R — oo.
Then G is not weakly amenable, i.e., A(G) = oo, and further, there does not exist a multiplier
bounded approzimate unit on G.

Proof. If G were weakly amenable, then there would exist L in [1,00) and a sequence {¢, : n € N}
of D(G)-functions such that ||on|lama < L for all n in N and ¢, — 1, uniformly on compact subsets
of G, as n — oo. By averaging if necessary, we could suppose that all the functions ¢, were K-
bi-invariant; see (1.2.5). A fortiori, for some L in RT, there would be a sequence {p, : n € N} of
K-bi-invariant D(G)-functions satisfying the conditions ||¢,||apa < L and ¢, — 1 as n — oo. The
same would be true if there existed a multiplier bounded approximate unit on G.

Consider the sequence {Dr(¢nlm,) : n € N}. Since Hy is amenable, A(Hp) has an approximate
unit, whence

(2.4.1) [nleolla = ll@nlmolva < llonllara < L.
Thus

| Dr(enlmo)| < INDRllvallenlmlla < LIADE]llvy = o(log R).
However, by (2.3.7)

Tim [ Dr(pnln,)| = 272 log (% + /5 +1).

The last two formulae are contradictory, so the original hypothesis of the weak amenability of G
must be incorrect. [
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Most of this paper is dedicated to verifying the hypothesis of Proposition 2.4.1; more precisely,
we shall obtain the estimate

(2.4.2) IADR]llva () = O(loglog R)  as R — oo.

To do this, we will use Fourier analysis on Hy to study the distributions Dg when acting on A(Hp).
The first stage in this process is to find a family of unitary representations {m, ¢ : n € R,{ € V,,} of
Hy; we then describe the Plancherel formula for this group. It is a consequence of the Plancherel
formula that [[A[Dg]||vn is equal to the supremum of the operator norms ||m, ¢[Dg]|| as n and ¢
vary. We shall then identify the operators m, ¢[Dr] as singular oscillatory integral operators, which
will be estimated in Sections 3-7.

2.5. Representations of the group Hy.
To simplify notation, from now on we write (b, u, t) instead of (ny, u,t), and P(b) instead of Z(ny),
see (2.1.6). Then the group law may be rewritten in the form

(bu,t) (0, u/',t") = b+, u+ P/, t +t +uT BP(b)u)

and
(bu,t)"' = (=b, —P(=b)u, —t),

for all (b,u,t) and (¢',u,#') in Hp. From formula (2.1.3), it follows that P(—b)T BP(—b) = B, so

(byu, t) "2V, u’,0) = () — b, P(=b) (v’ —u), —t — u? Bu')

(2.5.1) , , , ,
= (O = b, P=) (! — ), —t + (1) (it — g 100)).

It is easy to see that the subgroup H; of Hy, given by
Hy ={(0,w,s):weV,, scR},
is normal in Hy and abelian. Let & be the subset {(¢,ve,41,0) € Hy : ¢,v € R} of Hy. As a set, we
may identify & with R2. Any element h of Hy may be expressed uniquely in the form ohi, where
o € G and hy € Hy. Indeed, if ¢, s, t, and v are in R, while w € V,, and u € V,,;1, then
(¢, v€n41,0)(0,w, s) = (c,vent1 + P(c)w, s + vel,  BP(c)w),
SO

(¢, vent1,0)(0,w,s) = (b,u,t) if and only if

2.5.2
( ) c=b, v=1upy1, w=P(=b)Projy, u, and s=1t—(=1)"Upq1Un,

where Proj,, denotes the standard orthogonal projection onto the subspace V of R?". As a conse-
quence, we also note the integration formula

(2.5.3) /H F(y)dy_/Hl/GF(az)dadz.

We define the characters x,, ¢ of Hy by the formula

(2.5.4) Xn,c(0,w,8) = expgil(—l)"ns + (¢, w)),



where 7 € R and ¢ € V,7, and induce the character x_, —¢ from H; to Hy. The induced representa-
tion 7, ¢ acts on the Hilbert space H,, ¢ of all complex-valued functions £ on Hy such that

£((b,u, t)(0,w,5)) = Xn,c(0,w,8)8(b,u,t)  V(0,w,s) € Hi ¥(b,u,t) € Ho,
and

1/2
(/ |€(c, vent1,0))? dcdv) < 00.

We equip this space with the norm equal to the left hand side of this inequality. As Hy = & Hj,
each function in H, ¢ is determined by its restriction to &, and so this really is a norm on H,, ¢,
modulo the usual issues of identification of functions which differ on null sets. Clearly H,, ¢ can be
identified with L?(&).
The action of the unitary representation m, ¢ on a function § in H,, ¢ is defined by the formula
Wﬁ,((ba u, t)é.(b/v ’LL/, t/) = 5((1)5 u, t)il(bla Ul, t/)) .
In particular, using formulae (2.5.1) and (2.5.2) and we see that
Tn,¢ (b7 u, t)g(ca Ven+1, 0) = 5((b7 u, t)_l (Cu Ven+1, O))
=¢&(c— b, P(=b)(vepg1 — u), —t + (1) unv)
= 5((0 — b, (U - un+1)en+17 0)(07 w, 3))7
where (0,w, s) in H; is defined by
P(b— c) Projy, P(=b)(vent1 — u)
P(b - ) [P(=b)(venss — 1) — (0 — wni1)ensa]
P(=c)(vens1 —u) + P(b — ¢)(unt1 — v)ent,

w

and since P(b)y n+1 = nb by Lemma 2.1.2,
5 = —t (= 1) "0 = (~1)" (0 = U 1) (P(=Bms1 (0 — tns1) — 1)
= —t+ (=1)"(nb(v — un+1)* + un (20 — uny1)).
In conclusion,
(2.5.5) ¢ (b, u, t)€(c, vent1,0)
=¢&(c—b,(v—upt1)ent1,0)

x exp(in[(—1)""'t + nb(v — upt1)® + un (20 — upt1)])

x exp(i(C, P(—¢)(vent1 — u) + P(b— ) (un+1 — v)ent1)).
The elements of & act by translations (here we think of & as R?), combined with multiplications,
while the action of the elements of H; is as follows:

¢ (0,w,t)&(c, veyy1,0)
= &(¢,vent1,0) exp(in[(=1)" 1t + 2w,v] — i{(, P(=c)w)).

Finally we extend the representation 7, ¢ to functions f in L'(Hy). For each  in R and ¢ in V;,
we associate an operator 7, ¢[f] on L?(&) in the usual way by the formula

(2.5.6) mclflE(@) = | F@)mcla)Eo)

This formula extends by continuity to define a Fourier transform of certain distributions on Hy.
12



2.6 A Plancherel formula.

In what follows we shall write x for x, ¢ and H, for H, ¢; we also denote by dx the measure
(27)~"Ldn d¢ on the dual space H;.

For Z in D(Hy) and x in Hy, define the function =y on Hy by

(2.6.1) EX(x):~/1‘{ E(zz)x(z)dz.

We note that
Lemma 2.6.1. For all E in D(Hy), the function E, belongs to the Hilbert space H,. Further

_ _ 1/2
Iz = ([ 12 x)
Hy

and the map = — (x — Ey) extends to an isometric bijection of L*(Hp) to LQ(fll,H).
Proof. For Z € D(Hp) and x € fll, we compute:

Ey(z2") :/H1 E(xz'2)x(z )dz—/ S(z2)x(2 " 2)dz

Hy
() [ SRl = x5 @),

so that Z, has the required covariance property. Further as o varies over &, the function =2, (o)
varies smoothly, and as a function on & it has compact support, contained in supp(Z)H; N 6.
Moreover by the Plancherel theorem for H;, and Fubini’s theorem,

[ 12 dx = / / E0(0)Pdodx = / | Exo)ixds
H1 Hl
— [ [ Ea)itizio = [ (2w
6 H1 HO

The extension to L?(Hy) is straightforward. O

Lemma 2.6.2. Suppose that D is a distribution in Hy and suppose that the operator norm on
L2(H,) satisfies ||y [D]|| < A for all x € Hy. Then \[D] is in VN (Hp) and ||A\[D]|lyn < A.

Proof. We shall assume that D is given by integration against a D(Hy) function k; the general case
follows by a regularization argument. Now let = and I" be in L?(Hy). Then

/ / 2)Z(x )T (y)dydx
Hy JHy

2)2(z" o2)T(02)dzdodx

Il Il
—

T

E( 27 o)T, (0)dxdodx

oSt
J

0

St

[ m Kz (o) T @

(2)Ex(
k(@) (

r o), (0)dxdody

@
m\m\\

9}

9}

I

<7TX [k]Exa P)()dexa
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where we used (2.5.3), the Plancherel theorem on the abelian group Hy, Fubini’s theorem and the
definitions of 7, (f) and H,. From the hypothesis and the Cauchy—Schwarz inequality it follows that

(AKE.T)| < /H [y K250 Ty L

< / AlEx e, T 7,
Hy

sA(/ﬁl IEXII%de)1/2(/ﬁl In )

= AllEll 2 IT] 22 (#0)

by Lemma 2.6.1. Taking the supremum over all = and T' with norm < 1 shows that ||A[k]||lvn <
A O

2.7. The oscillatory singular integral operators 7, ¢[Dg].
We now compute the operator-valued Fourier transform of the distributions Dgr. We change
notation slightly, and for £ in H,, ¢, we write {(c, v) instead of &(c, ven41,0). We also set

(2.7.1) q(b) = n= ¢, P(b)enta),

and write M, for the operator on L?*(&) of pointwise multiplication by the function (c,v)
exp(invg(—c)). Observe that

n+1

ql()_ CZP zn+lez
A on— 1\ /on—1\ "2 .
<Z<n+1—z>< n ) (i—l) b i)

n—1 —1\"?/2n -1 ‘an_i )
n—1 n—l i —1 €
P

(b)in €i) = (C, P(b)en).

