REGULARITY PROPERTIES OF WAVE PROPAGATION ON CONIC MANIFOLDS
AND APPLICATIONS TO SPECTRAL MULTIPLIERS

DETLEF MULLER ANDREAS SEEGER

1. Introduction

Let n > 2 and N be a compact Riemannian manifold of dimension n — 1, possibly with boundary.
Following [9], we define the metric cone T'(N') over N to be the space Rt x N, together with the Riemannian
metric

dr + gy,
where gy is the Riemannian metric on . Let Ay denote the Laplacian on N, where we assume Dirichlet

or Neumann boundary conditions for Ay, if the boundary N of A is non-empty. The Laplacian on T'(N)
is then given by

8? n-19 1

(1) A=gat = 5 T aly

(here, to conform with the standard definition in R™ we have taken Aj and A to be nonpositive). It has
been shown in [9] that A is selfadjoint on L*(T'(N)), when endowed with the appropriate domain adapted
to the Dirichlet or Neumann conditions for Ay, if 9N # 0. Thus the squareroot v/—A is well defined, as
are the multiplier operators m(v/—A) for continuous bounded m.

An important special case arises where A" = S~ ! is the unit sphere in R". Then A is the Euclidean
Laplacian on R™, written in polar coordinates.

In this paper we are interested in deriving smoothing properties for solutions of the wave equation
ugr = Au on T'(N); so we are concerned with the wave operator U defined by

Uf(t,r,8) := cos(tv/—A) f(r,6).

Recall that
t
(1.2) u(t,r,0) =Uf(t,r,0) +/ Ug(r,r,0)dr
0

solves uy = Awu with initial conditions u|¢—g = f, u¢t=0 = g-

The main purpose of this paper is to find suitable extensions of a previously known regularity theorem
for radial solutions in R™ to more general solutions. In [25] the authors proved that for radial f € LP(R™)

2n
-1

T
0

/p
(13) (7 ] Noos(tV=2) 1l mdt) " S1171

rr.®)  2Sp<poi=

The second author was supported in part by the National Science Foundation.

Typeset by AMS-TEX



2 DETLEF MULLER ANDREAS SEEGER

The range of exponents p for which (1.3) holds is sharp, and various endpoint results can be proved for
the case p = po, see [25], [10]. In particular the weak type analogue of (1.3), for radial functions in
L7/ (n=1)(R"), was proved by Colzani, Cominardi and Stempak [10].

As pointed out in [25], the analogue of (1.3) for general L? functions does not hold (in view of C.
Fefferman’s theorem [15] concerning the ball multiplier); however it is conceivable that (1.3) holds for
functions in the Sobolev space LP for € > 0. This had been stated as a conjecture by Sogge [30]. A positive
answer would imply the Bochner-Riesz conjecture in n dimensions; however even in two dimensions (where
the Bochner-Riesz problem is well understood, [8]) only partial results are known for the corresponding
smoothing estimate ([24], [3], [36]), [41]) and most of those partial results are not known in the more general
context of conic manifolds.

It seems natural to ask for an analogue of (1.3) on other spaces which are left invariant by the Laplacian,
such as spaces of functions of the type fi(|z|)Yk(z/|x|) where Y is any spherical harmonic of degree k,
normalized in L?(S™1); here one is seeking estimates which are independent of the degree. More generally
one would like to replace the L?(R") norm in (1.3) by a mixed L, (LZ,,) norm. The motivation for this
partially came from previous work on the corresponding problem on spherical summation of the Fourier
integral ([27], [11], [23], [39], [5]) and partially from mixed norm estimates derived in [21] in connection

with a problem in semilinear wave equations.

We define these spaces for general conic manifolds I'(NV). Let df denote the Riemannian volume on N;
then " 1drdf is the Riemannian volume on I'(N). For 1 < p < 0o, denote by LP(R*, L?) the space of all
measurable functions on T'(N) such that

> 1/p
b= ([ 17y tar)

is finite. Here, R* is endowed with the measure r™1dr.

I

We first formulate an L? inequality for p < 2n/(n — 1); here we need a tiny bit of regularity in the
“spherical” variable but no regularity in the radial variable. To describe this we use the (pseudo-)differential
operator

(1.4) 0.0 = (1- Zan) " 1(0,0).

We also prove a restricted weak type estimate for the endpoint pg = 2n/(n — 1). This is formulated
using L' (R*, L?) which is the space of all measurable functions on T'(N) such that r — [|f(r, )|l z2(v)
belongs to the Lorentz-space LP-!, with respect to the measure 7"~ 1dr. All estimates below will be uniform
inT > 0.

Our main result is:

Theorem 1.1. Suppose that e >0 and 2 <p < 2n/(n—1). Then

T /
(1.5 (7 [ Neosev=msp )" < Gl Sl

for all T > 0.

In the complementary range p > 2n/(n — 1) we can prove analogous LP(L?) smoothing estimates for
an analytic family of smooth multipliers s~ +1/2J,_, 5(s) (cf. (2.5), (2.6) below); here J,_; > denotes the
Bessel function of order a —1/2. This family can be used to derive estimates for (1 —t2A)~%/2 cos(tv/—A),
in view of the asymptotics [13], [33]

Jo-1/2(8) { 1+o0(1), s =0,

MNa+1/2
(a+1/2) se—1/2 (2/m)/?5= % cos(s — mar/2), s — oo.
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We now state LP(L?) estimates for the family of operators

a . Ja—1/2(t\/j)
(1.6) U=

The necessary regularization determined by a is partly mitigated by the appearance of £;” on the right
hand side of (1.7.1/2) below. This indicates some smoothing effect in the spherical variables. We are
mainly interested in the case v = 0, though.

Theorem 1.2. Let 0 < a < (n+1)/2. Suppose that 2% <p< oo, a >n(3 —2)—1,v<(n-1)/p

assume that y < a if 2<p <4, andy<a—-1/2+2/pif4 <p< c0.
Then (i)

2T

1 1/p _
(1.7.1) (7 [ 1oesly )" < Cpasller sl

(i) Moreover if a > (n —1)/2 and v < a —1/2 then

(172) sup  sup ||Utaf(t7 r, )||L2(N) < Cysup ||£;’Yf(p7 )||L2(N)
T<|t|<2T r>0 p>0
When v = 0 we obtain

Corollary 1.3. Suppose that 2 < p < o0, a > max{O,n(% - %) -5}

Then . /
1 o 1/p
(37 [ N0 11E )" < Coal11,,
and, for a > (n —1)/2

sup sup ||U2 £t 7, )lL2vy < Casup || (o, )llLzv)-
|¢|<T r>0 p>0

The corollary is a straightforward consequence of Theorem 1.2; to remove the restriction o < (n+1)/2
one uses formula (2.14) below. We note that using (2.14) one can also obtain refined versions in the spirit
of Theorem 1.2 in the range o > (n + 1)/2 but these are of less interest.

Corollary 1.3 can be applied to solutions of the wave equation; this is done in §6. One obtains
Corollary 1.4. Suppose that 2 < p < oo, and u and v belong to LP(R*,L*(N)). Suppose that a >

1_1y_1

max{0,n(3 — ;) — 3

(i) If uy = Au and u(0,-) = f, u¢(0,-) = 0 then

1 7 1
(ﬁ /4 (I = 2A) =/ 2u(t, -)||Z2dt)

(i) If vye = Av and v(0,-) =0, v¢(0,-) = g then

/p
< Cpal|f[,-

1 T . 1/p
(ﬁ/T”(I_tzA)—(a—z)/ZU(t,-)||5,2dt) < Cpallg, ».

We now state some endpoint (restricted weak type and weak type) estimates for the case a = n(1/2 —
1/p) —1/2,2n/(n — 1) < p < co. Denote by u, the measure dtr"~'dr on [0,7T] x RT.
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Theorem 1.5. Let 2n/(n —1) < p < oo and let a(p) = n(1/2—1/p) —1/2. Let
VW r(f) = {(t:) € [T/, T x RY U7 £, |2y > B}

(i) Suppose that either one of the following cases applies.
(a) p=2n/(n—1), v <0;
() 2n/(n—1) <p <4,y <alp);
(c)d<p<oo,v<alp)+2/p—1/2.

Then the restricted weak type inequality

(1.8) Zlil()) I Tﬁlﬂn(ﬂg,q’(f)) < C€||£:7"’Yf||ip,1(]g+,p)-

holds.
(i1) Suppose 2n/(n — 1) < p < oo and v < a(p) — 1/2. Then the weak type inequality

(1.9 21;1()) B* Tﬁlﬂn(QZ,T(f)) < C'I;”E;Wf”ip(mtm)

holds.

If in (1.8) or (1.9) one assumes in addition v < 0 then the interval [T'/2,T] can be replaced by [T, T].
In particular this yields endpoint versions of Corollary 1.3 where v = 0; namely a restricted weak type
inequality in the case p > 2n/(n — 1) and a weak type inequality in the case n > 3 and p > 2n/(n — 2).
For the better weak type estimate in the more restrictive range v < a(p) — 1/2 the subtle Carleson-Sjolin
type estimates in §3 and §5 are not needed. We do not presently know whether the Lorentz space LP!' in
(1.8) can be replaced by L? if max{0,1/2 — 2/p} < a(p) — v < 1/2.

Since LP functions are locally square integrable if p > 2, the estimate in Theorem 1.2 implies an
estimate for a less singular square function; namely

IK%Aﬂwwwgmmgswmg

holds for p > ;2% and a > n(3 — ;) — 3- As it is well known such square functions can be used to derive

various theorems for spectral multipliers; the connection is via the Fourier inversion formula
(1.10) m(v=A4) = (2r)™* /fﬁ(T) cos(tv —A)dr

for even m. The estimates here are related to work on the disc multipliers on R" by Rubio de Francia [27],
Mockenhaupt [23], Cérdoba [11] and Carbery, Romera and Soria [5]; these authors proved sharp L7, L2,
estimates. The methods in these papers does not seem to apply to the above mixed norm space-time
estimates for the wave equation in R”, in fact they do not seem to yield the analogous bound for the
above square function. We have been informed by A. Carbery that he and F. Soria [7] have recently and
independently obtained a direct proof of an L? Lgph estimate for a related square function, without first

rad
proving the stronger Ly, ..4(L2,,) estimate.

A variant of Corollaries 1.3 and 1.4 can be used to derive stronger inequalities for multiplier transfor-
mations than those that would follow from square function estimates. We state such a theorem for the
model case N = S"~! and refer for more general statements to §6.
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Theorem 1.6. Let K € S'(R™) be a radial convolution kernel whose Fourier transform has compact
support in {€ : R™1 < |€| < R} for some R > 1. Suppose that 1 < p < n2—+”1 and € > 0. Then the inequality

/p
(1.11) 15 * Az < Con( [ [0+ o ix @I a0) 1)

Liaa(LZn)

holds for all LY, 4(L3,,,) functions.

rad

This theorem is essentially sharp. Since K is radial the L?(L?) boundedness of the convolution operator
implies as a necessary condition the L? , boundedness. One can test on radial Schwartz functions whose

Fourier transform equals 1 on the support of K , and obtains as a necessary condition that K € LP(R").

The assumption that K is compactly supported in R™ \ {0} can be relaxed by combining our methods
with Calderén-Zygmund techniques. We hope to return to this point in a subsequent paper.

Organization of the paper: In §2 we shall discuss the expansion of the wave operator in terms of the
eigenfunctions of the Laplacian on A and state the relevant formulas, asymptotics and estimates for the
kernels. The kernels will be split into an oscillatory and a nonoscillatory part; the precise properties are
proved in the Appendix A1-4. In §2 we also reduce the statement of Theorems 1.1, 1.2 and 1.5 to L?(¢?)
estimates (¢f. Theorems 2.3 and 2.5). The main idea is to use a vector-valued version of the Carleson-Sj6lin
theorem on oscillatory integral operators; an endpoint version of this is proved in §3. In §4 we give the
estimates for the nonoscillatory contributions, and also prove estimates for the oscillatory terms for which
the oscillation is not essential, such as the L™ estimates and the weak-type estimates (1.9). In §5 we use
the Carleson-Sj6lin estimates together with various scaling arguments to obtain improved bounds for the
oscillatory kernels. In §6 various estimates for functions of the Laplacian on a conic manifold are proved,
in particular §6 contains the proofs of Corollary 1.4 and of Theorem 1.6.

Notation: In sections 1 and 2 the L? norms in the radial variable on I'(NV) will be taken with respect
to the measure p"~'dp, as in the definition of || f||, 2 above. However, in the various proofs in sections 3,4
and 5 we shall work with the standard L? norm on R, unless indicated otherwise. Given two quantities
a and b we write a < b if there is a positive constant C, such that a < Cb. We write a & b if a < b and
b < a. The notation <. indicates that in an estimate the constants are allowed to depend on a parameter
(here €). In estimates for families of operators which depend analytically on a parameter z in a vertical
strip the constants in the inequalities are allowed to be O(eA™(2)]) for suitable positive A. We take
Flo) = [ f(y)e #¥€dy as our definition for the Fourier transform.

Acknowledgement: The authors would like to thank Professor Walter Trebels for useful comments on
a preliminary draft of this paper.

2. Preliminaries on the wave operator and a related analytic family

Let {¢p; };";1 be an orthonormal basis of eigenfunctions of —Ay on N, with corresponding eigenvalues
a;, and set

(2.1) Aj = (o + (252)%)2

If f is smooth and compactly supported away from the boundary we may expand f as

(22) Fr,0) =3 0iO)f ().
J
Thus, if m is a bounded continuous function on RT, we have (see e.g. [9])

(2.3) ((/=BIN0) = S 050) [ Kim(ri0. )55 e
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where the kernel K|, is given by

(2.4) Kim(r,0,) rz p? /000 m(s)JIx(sr)JIr(s0)sds.

The expression for KJ,,;; becomes particularly simple for the analytic family of multipliers

(2.5.1) m,(s) == s7*J,(s)

so that

(2.5.2) U f =mg_y(tV=A)

if U2 is as in (1.6). The cases z = —1/2 and z = 1/2 are relevant for the wave equation since s'/2.J_; ;5(s) =

(2/m)/2 cos(s) and s71/2.J; 5(s) = (2/m)}/?s L sins. In particular the solution (1.2) is given by

(26) ultsr8) = \[ 5 [m1ps 6V =R .0) + (/=B )]
We shall use the notation

(2.7) Ko (7 p) = Kim. (1, 0,A) = T%Tnp%t_z/ J(ts)Jx(sr) Ja(s0)s' ~*ds.
0

Explicit formulas for the expressions (2.7) are due to H.M. Macdonald [22]. Using his results the
formula for K, , for the values of 0 < Re(z) < A+ 1, becomes then

(2.8) Ko \(t,r,p) =77 r* 73 p3t 122 1\ (ult, T, p))
where
(29) om0 = =L =0
and
0 if p>1,
(2.10) H.a(p) = o) 3T (cos @ — ) cos(A)df if —1l<p<l,

% fai(;osh(—u) (coshs +p)* te *ds if p < —1.

One obtains (2.10) from [22] by using the Mehler-Dirichlet integral for the Legendre function p ~H/2

A-1/2
an analogous formula for Q;fir/g/ ?, see formula (A4.5) below. We note that in the special relevant case
z = 1/2 Cheeger and Taylor [9] derive the formula (2.10) using the Lipschitz-Hankel integral and analytic

continuation.