||
i M: i M: QJ|QD

<C

Then, rewriting formula (2.5.5) we have shown that

WnaC(bauvt)g(ca 1))
=¢&(c—b,v—Uny1) exp(in[(—l)"Jrlt +nb(v — Upi1)? 4 up (20 — un+1)})
X exp(i<<7 P(_c)(ven-i-l - ’U,) + P(b - C)(un-i-l - U)en+1>)'

Thus

e (b, P(b/2)(unen + tnt1€n41),0)&(c,v)
=&(c—b,v = tny1) exp(in[nb(v — tn41)® + (Un + Up1nb/2) (20 — Un1)])

X exp(i((, P(—=c)(vens1 — P(b/2)(unen + tnt1€nt1)) + P(b = ¢)(tns1 — U)en+1>)
=¢&(c—b,v—Uny1) exp(in [nb(v2 — VUpi1 + ui+1/2) + un(2v — un+1)])

x exp (i [nvg(—c) — ung'(b/2 — c) — nu2+1q(b/2 —¢) 4+ n(tuns1 — v)q(b —c)]),
1



and so

T, [Drlé(c,v)
—/ pv//ﬂ (b, P(b/2)(unen + Fent1),0)é(c,v) 50— ! du, du db
- ntn n+1 n n+1 5775
77< ﬁ(b) " n+1 un * ﬂ(b)
1
= [RP.V. //ng(b,P(b/2)(unen+un+1en+1),0)§(c,v) m dun dun_;,_l db

R
= /7 p.v. / (e—b,v—upt1) exp(in [nb(02 — VUpy1 + ui+1/2) + un(2v — un+1)D

X exp( [nvq( ¢) +n(tuns1 —v)q(b —¢) —unqg' (b/2 — ¢) — nupr1q(b/2 — c)])
1
X m dun dun_;,_l db,

and consequently

M;lwnﬂg[DR]Mqé(c, v)

R
= / p.V./ &le—b,v—upy1) exp(—iunq’(b/2 —¢) + inu,(2v — un+1))
—R

1
b(v” — vuy, 2) — nu, b/2 — ————— duy, dug, 1 db.
X exp( [m] (v? —vu +1+un+1/ ) — nup+1q(b/ C)Dﬁ(b)2u721+1 —z Uy, AUy 11

We can calculate the innermost integral exactly: indeed

. dz 1 . 1 1
p.v. /exp(z)\z) sl %p.v./exp(z/\z) [z—i——w - w} dz

exp(idw) — exp(—idw)

d
=- p.V./exp(i/\z) e
z

2w

_ wsign(A) sin(Aw) ﬂ'sin(|)\|w)'

w w
We deduce that
My ([DRIME (e, v)
R
(2.7.2) = W‘/_R p.v. /5(0 —b,v— un+1) Sin(ﬂ(b)un+1|(77(2v — Upy1) — ql(b/2 - C))l)
1
x exp(in[nb(v? — vini1 +upy1/2) = unt19(b/2 = c)]) B0) unrs din 41 db

Since the sine term vanishes when wu,4; vanishes, the principal value of the inner integral is the
usual integral.

2.8 Equivalent formulation of the oscillatory integrals.
n (2.7.2), we make the change of variables y1 = ¢ — b, y2 = v — Upy1, 1 = ¢, and 2 = v, and
set p(t) = 2q(—t/2) (so that p/(t) = —¢'(t/2)). Then

Mqﬁn,C[DR]Ml;lf(xlvxz)
(2.8.1) = 7T/ - f(y1,y2) Sin(ﬁ(xl —y1)(z2 — y2)|n(xe + y2) + p'(z1 + y1)|)

X[-r,R) (T1 — Y1)
5(171 - y1) (332 — Y2

X eXp(%n [n(z1 — y1)(23 +v3) — (22 — y2)p(z1 +v1)])
15
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Now if 7 # 0, one can conjugate with a dilation in the second variable by a factor of |n|'/2, to
reduce to the case where n = 1. Further, changing the sign of  and of the polynomial p has the
effect of changing the kernel to its complex conjugate, and a kernel operator is bounded on L? if
and only if the operator with conjugate kernel is. In short, to establish the uniform boundedness of
the operators , ¢[Dg], as (1, () varies over R x V,,, we may suppose that 7 is equal to 1.

3. The oscillatory integral

Notation. From now on, fix a positive integer n and I" in (1/2,00). Let p be a real polynomial of
degree at most n. An admissible constant means a constant which depends only on n and I". We
write A < B if A < CB and C is an admissible constant in this sense. All “constants” C' below will
be admissible, and may vary from place to place.

Define the functions ¥ : R? — R and 6 : R? — R by the formulae

(3.1) U(x,y) = (1 —y1) (23 +3) — (w2 — y2)p(z1 + 31)
0(x,y) = Bz —y1)|w2 +y2 + ' (21 + y1)|(x2 — 2);
further, recall that
B(t) = (1+£2/4)1/2.

Suppose min{l,n/2} < |y| < T (the relevant value of v will be n/2). For R > 0, we define the
family of singular oscillatory integral operators O by

eV (@Y gin Oz
(3.3) Of f(x) // Bl =) $2(_ 52))X[—R,R] (x1 = 1) f(y1,y2) dy1 dy2

for all f in C§°(R?). We shall see easily that |Of| 22 = O(log R) as R — oo (this follows from
Lemma 3.3 below). However, we have the following result.

Theorem 3.0. Suppose that min{1,n/2} < |y| < T and R > 100. Then the operator OF extends
to a bounded operator on L*(R?), and

10" 22y - r2R2) < Ch,rloglog(10 + R),

where Cy, 1 is admissible. If n = 1, then this estimate may be improved to ||OF| = O(1).

It is conceivable that the bound ||OF| = O(1) holds in the general case, but this has not been
proved so far. For our application, the assertion of the Theorem is (more than) enough.

Corollary 3.1. (i) sup, ; |7.¢c[Dr]ll#, . —n, . S log(log(10 + R)).
(i) [|N[DRr]llv (o) S loglog(10 + R).

(iii) The Fourier algebra of SL(2,R) x H™ does not admit multiplier bounded approximate units.

n,¢ v

Proof. By the results of Subsection 2.8, it suffices to prove (i) with n = 1, but then formula (2.8.1)
shows that the statement is implied by Theorem 3.0. The calculations in Section 2.7 together with
Lemma 2.6.2 show that (i) implies (ii), and (ii) implies (iii), by Proposition 2.4.1.

Remarks.
(i) The assumption min{l,n/2} < |y| < T' in Theorem 3.0 can be replaced by 1/2 < |y| < T.
However the proof for the case where |y| = 1/2 and n > 2 turns out to be substantially more

complicated. Fortunately this case is irrelevant for our application.
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(ii) There are many results concerning singular oscillatory integral operators with kernels of the
form k(z — y)e'¥®¥) | where P is a polynomial. If k is a standard Calderén-Zygmund kernel, the
oscillatory variants are L? bounded (1 < p < o0), see Ricci and Stein [31]. If k is a multiparam-
eter Calder6n—Zygmund kernel the technique in [31], which uses induction on the degree of the
polynomial, no longer applies. In fact the L? boundedness may then hold or fail depending on the
properties of the polynomial P; see, e.g., [2], where a complete characterization of boundedness is
obtained for the special case where P(x,y) = ¢(x — y) and ¢ is a polynomial of two variables.

No theory for general polynomials is currently available. Moreover, our operator is not included
in the general class of operators just discussed, because of the positivity of 3. Our proof of Theorem
3.0 relies on a subtle global cancellation property of the distribution D defined in (2.3.1) and the
noncommutativity of the convolution structure.

(iii) It is instructive to examine the analogue of A\[Dpg] in the commutative setting, where we
identify Hy as a set with R"™3, writing (b, u,t) for (np,u,t), and replace the matrix Z(b) by the
identity throughout. Thus define g, : R? — R"*3 by ¢;(s1,52) = (b, 5165 + s28(b) " tens1,0) and
define a distribution by D r(¢) = ffR D(g;¢)B(b)~'db. Denote by Crf the convolution D *g f on
R™*3; here *p refers to the standard commutative convolution in Euclidean space. The operator
Cr is bounded on L?(R""3); however there is a lower bound for the operator norm of the form
|Cr]] > clog R as R — oo. This can be quickly seen by applying the partial Fourier transform
Frio in the (u,t)-variables. Indeed for fixed (&,7) € R*™! x R let C%T be the operator on L?(R) of
convolution with 7, 2[Dg](:,{, 7); then the operator norm of Cg is equal to sup; , HC%T |l L2®)—L2(R)-
A quick calculation using the formula for the Fourier transform of D mentioned in §2.3 shows that
€57 < log R and in particular

R

d
Cirat) == [ ab-ogs e <

Testing 5" on g = X[-r,R] implies that €57 > clog R if |€n41| < |€n| and the asserted lower
bound on Cg is proved. Thus the better bound of Corollary 3.1 indicates a strictly noncommutative
phenomenon.

A first decomposition. In view of the product type singularity of the kernel it is natural to
introduce a dyadic decomposition in the variables x2 — yo and 21 — y; (if the latter is large). For
this let 9 be a smooth nonnegative even function on the real line so that ng(s) =1 if |s| < 1/2 and
no(s) = 0 if |s| > 3/4. We also assume that n}, has only a finite number of sign changes. Let

n(s) = no(s/2) —no(s)

so that 7 is supported in [1/2,3/2]U[—3/2, —1/2]. For pairs of integers j = (j1,j2) € Z?, with j; > 0
let

271 » 972 .
(3.4) X5 () = X1.5 (T1)X2,5 (22) = mn@ M) (2 ).

In particular x; has the cancellation property
/Xj(fclafﬂz)dwz =0 for all ;.

It will sometimes be useful (see Section 4 below) to use the cut-off function

(3.5) Xj(x) = x; () sign(z2),
17



together with the relation

(3.6) Xj(z —y)sin(0(z,y)) = X;(z — y) sin(|0(x, y)]),

which follows from the evenness of the function ¢ — ¢~ sin(At) and the positivity of 3.
Let

(3.7) Ti(z,y) = 2_j1_j2xj(;v — y)e”‘l'(w’y) sin 0(z, y);
then we wish to estimate the L? operator norm of
(3.8) @)= Y [ Toswa
10<j1<log R
Jo€Z

Preliminary estimates. We shall now verify that the operator norm of O — T is uniformly
bounded. To this end, we consider, for fixed (z1,y1), the operator B*:¥! acting on functions in
C§°(R), which has the distribution kernel

(3.9) BT (22, 12) = €7 sin 0(, y) (2 — y2)

Lemma 3.2. For each (x1,y1) the operator B*1Y' extends to a bounded operator on L*(R) with
norm bounded independently of (x1,y1).

Proof. For ¢,¢’ € {£1}, define
Ey ., =1{(s;t)e(s+t+p' (21 +y1)) >0}
One computes that
) ) dt
205 vg(s) = Y0 Y e [ (50900
e/=+1e=+1 s

where

Pe(8) = pezry (8) = (x1 — y1)s® — sp(z1 + y1) + €B(z1 — y1)(s* + P/ (1 + y1)s)

Oe(t) = Ocpy (t) = (x1 — Y1) + tp(z1 +y1) — €B(z1 — y1)(E® + P/ (21 + y1)t).

The uniform boundedness of B*1¥1 on L?(R) follows from the boundedness of Hilbert transforms
and Hilbert integrals. [

Lemma 3.3. Let £ be an operator bounded on L?(R), with nonnegative kernel k(s,t). Let

$1) = [ Ky B Fon, el

Then S is bounded on L*(R?) with operator norm < ||€||2(r)—r2(R)-

Proof. By Lemma 3.2 we have ||[B*>¥|| < Cy and therefore

sl < ([ ([ kw5 st M) o)

< Co(/(/ k(iﬁl,yl)(/ |f(y1,x2)|2dx2)1/2dy1)2dx1)1/2,

and the result follows from the assumed L? boundedness of the operator £ acting on the function
v = 1 f(yn, )@y O

18



Lemma 3.4. The operator O — T is bounded on L*(R?) with an admissible operator norm
uniformly in R.

Proof. Let Er = [—40,40] U [R/4,4R] U [-4R,—R/4] and kgr(s) = xE,(s) B(s)"L. Observe that
the L'(R) norm of kg is uniformly bounded in R. Note that

0% f(z) = THf(x)] S /kR(ﬂm = 1) [ B [f (y1, )] (w2) |dys

so that the assertion follows from Lemma 3.3. O

By Lemma 3.4 it suffices to show the bound
(3.10) 77| = O(loglog R)

for large R. The next four sections will be devoted to the proof of (3.10). The argument relies on a
crucial cancellation property for the affine case, where p(x) = ax+b, for which one obtains the bound
|ITE|| = O(1). This will be carried out in Section 4. The general case involves an approximation
by operators which share the properties of the affine case; for various remainder terms one uses the
oscillatory properties of the phase function and Hilbert integral arguments. The basic decomposition
describing the remainder terms and relevant orthogonality arguments is introduced in Section 5; here
we state several propositions containing estimates for the constituents in the basic decomposition
and deduce the main estimate (3.10). Section 6 contains a few auxiliary facts and Section 7 contains
the proof of the propositions.

4. Boundedness for affine polynomials

Let I be a set of pairs (j1, j2) with the property that ji, jo € Z and j; > 10. Define
(a.1) Tiw = Y 2 [ noe ) o - i) dy
j=0,j2)€l
Theorem 4.1. Assume that ag, a1 € R, and that
p(s) = aus + ao.
Suppose that 1/2 < |y| < T. Then the operator T extends to a bounded operator on L*(R?), and

17l < Cr,

where Cr does not depend on I, ag, or a;.

Proof. We have now

U(z,y) = (x1 —y1) (23 + y3) — (x2 — y2) (a1 (21 + y1) + )

(4.2) O(x,y) = B(x1 — y1)|z2 + y2 + a1](x2 — y2)

2
and, setting A(z) = %xl — 2017179 — T2, We compute that

(w1, @2 — %102 — S) = (21— y1) (@3 + 43) + Alz) — A(y);
19



moreover
O(xy, 22 — %7y17y2 - %) = B(x1 — y1)|w2 + y2| (22 — 2).

From (4.1) and (4.2), we see that we can reduce matters to the case where p = 0, after a translation
in the zo variable and a conjugation with a multiplication operator of norm 1. Therefore we shall
now work with (4.2) where cy = a3 = 0, and consider the integral operator I with kernel

K=Y Kj
jerl

where .
Kj(x,y) =272 @tv) @) sin(B(2y — y1)[a3 — y3])X; (@ — v);

see formula (3.6). For & € R, let

Seg(w2) = Z/9(3/2)11(51,$27y2,j2)27j2dy27

J2

where
h(€1, w2, Y2, 02) = X (@2 —42) Y Ty (€1, 22,00),
g1:(1g2) €T
with
hiy (€122, 0) = 270 / ¢TI sin(B(0)]a3 — y31)x1.5: (0)dor
Then

Tf(€17x2) = Sﬁl [f(§17 )](l‘g),

where fdenotes the Fourier transform of f with respect to the first variable. Thus it suffices to fix
& and show that S¢, is bounded on L?(R) uniformly in &;.

Lemma 4.2.
(i) There is a constant C so that

(4.3) |h(§1, 2,2, j2)| < C

for all &, x2, y2, jo. Moreover

(4.4) h(€1,@2,2,52) =0 if |12 — yo| & [27272,27277).
(i) For each ji

(4.5) (g (€1, 22, 40)| S 27 |25 — w3
(iii) Suppose that |&5 — (23 + y3)| > 2|23 — y3|. Then

(4.6) |hj, (€1, 22, 2)] < Cn (2|6 — (23 +43)) V.

Proof. The assertion (ii) follows immediately from the inequality |sina| < |a|. Moreover (4.4) is
immediate from the definitions. In what follows we shall use simple properties of 3 stated in (6.1),
(6.2) below.
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We now prove the uniform boundedness of h. Since X1 ;, is an even function,

hj, (€1, @2,y2) = 279 />0 cos(a(é1 — v(23 +13))) sin(B(o) 3 — y3)x1,, (0)do

= hjl (517x27y2) - h;l (51,$2,y2)7

where

i (&1, 22,2) = 2_j1/ sin(¢™ (03 &1, 2, ¥2))x1,5, (0)do,
o>0

with
¢F (0361, T2, y2) = (&1 — (23 + y3)) = B(o)]23 — 3.
Observe that
(6%) (o) = &1 — (75 +45) + B/ (0) |23 — v3|
(%) (o) = £8"(0)|23 — y3],

so that ‘
[(65)" (o) = 2% |25 — y3

in the support of x1,;, (see (6.1) below). Using van der Corput’s Lemma ([33, p. 334]), we obtain
the inequality

(4.7) hE (&1, 22, y2)| < C29/2|23 — 3] 71/2.

Now since o > 0, we have in view of (6.2.1) below

sin ¢ (0) = sin(o(6 7«3+ v3) = 3123 — 931) + O3 — 43/,

so that
— . 1
hy, (1, w2, y2) = 2771 / sin(o(&1 —v(23 +43) £ 5123 — 130)) x5 (0)do
(4.8) >0 2
+ T‘jil (517 X2, y2)7
where the error terms rjil satisfy the estimate
(4.9) I (&1, w2, 92)] S 277 |23 — 3.

Concerning the integral in (4.8), observe that

(4.10) | Z/ sin(A0)27 7" x1,5, (0)do| < C,
jre€ o>0

where the sum is over any finite set £ consisting of positive ji; the constant C' can be chosen
independently of £ and of A. To see this we use the inequality |sina| < |a| for the terms with
A2/t <1 and integration by parts for the terms with A2/t > 1. From (4.10),

(4.11) | (B (G w2, y2) — 755 (€1, 22,12)) | < €,
j1EE
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where £ is again any set of positive indices and the bound is uniform in &1, z2, y2, j2.
Now an application of formulae (4.7), (4.8), (4.9) and (4.11) shows that h is uniformly bounded.
Finally, the estimate (iii) follows by integration by parts, using the lower bound

1
[(@™) (o) = 516~ (@3 +3)l,
in the present case of assertion (iii), see formula (6.2.2) below. Moreover, if v > 2, then

00" ()] = 18 (0)l|23 — y3| < (1 + |o) 7117 |23 — 3],
which is an acceptable upper bound in (iii). O

In what follows, & will be fixed, and we shall not always indicate the dependence of the operators
on & . For M € Z, let

SMg(ra) = n(2 May)2 2 / oy (€, w9, v, j2)dys.

Let Cy be an integer with 2¢0=100 > T". We split

Se, =8+ Y, SN

(J2,M)
M<j2+Co

It is easy to see using the uniform boundedness of h and the definition of the cut-off functions that

(4.12) S 8M ()| < / 9@l g,

(42, M) w2 <2€0F2 |2y —ys| |22 — y2|
M<j2+Co

The integral on the right hand side in (4.12) is a standard Hilbert integral and therefore defines a
bounded operator on L%(R) (see [32, p. 271]).