The formulas (2.8/10) are valid for the range 0 < Re(z) < A + 1, but one can extend them to values
Re(z) < 0 by analytic continuation. To understand in particular the relevant case z = —1/2 we use the
recursion formulas for Bessel functions (¢f. [13, 7.2.8, (50)-(54)]); in particular

, and

z+1
Jo(8) = T4 (s) +

Jz+1 (S)
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Since L[t**'m,4q(ts)] = J. . (ts)s™* we see that m,(t-) = t=* L[>+ m 1 (t-)] + (2 + 1)m.41(t) and
hence

—z 6 z+1
(2.11) K,y=t 5 [ K. 10] + (2 4+ 1)K 410

If we take into account that pu; = —t/(rp) we obtain for Re(z) > —1
(2.12) Ko A(t,r,p) = —n~ 720273 p3 2 HL | (ult, T, p))

where the derivative is taken in the sense of distributions. Note that from (2.12) and (2.8)

)

(2.13) 2+1’)\ =—-H,

which can also be checked directly from (2.10)

We shall also have to consider the case Re(z) > A+ 1 and then (2.10) is no longer available. However
we may use the subordination formula 2'T'(v + 1)J, 4,41 () = ¢! fol J, (ts)sPTH(1 — s%)¥ds, v > —1; see
Stein and Weiss [33, p. 170]. Applying this for u = @ — 1/2 one obtains

(214) U = o, 0 e U

and of course an analogous formula replacing the operator UZ by the kernels K,_1 /5 (7,7, p).
In order to understand the behavior of the kernels K , it is useful to observe that

t* = (r—p)?
2.15.1 1— pt -
( ) u(t,r, p) 2

(r+p? -t
2.15.2 14+ p(t A 77
( ) + u(t,r, p) o

In particular, if we assume that ¢ > 0 then the various restrictions on y translate to

(2.16.1) wu(t,r,p) >1 = t<|r—o,
(2.16.2) —1<pt,rp)<l < |r—g|<t<r+oy,
(2.16.3) w(t,r,p) < —1 = t>r+o.

The fact that H, x(u) = 0 for u > 1 is a reflection of finite propagation speed (for the cases z = £1/2).
Notice that if ' = S"~! and n is odd, then cos A\;m = 0 for every j [9, Cor. 2.3.], so that in this case there
is no contribution in the region where ¢t > r + p. This is a reflection of the strong Huyghen’s principle.

In the following two theorems we will state the basic asymptotics for the kernels K x. For the proof of
Theorem 1.1 it is crucial to understand precisely the oscillatory nature of H, x(u) if —1+A7! < p <1-A"1
We remark that asymptotics for Legendre functions are given in [13]; however we shall need more precise
statements on the remainder terms which are uniform in \. We note that some estimates in this spirit,
for the main terms, are proved in the paper by Lindblad and Sogge [21]. Details about estimates and
asymptotics are derived in the Appendix (§A1-4) to this paper.

Our first result deals with the wave operator cos(tv/—A) (which after a normalization corresponds to
the case z = —1/2).
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Theorem 2.1. Suppose A > (n—2)/2, and 1 <t < 2 and let

2—n

Ky(t,r,p) :er%/ cos(ts)Jx(sr)Jx(s0)sds
0
so that Ky = (1/2)"/2K_y5\. Let ¢ € C&(R) be even so that ((s) = 1 for |s| < 1/2 and {(s) = 0 for
|s| > 3/4. In what follows p = p(t,r,p) as in (2.9). Then
(2.17) Ky=0x+Ry1+Ry2+Rr3+Rxu

where all distributions on the right hand side vanish if u(t,r,p) > 1. The function Oy is supported where
“1+A+1)t<u<1—A+1)"! and is defined by

(n—3)/2 1/2
_ p t A .
(2.18) Ox(t,r,p) = (27) 1/2(1 —C¢(A+1)/1- ,u'z))X(—l,l) (1) EeuYYD i p,2)3/4 cos(Aarccos p + Z)'

The distributions Ry 1 and Ry 2 are measures and principal value distributions, respectively, given fort > 0
by

1/p\(r—1)/2 .
(2.19) Baalt,pr) =5 (;) [6(p—r—t) +6(p—r +1t) +sin(Ar)d(p + 1 — t)]
and
_ cos(Am) t p\ (n—1)/2 1 5
220 Rasltrp) == (D) e OV D ()
The remainder term Ry 3 is locally integrable and supported where —2 < p < 1; it satisfies the estimate
(n—3)/2 1 by 1/2 1
(221) (Bas(t.r,p)| < 0 LEA)

r( D2 |1 = 12P/4 7 4 ) 1— 2|

Finally Ry 4 is supported where u(t,r, p) < —2; it satisfies the estimate

(2.22) |[Raa(t,m,p)] < C(L+ N2 =32 =02y 3, )| 727372,

Theorem 2.2. Suppose thate >0, z =b+it, b > —1/2, A>nw(|b| +1/2) and A > 0. Let K, x(t,7,p) as
in (2.8/12) and p = p(t,r, p) as in (2.9). Suppose that 1 <t < 2. Then

(2.23) K.x=02x+Voa+Wor
where Oy is supported in {(t,r,p) : A+ 1)/1—p2 > 1,|p| <1} and
(2.24) O a(tyr,p) =m 1t 257 8 pa T2 (1 — uz)zT_l)ﬁz cos(Aarccos p — 2% ).

The function V, x is supported where —2 < u(t,r,p) < 1. If \\/|1 — p?| < 1 it satisfies the estimates

(2.25.1)
Var(t,7,p)| < CaelTlp3H0=1pb=5(1 — 2)*7  ifo<pu<1,
(2.25.2)
1 — 2% if —1/2<b<1/2, —2< <0,

Flo2ap_1 p—n 1 ifbh = _
[Voa(t,r, p)| < CaeldlTlpE+o=1pb=% log((1+>\)m) ifb=1/2, -2<p <0,

(1412 ifb>1/2, —2<u<0.
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f (14 A)\/|1—p?| >1 then

(2.26) Var(t 7, p)] < CaeAlrlph+o-iyb=4 (1 4 x) =011 — 2|6-2)/2

The function W x is supported where p(t,r,p) < —2 and if A > b— 1+ ¢ it satisfies the estimate
(2.27) [Wor (b7, 9)] < Coeedl7lp3H0 7008 (14 ) |- 0040 gy < -,

We now formulate our main technical result which will be proved in sections 4 and 5.
Define

(228) Sz,jg(t7 T) = (KZ,)\]' (ta T, )ag>

where the pairing (-, ) is the standard pairing on R, with respect to Lebesgue measure dp and ¢ is smooth
and compactly supported in (0,00). LP norms on R, in the following theorem are taken with respect to
the measure ™ 'dr.

Theorem 2.3. Let I be a compact interval contained in (1,2) and let z = b+ i7, with —1/2 < b < n/2,
TE€Rorb=-1/2 and 7 = 0, and assume v < (n —1)/p'. Let A > w(|b| + 1/2). Then the following
inequalities hold.

(i) Suppose that 2 < p < 2" and € > 0. Then

e ([ 3151 )” )™ <cpe( [T (Siasnisorssor) smas) "

(i) Suppose that -7 < p <4, n(——ll—J)——<b+2 and vy <b+ 3. Then

ez (f H(Z_Isz,jfjl2)l/2: )" < et ([T (Slansmnr) )"

(iii) Suppose that 4 <p < oo andn(3 —1)— 1 <b+ 5. Then

e ([ (Eisat ) lae)” < et ([ (Sia+am i) )

(iv) Suppose that b > 252. Then

(2.32) supsup(Z|S gl )| )1/ < CeAl™! sup(2| 1+ X;/p) " fi(p)] )1/2.

tel r>0 p>0
We apply Parseval’s identity with respect to the spectral decomposition of —A and obtain the fol-
lowing consequence

Corollary 2.4. Theorem 2.3 implies the strong type estimates of Theorem 1.1 and 1.2 for the case where
T = 2 and integration over [T, 2T is replaced by integration over a compact subinterval of (1,2).

The (restricted) weak type inequalities (1.8), (1.9) for the endpoint b+ 1/2 =n(1/2—-1/p) —1/2 in
Theorem 1.5 will follow from
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Theorem 2.5. Let I be a compact interval contained in (1,2) and ,, denote the measure dt r™'dr. Let
() p) = A+ Ni/p) 7 fi(p) and let z=b+ir, —=1/2<b<n/2, T€R orb=-1/2 and 7 = 0.

Then the restricted weak type estimate

(2.33) o ({(t Z|s SHENE) > 8Y) < C2BPIHGT HHE a2 prra)

holds in the following cases:
(a)b=-1/2, 7=0,p=2n/(n—1), v <0;
(b)0<b+1/2=n(1/2-1/p)—1/2,2n/(n—1)<p<4,y<b+1/2;
(c)0<b+1/2=n(1/2-1/p)—1/2,4<p<o0,v<b+2/p.

The weak type estimate
(2.34) pn({(t,r) s t € 1, (Y1823 £5(t:1)) " > BY) < C2BPIHGT M0 2 o)
J

holds in the following cases:
(6)b:—1/2,T:O,p:Zﬂ/(n—l),’}/S—l/Z;
f)o<b+1/2=n(1/2-1/p)—1/2,2n/(n—-1) <p < o0, v <b.

To obtain the results of Theorems 1.1, 1.2 and 1.5 from Theorems 2.3 and 2.5 one can use the conical
structure and employ

Scaling arguments. For a multiplier m let

M;g(t,r) = (K@) (r: - A5), 9)
where the pairing (-, ) is the standard pairing on R, with respect to Lebesgue measure dp and g is smooth
and compactly supported in (0, 00).
A change of variable in formula (2.4) shows that

1 rop
(2.35) K1y (1,0, ) = TK[m](T, T’)‘)
and, consequently,
t r
(2:36) Myg(t,r) = Milg(T] (7 )

Let us now assume that

(2.37) (/12 /00o (Z|Mjfj(t,r)|2)p/2r”_1drdt)1/p < A(/O

holds. Then

o

(Z10+20756P) " o an) .

J

(), 2T/ S MfnR) mtande)

ZTn/p(/l / (Z|Mj[fj(T')](t,r)|2)p/27.n—1 )"

< AT"/P(/ (ZI 1+ 27, @p)?) /2pn_1dp)1/p
(2.38) (/ (Z| ) )
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Now we wish to replace the intervals [T'/2, T| by [0, T] to obtain the assertions in Theorem 1.1 and Corollary
1.3. We can apply the previous estimate to the time intervals [27*~1T,27*T], and summing a geometrical
series we obtain

(2.39) (% /OT/OOO (Z|Mjfj(t,r)|2)p/2rn—1drdt)

< A(/Ooo (; 1+ T/\j/p)‘”fj(p)|2)p/2p”_1dp)

(2.39) and Parseval’s identity with respect to the spectral decomposition of A show that in Theorems 1.1
and 1.2 it suffices to prove the asserted statement for 7' = 1. An analogous reduction applies to weak type
inequalities. Thus we have reduced the proof of the results in the introduction to the proofs of Theorems
2.3/5.

1/p

1/p

3. A variant of the Carleson-Sjolin theorem

Let ¢ € C®(R* x R) be a smooth, real phase function and let a € C§°(R? x R) be a compactly
supported amplitude. Define the oscillatory integral operator T : L{,.(R) — L>®(R?) by

(3.1) Ty f(2) = / MV a(z, ) f(y)dy.

A main tool in the proof of Theorem 1.1 will be a vector-valued variant of the Carleson-Sj6lin theorem
([8])- It is assumed that the Carleson-Sjélin determinant

o2 st (P2 9o )
bz1yy  Pzayy
does not vanish on the support of a; the geometric interpretation is that for fixed z the curve y — d,¢(y)
in T7R? has nonvanishing curvature (cf. [24] for a general discussion).
Theorem 3.1. Suppose that |CS[@]| > co > 0 on the support of a.
(i) Suppose that 2 < p <4 and let
log'/271/P(2 + |A))
1+ [ADL2

wy(X) =
Then
(33) |07

LP(R)

Lo(me) = ‘| (;wﬁ(I)\jD |fj|2)1/2|
(ii) Suppose that 4 < ¢ < o0 and p > q/(q—3). Then
(3.4 |(Sim s, <ctasa-a(Sa+a-HsP)"
J J

La(R2) —

LP(R)

Moreover, there is some N € N such that C in (3.8), (3.4) depends only on cy*, the CN -norm of ¢ on
the support of a, the CN -norm of a and the diameter of the support of a.

Remark. The scalar version of this theorem is due to Carleson and Sjolin [8]; see also Hérmander [17] for a
slightly improved version and a simpler proof. We follow the idea of Fefferman-Stein and Carleson-Sjélin
according to which one should examine the L2 norm of 3° 5.0 [T £, £ |2. Because of the occurence
of mixed terms with j # j' the vector-valued case can apparently not be proved by a straightforward
adaptation of the proofs in the scalar situation. Moreover we did not find a vector-valued analogue of
Hormander’s argument to deduce the estimate for 2 < p < 4 from the estimate for p > 4.

We shall first deduce Theorem 3.1 from the following Proposition 3.2 and then give the proof of the
proposition.
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Proposition 3.2. Let A > 2, let ¢ satisfy |C’S[¢]| > co > 0 on the support of a and let \™' < k < 4. Let
be CP(R2 x Rx R). For g€ LL (R x R) define

loc

SrrEg(z) = / / NGRS (5 . §)g(y, §)dydy.
Then
(3.5) 152 glRagsy < CA26 [ [ 19w P ay
- g LQ(RZ) = K g\y,y 1+)\K]|y_g| yay

where the constant C' is independent of A and k. Moreover, there is some N € N such that C' depends only
on cal, the CN -norm of ¢ on the support of b, the C™ -norm of b and the diameter of the support of b.

Proof of Theorem 3.1. The estimates for the terms with |\;| < 2 is trivial, so we assume that A\; > 2.

We begin by deriving (3.4). Since the Schwartz kernels of all operators involved are supported in a
compact set we may assume that ¢ = 3p’, by Holder’s inequality. For 1 < r < 2 we have the inequality

H(ZISM’%ga‘klz)% S (// (Z |(/\j/\k)%_lgjk(y;ﬂ)|2)g|y —ﬂl_ﬁdydﬂ)
ik ik

5=

Indeed for r = 2 this follows from Proposition 3.2 and Fubini’s theorem. For r = 1 this inequality follows
by applying Minkowski’s inequality. The general case follows by analytic interpolation for weighted LP
spaces of £2 valued functions. Now let G,.(y) = (3 j |)\j_1+1/ " fi(y)]?)/2. We apply the previous inequality
with g;r(y,9) = fj(y) fr(§). This yields the estimate

ES 1
T i

([(Zms@r) @) 5 ([[160r6@r - )’

If ¢ = 2r' = 3p' then p = 2r/(3—r). Now we proceed exactly as in Hérmander [17] and an application of
the standard L® — L* inequality for the fractional integration operator, with s = p/r, yields the assertion.

We now assume 2 < p < 4 and prove (3.3). We write the left hand side of (3.3) as a sum of two
terms one involving only positive and one involving only negative A;’s. In order to show the inequality
for the case p = 2, we shall just use the assumption that VZ<I>; # 0; without loss of generality we may
assume that ¢7 , # 0. We can then apply Hérmander’s L2-estimate ([17], cf. also [32, p. 377]), to see that

the oscillatory integral operator T ., defined by T .,h(z1) = Tah(21,22) is bounded on L?*(R) with norm
O(A~'/?), uniformly in z,. This implies that T is bounded from L?(R) to L?(R?) with norm O(A~'/2)

and the inequality
1/2
< ~1/2 ¢ 12 |
L2(R2) ~ H(;l)\f £l )

T, . 12 1/2’

|3 m ) .
Aj>1

is an immediate consequence. We now show the case p = 4 of Theorem 3.1, the case 2 < p < 4 follows

then by interpolation.

Let for m=1,2,...
1/2

Ful) =x@27"2( Y 1HWP)

2m <\ <2mtl
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where x is the characteristic function of the interval I and I contains the support of a(z,-) for every .