We let
M _ M
ST = Z sz
Jo<M—Co
and the kernel S™ (2, y2) is supported where 2M =1 < |z < 2M+1 2M=2 < |9y < 2M+2 Therefore

the almost orthogonality property

(4.13) 1SS S}ldpl\SMH

holds. Thus it suffices to prove a uniform estimate for the operators S™. We split SM = PM 4+
(SM — PM) | where

PMg(xs) = Z mo (27 M2 Cot10(gy — 92923)) S g(2).
jo<M—Co

We first show that the operators PM are uniformly bounded. Since j» < M — Cy, we observe that
the conditions [27M~72=CoF10(¢ — 2432))| < 1 and 2M~1 < |zy| < 2M+L imply that & (27)7! > 0
and & (27)~! &~ 22M  and therefore

|[z2] = (&1/27)"?| < Cilaza — 12l
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Consequently

Pgte) < [ o)l

2.
w2l —(1€1/271)1/2| <Ci |22 —ys| |2 — V2]

The right hand side is a sum of two operators, each of them a Hilbert integral operator composed
with translation operators. Therefore it defines a bounded operator on L?(R) and

[P = 0(1).
Next we consider the operator S™ — PM which we split as

[SM = PMglea) = D (L—mo(2 M2 OMOE — 242)))S ) g(n)

ja<M—Cy
=3 027G -2v13) Y. SMg(x)
rez jo<r—M—Co+10
Joa<M—Co
= Z ng(xQ)v
TEL

say. Since 2¢0 > 21007 we have [2vy(z2 — y2)| < 2MF72H3|1| < 2r=Co+13|| < 2710 and hence
(4.14) |61 = 29w3] = |61 — 293 + 29(a3 —y3)| = 2"

Thus |&; — 2y23| € (2771,27F1), which implies that |&; — 2yy3| ~ 2" and we can deduce the almost
orthogonality property

(4.15) |S™ = PM|| < sup[|QM].

Now, analogously to (4.14), we also have
(4.16) |61 — (23 +y3)| = 2.
By Lemma 4.2 (ii) and (iii),
gy (€1, @02, y2)] S min{2790 77, 27 A
if |72 — yo| &~ 292 and |z2| = |y2| = 2M, and |&; — (23 + y3)| ~ 2" > 2M+I2 Therefore
|B(&1, w2, Yo, 2)| S 2272,
and it follows that

oY s Y 2Micc
M+j2<r

This now implies the uniform boundedness of the operators S™ — PM. Together with the L2
boundedness of PM and the orthogonality property of the operators SM this completes the proof of
Theorem 4.1. [0
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5. Basic decompositions and outline of the proof for n > 2

We shall now assume that n > 2 and that p is a nonaffine polynomial of degree < n. Since we
are estimating the operator 77 we shall assume that sums in j are always taken over subsets of
{(1,J2) : 10 < j1 < log R}.

We begin by refining the dyadic decomposition from Section 3. Using the cut-off functions 79 and
71 as defined in Section 3 we set

deg(p)—1 (v+1) o
(5.1) am(0) = 1,1;[2 770(2m+10pp(1,)((§)))

if deg(p) > 3 and a, (o) = 1 if deg(p) = 2. Next,

1 X )
5.2 bon (X1, Xa) = o (2710 _ LKD)y
(5:2) (X0, Xa) = p’(X1)+X2)
Moreover, let
(5.3.1) hi(X1, Xa) = no(27 710X + p/(X1)),
(5.3.2) hir (X1, Xa) = n(27 710X + 9/ (X0)),
so that hy = _ ol ace.

Now let T)j(x,y) be as in (3.7); our basic splitting (assuming j; > 10) is

(5.4) TjZHj-f—Uj-i-Wj‘f'ZVjT,
>0
where
(551> Hj(xvy) :Tj(xay)(l _ajl(xl +y1))7
(552> Uj(xvy) = Tj(xa y)ajl (xl + yl)(l - bjl (I + y))v
(5.5.3) Vi(z,y) = Tj(z, y)aj (1 + y1)bj, (z + y)hyj, r (T + y),
(5.5.4) Wi(z,y) = Tj(z, y)a;, (21 + y1)bj, ( + y)(1 = hjp(z + y)).

Let H;, U;, Vi, W; be the corresponding operators. Let H, U, V", VW denote the operators Zj H;,
Zjujv Z_j V;v and Ej Wj'

We shall also use the notation

(5.6.1) uj(z,y) = aj, (v1 +y1)(1 = bj, (x +9)),
(5.6.2) vi(@,y) = aj, (21 + y1)bj, (T + Y)hjy e (2 +y),
(5.6.3) wj(2,y) = aj, (¥1 +y1)bj, (¥ + y)(1 — hy, (x + ).

Proposition 5.1. The operator H is bounded on L*(R?).

24



Proposition 5.2. Let Z/IjL be the operator with kernel UjL given by

Ul (z,y) = Uj(z,y)n(2~ " p" (21)),

an(;.jet ut = EZ/{JL Then
i

(5.7) Ul < Sgpl\ULH-

(5.8) HUjLII < min{2L %tz 9= (Lt2jiti2)/4)

(59) QP UE ]+ IUF@E )| 22,

Proposition 5.3.

()
(5.10) IO VEI -+ 1V V)| S 277 ehel 2,
(i)

(5.11) ABS min {222+ =" or/2=(2ja+in)/4y

Proposition 5.4. For M € Z, L € 7, let WJM’L be the operator with kernel
(5.12) WM (2, y) = Wy, y)n(2 M (222 + p'(221)))n(2 " (221)),

and let WML =37 Wit Then
(i)

(5.13) WIS sup WM.
M,L

(ii)
(5.14) ||WJ1_VI)L|| < min{2M i1tz 9= (Mtiitiz)/4y

(iii) The estimate (5.14) also holds if WJM’L(x,y) is replaced by WJM’L(x,y)pJ— (x,y) where p;
satisfies 05 pj, Oy pj = O(2-rlenl=s2le21) " for ay, ap € {0,1}.

The previous propositions are enough to obtain a uniform bound on the operators &/ and V. For
W, an analogue of the crucial orthogonality properties (5.9) and (5.10) is missing, and we shall
instead use an approximation by operators treated in Section 4.
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Proposition 5.5. Suppose that m > 0. Fix M € Z and L € Z, and let I be a set of integer pairs
j = (j1,72) satisfying

1
M—L—m(1+2—)<j1§M—L—m
n

(5.15) L+2j1+52 <0
10 < j; < logR.
Let
2= Wi,
JeI

Then Z! is bounded on L?(R?) and
(5.16) 12122 < C,

where the admissible constant C' is independent of I, L, M, m, R.
Taking Propositions 5.1-5.5 for granted, we are now able to give a proof of the main theorem.

Proof of Theorem 3.1. By the discussion in Section 3 it suffices to prove the estimate (3.10). In
view of Proposition 5.1, we have to bound U, V and W. In order to bound U, it is sufficient to
obtain a uniform bound for the operators U~, by (5.7). Let

Lt L
utt= 3" ur.
L+2j1+ja=¢
Suppose L + 241 + jo =€, L + 2k; + ko = £ and |j1 — k1| = s; then by (5.8) and (5.9),
@GV UL + Il (@) || S min{ 2%, 272,272,

and by the Cotlar—Stein Lemma ([33, p. 280]) it follows that

Utt <3 “min{2f, 2744, 279/4) < (14 |¢]) min{2¢, 274},
s=0

Summing over / yields the desired uniform bound for &% and thus the boundedness of .
The operator V" is handled similarly. Now let V& = Z2j2+j1:€ V. From Proposition 5.3, we
have
IO VI + 11V (V)7 || S min{22¢727, 277 4/2 277 =9/2)

if 2o + j1 = 2ko + k1 = £, |jo — k2| = s, and we obtain from the Cotlar—Stein Lemma that

”VZ,TH S Z min{?lfr, 27"/272/47 277“/275/4}
s>0

and thus

V<> > v

r>0 LEL
S I)IAIEITEEES DI et
r>0¢<0 r>00<0<4r
4 Z Z (24/27(2747«)/4 I 2*’“/22“2/4(6 . 4r)),
r>00>4r
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and V is easily seen to be bounded on L2.
Now we turn to the operator W. By (5.13) it suffices to obtain a uniform bound for WML We
note that WJM’L =0if L+ j; > M. Therefore by (5.14)

Y w2 O <o

L+2j1+3522>0 L+2j1+522>0
L+ji1<M

For sums of terms WJM’L which satisfy L+ 2j; + j2 < 0 we use Proposition 5.5. For s =1,2,..., let

SR P ML (B <y <M — L— (2L L 425 + 52 < 0,10 < 51 < log(10 + R)}.