Then

[(Sims2) | <2 [ X im s T
J

Jik
<k

SO Isge )

m,nZU ng)\j<2m+1
m<n 2" <A, <2n+1

2 W
40 S X [y

m,n>0
m<n

by Proposition 3.2. Next, (3.6) is equal to

™| F(y + h)?
//yeZw Z'lJr;—deydhsam

[RI<|T] 7

where

& = / ver SIR@E S 27| Fuly + ) dydn,

In<|T S men
27 <|h|7?

&= [[er SIRWE S Bty wPdA
n m<n
27 >|h| "

We first estimate £; which is slightly better behaved than £;. Let a > 1/8. Then

& <2/ /|F (v + B)P2mm2 3 022 |y (y) Pdy dh

|h|<2—m™ n>m

<2/|<2_m 2mm=> /|F ) dy) (/(Xn:n2a|Fn(z)|2)2dz)l/2dh
< [imeraitw) ([ (S nerep)’e) "
and, since 8 > 1, we apply the Cauchy-Schwarz inequality and obtain
S ([ oltdy) " < ca ([ 1 Fatw dy)
o [ (S merawya) ™

This yields the estimate

(3.7) £ < ca/ (S m@E] >,
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which we need for the exponent o = 1/4.
Next we estimate £». Holder’s inequality yields

2y 8
& < /M(m/ PORRUATENOID SIS

n

27> lh|! g1
<[ LT mere)"([[ £ mod )"
2m>|h[ 7t 27 5T
212, dh
= /MS',| / [2,"%_1 Fn)P] du

We interchange the order of integration and apply Minkowski’s inequality to obtain

&< [ /h|5|1|[ > |Fm<y>|]2|d,f|

27 >|h| 7!

1/2 512
5/1[;(/2-ng|hgu i) ]
(3.8) s [[Z i rwr] a

and (3.7), (3.8) imply the desired estimate for p =4. O

Proof of Proposition 3.2. We may replace A by Acg and ¢ by ¢/co and assume that ¢ > 1. Introducing
a partition of unity, we may assume that b is supported in a set of positive diameter, which will be chosen
appropriately small. As in the standard proof of the Carleson-Sjolin theorem we shall split the integral
defining S into the region where y > ¢ and the region where y < §. More precisely, we introduce a dyadic
partition of unity {x¢}sez on R by choosing x € C§°(R) supported in [1/2,2] such that Y°,., x(2/s) =1

for every s > 0; we then define x,(s) = x(2s). Let

Si(9)(z) = / e +HROEDy (£ (y — §))b(2,y,5)9(y, §)dydj .

Then

Y Sf+ ). S/ +ER

0:26<Ak £:2¢< Ak

Since V,¢,(z,y) # 0 we can use standard L? estimates for oscillatory integrals [17] on R and obtain that

for0<k<4

IRgll3 S A g <t lg(y, §)I* dydy
Yy—yi= k)~

and || Rg||? is controlled by the right hand side of (3.5).

It remains to show

2\ 1/2
(39:) | 5 stal, s (Sx e 2ade] )
£:28 <Ak
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The inequality claimed in the statement of the proposition is an easy consequence. Namely let n €
C§°([1/4,4]) be equal to 1 on [1/2,2] and let m, = n(2¢-). Then x; = x¢n¢ and therefore S} g = S/} g¢ with
9¢(y,9) = 9(y,9)ne(y — §)- (3.94) implies then

~ B \1/2
| 3 stofl, sa e ([lowarr 3 2@ - 9)ldvds)
2
26<Ak 26<Ak
which is controlled by the right hand side of (3.5). The sum ), S; g is handled similarly.

In order to finish the proof, we have to establish the main inequality (3.94). The left hand side of
(3.9;) is dominated by

/ /
o( X ustal) " +o(X X WS Shanlllodk)

2¢<Ak 2¢ <Ak m<L—100

and therefore (3.9;) follows from the inequalities

(3-10) 1S5 gll2 S 2267227 | gl
and
(3.11) 1(SF)*Shalla S2mk™IA2(lglla  if m < £ — 20.

Henceforth we shall write Sy := SLT.

The inequalities (3.10), (3.11) are proved by employing a technique of Phong and Stein [26] which was
used to obtain LP-Sobolev estimates for averaging operators with folding canonical relations. Moreover we
have to use almost orthogonality arguments such as in [29, §4].

For the proof of (3.10) we fix some large positive integer M > 10 and choose n € C§°(R?) supported in
(—1,1)? such that 3, ;2 n(y—Fk1,y—ks) = 1 everywhere, and put 9, (y1,y2)) := n(2+ My —ny, 200My, —
n2). Then for each £ the family {nn}nez2 is a partition of unity such that each 7, is supported on a
square with sidelength 2—¢~M+! We define Sy, in the same way as Sy, only with b, replaced by

bé,n(za yag) = Xe(y - g)nf,n(ya g)b(zaya g)
Then Sy =3, Se,n, hence

(3.12) Sy Sy = Z SiuSen-
v,n
The integral kernel K¢, of S} ,S.n is given by
(3.13) KL (2, ,9,5) = xe(y — D)xe(z — 0o, (@, E)0e,ny, §) / e EE RV (7, 3, 5,y,)dz,
where

(3 14) w(z7x)'i'7y7g) = ¢(Z7y) + H¢(Z,ﬂ) - ¢(Z,$) - H¢(Z7'i')7
' (2, ,5,9,9) = b(z,y,D)b(z, 2, 5.

Similarly the integral kernel K™ of (S;)*S,, is given by
(3.15) KY™(2,%,9,§) = Xm(y — 9)xe(z — 7) /eix"’(z’z’i’y’ﬂ)v(z,m,ﬁ, y,§)dz.

In order to estimate K fn,nw and K™ we examine the Taylor expansion about the diagonal y =z, § =

&, of ¢!, and its higher order z-derivatives. To simplify the notation we shall consider
(3.16) Gz, %,y,9) = F(y) — F(z) + &(F(g) — F(Z))

and use the following calculus lemma.



16 DETLEF MULLER ANDREAS SEEGER

Lemma 3.3. Suppose that F = (Fy,Fy) : I — R? is of class C* on the compact interval I and suppose
that 27" 1 <y —g<27mtl 2=t-1 < 3 < 274+ gnd that ¢; > 0. Then there are positive €, A, C so
that the following statements hold under the assumption that x,Z,y,§ belong to a set of diameter < €.

(i) If lm — €| > 10 then
(3.17.1)
IG(z,%,y,7)| < C(ly—z+ 6 — )|+ |y —2)* + kF — 5)* - 26(z — F)(§ — &)|);
(3.17.2)
Gz, %,9,0)| < Cly— 2+ k(f — &) + |(y — 2)* + 67 — £)° + 26(y — §) (7§ — 2)|);

moreover if also

F F
(3.18) ‘det (Fl}, Fz’) ‘ > ¢
then
(3.19.1)

G(z,%,9,9)| > A(ly — = + 6(§ — &) + |(y — 2)* + £(J — )* — 26(z — &) (§ — T)|)
(3.19.2)
IG(z,%,y,5)| > Aly —z + 6@ — &) + |(y — 2)> + 67 — ) + 26(y — §)(§ — £)|).

(ii) Let £ =m. There is a positive integer M such that (8.17.1) and (8.17.2) hold if either
(3.20) |z—y|<2 ¢ Mand|z—gl <2“M,

or
(321) |z —y|>27M or |z —g| > 27 4M,

Moreover in both cases (3.19.1) and (3.19.2) hold under the additional assumption (3.18).

Proof of Lemma 3.3. We shall only verify the inequalities (3.17.1) and (3.19.1); (3.17.2) and (3.19.2) follow
then by symmetry considerations. Let

nFiy) = G [ (1= @+ sy - ),

the integral occuring in the integral remainder of Taylor’s formula. Consider the Taylor expansion of F'
about the diagonal y = z, y = . Then

G, 3,9,9) = F'@)y - 2) + 5F" @)y = 2 +rs(F,0)(y - 2)°

+R[F @)~ ) + P @)~ 2 +rs(F32,9)(y - 2)°).

Moreover
F'(&) = F'(z) + F"(2)(& — 2) + ro(F'; 2, %) (% — 2)?
F'"(#)=F"(z) + r(F";2,%)(% — z)
so that
G(z,%,y,9) =ly — = + K(j — )] F'(z)
(3.22) 1 5 K 9 N ] >
+I5WH -2+ 50 - 8)° + k(& - 2)(§ - D)]F"(2) + Rz, 2,9,9)
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where

R(z,%,y,9) = r3(F;2,9)(y — 2)° + kr2 (F'; 2, 8) (% — 2)* (§ — 7)
(3.23) :

— )3,

<

K o\~ - . Jo
+ 5 (F";2,3)(F - 2)(§ — 8)* + kg (F3 7, 9)
We shall now show that under our assumptions the remainder can be considered as an error term.
To this end, let us write
(3.24) vi=y—x, 0:=9—%, d:=x — T,
and u = (u1,us), where

395 up =y —z+k(J— %) =v+ K0,
(3.25) ug = (y —2)* + k(§ — %) + 26(% — 2)(§ — &) = v* + KD* — 2K60.

Notice that 27¢~! < § < 27¢+! and consequently
(3.26) |R| < C1(|v]® + 27 %k|0| + 27 |0)* + K|6]?).

Given A > 2 we shall show that the integer M > 0 in (3.20), (3.21) and the number & can be chosen
so that

(3.27) |u1] + |uz| > A|R|

provided that z,y, Z, j belong to a set of diameter € and either |m — £] > 10 or m = £ with either (3.20) or
(3.21) holds. We may assume that

(3.28) max{2 ™72 272} 4 |u| + || < e

where ¢ is small (¢ < 1071%0(1 + C1)2A~! is an acceptable choice).
If either |v| < [0, or |v| > 2k|?], then |ui| > |R|, so (3.27) is clear. Likewise if £|9| < |v| < 2k|?| and

if v and ¢ have the same sign then |ui| = |v| + k|0, and again |u;| > |R|. Therefore we may now assume
that
(3.29) g|17| < |v| < 2k|9| and sign (v) = —sign (7).

We discuss the cases |m — £] > 10 and m = £ separately. Assume first that |m — £| > 10 and set
r = min{m,¢}. In this case [v — ¥ = |z — % + § — y| € (27772,27"F2). In view of the sign condition
max{|v|, 5|} > 2772 and since |v| and k|| are comparable (by (3.29)) we see that |v| < 27"+? and
(3.30) 27T < o < 277
Therefore also

(3.31) |R| < 100C12 2™ k|5

Now if |ug| > 200C; A272"k|5| then (3.27) is immediate. Therefore assume |ug| < 200C; 42727 k(3|
Expanding us about v = —&¥ we find

us = (K2 + /@)172 — 2ku10 + u% — 2Kk00
(3.32) = k0((1 + k) — 20) — 2KkuL D + ul.
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By (3.30)
|k0((1 + k)0 — 20)| > max{2 ™ * —27¢F2 2762 _o-mI21 5] > 277 k)|

while the last two terms in (3.32) are O(273" k@), an expression which is small since 2-™~2 < . We obtain
the lower bound |uz| > 27""8k® which implies (3.27), in the present case, by our choice of .

We finally discuss the last case m = ¢, still assuming (3.29). Now |v — 9| < 272 and therefore
K|9| & Jv] < 272 and also |v| < 27%+2. Therefore (3.31) holds with m = ¢, and again we are done in
the case where |u;| > 200C, A27 k|| If |ui| < 200C; A272¢k|5| we use again (3.32). Note that since
2761 <o — 3, ly — 9| < 274! the condition |z — y| > 27M implies |7 — §| > 27 ~2 and, vica versa
| — | > 27M implies |z — y| > 27 M2, Observe that now

(2701 — 2t M+ 15| if (3.20) holds,

(333) |60((1 + K)0 — 20)| 2 { (2-t+M _ g=t42) 515 if (3.21) holds.

The last two terms in (3.32) are O(27%%«|?|) while R = O(272¢k|?|) which shows that after a suitable
choice of M we have |uz| > 27¢~2k|| and (3.27) is then proved also in this last case.

We note that (3.17.1) is in immediate consequence of (3.27). Moreover if (3.18) holds we have |G| >
A~ Y(|u1| + |uz|) — | R| for suitable A > 0. Choosing in the above proof M suitably large, depending on A,
we again obtain (3.19.1) from (3.27). O

Proofs of (3.10) and (3.11). Let

em(xafﬁayag) = XM(y - g)XE(m - "Z.)

Xon(@,%,9,9) = xe(y — §)xe(x — E)0e,0 (B)00,0 (5).-

3

Suppose that (z,#,y,§) are either in supp x*™ for |m — £| > 10 or in supp Xf/,n for either v = n or

|I/ _ TL| Z 22M+10‘

According to Lemma 3.3 we then have, with a suitable choice of C, e, A, M, the estimates

029(2,2,y,9)] < C(ly — 2+ &G — B)| + |(y — 2)* + 67 — £)* - 26(z — 2)(§ — 5)]);

(3.34) A o , o, O
102 (2, %,y,5)| < C(ly — 2+ 6@ — &)+ |(y — 2)* + 67 — £)* + 26(y — §)(§ — &)|);

for, say, |a| < 6; moreover by the Carleson-Sj6lin condition

Using integrations by parts with respect to z we therefore obtain that for |m — £| < 10

(3.35.1) |K“™ (2, %,y,5)| S Ixe(x — )xXm(y — DI+ A(|UL] + |U2]))™*
(3.35.2) |K5™ (2, &9, 0)| S Ixe(® — &)xm(y —9IA+ AV + [Va])~*
where

Ul(xafé;yag) :y—$+ﬂ(g—i’)

(3.36) Us(z,%,y,9) = (y — 3)° + 6(§ — £)* — 26(z — )(§ — ).
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and
W(xaﬁayag):Ui(yagama'ﬁ) 12172

Keeping either (z, %) or (y,7) fixed we may change variables and observe that

(3.37.1) det % =26(j — y),
(3.37.2) det % = 2(3 — 1)

We shall now check that for m < £ — 20,
(3.38.1) /|K‘fm(x,az,y,g)|dydg <2mgTiaTE
(3.38.2) / |K™(x, &, y,§)|dedz < 2k 1A

By Schur’s test this implies (3.11).

Inequality (3.38.1) follows quickly by changing variables and using (3.35.1). The same argument applied
to the integral in (3.38.2) only gives the weaker bound 2¢x~1A~2. Instead we split the region of integration
as a union of

M(y) = {(z,2) : [U1(2,Z,y,9)| <2777}

and the complementary region Q(y).

If (z,%) € Q(y) and K"(z,%,y,5) # 0 then Uy = (1 4+ &)(§ — %) +y —§ — (z — &) and from
ly — 5 — (z — %)| > 2™ 2 we see that

(3.39) |§ — & >27™7° > 2°|Us (2, &, y,9)|.

Now
Uy = (k+ k) (@ — 2)* = 26U (§ — 3) + U — 2k(z — %) (§ — %)-

Since |z — #| < 271 < 27719 < 279§ — F| the assumption on U; also yields
K, .
|U2| > 5(3/ - 7)?
and one computes

/ |K™ (2, %, y, §)|deds < / 1+ MU 21 + Ak(§ — %)) 2dUrdz < 2™(N%k) 7
Q1(y)

[§—&|>2-m=10

in fact one gets the better bound C2™(\*k)~'a,, where a,, = 22™(As)~! if 2™ < VAk and am = 27"V Ak
if 2 > \/\x.

In order to evaluate the integral over Q»(y) we change variables (z, %) — (U1, Usz); this map is at most
two-to-one in the regions U; > 0 and U; < 0. We compute

o(U1,U»)

(3.40) det 9.7)

= 26(% — xz — Uh).

Now
|U1 | > 27m710.
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if (z,%) € Qu(y). Since £ —m > 20 we see that the absolute value of the determinant in (3.40) is bounded
below by ck2~™, for the relevant region of integration, and one deduces that

(3.41)
/ (K™ (0, 3, y, §)|dod < 2™k /(1 AT+ \Ua])~dUdUs < 2™ (A2k)"".
Q2(y)

This yields (3.38.2).

The inequalities (3.35.1) and (3.35.2) are satisfied with K“™ replaced by K[, provided that either
|v —n| > 22M+10 or y = . By the change of variables (y, %) — (U, Us), (z,%) = (V1,V2) (cf. (3.37)) one
obtains the analogue of 3.38 (for £ —m). Since, for fixed £, the functions Xﬁ," have only finite overlap, we
obtain that

) / K (2, &, y,9)|dydi < 2R A2,
v,n

|v—n|>22M+10

Z /|I{£,n('(177'i'ayag)ldmdj 5 2l/ﬂ771A72,

v,n
|v—n|>22M+10

and similarly
> / |Kf (@, E,y,9)ldydg S 267147,
n

S [ Koo pldods S 205757
n

Therefore
(3.42) H St,Sem < 2tIA?
nun|>z22M+10 Lior
and
(3.43) H S SiaSea|, L S2RA

hence, for |j| < 22M+10,
1O SinSentigs )| <D 1SentigllallSengll2
n n

1/2 1/2
< (Y ISenrsigl)) (3 1Sengl3)
n n
< 2% I g|2.
This, together with (3.42), yields (3.10). O

Remark. Concerning sharpness, consider the example ®(z1,22,y) = |(21, 22) — (y,¢)|, for fixed ¢. Then
® is the phase function, which comes up in connection with restriction of Fourier transforms to cir-
cles. The sharp L* operator norm was proved by Hérmander; and from the work by Beckner, Car-
bery, Semmes and Soria [1] it follows that for 2 < p < 4 and large A, one has the lower bound
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ITxllLr e > A1 /2[log A/ loglog A]'/2=1/P. This lower bound is deduced in [1] using a construction which
proves a lower bound for the Besicovich maximal operator; the latter has been recently improved by Keich
[18]. Tt seems likely that the factor (loglogA)'/?2~1/P can be removed. For general Carleson-Sjclin phase
functions one has the lower bound A~'/2[log A\]'/* for p = 4, by an elementary argument. To the best of
our knowledge the lower bounds for ||T)\||L»—r» are presently open in the general case when 2 < p < 4.
It seems reasonable to expect that counterexamples in this range will involve the constructions of Kakeya
sets with respect to suitable families of curves.

We shall now discuss the relevant example

24 242
(3.44) Y(t,r, p) = arccos u(t,r, p) = arccos %
rp

which relates to the general setting by putting z = (¢,7) and y = p.

Proposition 3.4. Let v be as in (3.44). Then the following hold:
(i)

t r2 +12 — o2 o1 2+ 0% — 1?2 o1
4 = —— L — — - = —.
(3.45) o=l 272 s T M org? -
(i)
_ t 1
Yo = (1= ) *(0= ),
(3.46) 2
t
- 2\—3/2
Yrg = (1—p) / ey
(iii)
t3
3.47 CS[y] = det Vig  Yro ) =
( ) ) ( Voo Yroe rPe3(1 — p?)3

Proof. (i) is immediate from the definition u = (r? + o? — t?)/(2ro).
(ii) Put h(u) = arccos . Then

Yo = (W' o p)pepse + (B 0 ) pge-

We have
(3.48) Wo=—(1—p?) 2 = —p(1 - p?)
Moreover, by (i), gz, = =z, hence, together again with (i), we get
o TO
_ t po1 _ t
— (1 — 22—y E Ly 22
o = —u(1 = ) PN D - -y
t 2 1—p?
=) B 2T,
re o r 0
_ t p 1
— (1232t Ly
(-2
Similarly,

Yo = (h” o N)NTN.Q + (hl o N)Nrga
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where, by (i),

py= b1 _p 11
Y0 ot re o 2
Hence
- 1 7 _ I 1 1
o = —pu(1 n-s/2_ Py E L g n—-1/2, 40 1 1
g ==l = )L B D ) -
_ 1 1 uwooopd 1 1 w11
-1 2y—3/21 _ M 2.+ L T Y W o
=) P G ) - B G ) - R
t2
— (1 — 42)-3/?
(1—p%) g
For (iii) write ¢, = (op — r)w, ¥rp, = tw where w := (1 — p2)*3/2#. Then, in combination with (i), we

get

= et (lor —mw w2 0en=n)
st =ao (Sl gy, ) =2

= —tw?(u+ o) = —tw? % = —(1—

Remark 3.5. The phase function in (3.44) does not satisfy the assumption of Theorem 3.1 because of the
lack of uniform C*° bounds. However one can use rescaling arguments to reduce matters to the situation
covered in Theorem 3.1. For this we note the following property of the Carleson-Sjélin determinant under
changes of variables. If z = (21, 22) = Z(w), y = Y (u) and if ®(wy,ws,u) = ¥(Z(w),Y (u)) then

(3.49) CS[®](w, u) = det (g—i) [%]305[@(2(10),1/@)).

4. Estimation of the nonoscillatory terms

In this section we shall consider the nonoscillatory terms Ry ;, ¢ = 1,2,3,4, and V), W) in the
decompositions (2.17) and (2.23), respectively. Moreover we shall provide size estimates for the oscillatory
terms (2.24) to obtain the appropriate L> bounds in Theorem 2.3. These terms can be controlled by
positive operators (such as maximal operators) or by maximal Hilbert transforms.

Convention. The constants in all estimates are allowed to be O(eA™(2)]) for some fixed A. This dependence
will not be explicitely indicated.

In the first Lemma we summarize elementary properties of localizations in terms of the quantities 1+
where p = p(t,r, p) as in (2.9), ¢f. also (2.15.1/2).

Lemma 4.1. Suppose that 1 <t < 2.
(a) If 0 < p(t,r,p) <1 then |r — p| < 2. Moreover, the following holds:

() Ifr >4 then p>2 and r < 2|1 — p|='/2,
(i) Ifr < 1/2 then 1/2 < p < 3.
(i) If1/2 <r < 4 then p < 6.

(b) If =2 < p(t,r,p) <0 thenr <2, p<2andr+p>1/2.
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(c) If u<—2thenr <2, p<2andt>r.

Proof. Note that

(4.1.1) 0<u<l <= (r—p<t*<ri+p’
(4.1.2) 2<pu<0 = P+ << (r+p?*+2rp
(4.1.3) p<—2 = ri+p?+drp <t

The assertions easily follow. [

Let xo be the characteristic function of [1/2, 00] and, for £ > 1, let x; be the characteristic function of
[27¢~1,274. Tt will be convenient to study operators A, By with kernels

(4.2) Ae(t,r,p) = xe(1— p)xqo,11()

2rp(1 — p)

(4.3) By(t,r, p) (11 + D) x(—2,0) (1)-

1
= gL X
Let M denote the standard Hardy-Littlewood maximal operator on the real line.

Lemma 4.2. Let p > 2 and suppose that 1 <t < 2. Then

(44.1) r AL T )] S T ; M™% xpgflr 1), ifr<4,
(44.2) rE Ao ()] S ST §M[p"%f] (r+t), ifr>4,

and

(4.5) rT BT A7) S ST ; M™% xpof](t = 7).

Proof. Note that

» N 1
o) wp(l=p) B pP  C-r AT —p)

and that
2[

Ag(t,’f',p) ~ E

Assume first that 0 < u < 1, so that in particular |r — p| < 2, and that 1 — p ~ 27¢.

If |r — p| < 1/4 then, by (4.6), A¢(t,r, p) =~ 1. Moreover, from Lemma 4.1 and (2.15.1) one derives that
r = pr 202 if r > 4. It is then immediate that f‘rfp|<1/4(p/r)("fl)/zAg(t,r, p)|f(p)|dp is controlled by
the right hand side of either (4.4.1) or (4.4.2), depending on whether r > 4 or r < 4, respectively.

Next, if |[r — p| > 1/4, then 1/4 < |r — p| < 2. By (4.6), we have |r —t — p| &~ 2 %rp in the case
1/4<r—p<2,and |r+t—p| ~ 2 %rp in the case =2 <r —p < —1/4.

Now, if 7 < 1/8, then p ~ 1, and flPPlZl/‘l(p/r)("_l)/ZAg(t,r,p)|f(p)|dp is dominated by r—(n—1)/2
times an average of | f(p)|p"~1/? x| f(p)|p"~1)/? over an interval of length C2~¢r centered at either r — ¢
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or r+t, depending on the sign of r — p. Hence we obtain the bound ", r—("=V/201 [p(n=1/2y(, o f](r £ ¢),
thus (4.4.1) for the case r < 1/8.

If 1/8 <r <4 then

CEART AR S Y Y 2 [ el
+

k=—2 \r:ttfp\NZ_e_k
(47) pm2_k’

z

and since now r & 1 and p > 2 this implies the asserted estimate (4.4.1).
We still have to consider the case 1/4 < |r — p| < 2 and 7 > 4. Then r = p, hence

2 VG M7 X0, f1(r £ 1)

NE

N

k=—2

P Adp™E A1) ST Adp T £t )

and the latter term is estimated by r~("=1)/P times an average of |f(p)|p®~")/? over an interval of length
~ 27tr? centered at either r — ¢ or r + ¢; this implies (4.4.2).

Finally, if u € [-2,0] we write
(4.8) (2rp(1 + u))_1 =(p—t+r)(p+t+r) T x(p—t+r)"h

and obtain in the same way (4.5). Note that there is no contribution to By if r > 2 or p > 2 by Lemma
4.1 (b). O

The next two lemmas provide estimates for the remainder terms in Theorem 2.2.

Lemma 4.3. Let z = b+ 47 with b > —1/2 and V, x be the integral operator with kernel V, x as in
(2.23/26).

For o sequence of functions F' = {f;} and 2 <p < oo let

1/2
(4.9) GprF(p) = p" (1A + X /D) fi(01)
J
Suppose that 1 <t <2 and 0 <y < (2b+1)/2. Then
1/2 1 n—1
(4.10) (X Wen fitm)2) 7 e Y M X G Fl(r 1) if 7 <4
J +
and
A2 e
(4.11) (W fin)2) S F S M[Gpa Fl(r2t)  if r>4
J +

Proof. Let Jo = [-1/2,1/2]U[-2,—3/2] and for £ > 1 let

Jee=[1-2751-27¢1
J—,e = [—1 + 24’1, -1+ 2*‘3] U [_1 — 271, -1 - 27171]
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Let V)5 = X0 (1) V2, and V )\ = Xy, ()Vzx- Then
=T+ ST
¢+

Now let £ > 1. From Theorem 2.2 we derive the estimate

(4.12) V] S AT 2782 (o) 8 (o fr) "5 (A + By) i A27% > 1,
and
(4.13) VLN S ax(€0)(por)" 2 (p/r) ™2 (A + By)  if X272 <1,
where
(4.14.1) o (0, )) = 27 42+D/2)

2~ t(2b+1)/2 if —1/2<b<1/2
(4.14.2) a_(£,X) = ¢ 27¢og((2 + N)~12¢/2) ifb=1/2

A+ 1)t ifb>1/2.

For ¢ = 0 the previous estimates remain valid with Vf,’f replaced by Vz0 » and a4 (¢, A) replaced by 1. In
what follows we shall only discuss the case £ > 1 and omit the obvious modifications (and simplifications)
for the case £ = 0.

We shall frequently use that by Minkowski’s inequality and the positivity of A; and B, we have the
pointwise inequality

(30164 +Bolgg]) " < (A + B[ lasl*) /7).

Let ¢ < min{(2b + 1)/4,1/2}. We note that a (£, \) < 27¢(X + 1)~ 20+1/2 if \2-¢/2 < 1. For r < 4
we have p < 6 and therefore (1 + X;/p) < (1 + );j)/p, and we derive the estimate

(Z|Vz,>\jfj(ta7“)|2)l SIS e (A B[ Y 10T /o) D )t

£>0 A;>2/2
(4.15) RS 2 (U B[ 10 (4 A ) O 1) ).
>0 \;<2¢/2

Now (4.10) follows from Lemma 4.2.
Let now r > 4; then Vf; (t,r,p) = 0and By(t,r, p) = 0, by Lemma 4.1, and furthermore we may assume
that r ~ p, 4 <r < 2(46)/2 and p > 0 so that the estimate (4.13) holds with a (¢, ) = 2~ 42b+1)/2,

We shall write down different estimates for the situations \; < r < 20646)/2 p < ); < 2(646)/2 apd
r < 20646)/2 < ;. First

(4.16) |Vf:jf(t, P)| < (D 2201902 4 112 F () i A < 7 < 20H6)/2,

We use Lemma 4.2 and Minkowski’s inequality to estimate for p > 2

< Z [ Z |Vf:;\rjfj(t,r)|]2)l/2 5T_HT—1T2b+1 Z e(2b+1)/2A z |Xerf] )1/2] (t,r)

A<t 2e46)/2>p 2(z+6)/2>T Aj<r
ZM p E Z [Xprr il )1/2](7':*30
A <r
(4.17) 7_21‘/—’ PO 1+ A /) T BV ),

A <r
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for any 7.

Next we estimate the terms with 4 < r < A; < 2(¢+6)/2 and we can still use the estimate (4.13) with
ay (L)) = 2742+1/2 We use the notation \; ~ 2™ if 2™ < A; < 2™+! and obtain by Minkowski’s
inequality and summing geometric series

([ = wetsen))”

Aj>T 20646)/2> )

52( Z Z 1% 2m 6+s+f (t,r)|2)1/2

§=0 2m>r \;~2m

22 s(2b+1)/2( Z Z 2b+12_m(2b+1)A2m—6+s[PnT_l|fj|](t:7")|2)1/2

2m > \j~2m

,S ——22 s(2b+1)/2 QSuf ,r(2b+1)/22—m(2b+1)/2A2 —64s p 2 Z |f| 1/2 t ’f’)
m>p Ao
(4.18) ‘—ZM 7Y 10D B £ ).
Aj>r

Finally we consider the terms with 4 < r < 2(6+6)/2 < A; and use the estimate (4.12). We obtain in a
similar way

([ % vt sien])”

r<2UH0)/2< ),
—nzl o 9p41 —b—19—£b/2 n-t 2\ /2
ST S (S e A [ ) ) )
26+6>p2 )\ >2¢/2

_n=t1 _g/o 2oL - - nelpa1 1/2
SrTE D G2 IEALC YD @ O ) P 1)
9e>r2 Aj>2¢/2
(4.19)

ST ML+ A /0) I ) ] £ )
+ J

and the estimates (4.17-19) yield (4.11). O

Lemma 4.4. Lete >0, z=b+ir, b> —1/2 and assume that A > b—1+¢ and A > 0. Suppose also that
p>2andy<(n-1)(1/2-1/p) + min{(2b+1)/2,(n — 1)/2}.

Let W, x as in (2.23/27) and assume 1 <t < 2. Then

(i)
(4.20) Weorft,r)=0 ifr>t.

(ii) Suppose that t* —r? > 1/4. Then
1/2 -
(4.21) Vo f ()] Se (/0 [F(NA+A/p)""p 7 dp+wy(r)M [xpysa0™  FA+A/p) 7 ](VE2 - rz))

where wy(r) = rb=" if —-1/2 < b < (n—2)/2, wp(r) = log(4/r) if b = (n —2)/2, and wp(r) = 1 if
> (n—2)/2.
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(iii) Suppose that t* —r? < 1/4. Then

1
(4.22) Werft 0| Se 503

t2—r? 1
[ @I N T
i) The case z = —1/2 of the preceding estimates holds if W_q /2 5 is replaced by the operator R 4
/2, ,
with kernel Ry 4 as in (2.17).