Then from Proposition 5.5,

| 52w =e

._.M,L
JGIS,R

uniformly in s, R and M, L. Now for fixed M, L, R the sets I SM ]’%L are nonempty for no more than
Cologlog(10 + R) choices of s; here Cj is admissible. Summing over s we see that |WL| =
O(loglog(10+4 R)), with an admissible constant, and by (5.13) we obtain the same bound for W. O
6. Auxiliary Lemmas
We first collect formulae for the derivatives of 5, ¥ and 6.
Lemma 6.1. (7)

/ s 11 1
(60 A E O
and
Is|| 2 1
(62.1) 96) = 51 = ST Sl
(6.2.2) B'(s) — %sign(s)‘ <1 _:152'

(i1) Let Z(x,y) = x2 + y2 + p'(x1 + y1). Suppose that Z(z,y) # 0. Then

(6.3) W (z,y) =225 — (22 — y2)Z(2,y)
(6.4) Vo, (z,y) = 2z2(x1 —y1) — p(x1 +91)
(6.5) Oy (2,y) = (x2 — y2) [F (21 — w1)|2(2, 9)| + B(z1 — y1)p" (21 + 11) sign(E(z, y))]
(6.6) Oz, (7,y) = B(x1 — y1)(222 + p' (21 + 31)) sign(E(z, y)).
(iii)
(6.7)
Uy, (2,y) = — (22 — y2)p” (21 + 11)
(6.8)

Oyy, (2,y) = (22 — y2) [B(x1 — y1)p"" (21 + 1) sign(E(x, y)) — 6" (21 — v1)[E(z,y)|] -
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(iv)
(6.9) Uoyyo (2,9) = 2y2 + P (21 + y1)
(610) \I]Ile (l‘,y) = —(2&[:2 +p/(‘r1 +y1))7

Orryo (,y) = B' (21 — 1) [(2 — y2) sign(Z) — [E(z,y)|] — B(x1 — y1)p" (21 + y1) sign(E)

(6.11) = [—B(x1 —y1)p" (@1 + 1) — B'(z1 — 11)(2y2 + P/ (1 + 11))] sign(Z)
Opoys (2, y) = =B (z1 — y1) [(22 — y2) sign(E) + |E(z,y)|] + B(z1 — y1)p" (z1 + y1) sign(E)
(6.12) = [B(z1 —y)p" (21 +y1) — B'(x1 — 1) (222 + P/ (z1 4 11))] sign(E).
(v)

( ) \1112132111 (‘Tv y) =2

( ) 91212741 (ZE, y) = _26/($1 - yl) Sign(E)
(615) \I]IQyQ (LL', y) =0

( ) 9121}2 (l‘,y) =0.

Proof. These are straightforward computations. O

We shall now examine the properties of the cut-off functions in (5.1-5.3). For this, the following
observations are essential.

Lemma 6.2. Let P be a polynomial, let £ < deg(P) and let

deg(P)

H mo( 2m+10%)
(i) Suppose that o € suUpp qy,, and |o — 7| < 2™F7. Then for v ="/,..., deg(P)
(6.17) |PW () = P (0)] < 5|P(")( o)|
and
(6.18) |PW) (1) < 21— (mFDk | pU=R) ()| ify— k> 0.
(i) Forr =1,2,3,...
(6.19) ol (o) < Cr27m™.

Proof. (i) If o0 = 7 then a slightly better estimate than (6.18) follows from the definition of ayy,,
and then for |0 — 7| < 2™*7 the estimate (6.18) follows once (6.17) is proved. To see (6.17) suppose
that o € supp au,,, and |0 — 7| < 2™*7. Then a Taylor expansion yields

deg(P)—v
pv+k)
PO (r) ~ PV (o) < P2 oy
k=1 )
deg(P)—

v 9—(m+10)kg(m+7)k

PO@ Y -

k=1
< (eV* = 1)|PM (o)
28
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and el/8 — 1 < 1/5.
(ii) follows from multiple applications of the chain rule, and the definition of the cut-off func-
tions. O

We now set
(6.20) (1,05, 105) = (ujX;, Vi X5, WiX5)
and
(6.21.1) aj (x,y) = a;(z, y)n2~ " (p" (221)))
(6.21.2) @y () = @y, y)n 2 (0" (200)))n(2 M (0 (221) + 22))

Lemma 6.3.
Forl=1,2,3,... the following holds.

()

(6.22) 0L, @ (2, y)| + 10}, i (2, y)| < C27Y1
(i)

(6.23) 105, @ (@, )| + 10y, %5 (z,9)] < G277 for all ji;
(i) @;VI’L(:C,y) = 0 if either M < jy or L+ j1 > M. Moreover

(6.24) 08 02 0 ()| + (00 02 0 ()| < Cr2~ e,

(iv) For all x1,22,y1,Y2
(6.25) /|8x2€) x,y |d:cg+/| 2 0j (2, y)|dy2 < C.

Proof. These are straightforward computations using the chain rule, Lemma 6.2 and the definition of
the cut-off functions. For (6.25), we use the fact that the sign of 7 changes finitely many times. O

The next lemma is used to estimate various operators of Hilbert integral type. The argument is
closely related to one in [9].
Lemma 6.4. Let P be a polynomial of degree < m. Then for p >0

P t) Am?
// ‘1_770(/1& )| ds dt < 022
ls—t|<p P(c18 4+ cot) |cl+02|

Proof. Let k1 < --- < kK¢ be the real parts of the zeroes of P. For v = 1,...,0 —1, let p, =
(ky + Kug1)/2. Let Iy = (—oo, p1), I, = (pw—1,p00), 2 <v < -1, and Iy = (ty—1,00). Then
P'(o)
P(o) ’ o — K|

, foroel,.
Therefore the set
|P'(c15 + cat)]

>1/2
|P(618+02t)|p_ /}

{(s,t) s |s —t[ < p, A

is contained in
U{(s,t) s(ers+cat) € I |ers + cat — k| < 2mAp; |s —t] < p}

which is easily seen to be of measure O(p?); in particular one may check the asserted dependence
oncy,cy. O

Remark. We shall use this lemma just for the regular case where (c1,c2) = (1,1).
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7. Proofs of Propositions 5.1-5.5

7.1. Proof of Proposition 5.1.
We may assume that p is a polynomial of degree at least three, since otherwise H = 0. For
2<v<n-—1,let

Qi(s) = {t: [s —t] < 21220 (s )] > [p) (s + )]},

and for g € L*(R),
Era) =2 [ gty
Qr(s)

and & = Y. &Y. One can use an argument in [9] to show that £” is bounded on L*(R). Alter-
natively, we use an almost orthogonality argument based on Lemma 6.4. Specifically, denote by
kim (w, z) the kernel of (£/)*EY,. Since ((E))*EL)* = (E4)*E} we may assume that [ < m. Then,
for fixed z,

v+1)(5 +w>|21+1
[P (s + w)]

>

)

(
/|kzm(w,2)ldw S27m {(w,8) ¢ ]s —w| <21, I H g2t

1
2
by Lemma 6.4, and since also [ |kim(w,2)|dz = O(1) for all w we see from Schur’s test that
I(EV)EL| = O27I™~U/2). By the symmetry of the operators £, one also gets ||EF(E4)*|| =
O(27m=!/2) and the Cotlar-Stein Lemma shows the L? boundedness of £”. Now

LTRSS 95 SERl I U O 78

v=2 ji 51 (@)

where B*1¥! is as in (3.9), and by Lemma 3.3 it follows that H is bounded. O

7.2. Proof of Proposition 5.2.
Part (i) follows from Lemma 6.2 above. Indeed suppose that a;, (z1 +y1) # 0, |21 — y1] < 207!
and 2171 < |p”’(2z1)| < 2L+, Then from (6.17)

1 4,
[p"(221) = p"(21 + )| < £ p"(200)] < 32L .

and similarly [p”(2y1) —p” (221)| < 2271, Hence if (z,y) € supp Ul then both p”(2x1) and p”(2y1)
lie in the interval (21=%,2L%2). This clearly implies that the operators U are almost orthogonal
(in fact UL)*UY =0 and UF U )* =0 if |L — L'| > 10).

Assuming that L + 2j; + j2 < 0, the estimate (5.8) follows from the definition of 1 — b;, and the
inequality |sina| < al.

Now assume that L + 2j; + jo > 1 and write the sine as the sum of two complex exponentials.
Then we have to estimate operators R;-’L with kernels

(7.2.1) R;’L(,T, y) = 2—j1—j2Xj (z — y)uJL(:C, y)eiv‘l’(ﬂﬂxy)-i-e9(iﬂ7y)7
where € = +1 and u}(x,y) = u;(z,y)n(2~Fp" (211)).
Let
e, L,x2,y2 __ oj2 p&,L
(7.2.2) R_j (z1,91) =2 Rj (z1, 22, Y1,Y2),
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and denote by R;’L’“’yz the corresponding operator acting on functions in L?(R).
Let & = &< =~V + €. We note that

(o, (21,91, 02, y2) — Bay (21, 21, T2, y2) | 2 25772 |y1 — 2.
This follows since by (6.7) and (6.17),
| ~ oL+3:

|(I)m1y1 (Ilv 215 Z2, y2)

if Z; is between z; and y1. The derivative ®,, (z1, y1, 22, y2) — Ps, (21, 21, T2, y2) has only a bounded
number of sign changes and we may use van der Corput’s Lemma to see that the kernel K;(y1,21)

L L . .
of (Ry™ "2 )* Ry ™™ ¥2 satisfies the estimate

|Kj(y1,21)| S 2774 (14 2840200 yy — )
Hence it follows from Schur’s test that

”(Ré_,L,wmyz)*Ré_,L,wz,yzH <L+ 25y + jo)2 L2052 < 9~ (L+2j1+42)/2
J J ~Y ~Y 3

uniformly in xs,y2. Consequently R;’L’“’” is bounded on L?(R), with operator norm of order at
most 2~ (L+21472)/4 and by an averaging argument (see the proof of Lemma 3.3) it follows that

||R§’LH < 9~ (L+2in+i2) /4

and also that the same bound holds for L{jL.
The orthogonality property (5.9) follows again from the argument in Lemma 6.4. We now give
the proof for (L{JL )*UE, and without loss of generality, we may assume that k; < j;.