Proof. Note that (4.20) follows from Lemma 4.1 (c¢). Moreover if |u| > 2 which is currently assumed we
have by (2.9)
2 _ .2 2 h_n/
|7(>\7b+1) < pg_H,,lrb,% t*—r°—p2 b n/22nT_27)‘
- 2rp
n=lgn/2-by2 _ 2 _ 521b=n/29"5% )

pi L5 u(t, 7, p)

=p
Thus setting
(4.23) &ftr)= [ (£ = 12 = p)P=7/257=1 | £ (o)l dp
r2+4p24+4rp<t?
we have from (4.1.3)
Warf(t,7)] S (1+X)P2-A="30g, £(t,7).
First assume that 0 < ¢ — r2 < 1/4; then r > 1/2. One checks that

2, 2 2 4 142 —r?
4 7 = = <2(4/1+ - —
r? 4+ p’ +4rp < - < ( + 13 )

where the second relation implies that p < (£ — r2?)/2r < (t? — r?) (since r > 1/2). It follows that in this
case

2_p2
2N f(tr) S 2N(E - r2)PE / £l dp
0

t2—r
SE=r [ I+ A e

2

(1) (i 1yp2xt 1 e _ n=1
(4.24) S / 1£(0)|(1+X/p)™"p"% dp.
0

For the second inequality observe that 27*p" < (1 + A\/p)~" uniformly for A > 0 and 0 < p < 2. For the
last inequality we use the assumption that v < (n —1)/p’ and the last term is controlled by the right hand
side of (4.22) since we assume that v < (n—1)(1/2—1/p) + (2b+1)/2.

Finally assume that > — 72 > 1/4. Clearly

1/8
€6l X10,1/81] (7)) 5/0 |£(p)|p™ tdp

so that W. x[fX(0,1/8)](t,7) can be estimated by the first term on the right hand side of (4.21).

Next, if p > 1/8 then t2 —r? — p? ~ /12 — r2 — p and also on the support of the integrand v/#2 — r2—p >
(t2 —r? — p?)/6 > 2rp/3 > r/12. Therefore

Elf X tr) < / (V& 72 — )"} (0) " dp,
VIZZrZ—p>r /12
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and since now p & 1 the estimate

(4.25) 27A5b[fX[1/8,2]](t7 ) Swe(r)M [xps,2/(L+ X p) p" (V2 —12)

follows by standard arguments. O

Now we estimate the operators R ;, with kernels R, ;, ¢ = 1,2,3 which occur in (2.17).

Let H be the Hilbert transform on the real line; moreover define
(4.26) M f:=Mf+ M[Hf].

Lemma 4.5. Suppose that p > 2. There is a constant C' (independent of X) so that the following pointwise
inequalities hold for 1 <t < 2.

(i) Suppose that r < 4. Then

(4.27) R F&, )| S Or "5 S [1F(r £ )][(2r £8)] 7],
+
(4.28) Rasf(t) ST Y Mxo,ef/()()F ] (r £1).
+

Let I, = [2=™,2'=™]. Then
o0
-1

(4.29) Raaf S5 30 190 D, FOO) T (=),

m=—1

(ii) Suppose that r > 4. Then Ry f(t,r) =0 and

(4.30) R f(t,m) < Cr5 SO (If(r £ ]| £ )] ],
+

(431) [Raaf(t,1)] < Cr=™5 ST MO ) £1).
+

Proof. Estimates (4.27), (4.30) are immediate from the definition (2.19) of Ry ,1. By (2.21.1/2) we obtain
the pointwise inequality

n—1

X(—2.1) (W) Bz (t,m, p)| S (g) i Z min{\'/227m/4 X712/ 4 (A, + Byy)

m=0

so that the estimates (4.28), (4.31) follow from Lemma 4.2.
From Lemma 4.1 it follows that Ry f(t,r) =0if » > 2. For r < 2 we use

1 1 _ 1( 1 1 )
t+r+pp—t+r 22\p—t+r t+r+p/’

Let L
Fnf(p) = x1..(0)p" = f(p)
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The integral operator with kernel

(p/r) D2 @)+ 7+ p) T VL = B2 (8,7, p) )X, (),
when applied to f, is easily seen to be bounded by r~(=1/2 [ . 1f ()l pm=1/2dp which in turn is trivially
bounded by r~(»"V/2M[F,, f](t — ).
It remains to estimate the principal value operator 7 with kernel

(B)(n—l)ﬂp_v_#c(,\ 1 — p2(t,r, P)|)X(_2,0)(u(t,r, ).

T p—t+r
Observe that for —2 < p < 0 we have

+p—t
- mlqpn PPl
Wl p -
and also r,p < 2, r + p > 1/2 by Lemma 4.1.

Introduce the dyadic cutoff B (s) = ((27%~1s) — ((27*s) where the even function  is defined as in the
statement of Theorems 2.1 and 2.2. Let
E,mf(t: 7’) = ,r—(n—l)/Z X
1 _
p.v. / S SOV = 12, ) Dx(-20) ((t: . DB +p = D, (p)p" 7 f(p)dp

and
Tem f(t,r) =1~ ("D 2py, / e U R ()" D7 f(p)dp.

We observe that T[xr. fl(t,7) = >4 Te,mf(t,7) where the sum is extended over those k with 2F
A722 My,

Suppose that |r + p —t| & X227 %r for s > 0. Then |((A/|1—p2]) — 1] < A1 — 2]
)\(%)1/2 < 27%/2 and from this one deduces that Y ou<y-29-m, |Tk,mf — 7~79,mf| is dominated by

r=(=D/2M[F,, f](t — 7). By Cotlar’s inequality 3, Tx,m is dominated by M[F,,f] + M (H[Fy,f]), where
H is the Hilbert transform; see [32, §1.7.3]. Thus (4.29) follows. O

N

IN

The previous estimates can also be applied to the main (oscillatory) term in (2.24) to prove L* bounds;
the oscillation is irrelevant here.

Lemma 4.6. Supposep>2,1<t<2 and

b—1

rP=Ep s TN (L — p(t, 7, p)?) T iflul <1 and A1 —p? >1

4.32 By a(t,r,p) =
(4.32) ba(tr, ) { 0 otherwise.

Let Py,» be the associated integral operator and let GppF' be as in (4.9) (withy =b).
(i) Suppose that b > —1/2. Then

1/2 1_n—1
(4.33) (D 1Per, FE0) S5 Y MixoaGrnFlr £1) if 7 <4,
J +

and

(4.34) (3 1P, £t r)|2)1/ CSr T S MIG () i r>d
J

+
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(i1) Suppose that b > (n — 2)/2. Then
1/2

(4.35) sup sup (0 P £5(60F) " Ssup (10 + 070 50)F)

1<i<27>0 V5

Proof. This follows from the pointwise estimate

(4.36) 1Poal SATEY pBHtrt =B oS4, + By), 1<t <y
£>0

the proof is analogous to the proof of Lemma 4.3. (ii) follows from the obvious modification of (i) for the
case p=o0. O

In order to derive endpoint bounds for p = 2n/(n — 1) we need the following lemma, a variant of which
has been used already by Colzani, Cominardi and Stempak [10].

Lemma 4.7. Let n € R, n > 0 and v — u(r) be a measurable real-valued function on RT. Assume
1<p<oo. For g € LP(R,dz) define

Sg(t,r) =1 "Pg(t + u(r)).
Consider the measure du, = dtr" 1dr on R x Rt and let

Eo(f) == A7) : |Sg(t,7)| > o}

Then for a > 0

(4.3) pn(Ea() =070 [ lg(@)Pdo

Proof. We perform the change of variable (z,r) = (t + u(r),r). Then

pin(Eo) =/r"_1/ dx dr
z:|g(z)|>arn/P
=// r"_ldrda:=n_1a_p/|g(x)|pd$. O
rr<lg(z)|/a]p/m

Remark. In our context u(r) = £r. Colzani, Cominardi and Stempak [10] used a similar lemma to prove
the weak type (po,po) space time estimate for the wave operator on radial functions; here py = 2n/(n —1).
To relate this to the estimates in [25] we remark that the weak type inequality could also be obtained by
applying Lemma 4.7 to the terms arising in formula (3.4) in [25].

We are now ready to give the

Applications to the operators arising in Theorems 2.1 and 2.2.

Denote by R, ¢ = 1,...,4 the operators with kernels R ; in (2.17), (2.19-22). We begin by verifying
the analogue of the estimate (2.29) for these operators, as well as the corresponding weak type and restricted
weak type estimates in Theorem 2.5; in fact for the operators {Ry, ;} this distinction is irrelevant as we
prove weak type inequalities. We remark that none of the estimates involves the factor (1 + A;/p)° in
(2.29); again this is only needed for the estimation of the oscillatory terms.
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Proposition 4.8.
(i) Let 2 < p < 2n/(n—1) and i € {1,2,3,4}. Then

(4.38) / / |R)\J,zfj(t nP)’ P gy dt) S (/ (ZUJ ) "l )Up

(i) Denote by p, the measure dtr™ 1dr on [1/2] x RT. Let E be the set of all (t,r) € [1,2] x RF
1/2
such that (3_; |Rx;.if;(t, r)|2) > a. Let po =2n/(n—1). Then fori=1,2,3,4 and for all a >0

(4.39) pn (EL) < Ca_p0</0°° (Z |fj(l9)|2)p0/2pn_1dp) 1/p0.

(iii) Let P_1/5 5 be as in (4.82). Then statement (i) holds with with Ry, ; replaced by the operator
1+ AJ/P)71/2P—1/2,>\]~

Proof. For i =1,2,3 the statements (i) and (ii) are a consequence of Lemmas 4.5 and 4.7 and the vector
valued maximal inequality of Fefferman and Stein (see [32]).

First for the region where r > 4 estimates (4.30) and (4.31) yield strong type estimates for all p > 2.
In order to prove the estimates (4.27-29) we observe that the function r(»~1D(1=?/2) is integrable near the
origin if p < 2n/(n — 1), and one considers for fixed r the maximal functions as functions of .

The term r— "= M [x11/8,21f () ()" 1] (V2 = r2) in the bound for R 4 can be reduced to the previous
situation by changing variables ¢t — r + v/t2 — r2. Note that in the present case vVt2 —r2 =~ 1, r,p < 2 so
that there is no essential contribution from the Jacobian of the change of variable. This yields the asserted
estimate for Ry 4. The endpoint weak type estimate (ii) is deduced using Lemma 4.7. (iii) follows in the
same way from Lemmas 4.6 and 4.7. O

We shall now prove the analogue of (2.30-32) for the remainder terms {V. x;}, {W.,x,} as well as the
appropriate endpoint estimates in the case z + 1/2 = n(1/2 — 1/p) — 1/2. Again the estimates are slightly
better than what is stated in Theorems 2.3/2.5.

Proposition 4.9. (i) Let p>2, z=b+ir, b>—1/2,0<y < (2b+1)/2, and b+ 1> n(} — %) Then

o) ([ [T (S Wantsnp) e tara)” s ([T (Siasnsmsor)” o) "

If in addition b+ 1/2 < (n—1)/p then

/2 1
(4.41) / / War, £5(t,0) ) 7 tdrt)

A >Re(z) 1
& (/oc>o (Xla+ ’\J'/P)_"fj(p)l2)p/2p”‘1dp)l/p

J
(ii) Denote by ., the measure dtr"~tdr and assumep > 2, z =b+ir, b+ 1= n(% - %), 0<~<
(2b+1)/2.
Let Eq(V,z) be the set of all (t,r) € [1,2] x Rt such that (3_; Ve, fi(t,7)|)Y? > a and similarly
define E,(W, z), replacing V, x by W, ». Define po(b) by b+ 1 =n(1/2 —1/po(b)). Then for all & >0

@) p(EWrin) SamO( [T (Slar o ner)" " )
J
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The same inequality holds with E,(V,b + it) replaced by E,(W,b + it).
(iii) Statement (ii) holds with Vytir,x, replaced by Py x, (14 X;/p)~'/2.
Proof. Similar to the proof of Proposition 4.8; for (4.40) one uses Lemma 4.3 and for (4.41) one uses

Lemma 4.4. Again for the endpoint estimates one uses Lemma 4.7. Finally for statement (iii) we use the
estimate in Lemma 4.6. O

We also obtain the

Proof of the L estimate (2.32). The relevant estimates follow immediately from Theorem 2.2 and
Lemmas 4.3, 4.4 and 4.6. Note that (2.1) and the assumption b < n/2 implies A; > b — 1, which is needed
for Lemma 4.4. O

In a similar fashion we obtain the

Proof of the weak type endpoint inequality (2.34). We estimate the kernel of O, »; by P, x; and
apply Proposition 4.8 (ii), (iii) in the case b = —1/2, 7 = 0 and Proposition 4.9 (ii), (iii) in the case
b > —1/2. The additional restriction v < n(1/2 — 1/p) — 1 for the weak type estimates comes from parts
(iii) of these propositions. O

5. Estimation of the oscillatory terms

In this section we shall prove the vector valued L?(¢?) estimates for the oscillatory integral operator
0. with kernel {0 »};i.e. O,z f = (0, A(t,7,°), f).

We keep the convention about the dependence of the constants on Im(z) stated in the previous section.
|| - ||, will always denote an LP norm on R with respect to the measure dp.

We first introduce a decomposition in terms of the quantity /1 — p?. Let n € C*°(R) so that 5(s) =0
for |s| <1/2 and n(s) =1 for |s| > 9/16. Define
(k) = (1 = p*)x(=1,1) (1)
ne(p) = 21— ) =@ A= *)Ixcry () =1
Note that for £ > 1 the function 7 is supported where (1 —p?) € (27471, 327%). Now p? > 7/16 on its
support and from this one easily sees that 7, is supported in the union of the intervals (1 —27¢,1—27¢~2)
and (—1+27¢72 -1+ 27%). Set
Oz,)\,f (t7 T, p) = Oz,)\(ta T, P)TM (/J(t, T, p))

We thus localize for £ > 0 where 1+ u(t,r, p) is of the order of 27¢. For £ > 0 we also set

OZA,JZ (ta T, p) = OZ,)\,Z(t7 T, p)X(O,l) (/"’)
O;)\,e(u T, P) = Oz,/\,é(t7 T, p)X(—l,O) (H)

We denote by O, and Oifu the integral operators with kernels O; » , and Oik’ ¢> Tespectively.

The main purpose of this section is to prove the following

Proposition 5.0. Suppose 2 < p < oo, b= Re(z) > -1/2 and 0 <y < min{b+1/2,b+2/p}. Let I be a
compact subinterval of (1,2), and let

[log2+ Mp)] "/ P(1+2/p) " if2<p<4
G20 1+ M p) ifp>4

p—4

(5.0.1) wy,p(A, p) = {
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and, for F = {f;},

/2

Grp(Fyp) - (Z|w'm) i»P) fi( )|)

Then the following conclusions hold.
() Oz fitsr) = 0 if r > 20492 and O, fi(t,r) =0 if r > 4.
(ii) For 3 < L < (£+6)/2 let x1 be the characteristic function of the interval [2E—1,2L+1]. Then

2L+1

(5.0.2) //2L

S (O ehiten)) v arar)

Aj>2¢/2

2b+1 1 1 l/p
S (/ [gfy,p(l XLaP)]p(Q_epQ)PTJr min{1, (2 fpz)Z_;}Ppnfld ) ‘
(iii) Let x € C=(R*) be supported in (107*,00). Then

/
(5.0.3) //0 \ Z |Oz>\1,e[xfj t,«)| )P n_ld'f'dt>1p

Aj>2¢/2
1/p
S2 % minfL2 Dy ([ (g, )

(iv) Let R < 1073, Then

(5.0.4) </1/1:2( Z |(9z,>\j,efj(t,r)|2)p/2r”_1drdt)

A >2¢/2

1/p

< 2% min{1,2 ¢G9)} _7E+b+1(/ Gy (F, p)]ppn_ldp)l/p'
0

(v) Let R <103 and let xgr be the characteristic function of the interval [R/2, R]. Then

P/2 1/p
(5:0.5) // |Oz,)\j,€[XRfj](t;T)|2) r"‘ldrdt)
Aj>2¢/2
< 27 min{1, 27D min{ RO, pri-b-y( / (G0 p))" 0" dp) .
0

We shall split O, ¢ into a finite number of pieces, where each one of them possesses a certain local-
ization property which then suggests an appropriate rescaling.

5.1 Localization. We shall now prove localization properties refining those in Lemma 4.1; the finer
localizations depend on the size of the quantities 1 F u(t,r,p), ¢f. (2.14.1/2). The results are stated
separately for the cases yu > 0 and p < 0 in Lemma 5.1.1 and Lemma 5.1.2, respectively.

Lemma 5.1.1. Suppose that 1 <t <2 and that 0 < 6/4 <1 — p(t,r,p) <d < 2.
If (t,r, p) € supp O, then the following statements hold.
i) Ir—pl <2
(ii) 612 < 32.
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(iii) Let R > 8 and R?> < 1/16. If R/2 < r,p < 2R, then we have |r — p| > 1/2 and

OR?
p—85R2Sr—tSp—§, if r—p>0,

p+O6R*/32<r+t< p+85R?, if r—p<o.
(iv) If r < 1/4 then 1/2 < p < 3. Moreover if also R/2 <r < 2R then
r+t—120R<p<r+t—3JR/32.
(v) If1/8<r <4 andif R/2< p <2R, R <1/4 then

O0R/200 <t —r+p < 326R.

(vi) If1/8 <r <4 and if p < 1073 then |t —r| < 1/5.
(vii) Let 107* < r,p < 10 and § < 10~7. Then

p—2006<r—t<p—10778 if r—p>0
p+10778 <7+t < p+ 2008 if r—p<o.

Proof. The assumption §/4 < 1 — p < J is equivalent with

2 2 _ .2 O
(5.1.1) t*—26rp < (r—p)° <t° — 7P
(i) follows immediately since t < 2. We also have

orp <8

and (ii) follows since d < 2 and since p > r/2 if r > 4.

If R/2 < r,p < 2R, then V2 —8R? < |r — p| < y/t? —JR?/8 by (5.1.1). We use the inequalities
1l—-z<+y/1—-2<1-2/2for 0 <z <1 and the assumption 1 < ¢ < 2 and arrive at

t—86R% <t\/1—8t—20R2 < |r — p| < t\/1 —t26R?/8 <t — 6R*/32;

hence (iii).
From (5.1.1) we see that t2 — r2 < p? 4+ 2rp and if r < 1/4 it follows that 15/16 < t2 — r? < p? + p/2
which implies p > 1/2. Clearly also p < 3 by (i), and therefore if r/R € [1/2,2] then by (5.1.1)

t? —120R < (p—r)? <t* —6R/8.

Arguing as for (iii) we derive t — 126R < p —r < t — §R/32; hence (iv).
Next, (5.1.1) implies
LWrp<(t—r+p)t+r—p) <20rp.
Now if 1/8 <r <4 andif R/2<p<2R,R<1/4thent+r—pe€[i,6] and (v) is a consequence.

(vi) follows from (v). For (vii) we have rp > 10~° by (iv) and therefore ¢t — 2000 < (r — p)? <
t? — §1075/2. Arguing as for (iii) we obtain (vii). O
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Lemma 5.1.2. Suppose that 1 <t <2 and that 0 < 6/4 <1+ u(t,r,p) <d <1/2.
If (t,7, p) € supp Oy, then the following statements hold.
(i) 1<r+p<3.
(i) If r < 3,107 < p < 3, and R/2 < r < 2R, then

t—r+10%R<p<t—r+60R.
(i) If 1/2 <r <3 and p < 1072, R/2 < p < R then
10726R<r —t+ p < 30R;

in particular |t —r| < 1071,

Remark. Under the hypotheses of Lemmas 5.1.1 and 5.1.2, the cases (iii)-(vii) in Lemma 5.1.1 and (ii)-(iii)
in Lemma 5.1.2 exhaust all possibilities, see also Lemma 4.1.

Proof. The assumption 6/4 < 1+ p < § is equivalent with
(5.1.2) 2+ Lorp < (r + p)* < t* + 26rp.
(i) follows since we assume 1 < ¢t <2 and 6 <1/2.
Ifr<3,10 < p<3,and R/2 <r < 2R, then
t2 4+ 10 %R/4 < (r+ p)? <t + 120R.
Since 1+ 2/4 < (1+z)'/? for 0 <2 <3 and (1 +x)'/2 <1+ z/2 for > 0 we derive

t+10 %R/64<r+p<t+6iR

and therefore (ii).
Next it follows from (5.1.2) that

orp<(r+p—1t)(r+p+t) <26rp <64R.

Moreover 2 < r + p+t <5, by (i). Now one easily concludes (iii). O

5.2 Estimates for localized operators. We shall now give estimates for various localizations of the
operators O, ; the formal decomposition of Oy, is then discussed in §5.8. below. The localized
operators can be estimated using Theorem 3.1 once some rescaling, and, in some cases, some nonlinear
change of variables is performed. We shall first describe the general argument; it is applied in the subsequent
sections 5.3-7 to specific situations.
We fix
0<d<3/2

and consider operators

Asf(t,r) = / Ax(t,r,0)f(p)dp
(5.2.1)

— / ay (t, T, p)ei)‘ arccos p(t,r,p) f(p)dp
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where the symbols a), have the property that
(5.2.2) pe(l—0,1-0/4)U(-14+6/4,-1+9) if (¢,r, p) € supp Ax.

In all cases we shall use changes of variables

(5.2.3) t,r) = (t(x),r(x)), == (z1,22),
and
(5.2.4) p=py)=rpo+y

which depend on the particular case considered. In each case we shall have

o(t,r) < CoM

2. M < —
(5.2.5) C1M < | det 6($17x2)| <

for some positive M and some absolute positive constants C1,Cy. The changes of variables will also have
the property that the Cy norms of

(5.2.6) Bz, y) = p(t(z),r(x), p(y))
(5.2.7) (z,y) = 6~/? arccos ji(z, y)
(5.2.8) ax(z,y) = ax(t(z),r(z), p(y))

will be bounded by an absolute constant (here N is large, but fixed, as in Theorem 3.1), and ay will be
supported in a fixed ball. Moreover we shall have the conditions

%

(5.2.9) |CS[¢)| > C
(5.2.10) |paay| > C.

for some absolute constant C' > 0.

Using this setup one computes

Ax; hi(t(z),r(z)) = %1,\].\/393‘(55)

(5.2.11)
where g;(y) = h;(po + 7y)

and where .Z/\ V5 is defined by

(5.2.12) A, /59(z) = / a(z,y)eNVo0EW) g (y)dy.

Assuming that the CV norms of (5.2.6-8) are bounded and that (5.2.9/10) holds we can then apply Theorem
3.1 to the operators A, 5 if A36 > 1. Let

(5.2.13) () = { A12llog(2 + N)]> 7 if2<p<4

(ﬁ)l/‘i/\—?/l’ if4<p<oo;

we exclude the case p = oo just for notational reasons since it has already been dealt with in §4. By
(5.2.4/5) we obtain
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([( X tnmenp) )" s st ( [ (3 14, vs0i@f)" ar) "

AZ6>1 et
o\ P/ /
SM”’W(/( > 190,05V8)gw)°) 2dy)1 p
A26>1
(5.2.14)
2 1
S M=/ / (> |Qp(/\j\/5)hj(/>)|2)p/ ) "

2
A26>1

Notation. In the following sections 5.3-7 we shall discuss different localizations. In each case we shall use
the above notation, although the changes of variables (5.2.3/4) will differ. LP norms will be taken with
respect to Lebesgue measure in R? or R. N will be a fixed large number large (chosen so that Theorem
3.1 can be applied). B will be the class of C functions with support in (—=1,1) so that ||x||cv < 1. We
assume that x1,x2, X3, X4 € By. The C* function x will be supported in (1,2). We also assume that
¢ € C§°(-1,1) so that ¢(s) =11if |s|] <1/2 and that 8 € C§° so that supp 8 C (1/4,1).

5.3. The case p~r > 10~%, u > —1/2. Suppose that R > 10~* and
ro, po € (1074, 00), |ro — po| < 4, R/2 <19 < 2R, SR? < 102, |so — po| < 10°6R%.

We use the symbol € = £1 with a fixed choice of 1 or —1.
Let p = u(t,r, p) and define

r — et — S

(5:31) ax(t,r,p) = (1= C(+ DVT = )20 (10" 2205610/ = ro) s ().

Lemma 5.3.1. Let p > 2 and let Ay be defined by (5.2.1), (5.8.1). Then

(5 1) ™, 5 om( 3 Iowovaml’)
AZo>1

2
A26>1

where C' does not depend on 6 and R.

Proof. We introduce coordinates as in (5.2.3/4) with

(t(z), 7(2)) = (z1,€z1 + 80 + R’ z),

(5.3.2)
p(y) = po + 6R?y.

Then v = M = §R? in (5.2.4/5), so that the assertion follows from (5.2.14) once the bounds on i, ¢ and
ay are checked, as well as (5.2.9/10).

The assertion on the support of @ is easily verified. Concerning the lower bounds in (5.2.9-10) we use
Proposition 3.4 observing that ¢(x,y) = d~1/24)(t,r, p) where ¢ is defined in (3.44). Then ¢,, ~ §—3/2R™*
if 1 — u~ J. We compute

bupy = 0 /2GR %, ~ 1.

Using also Remark 3.5 we obtain

CS[¢] =6 L(OR®*CS[Y) = 3 (R¥r2p 3)(6//1 — p2)® =~ 1.
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Now let s = r — et and define
v(t,s,0) = pu(t,s + €t, 0)

so that
(5.3.3) iz, y) = v(z1,s0 + OR?xa, po + SR%y).
Then, by Proposition 3.4
2 _ 2
Vp = ft + €y = ei
¢ T T2(s 4 €t)2p’
hence ) )
s —p
ofv=cr———, k>1.
V= Ch (s + et)ktig =
Moreover,
s — o? et
VS = 2 + 7
2(s+¢€t)20  (s+et)o
0% — 2 €ts

Ve = 2(s+€t)g? (s + et)g?
and, since |s* — ¢*| = |(s — ¢)(s + 0)| ~ 6R*R, one finds by induction
|0 v| < Cr(6R*)R™*
|3f3§821/| < Cri iR ifi+j>0.
Using (5.3.3) this implies
(5.3.4) |05, 04,08 i < Crij 6, ifk+i+j>0.

Moreover, one checks that for £ = 0,1,2,...
(5.3.5) |(%)k arccos(p)| < cxd'/27F if 1—prd

By the chain rule and induction one verifies that

|e]

(53.6) D% =0"%" 3 Cayg,..p arccos™ o (D7 ). (D7 fi),
k:0 ﬂ17"'7ﬁk
S 1671<]al
and it easily follows that the Cy norm of ¢ is bounded independently of  and R.
Note that the derivatives of the function 1 — ¢((1 + A)4/1 — u2) vanish on the support of S((1 — u)/d)

if § > (14 X\)~2. Moreover, for any k € R,

(5:3.7) ()" (1= )| < Cra=*

on this support. From this and (5.3.4) one quickly deduces that the C*V norm of the amplitude @y, is
bounded independently of A, § and R. O
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5.4. The case r <1/4, p > —1/2. We now assume that

(5.4.1) 1/4<py <4, R/2<rg<2R<1072%, 107%6R < 89— po < 10%5R
and define
1-— t+r—s - r—r
(5:42) ax(tr,p) = (1= (O + DVI= @B (10" ==L (10 =) e (47w ().

Lemma 5.4.1. Let p > 2 and let Ay be defined by (5.2.1) with ax as in (5.4.2). Then
1/2 o\ 1/2
[( 30 1Aumr) | s ar (5 Iapuvam )
2 p 2 p
A26>1 A26>1

where C does not depend on 6 and R.
Proof. We now introduce coordinates
(5.4.3) t(z) = so + 0Rz1 — Rza, r(z) = Rxo, p(y) = po + 0Ry.

Then v = R, M = §R? in (5.2.4/5) and (5.2.14) will hold once uniform bounds for the functions in
(5.2.6-8) and the lower bounds (5.2.9/10) are verified.
First observe that by Proposition 3.4

_ 1 t . 1 t 2 2
¢tp d)Tp - (1 _ H2)3/2 T2p2 (pu T t) - (1 _ H2)3/2 2T3p2 (p (t + T) )'

On the support of a) we have that (p?> — (t +r)?) ~ §R. Therefore
51/2¢z2y = R26(¢tp - ¢rp) ~ 51/2;

hence (5.2.10). Next CS[6~'/2¢] ~ 6~ '6~3R~% on the support of a) and by Remark 3.5 we see that
|CS[¢]| ~ 1.

To verify the upper bounds on @y and ¢ we put s :=t + r and define
(5.4.4) v(s,r,0) = p(s —r,r,0).
Then, by Proposition 3.4

r—s v 1
(545) Vs:/J/t: s yg:__+_’
ro o T
and ) )
Ve = iy — = e
T T t 27“2@ )
hence
2 2
k §" — 0
(546) 67,1/ = Ckm, k 2 ].

Since s ® p & 1, r ~ R and |s? — ¢?| ~ dR, one uses induction to deduce the following estimates from
(5.4.5/6).

|0Fv| < CR(SR)R™*71,  ifk>1,
|8’8’“67V| < Ck,i,jR_k_l, ifi+j>0.

sYr%p

(5.4.7)

Since fi(z,y) = v(so + 0Rz1, Rxo, so + dRy) this implies
(5.4.8) 02,008,001l < Crij 6, ifk+i+j>1

From here on, we can argue as in the proof of Lemma 5.3.1 to finish the proof. O
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5.5. The case p K1, r~1, u > —1/2.

We now assume that

1
(5.5.1) R<1073, R/2<po<2R, %(SR < po — 59 < 506R
and define
1-— — t—r+s
(552)  atrp) = (1 - A+ DVI= )85 (10" ) e (101 —2)xa ).

Note that if (r,t,\) € supp ay then r € (1/2,3).
Lemma 5.5.1. Let p > 2 and let Ax be defined by (5.2.1) with ax as in (5.5.2). Then

633 (X unr) | s smingrrem momy (8 (o008 )

A26>1 A26>1

where C does not depend on 6 and R.

Proof. We prove this inequality for p > 4 and p = 2; the general case follows by interpolation.
To settle the case p > 4 we set

t=t(z) = 2£—80—(5RIE2
(5.5.4) 1

r=r(z) = B

2.7;'1
and
(5.5.5) p=p(y) = po + dRy.
Note that 5 5B
det (t,r) _ OR

6(.’13'1, 5172) B E

and that |z1| = R if (¢(x),r(z),p(y)) € supp ax. We therefore observe that the constant M in (5.2.5)
can be chosen to be equal to §. Since v = dR the asserted estimate follows once the uniform estimate
for {AAJ, 597} is checked. We have already noticed that 1/2 < r < 3 for (r,#,)A) € supp ax, moreover of
course 1 <t < 2 and R/2 < p < 2R. Note that the variables (z1,z2,y) live then in the region where
71 € (R/6,R), zo € (1073,50), y € (—107*,10~*). We shall extend the change of variables (5.5.4/5) to
the larger region where

(z1,22) € (0,107%) x [1073,50] =: I;

then for (z1,15) € T we have r(z) € (500R, 00).

Introduce auxiliary coordinates

o 1 - I

2r R

wyg =71 —t =89+ dRxs.

w1

Define v such that u(t,r, p) = v(w(t,r),p), ie.