Let Kji(y, z) be the kernel of (UJ)*U;’; with k; < ji. Now for every (z2, z2), let
Ef;@ ={(z1,21) : |21 — 21| < PAES Ip" (x1 + 21)| > 2_k1_100|p/($1 +21) + 22 + 22|}

By Lemma 6.4, the measure of E¥1 _is O(22¥1). Therefore

T2,z2
// |u§(m,y)u£(m,z)xj (x —y)xk(x — 2)|dz1dz; < // . dridz; < 22k
Bz}
This yields
sup [ | (0. 9)ldz £ 250,
y

and together with the obvious estimate
sup [ 1Ky, 2)ldy 5 C.
z

this implies that || ) UL || = O2F=31)/2) "if ky < jy.
For the estimation of HZx{f(L{%)*H, one uses that also |p”(2y1)| ~ |p”(2x1)| ~ 2¥ on the support

of the amplitudes (as pointed out above); the argument is then the same as for (Z/IJL yub. o
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7.3. Proof of Proposition 5.3.
We first show the bounds asserted for (V])*Vy in (5.10). Since ||[(V])*Vi|| = [[(VL)* V]|, it suffices
to consider the case where ks < jo. Observe that the kernel K of (V; )*Vy is given by

Kix(y,2) =

91k —j2—kz /ei(q’(z’z)*w(m’y)) sin 0(z, z) sin 0(x, y)vj (z, y)vg(z, 2)x; (* — y)xx (> — 2)dz.
For fixed x; and z1, we estimate
/ |v§(:v, Y)vp(z, 2)x(x — y)xe(x — 2)|dzedze

(7.3.1) )
: //p,(z1+21)+z2+22|§2k2+10’T dzadzy S 270277,

‘12—22‘S2k2+1

and therefore
/|Kjk(y,zl,22)|d22 < min{271, 2k11 92k —rg=di—ja—ki—k2

Now Ky, is supported where |y; — 21| < max{271+2 2k1+2} "and so
sup/|Kjk(y,z)|dz < Qk2—d2r,
y
If we reverse the role of y and z in (7.3.1), we have to use the less favorable bound

/ o5 (s ) (2 2)x5 @ — w)xe (@ — 2)|deadys

(732) < // H(m1421)+matas|<2k2 10T dxadys S 2j2+k2—r,

|wo—ya| <2721

and we obtain
Sup/ | Kk (y, 2)|dy < C27".

Taking the geometric mean and applying Schur’s test, it follows that
(7.3.3) VARAE O(2 " Ika=02l/2),

By the symmetry of V] we obtain the same bound for ||V} (Vp)*|.

We now turn to the assertion (ii). To obtain the bound ||V} || = O(2*>17177) we just use Schur’s
lemma and invoke the estimate |sina| < |a| and the support property of hj, ,.

It remains to prove that |cV/|| = O(2"/2~(272771)/%) Take ¢,¢’ € {1}, and define

(7.3.4) Peo = {(x,y) : signy = €'e sign §'(z1 — y1) sign(xz +y2 + p'(x1 +31))}-
Let ., be the characteristic function of I'c ., and let

(7:3.5) Vi (e, y) = 27T (e = )l OV OEDN @y o (),
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so that

ee’'e{-1,1}

It clearly suffices to prove that

(7.3.6) [Vre|| = O(2r/2— R+ 1),

J

The kernel K;(y, z) of (V;’e’el)*V;’E’E, is given by

K;(y,z) = 272123 //E( ) @@ =R@W) YT (3 y)ol (2, 2)xj(z — y)x; (2 — 2) dzo day,
Y,z2,T1

where
E(yvzvxl) = {IQ : ($1,$2,y) € Fe,e’a ($1,I2,Z) S Fe,e’}-

Clearly E(y, z, 1) is the union of no more than 16 intervals. We note that

(737) |(I)1212 (LL', Z) - (I)IQIQ (;Cv y))' ~ |y1 - 21"
To see this, apply the mean value theorem and observe that ¥,,,,,, = —2 and
emzmzyl = —ce Sign7 + 051,

where |o;,| < 27271, Thus, since |y| > 1 and j; > 10 we see that [®;,4,,,| ~ 2. Hence we can use
(7.3.7) to apply van der Corput’s lemma on each of the connected components of E(y, z, z1). Taking
into account the bound (6.25), we see that

(7.3.8) ‘ /E( )ei(é(m’z)fé(z’y))v;(;v, Y (z, 2)x;(x — y)x;(@ — 2)dza| S 2"y1 — ,zl|’1/27
Y,2,T1

uniformly in z1, y2 and 29. From (7.3.8), it follows that |K;(y, 2)| is dominated by 2791 72J2|y; —
21|72, and of course it is supported where |y; — 21| < 2711 |yo — 25| < 29211 We apply Schur’s
test and deduce that

||(V?“,€,e’)*vf,e,e’|| < 2r—(2j2+j1)/2,

hence we get the bound (7.3.6) and consequently the bound [V} < 2r/2=(iz+i)/4 - O

7.4. Proof of Proposition 5.4.

Part (i) follows in view of the localization of the amplitude. Suppose that (z,y) € supp WjM’L
and x;(z,y) # 0. Then 2M~1 < |225 + p/(221)] < 2M+L and since |p'(2y1) — p'(221)| < 21 FE+2
from Lemma 6.2, we have

2y +p/(2y1) c [2M—1 _ 2j2+2 _ 2j1+L+2, 2M+1 + 2j2+2 4 2j1+L+2];

moreover the quantity xo 4+ y2 + p’ (21 +y1) is also contained in this interval. Since jo < M — 10 and
L+ j; < M — 10, we see that

(7.4.1) 2M72 < ag +yo +p/ (21 + )| < 2MH2

(7.4.2) o2M=2 < 1295 + ' (2y1)| < 2M T2,
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Furthermore |7 — 1| < 21171 281 < |p/(221)] < 2EF1) and so Lemma 6.2 yields |p”(2y1)| ~
|p” (221)| = 2. Therefore we can conclude that the operators WL are almost orthogonal; specifi-
cally (WM-Ly-WM'.L" —  and WM-L(WM'.L')* — ( if either [M — M’| > 10 or |L — L/| > 10. This
implies (5.13). If M + ji + j2 < 0 the estimate (5.14) follows from the fact that sina = O(|al).

We now assume that M + j; + j2 > 0. For €,¢ € {1}, let x. ¢ be the characteristic function of
the set I'c o/, defined in (7.3.4). Fix L, M, ¢, € and let

M,L,e,e'(

wj(z,y) = w) 2,y) =@ (@, Y)Xe o (2, 9)

(see (6.21.2)), and let WJM’L’e’e/ be the integral operator with kernel
WJMvaEvE, (I’, y) — 2_j1 _jQW‘vavaE, (x7 y)ei(’y\ll(iv,y)-‘,-ee(w,y)).

Multiplication with the characteristic function x.. does not introduce additional singularities in
view of the localization of the symbol wj;; in fact, we have the estimates

(7.4.3) 0500w (2, y)| < Co g2 (180 2(0x 482,

The kernel K;(y, z) of (WJM’L’e’el)*Wy’L’E’E, is given by

Kj(y,2) =272 20 [ 0@ o) 0 s 0 — ) o 2)d
In view of our assumptions that |y| > 1 and j; > 10, we see that
Pz | = (222 + p' (21 +4n)| = 27,
and also that ®,,,, = 0. Hence
|@a, (2, 2) = ay (2,) & 2 |y — 2.
Applying van der Corput’s Lemma,
|Kj(y, 2)| S 277772 (14 2M4 2 |y — 2z)) 7,
and since K is supported where |ys — 25| < 27211 we have
sgp/ |Kj(y, 2)|dz + Stzlp/ Ky, 2)ldy S (M + jz + jr)27 75270,
By Schur’s test,

I TSR A R

and this completes the proof of (5.14).
Since we have only used property (7.4.3) our argument proves the assertion (iii) as well. O
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7.5. Proof of Proposition 5.5.
Fix I and let Z = ZI. Choose ¢ € C§°(R), supported in (—1,1) and with the property that
> ez C(s —v) = 1. Define the operator Z, = Z] with kernel

Zy(z,y) = LM )7 (2,y).

In view of the localization |z —y;| < 2M~L=m+1 we see that the operators Z, are almost orthogonal;
ie, (2,)*2, =0and Z,(Z,)* =0if v — /| > 100. Therefore

(7.5.1) IZ] < sup (|2,

It hence suffices to prove a uniform estimate for the operators Z,. We wish to approximate the
phase functions ¥ and 6 by affine functions in the first variable.
We may suppose there is a point ¢, such that

(752) 7’](2_Lp”(2cy)) 7é 0 and |CV _ 2M—L—my| S 2M—L—m—9,
for if not then Z, = 0. Define
U, (z,y) = (21 — y1) (@5 +43) — (2 — y2)p(2¢,) — (w2 — y2)p'(2¢,) (21 + y1 — 2¢,)
0, (z,y) = Bz — y1) (@2 — y2)|@2 + y2 + p'(2¢,)].

Now Z, =3 .. 4 Z,; where in the sum only those j; come up which satisfy

jEA

2n+1

M—-L— m<j1<M-—L—-—m,

and the kernel of Z, ; is defined by

(7.5.3)  Zyj(z,y) = 279772V @W sin 0z, y) yj (z — )
x aj, (z1 4+ y1)bj, (@ + y)n(2~ p" (221))n(2 ™M (22 + p(221)))¢ 5T M 02y —b).

Since we assume that L + j; < M the function b;, (x + y) can be omitted in (7.5.3); it is equal to 1
on the support of the other cut-off functions. Let

2 MY (@) = xg(x — )@ Ep" (2a0) (2 M (22 + p/(221)))REFM MO0z, — ),
We split Z, ;(z,y) as Z§:1 Z}, i(x,y), where

(7.5.4)
2} j(wy) = 2792 (VW sin i, y) — eV sin b, (2, )) 2 (2, y)ag, (@0 + ),
(7.5.5)
—j1—72 vV, (z,1 . L,M,v
Z} j(x,y) = 27072 B sind, ()2 (@, y) (a5 (21 + ) — 1),
(7.5.6)
3 _ o—Jj1—J2 1YV, (x, : L,M,v
Zu,j(xvy) =271 72e" (2.9) SIHGU(.I,y)Zj (Iay)v

and form operators Z, = Y., Z} ; where Z/ ; has kernel Z], ;.
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The operator Z2 is handled by the argument in the proof of Proposition 5.1, with only notational

changes.
The operator Z3 represents the main term. Note however that Z3 f(z) = g(x)Z, 3 f(x), where g

is a bounded function, and Z~Uy3 is an operator which is already shown to be bounded by Theorem
4.1. Thus || Z3|| = O(1).
It remains to estimate the kernel Z} ;. Suppose that aj, (21 + yl)sz’M’V(:E, y) # 0. Then

W (2,y) = Vo (z,y)| < Ip(e1 +y1) = p(2¢0) — P/ (200) (21 + y1 — 260)| |72 — v2

2c
< |x2 —y2 Z p®(2e, ||3: + 1 —2¢,|!