— w?
(5.5.6) v(w,p) = wip+ Wa — WaWr
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and
- T
(5.5.7) fi(z,y) = u(t(),7(2), p(y)) = (S5, 50 + 8Rw2, po + SRy).
Since det % = (2r%)~! we see from Remark 3.5 that
3t
(5.5.8) CS[6¢] = 2r°CS[](6*R?) = 2(1 — u?) 3W(64R3).

Now for z € I we have |z122| < 1/20 and therefore
t(z) |so + SRz ||221] 1 1
B q| = BoT ORT2I2T] o 2 4 95 <z
‘7’(:1:) | R < 500 T Plmml < 3
therefore |CS[d6]| ~ § and |CS[4]| ~ 1. Next

N t(z) it 1

t(z),r(z), py)) = (1 - 3*)~3/2 -
Yo (82), (), o)) = (1= )7 s (s = o)
and since r(z) > 500R we see from (5.5.1) that —;,(t(z),r(z),p(y)) ~ 0-3/2R~2. Hence ¢ypy, =
—612(§R) 24y, ~ 1.
We have still have to bound the C* norms of @) and ¢. Note that

(5.5.9)

2 2 2
_ 0T —wy 2 =0
V’U]l - - ) V’lUl'lUl - ’
o e
1- 2’[1}1'11)2 2'11)1
Vwy = ’ Vwsws = — s Vwogwaws = 07
e 0
wo — wiwy
Vo = w1 — — 5 -
@

Note that if € I then
w € Ir =[0,10 R x [so + 6R1073, 59 + 500 R).

and therefore |o> — w3| = O(§R?) on Ig. Now the previous formulas easily imply that
|Ow,v| < COR,
|oF v| =0, if k> 2,
|0, 82,0%0| < CogR=CH) if a+ B> 1,
02,080| < CqgR™HA).

As a consequence, we find that
|0k 02 0Pfi| < Chap b, ifk+a+pB>1.

T2y

From here on one can argue as in the proof of Lemma 5.3.1 and this leads to the inequality
1/2 1/2
[ tanmst) ™| < core| (3 fovam )|
A25>1 P

A25>1
which coincides with (5.5.3) if p > 4 (since R < 1).
Next, we prove the case p = 2 of (5.5.3) and work with the changes of variables
(t(z),r(x)) = (x1 — so — Rx2,1),
p(y) = po + dRy.

Since now |¢;,| &~ R~2573/2 by (3.46) we note that ¢,,, = 6~ */2(0R)%¢;, ~ 1. Moreover v = R
and M = 0R in (5.2.4/5). One checks that the CV norms of (5.2.6-8) are bounded and one can apply
Hoérmander’s basic L? estimate ([17]) to the operators A, /5. Therefore the calculation (5.2.14) remains

valid with our present change of variable and p = 2 with M'/?4'/2 = §R. This shows the validity of (5.5.3)
in the case p=2. O

(5.5.10)
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5.6 The case pr1,r <3, u <0.
We now assume that

(5.6.1) 1073 < py <3, R/2 <r¢ < 2R, ro < 3, s0 € [~2,2], 10 36R < s9 — po < 106R
and define

1+ t—r—s — r—r
(5:62) ax(t,r,p) = (1= (A + VI = 12) B35 (10— xa (10" s (452 ().

Lemma 5.6.1. Let p > 2 and let Ay be defined by (5.2.1) with ax as in (5.6.2). Then

(3 1), < sms( 5 onvimf)

2 2
A25>1 A26>1

where C' does not depend on § and R.

Sketch of Proof. Since both § and R are bounded if 4 < 0 (¢f. Lemma 5.1.2) we may assume that JR is
small, say dR < 10710, Otherwise both § and R are comparable to 1 and the statement of Lemma 5.6.1
follows directly from Theorem 3.1.

Assuming that R < 10719 we use the changes of variables

(5.6.3) t(z) = so + 0Rz1 + Rxa, r(z) = Rxs, p(y) = po + 0Ry.

We shall not give the details of the proof of Lemma 5.6.1 since it is analogous to the proof of Lemma
5.4.1. The only difference is that the analogue of the function arising in (5.4.4) is given by

v(s,r,p) = p(s +r,7,p).

One observes then that

ro 1% r

82 — g?
Vp =l + g =

7

2r2p
so that one has an analogue of (5.4.5/6) in the present case. O

5.7. The case pKL 1, r=1, p <0.
In this final case we analyze the situation which comes up in Lemma 5.1.2 (iii). We assume that

1
(5.7.1) R<107®, R/2< po < 2R, %(m < po — so < 506R

and define

3/4 _ o —
(5:72) ax(t,r,p) = (1= C((A+ )v/1 = 12)B(2 =5 q _‘SMZ)M xi (1042 5R”°)X2<1o4t§—RS°)X4(t).
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Lemma 5.7.1. Let p > 2 and let Ay be defined by (5.2.1) with ay as in (5.7.2). Then

[( 32 tannsl) ™| s smingrrm Ry (S (ay0uvan) |

2 2
A26>1 A25>1

where C' does not depend on § and R.

To prove this one now introduces coordinates by setting t(z) = % + s0 + dRz2, r(z) = %, ply) =
po + 0Ry. The crucial observation is that |t — r| is small and therefore one can directly adapt the proof of
Lemma 5.5.1 to also prove the case p = 4 of Lemma 5.7.1. We omit the details.

For the case p = 2 we work with ¢(x) = 1 + so + dRza, 7(x) = 21, p(y) = po + 0Ry. Again the
argument of Lemma 5.5.1 applies.

5.8. Proof of Proposition 5.0. The first assertion (i) follows from Lemma 5.1.1 (ii) and Lemma 5.1.2
(i). We shall prove the assertions of Proposition 5.0 for large £ and O, ¢ replaced with O;A,Z' The
straightforward notational modifications of the easier case r ~ p =~ 1 for small £, and for the operator
O, ¢ are left to the reader.

In what follows we fix z =b+i7, b > —1/2 and let

(5.8.1) Baul(t,r,p) =
R (= A+ DV )mulalts )Xo (021 = 7)) T cos(Aarceos ult, ) — §2).

Let By ¢ be the integral operator with kernel By ;. Then

(5.8.2) OF o f () =275 17772 By 49, 5 (8,7)
with
(5.8.3) 9=(p) = X2 f(p)p =22,

Proof of (5.0.2/3). We give the proof of (5.0.2). Let m > 6 and I,,, = [m,m + 1], Xm := X1I.,.- We note
that the function By ¢[fXxm] is supported in [m — 2,m + 3], by Lemma 5.1.1 (i).

Moreover if 27‘m? < 2710 and p € [m,m + 1], r € [m — 2,m + 3] and (t,r,p) € supp By, then
|r — p| > 1/2, by Lemma 5.1.1 (iii), and this lemma states a finer localization property. Split the interval
I, = [m,m + 1] into subintervals of length 2=¢=10m2,

Iy = [m+2750m? m + 27100 + 1)m?),

and put Xm,v := XI,,- Then By ¢[fXm,] Will be supported in sets Wy, ,, e = £1, in which 7 ~ m and
r — et is restricted to an interval of length ~ 27 ¢m? < 1; specifically

Who=1,1):1r € [m—2,m+3],m+2"0m? —e27 5 m? < r—et <m4+2"" 0 (w4+1)m?—e275m?}.

Now it is crucial that every (¢,7) is contained in at most a bounded number (< 2!%) of sets Wy, ,. It
therefore suffices to prove (5.0.2) under the assumption that all f; are supported in a fixed I, , (or I,
if 2710 < 274n? < 26). We discuss the argument in the case 27 ¢m? < 2710 and leave the notational
modifications in the slightly simpler case 27 ‘m? ~ 1 to the reader.

One checks that
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N(m,v,f)
Baalfxtn = Y ComumtAertomulfXin,]
+ s=1

where each Ay ¢ s,m, is of the type treated in Lemma 5.3.1, with dR? < 27*m? and where N(m,v, ) and
the coefficients c;,m,.¢ are bounded, with bounds independent of m, v, £, A.

Therefore
2L+1 b .
2\ 2 ,_ ?
/ /L | :,Aj,z[ijIm,y] ) r" 1drdt)
2 A22-£>1
P 1
1—b » ;
5 QET 7+b__ / Z / |B)‘jal[92,>\jXIm,,,] )2d7'dt)
e==+1 v AZQ 4>1
3 1
5 2e1;2bm% 2m22 / Z )\ 9~ Z/Z)gz)‘ Xt )de)p
AZ2-6>1
P 1
b+1 P 1
'Sm m2btlo—t5% / Z |)\ bQ )\ 92— £/2 )f]XImVXL( )| )2dp)
A;>20/2
p 1
_pbtl B B N 1
< gli2bt1) -t (/( SN 027 fixa,., XL ()] ) e 1dp)”.
)\j22£/2
Now
)t t/2)13~% if 2 <p<
A-PQ ()\j27£/2)p2b+12,gb42—71 < ( ) ) 2(2° ) [10g(2 + ;27422 if2<p<4
7o ~ 1/4 3\ —b—2 ., .
(20" <%f> o it

and since here 27¢/2p ~ 2L=4/2 < 1, 27¢/2); > 1 (hence )\; > p) we find using the assumptions on
that the last quantity is estimated by w, ,(\;, p) min{(27¢/2p)20+1)/2 (2=¢/25)b+1-2/PY. thig implies the
desired estimate with f; replaced by f;x1,, . As pointed out above we obtain the full inequality (5.0.2) as
a consequence.

The proof of (5.0.3) is exactly analogous. Now r & p &~ 1 in Lemma 5.3.1 and we note that by 5.1.1
(i) we have O, e[xf;](t,r) = Oz x,.elX10-4,101f5](t,r) for r < 8. We split the p-interval [10~*,10] into
intervals of length 2719=¢ (cf. the case (vii) of Lemma 5.1.1.) Then we continue as in the proof of (5.0.2).
Further details are omitted. O

Proof of (5.0.4). Now we consider Of, ,f;(t,r) where R/2 < r < 2R and R < 107°. We split the
interval [1/2, 4] into subintervals

1 1
4 27E710VR, 5 4 27!710(1/ =+ 1)R]

J,,=[2

By Lemma 5.1.1, (iv), it suffices to assume that f is supported in [1/2, 4]; moreover, if f is supported
in J,, then X[1,2]x[R/2,2R]OZ,\j,gf is supported in

1 1 1
W, ={(t,r): R/2<r <2R,1<t<2, 3+ 3—2R2_€+I/R2_€_10 Srtt<g +12R27 + (v + 1) R274710),
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If f is supported in J, then we can apply Lemma 5.4.1 to estimate the L? norm of the square function
associated to By ¢f (using linear combinations of terms occuring there). We obtain with gy, . as in (5.8.3)

// |OZ>\j Jfixa]

2) p/2rn71 drdt) e

A22 £>1
-~ b et . p/2 l/p
< 9 R // S 1By, e xa )" dr i)
AZZ £>1
. 2 p/2 1/p
251 b s Ltb—3 o eR1+1/p Z p(A;27 e/z)g)szJ (P)| ) dp)

PRL T x29- £21

b1 11 _ _ n—2 2\ P/2 1/p
S UERMTG( > 02 L0 0, 0)) T dp)
PRL N2>

52—6# min{1,2"~ (- *)}Rb"‘l n(z=5 </<Z|w7p i:0)fi(p)x1, ()| )P/2pn_1dp)1/1’

and this yields the desired inequality for f; supported in J, (since p =~ 1 there). Since every (¢,r) €
[1,2] x [R/2,2R] is supported in only a bounded number of sets W, we obtain the inequality (5.0.3) for
O, ¢ replaced by (9; A The corresponding inequalities for (9; Al and for O, o are derived analogously;
here we have to use Lemma 5.6.1. O

Proof of (5.0.5). Let R < 1072 and for v > 0 let
I, = % + 27 10yR, % + 2719 + 1)R].

If f is supported in I, (so that I, N [R/2,2R] is not empty) then, according to Lemma 5.1.1., part (v),
X[1,2]x[1/8,4]02,\,ef is supported in a strip where t — r + p ~ 27 ‘R, namely

R R
Vo=A{(t,r): 5 -2 R+ 27" R <r -t < 5 - 27 R+ 270w + DRYN((1,2] x [1/8,4)).
The terms By ¢[fx1,] can be estimated using Lemma 5.5.1. We obtain

TTCE oy e

A22—£>1

<2 -t // Z B, el9:2.7, X1,]

)\22 £>1

z)p/zdr dt)l/p

S mn(ri R ([ (2 X052 0 o, () ) )

AZ2-6>1

el 1.1 41 n=2_m-1 _ iy 2\P/2 1/p
<2 B min{RITF, RHRT / (Y %02 P hex @) e tdp)
AZ2—E>1

Here we used that p &~ R in I,,. We can further estimate
£ 1 1
21R " 3(\;/p) P 2[log(2 + A;/p)]t/2 P if2<p<4
00, 0,70 < 05/ log(2-+3,/p) <p<
C2R ’()\/p) ~5 ifp>4
and the asserted inequality follows after a short computation for f replaced by fxr,. Since every (t,r) €
[1,2] x [1/8,4] is supported in only a bounded number of the sets V;, we obtain the full inequality (5.0.5), for

O, ¢ replaced by (’)z A Again the derivation of the corresponding inequalities for (’); A, and for O, 20
is similar, see Lemma 5.7.1. [O.
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5.9. Conclusion: Proofs of Theorems 2.3 and 2.5.

Proof of Theorem 2.3. The case p = 2 follows from the spectral theorem. We show estimates (2.29-31) with
S.,; replaced by O ;. The assertion of Theorem 2.3 follows then by combining these estimates with the
estimates for the nonoscillatory terms in (2.17) and (2.23) which were already carried out in §4. Moreover
(2.32) was already proved in §4.

We first fix L > 3 and consider O, , f;(t,r) where t € I, r € [2F,25F!]. Recall that because of the
localization of the kernel the function f; can be replaced by f;x1 where xy, is the characteristic function
of [2E—1 2L+2];

Now O, »; = 2002 ;,¢ Where according to the localization properties of O . and Proposition 5.0 we

sum over all £ with \; > 2¢/2 and 2(¢+10)/2 > 2L=1 thus we may link £ = 2L — 12 + s with s > 0. We
estimate with b = Re(z)

ol+1

//2 (Z 1021, fj|2)p/2Tn—1det) 1/p
s

s=0

p/2 1/p
Z'Oz,)\j,QL—12+s[ijL]|2) r"fldrdt)

o

522 o min{1,2"~ 3(___ </<Z|W’YP i P fixzl| )P/2pn_1dp)1/l’
5=0

under the restriction on + in Proposition 5.0. We can sum in s if b > —1/2 and also if b = —1/2 and
2 < p < 4. Combining these estimates and summing the pth powers in L we obtain

(5.9.1) (/1/800 (;|Oz,)\jfj|2)p/27'n_1d’r‘dt)1/p < (/ (;Iw%p(A,-,p)ijQ)p/zp"‘ldp)l/p

ifb>—-1/2orb=-1/2and 2 <p< 4, and vy < min{b+ 1/2,b+ 2/p}.

The estimate on [0, 8] is even more straightforward. Applying Minkowski’s inequality in (5.0.3) and
summing Y 5, 2~ /20+0/4 min{1,2-41/4-1/P)} yields
(5.9.2) B

(/1/1:_3 (sz,,\,- [X[1o—4,oo)fj]|2)p/2r"‘1drdt)l/p < (/ (Z|w7,p()‘jaP)fj|2)p/2pn_1dp)1/p_
j

J

Next we apply (5.0.5) with R = 27%. We may sum in kif p > 2 and n > 3 and p > 4 and n = 2.
Applying Minkowski’s inequality and summing in £ as in the previous case yields

(5.9.3) ( /1 /1 :_3 (;wz,Aj[X[MO_ﬂ fj]|2)p/ 2r”‘1drdt)1/p < ( / (;va,p(&-,p)fjlz)p/zp"‘ldp)l/p

ifp>2andn>3and p>4andn=2. If n =2 and p < 4 we introduce an additional factor to insure
convergence in k; note that for R~ p <1 and A\; > 1 we have 1 S R°(1+ A;/p)°. Thus

(5.9.4) (/1/1:_3 (ZK’)Z’M [X[O’m“*]fj]|2)p/2r"—1drdt)1/p
J
(/(Z|w'y,p i P)(1+ X;/p)° fil ) p/? p"fldp)l/p
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ifn=2and 2<p<4.