"L — s (2¢c, —221)% [ |71 + y1 — 2¢,|!
S |5172 —92|Z’ZP(H ))(21171) s 1!
=2 s=0 ’ ’

< 9J2 Z 9L—(1=2)(j1+10) o (M —L—m+1)l
1=2

n
S 9L+2j1+j2 Z (M —L—m+1—ji)l
=2
(7.5.7) < 2L+2j1+j2+%7

since we assumed that M — L —m — j1 < m/2n. Similarly

0(,y) — 0,(x,y)| < Bz —y1)|z2 — y2llp’ (221) — p'(2¢))]

n l
5 9J1+J2 Z |7p((l)(2lx)l')| |2331 - 26v|l71

< 2k 3 oL (=210 (M —Lom+1)(1-1)
=2

(7.5.8) < obtZitiaty
Moreover
(7.5.9) 225 +p/(221)] & |22 + 1’ (201)| = 2V,
and then
(7.5.10) 225 +p'(2¢,)| ~ 202 + P (2¢,)| = 2V

because ja < M and

" 1p(2
p Cy _
Ip'(221) — p'(2¢,)] < E 7' 0 _( 1)!)| 1221 — 2¢, |71

<22L 1(1=2)9(M—=L-—m)(I-1)

< 2L+J1+m+2 < oM—3+2
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Similarly |p’(2y1) — p'(2¢,)| < 2M~%+2,
From (7.5.7) and (7.5.8), it follows that

|ei7‘1’(w7y) sinf(x,y) — eV (@) gip 0, (x, y)‘ < oL+2j1+72+%
for the relevant values of (x,y) in (7.5.4), and Schur’s test yields
”Zl ” < 9L+2ji+j2+%
v,] ~ N
By (7.5.9) and (7.5.10), we may apply either Proposition 5.4 with the polynomial p or with the affine

polynomial p(c,) + p'(¢,)(s — ¢v), and the suitable choice of p; in part (iii) of Proposition 5.4. This
leads to

(7.5.12) IIZ;J»II < min{2~(MH+i+52)/4 gMtjiti2)
if j1 < M — L. We obtain

Z 121 S Z min{2E+2 izt g o (M+irti2)/4) < min{o—% 20-%1.

Jjel J1SM—L—m
M+j1+72=¢ L+2j51+72<0
M+j1+j2=¢

Summing over ¢ demonstrates the boundedness of the operator Z}.
We have shown that Z! = 2?21 Z! is bounded with operator norm uniformly in M, L,m,I,v.
The assertion of the theorem now follows from (7.5.1). O

8. Failure of weak amenability for Lie groups

Suppose that G is a connected Lie group, with Lie algebra g. Then g decomposes as s & t, where
s is a semisimple subalgebra and v is the maximal solvable ideal of g. We may write s as a sum of
simple ideals:

(8.1) 5=51D - Dsm.

Denote by R, S and S; the analytic subgroups of G corresponding to t, s and s;. Then R is closed,
but S and S; need not be. Further, G = SR, but this need not be a semidirect product, as SN R may
be nontrivial. To do analysis on G, we need S to be closed and the product SR to be semidirect.
Our first result enables us to work in this better environment by passing to a finite covering group.

Proposition 8.1. Let G, R, S and S; be as described above, and suppose that S has finite center.
Then G has a finite covering group G* which has closed connected subgroups R*, S% and SE, whose
Lie algebras are ¢, s and s;, such that R® is normal and solvable, S% is the direct product of the
simple Lie groups SE, each of which has finite center, and RN S% = {e}; thus G* is the semidirect
product S% x RY.

Here GY is said to be a finite covering group if G is isomorphic to G /Z where Z is a finite normal
subgroup of GY.

We leave the proof of Proposition 8.1 until later. Observe that A(G) = A(G?), by 1.2.4, (ii);
moreover by 1.2.4, (i), G has a multiplier bounded approximate unit if G has one. Thus to compute
A(G), we may and shall henceforth assume that G, R, S and S; have the properties of G, R%, S% and
SE in Proposition 8.1.
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Now to prove the theorem, observe that if the factors S; making up S are all either compact
(when i € I, say) or of real rank one and commute with R (when ¢ € J, say) then we may write G
as a direct product:

(82) G =15 x ((I] %) = R).
i€ il
The second factor is amenable, so A(([];c; Si) x R) = 1, and hence
(83) AG) =T AS:) =[] AS),
i€ i=1
by 1.2.1(iv).

On the other hand, if any S;, i € J, is of real rank at least two, then A(G) > A(S;) = +o0 (see
1.2.1(iii)); moreover the proof in [14] and [10] that A(S;) = oo in combination with (1.2.4 (i)) shows
that S; and therefore G does not have multiplier bounded approximate units.

The remaining case to consider is when there is a factor S; of real rank one which does not
centralize R. The following result contains the structural information needed to reduce to known
cases.

Proposition 8.2. Suppose that the connected Lie group G is a semidirect product of the form
S X R, where S is closed, connected, semisimple and has finite center, and R is closed, connected
and solvable, and suppose that a noncompact factor S; of S does not centralize R. Then G contains

a closed subgroup Gy with a compact normal subgroup Ko such that Go/Ky, or a double cover of
Go/ Ko, is isomorphic to SL(2,R) x R™ (where n > 2) or to SL(2,R) x H" (where n > 1).

Thus under the assumptions of Proposition 8.2. it follows that Go/K( does not admit multiplier
bounded approximate units, by the calculations of [9] for the groups SL(2, R) x R™ and of this paper
for the groups SL(2,R) x H™. Thus by (1.2.1), (iii) and (1.2.4), (i) the group G does not have
multiplier bounded approximate units and in particular we have A(G) = oc.

It remains to prove Propositions 8.1 and 8.2.

Proof of Proposition 8.1. To every Lie algebra a, we may associate a unique connected, simply
connected Lie group A with Lie algebra a. Every connected Lie group A’ with Lie algebra a is
a quotient of A by a discrete normal, and hence central, subgroup D of A. For these facts, and
much more, about the structure of Lie algebras and Lie groups, see, for instance, [11] or [21], [36].
Consequently, we will be interested in the structure of the center of a connected, simply connected
Lie group.

Let G* be the simply connected covering group of G, and let R* and S* be the subgroups of G*
corresponding to t and s. Then R* and S* are both closed in G*; further, R is normal in G* and
S# N R* = {e}, so that G¥ = S* x R* ([36], Thm. 3.18.13). Consequently, the center Z(G*) of G*
may be written as a direct product: Z(G*) = Zg x Zg, where Zp is the subgroup of the center
Z(RF) of R* of elements which commute with S*, and Zg is the subgroup of the center Z(S*) of
St of elements commuting with R*. Let S’f be the subgroup of G corresponding to s;. Then Sf
is closed in S%, and hence in G*; further, Sf is simply connected and normal in S%, so that S* is a

direct product of the factors Sf, and Z(S*) is the direct product of the centers Z(Sf) of the Sf ([36],
Thm. 3.18.1).

The group G, being a quotient of G*, is of the form G*/D, where D is a discrete subgroup of
Zg X Zpr. Set

Do =[]IDnSH x [DnRY.
i=1
We need an auxiliary result.
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Lemma 8.1.1.
(i) Dy is of finite index in D.
(i) Each DN Sf is of finite index in the center Z(Sf) of Sf.

Taking this for granted the group G/ Dy is a finite covering of G/D, and has the required properties

as it is isomorphic to
m

[Is:/(D s w (B /(D 0 R

=1

We take S? to be S¢/(D N S?) and RY to be Rf/(D N RY). Then R is closed, normal and solvable,
and SE is closed, simple and have finite center. The center of S? is the product of the centers of the
groups S’E, and is also finite. Finally, S* N R is trivial, where S% = I, S’E.

It remains to give the

Proof of Lemma 8.1.1. First, we claim that Zg is of finite index in Z(S*). Indeed, the adjoint
action Ad, of S* on t is a linear representation of S* and the image Ad, S* of S* in SL(t) is a
closed semisimple subgroup of SL(t); the center C' of this subgroup is finite [21, Prop. 7.9] Moreover,
Ad.(Z(S*)) is contained in C, so that Ad,(Z(S*)) is finite. The group R is generated by arbitrarily
small neighborhoods of the identity, so an element of S* centralizes R* if and only if it centralizes
small neighborhoods of the identity, and hence if and only if it acts trivially on t by the adjoint
action. Then Zg is the kernel of the adjoint map of Z(S*) into SL(t). In conclusion, Ad.(Z(S%)) is
isomorphic to Z(S%)/Zg, so Zs is indeed of finite index in Z(S¥).

Next, note that DN S* = DN Z(S*) = DN Zg, since D C Zs x Zp. We claim that D N S*
is of finite index in Z(S*). Indeed, S is isomorphic to S*/D N S%, and its center is isomorphic to
Z(S¥)/D N S* (in fact, if € S*\ Z(S¥), then Ad(x) acts nontrivially on any small neighborhood of
the identity in S*, and hence its image in S*/D N S* also acts nontrivially on such a neighborhood).
By hypothesis, the center of S is finite, so D N S* is of finite index in Z(S*). Since

Z(SH/[DN S ~ DZ(SY)/D C DZ(S*)/D ~ Z(5%)/[D n 5%,

DN S! s of finite index in Z(Sf). Now write E for [[/",[D N S?); it follows that E is a subgroup of
Z(S*) of finite index which is part (ii) of the lemma.

For part (i) we shall establish that E(D N R*) is of finite index in D. This also follows from the
isomorphism theorems. Since Zs/(DNZs) C Z(S*)/(DNZsg) is finite, and Zs/(DNZg) ~ DZs/D,
there exist 21, 29,..., 25 € Zg such that

J
DZs = | ] Dz;.

j=1
If Dzj N Zp # 0, take r; € Dz; N Zg; otherwise take r; = e. Then it is easy to check that
DZj NZgr C (D N ZR)T‘j.

It follows that
J J

(DZs)N Zp = UDzJﬂZRQ (DN Zg)ry,
1

Jj=1 Jj=
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and so (DZg)N ZR/(D N Zg) is also finite. As D is contained in the direct product ZsZg, it follows
that DZs = Zs((DZs) N Zg), and so

D/(D NZs)(D N Zg) C DZS/(D N Zs)(D N Zg)

= Zs((DZs)NZr) /(DN Zs)(D N Zg)
~ (Zs/(DNZs))(DZs)NZr/DN ZR),

which is finite. Thus (D N Zg)(D N Zg) is of finite index in D. Since E has finite index in DN Zg,
E(D N Zg) is of finite index in (D N Zg)(D N Zg), and thus of finite index in D. This finishes the
proof of Lemma 8.1.1 and Proposition 8.1. [

Proof of Proposition 8.2.

We recall that S; does not centralize R so that s; does not centralize t. The proof now proceeds
by a series of reductions.

First, we cut down the semisimple part. Take a Cartan involution 6 of s;, so that s; = ¢ & p,
where € and p are the +1 and —1 eigenspaces of 6, and take a maximal abelian subalgebra a of p.
Then the Lie algebra s; decomposes into a sum:

si=go+ Y o,

acl

where each « is a linear functional on a, and X € g, if and only if [H, X] = o(H)X for all H € a.
For more on these root decompositions, see, e.g., [15], [21]. Take a nonzero element X in this g,
where o # 0. Then span{X, 06X, [X,0X]} is a subalgebra sy of s; isomorphic to s[(2,R), and the
corresponding analytic subgroup Sy of S; is locally isomorphic to SL(2,R), has finite center, does
not centralize R, and is closed in S; and hence in S (see [37, Lemma 1.1.5.7]).

Note also that So/Z(Sp) is isomorphic to a matrix group ([36, Thm. 2.13.2]) and the only matrix
groups locally isomorphic are SL(2,R) and PSL(2,R) (i.e., SL(2,R) divided by its center).

Furthermore, [sg,t] # 0; indeed, {X € s; : ad(X)|. = 0} is an ideal in s;, which is a simple Lie
algebra; and hence {X € s; : ad(X)|. = 0} = {0}. The subgroup Sp x R is closed in G.

The second reduction cuts down to the nilradical. Let N be the maximal connected normal
nilpotent subgroup of GG, which is automatically closed, and let n be its Lie algebra. Then N C R
and n C v, and moreover, [so,t] C n (see [36, Thm. 3.8.3]). We claim that [so,n] # {0}. If it were
true that [sg,n] = {0}, then the Jacobi identity would imply that,

[X,Y],Z] =[X,Z],Y]+ [X,[Y,Z]] =0, X,Y €5, Z€r,

since the inner commutators of both summands of the middle term of the equality lie in n, from
which it would follow that [so,t] = {0}. Thus [s, n] # {0}. It now suffices to consider Sy x N, which
is closed in Sy X R and hence in G.

The third reduction allows us to assume that N is simply connected. Let K be the maximal
compact connected central subgroup of Sy X N; it is contained in the nilradical N. We observe that
the nilradical of (Sy x N)/K is equal to Sy x (N/K) and we shall show that N’ := N/K is simply
connected.

The center Z(N) of N is a connected Abelian Lie group [36, Cor. 3.6.4] and thus isomorphic to
Rk x T!, for suitable k,I. We claim that T' is central in Sy x N. Note that then T is also the
maximal compact connected central subgroup of G (since any connected central subgroup must be
in the nilradical).
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We first show that T' is a normal subgroup. For any fixed ¢ € Sy x N the automorphism
Bg : n+— gng~ ! fixes the center; thus gT!g~1 is a compact Lie subgroup of Z(N) which must be T/,
thus T! is normal in G. Consider the map g — ¢g|lt which takes G into the automorphism group
of T!. This group is discrete and since G is connected we see that ¢g|p is the identity, thus T' is
central in G and thus isomorphic to K.

We claim that N’ := N/K is simply connected. Indeed let N be the simply connected covering
group of N; it has center Z(N) = R¥ > Z! and N = N/Z. Now

N' = N/T! = (N/z})/(R'/Z") = N/R.

But N’ = N/R! is simply connected by [36, Thm. 3.18.2).

In the remaining part of the proof we shall show that Sox N’ 2 (Sox N)/K has a closed subgroup
G1 which is locally isomorphic to some SL(2,R) x R™ (n > 2) or some SL(2,R) x H” (n > 1).
The desired subgroup Gy of G is then the closed subgroup of Sy x N of elements whose image in
(So x N)/K under the canonical projection lies in GG1, and the appropriate compact subgroup Ky
is the direct product of Z(Sy x N) NSy and K.

In order to proceed we need the following lemma.

Lemma 8.2.1. Let m, : sl(2,R) — End(R") be the (unique) irreducible representation of sl(2,R)
of dimension n. The space of bilinear forms B : R™ x R™ — R which satisfy

(8.4) B(mno(U)V, W) + B(V,m,(U)W) =0 VU €5(2,R) VV,W € R"

is one-dimensional. These forms are symmetric or skew-symmetric as n is odd or even.

Proof. Let
1 0 0 1 0 0
(o B) (o) r=(0)

that is, the standard basis for s[(2,R) satisfying the commutation relation [X,Y] = H, [H, X| =
2X and [H,Y] = —2Y. Tt is well known (see for instance [18, ch. II1.8]) that there is a basis
{FEo,...,Fn_1} for R" such that

Tn(H)E; = (n—1-2§)E;, j=0,...,n—1
Wn(X)Ej:Ej+1, j:O...,n—2, Fn(X)En_lzo
Wn(Y)EJ :](n—j—Fl)EJ,l, ]:1,71—1, Wn(Y)EOZO

Let B be a bilinear form satisfying (8.4). If 0 <i,j < mn — 1, then
0 = B(mn (H)E;, E;) + B(Ei, ma(H)E;) = (2n — 2i — 2j — 2)B(E;, E)
so that
(8.5) B(Ei,E;))=0ifj#n—i—1.
Further, if 1 < j <n — 1, then
B(Ej, Ep—j1) = B(mu(X)Ej1,En_j 1) = =B(Ej_1,m(X)En_j1) = —B(Ej_1, Enj),
whence

B(E;, Eyp—i—1) = (=1) B(Ey, Ep—1), 1<i<n—-1,
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so that B is completely determined by B(FEy, F,,—1). In particular,
(8.6) B(Ei,Ep_i1) = (=1)""'B(En_i_1,F).

Thus by (8.5) and (8.6), B is symmetric if n is odd and skew-symmetric if n is even. O

Proof of Proposition 8.2, continued. We now consider Sy x N’ and we must produce a closed subgroup
of Sy x N’ locally isomorphic to SL(2,R) x R™ (n > 2) or to SL(2,R) x H” (n > 1). Let n be the
Lie algebra of N’; since N’ is simply connected, the exponential map is a homeomorphism from n
to N’, and subalgebras of n map to closed subgroups of N’.

We define the ascending central series of n inductively: let ng be {0}, and if j > 1, define n; to
be {X € n:[X,n] Cn;_1}. Since n is nilpotent, there exists a positive integer [ such that n; = n, so

{0}=npCnmy C---Cny=n.

Choose j such that [sg,n;_1] = {0} but [so, n;] # {0}. Under the action of the semisimple group Sp
on n, the subalgebra n; splits into a sum of irreducible Ad(Sp) modules, not all of which are trivial.
Let m be a nontrivial summand in this decomposition; then [sg, m] = m.

From the Jacobi identity we get

([X,Y],Z) = [[X,Z),Y] +[X,[V,Z]] =0, X €s,Yemand Zen, i,

since [X, Z] € [so,n;-1] = {0} and [X,[Y, Z]] € [so,n;—1] = {0}. It follows that [m,n; ;] = 0. In
particular, [m,m] C n;_q, so [m, [m, m]] = {0}, and m + [m, m] is a subalgebra of n. Given any linear
form A on [m, m], the bilinear form B : (V, W) — A[V, W] satisfies

B(ad(U)V, W) + B(V,ad(U)W) = A([ad(U)V, W] + [V, ad(U)W]) = Mad(U)[V, W]) = 0

for all U in sl(2,R) and all V and W in m. Since the space of such bilinear forms is one-dimensional,
from Lemma 8.2.1, it follows that dim([m, m]) <1 (in particular, if dim(m) is odd, then [m, m] = {0},
for the form (V,W) — A[V,W] is skew-symmetric). Let m = dim(m). Then exp(m + [m,m]) is
isomorphic to R™ if m is odd or m is even and [m, m] = 0, and isomorphic to H™/? if m is even and
[m, m] # 0. The group Sy X exp(m + [m, m]) is the required subgroup of Sop x N’. O
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