Finally we apply (5.0.4) with R = 1032~%. By the assumption b+ 1/2 > n(1/2 — 1/p) — 1/2 we get
convergence in k, and again we have convergence in £ from (5.0.4). This yields

so5 ([ 10_3(zj:|Oz,xjfj|2)p/27'"_1d7‘dt)1/pSC( [ (S roratnss?)”r=sar) "

if2<p<2n/(n—1)andb>-1/20rp>2n/(n+1)and b+1/2>n(1/2—-1/p) —1/2.

Theorem 2.3 follows by combining (5.9.1-5). O
Proof of Theorem 2.5. To prove the restricted weak type inequalities in Theorem 2.5 we assume that
z=>b+ir and b+ 1/2 > 0, and define py by b+ 1/2 =n(1/2 — 1/ps) — 1/2. We observe that the above

arguments yield favorable strong type estimates for the critical exponent ps, for the terms in (5.0.1-3) and
(5.0.5). However the estimates (5.0.4) for R ~ 27% < 1 do not yield a bounded sum in k.

Now let x; be the characteristic function of the interval [27%~1 27*]. We define
T (f) = xe (M) O A[(L+ A /p) f-

Assume first 2n/(n — 1) < p, <4. Then b+ 1/2 =n(1/2—1/p) — 1/2 > 0. By Proposition 5.0 given
€ > 0 there is p(g) > pp so that the inequality
(5.9.6

)
(/I/O (;|Ti:,’]7fj(t,r)lz)p/2r"‘1drdt)l/p < 2’“("(%*%)4}*1)</0 (;Uj(p)ﬁ)mp”—ldp)l/p

holds for 2 < p < p(e) and v < b+1/2—¢. The desired restricted weak type inequality for the vector-valued
operator {3, T}/ }j>o0 follows now from an interpolation lemma in §6 of [6] (see also [2] for a closely
related argument).

If p, > 4 we have (5.9.6) with v = b + 2/p for some open interval of p’s containing p, (by a similar
argument). The same interpolation argument applies. All other operators involved are either of strong
type (as a consequence of Theorem 5.0) or of weak type by the estimates of §4 (here we have to assume
Im(z) =0if b= -1/2). O

6. Applications to spectral multipliers

Lemma 6.1. Let N be the smallest integer > (n — 1)/2. Suppose that m is even and k = M satisfies

(6.1) /|tjn(j) (t)|dt < oo for0<j< N

Then m(v/—A) is bounded on LP(Ry,L?(N)), for 1 < p < oo.

Proof. We use the formula

(6.2) %(tz“JzH(t)\)) = A (tN T

which follows from [13, 7.2.8(50)].
Therefore integration by parts yields

!
/K',(t)Jz(t)\)tZ+1dt = _)\! / K Et) Jo1 (EN 24,
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and if we define Ax(t) = t~1&/(t) and iterate we obtain

m(A)

% / k() cos(t\)dt

= \/g/\l/z/n(t)J_l/z(t/\)t_é“dt

(6.3) = (—Dﬂ/@““ / ALk(t) Jgo1 2 (EN)EE 2+ dt,

We use (6.3) for £ = N. Since (t\/—A)%*NJNfé(t\/—A) is uniformly bounded on L*°(L?) by Theorem
1.2 and therefore on all LP(L?), 1 < p < oo, we see that the condition

(6.4) / 2N AN o(4)]dt < o0

implies that m(v/—A) is bounded on LP(L?). By induction one checks that
l . .
PN R(t) = cj et 69 ()
j=1

for suitable constants c;¢. This completes the proof. O

Let L? denote the standard L? Sobolev space. Applying the Cauchy-Schwarz inequality and
Plancherel’s theorem we see that

/ 16769 (t)] < Calls'mllp2 ), if @ >j+1/2.

By scaling we obtain

Corollary 6.2. Suppose that m is even and supported in [—a,a]. Let a« > N + 1/2, where N is as in
Lemma 6.1 and assume m € L%. Then m(v/—A/t) is bounded on LP(R*, L2(N)), 1 < p < oo, with operator
norm < C(a)||lm||zz .

This result is convenient but far from being sharp (compare Theorem 6.4 below).

As mentioned in the introduction one can prove local smoothing results for the wave operator in the
range p > 2n/(n—1). To deduce this from Theorem 1.2 we have to use the standard asymptotic expansion
for the Bessel functions ([13, 7.13.1(3)]), namely for z > 1

M1 M-1
(6.5) (7r/2)1/2J,Y_1/2 (z) = Z Cjy cOs(x —ym/2)z 2712 4 Z dj sin(z —ym/2)z 232 £z~ MR, (z)
Jj=0 j=0

where ¢y = 1 and the derivatives of R, are bounded functions in [1, co].
Corollary 1.4 in the introduction follows from (i) and (ii) of the following

Proposition 6.3. Suppose p > 2n/(n—1) and a >n(1/2—-1/p) —1/2.
(i) Let ma i (N) be one of the multipliers (1+12X2)~%/2 cos(tA) or (1+t2X2)~(@=1/25in(t)\)/(t)\). Then

2T

T 1/p
(57 [ Imest V=31 0a) " S [l
T
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(ii) Let B be an even C™ function with compact support in R\ {0}. Let R > 1. Then for e > 0 and
2n/(n—-1)<p< oo

1

(6. (o | 180/ Bycosry=iglgaar) < =D )

Proof. (i) Choose 7, 1 so that n(1/2 —1/p) — 1/2 < v < 5 < a. We write out the asymptotic expansion
for J,_1/2 and J,_; /5 simultaneously. Then for large o

60 5 (Iie)) = (omlmls) om0 (537 + R

where the entries of the matrix Q(n,~,0~!) are polynomials of c~! with no constant terms; moreover
R(o) = O(|o|=%) for large N and the same holds for its derivatives of order < N. Clearly I — Q(n,~,07!)
is invertible for large o and there is o9 = 0g(n,y) > 1 so that for ¢ > g each entry a;;(o) of the inverse
satisfies |a;;(0)| < C and |a(k)( )| € Cro~t7F for k> 1.

Let w be an even smooth function on R, so that w(c) = 1 if |o| < 209 and w(s) = 0 if |o| >
40¢. Tt follows from Corollary 6.2 that the operators w(v/—A)(I — A)~%/2 cos(v/=A) and w(v/—A)(I —
A)~(@=2)/25in(y/=A)//=A are bounded on all LP(L?) and the same applies to their dilates.

Inverting (6.7) we see that for large M > 0

(1= w(0)) cos(o) = (1 - w(0)) [@n(a)‘]’;%/f/(f) - ww(a)ﬁ%/f/(f) +1(0)]

where @, is a symbol of order  and ¥, is a symbol of order vy, the bounds being depending on both 7
and v, and r is a symbol of degree —M. Moreover (1 — w(v/—A))r(v/=A) is bounded on all LP, since
it can be written as a converging sum of dilates of multipliers that fall under the scope of Corollary 6.2
(alternatively apply Lemma 6.1).

For k > 1 let wy(0) = w(27%0) — w(27**1s). By Corollary 6.2 and scaling we see that the operators
wi, (tvV/=2)®, (tv/=A)(I — t?A)~*/? and wk(t\/—) L(tv/=A)(I — t?A)~*/2 are bounded on LP(L?) for
all p € [1, oo] with operator norm bounded O(2 (e~ ")) and O(2*@=7)), respectively. From this and
Theorem 1.2 the assertion for (I — t2A)~%/2 cos(tv/—A) follows immediately by summing over k.

The other assertions are proved analogously. In particular, (ii)/(6.6) follows by observing that, by
Corollary 6.2, B(y/(—A)(1+72(—~A))*/? is bounded on LP(L?), with operator norm of order (7*) < O(T®),
w1tha—n(%—l)—%+e. O

We now proceed to prove a version of Theorem 1.6 on general conic manifolds.

Theorem 6.4. Suppose that m is compactly supported in [R~1, R], for some R > 0 and that % <p<oo.
Assume that

(6.8) ([ 1meia+ne)” ca<o,  y>@-ni-b

Then there is a constant C. g independent of A so that m(v/—A/t) is bounded on LP(Ry,L*(N)) with
operator norm < Cy rA.

Proof. We extend m as an even function to R. By decomposing the multiplier and scaling we see that
the theorem follows from the special case where ¢ = 1 and supp m C [1,2]U [-2, —1]. Let 8 be a smooth
even function with compact support so that 8(s) =1if 1/8 < |s| < 8 and §(s) = 0if |s| ¢ (1/16,16).
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Let Iy = [-1,1] and I}, = [2F, 2kt u[2=%—1 27*] for k > 0. Choose § > 0 so that (n—1)(1/2—1/p)+4d <
7. Then

(/=D 2 = | [ ) costrv =R/ =Rpar|
%/|m )||| cos(r )B(V=A)fllp2dr

o

<y jf apar)” ( jf | costrv/=R)BV/=Df )"
P

52:MM—1—H+>/ﬁm war) 151,
k=0
69 < CAlfll

where the third inequality follows from Proposition 6.3, part (ii). O

Proof of Theorem 1.6. Assume that K is radial and K is supported in Q, where Q0 is a compact subset
of R" \ {0}. The Fourier transform of K is radial and we write K (£) = (|§ ).

The assertion of Theorem 1.6 follows from Theorem 6.4 and duality once the inequality

b 1_1 1/p 1/p
(6.13) (/R DG4 ) par ) SC’R</|:C|E”|K(3:)|”d:c)

is proved for 1 < p < 2.
We now prove (6.13). Choose x € C§° radial such that x = 1 on the support of K and 0 ¢ supp x.

Then
:/m®fm®
— e [ KON e g
/K / (©) e[ e +EN g gy

=/K(:L')/ n(g)e_igr/ e~ @0 49 dp da,
0 §n-1

where ¢,, denotes the surface measure of the unit sphere in R” and € C§°(R) is supported away from the
origin.
Now, by the stationary phase method (or the asymptotics of Bessel functions),

[ e = 3 as(alaeti,
Sn—1 +

where a4 is a symbol of order —251 on R. Thus

=3 [ K@) [ ne)as(elehe= T D dgda.
;/ x/ngaig|w|e odz
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Because of the support property of 77 and the estimates which symbols satisfy, the inner integral is bounded
by

_n—1
|z~ =" w(r F |=]),

where w is even and satisfies w(s) = O(|s|~"V) for every positive integer N. Thus, if |K(z)| = x(|z|), then

m(r)l SZ/IK(m)I o]~ w(r + |z])da
+

<3 / K(0)e T w(r + g)do
+

= Z(n . QHT_I) *w(x£r).
+

Now let a = (n — 1)(1/p — 1/2) + € and estimate

1/p

(/| (k-0"T *w(:(:r)|pr“pdr)

S /w /|/—c r— — p|(n71)/2dp|p7«apdr)1/p

s [wl(f '“(r)'p’("T_l+“’”dT)l/p+p“ / s ear) o
/|’*Z j|pr(=Eta) ”dr / | (r |pdr /”

since w is rapidly decreasing.
Now we use that %(7) is compactly supported in {7 : |7| < R} (see e.g.[38]) to deduce that

(f wowar)” sou( [, worar)”

and the right hand side is dominated by

n—1 1/
R)( / rprerar) " = o(r / K (@) PlafPdz)

which yields (6.13). O

Remark. An alternative proof can be based on arguments in [28].

Appendix: Uniform estimates and asymptotics for Legendre functions

A1l. Some asymptotics for oscillatory integrals. In this section we recall the asymptotic behavior of
certain oscillatory integrals with fractional singularities. For a slight variant one may consult Erdelyi [12].
The result is based on formulas for the Fourier transforms of distributions x% ' defined for Re(z) > 0 as
functions by x5~ (z) = (I'(2)) 127" where 23" equals 2°~! if z > 0 and equals 0 if z < 0; moreover

x*"'(z) = (T(2))"*2*~! where 2°~" = (—z)%~'. The Fourier transform of x5~ is given by

(A].].) e:Fi”z/2(£ F Z‘O)*Z — e:Fiﬂ’Z/2£;Z + e:l:i7rz/2£:z7
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see [16]. We shall need to consider the Fourier transform of a localized version of x5 ' and use its asymptotic
behavior. Given a smooth function v with compact support we define

(A12) Pl a,X] = 067 = ) uet™) = o [ )5 - )t xas
(A1.3) Gilu, 0, X] = (° (- — a), uex X"y = ﬁ /'; u(s)(a— s)* et X ds.

The definition of x% ' can be extended by analytic continuation to all values of z (see e.g. [16, §3]).
Likewise this yields the extension of Ff and G% to entire functions of z. One obtains concrete formulas
for these extensions by integration by parts. In fact, for Re(z) > 0,

Filu,a,X] = /OO %(—1)m(%)m[u(s)eﬂsx]ds

m
(A1.4) => (m> eFim Tt Xmov petm () g X
14

v=0

and similarly

v

(AL5) -y (m) T TEY ymovatmy () o X

and, by analytic continuation, (A1.4), (A1.5) yield formulas valid for Re(z) > —m.

Notation: In this appendix let (o be an even C§°(R) function so that (o(s) = 1 for |s| < 1/4 and (p(s) =0
for |s| > 1/2, furthermore let (¢ (s) = (o(2 ¥s) —(o(2 ¥ +'s) for k > 1, so that > 4o, (x = 1. The parameter
b = Re(z) is always assumed to belong to a fixed compact interval [—bg, bo] for large by, and constants may
depend on by.

Lemma Al.1. Let z = b+ it and suppose that N > |b| + 3. Let u € CN*L, with compact support in an
interval I of length 1. Then

(AL6) |F2(u,0, X)| + |Gi(u, 0, X)| < O lullon+a (1 + 7))V HeF 7 (1 4+ X))~
For X > 1,

(A1.7.1) Fi(u,a, X) = u(a)et@X+33 X~ L R, (X, 2,a)

(A1.7.2) GZ(u,a, X) = u(a)eT X35 X2 L R, »(X,2,a)

where for j = 1,2

Rt (X, b+ i7,)| < Onllullow+ (14 [r)N P+ 2e BT x 01

Proof. The boundedness of F{ and G7 is clear for b > 0, we use the lower bound
(A1.8) IT(b+i7)| > Ce ™ /(7] +1)* /2,

(see [19]). For b < 0 the boundedness follows from formulas (A1.4), (A1.5); here we need the assumption
N > |b] + 3 (as opposed to just N > b+ 1 below).
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We shall prove the asymptotic formulas (A1.7.1/2) under the assumption Re(z) > 0. Again the case
where —m < b < —m + 1 follows by applying the formulas (A1.4), (A1.5) and the case Re(z) > 0.

(A1.7.1) and (A1.7.2) are equivalent as one can see by performing the change of variable s = 2a — ¢'.
Moreover by performing a translation it is sufficient to consider the case a = 0. We now examine the
function Fj, the term F? is dealt with in the same way. Let 4 € C§° be equal to 1 on the support of u.

Let ui(s fo (os)do. Since u(s) = 1 for s in the support of (o(X-) =1 — Y 2, ((X+) (with X > 1)
we may spht
u(s) = (u(0) + sua(s))u(s)

(A1.9) = u(0) + suq(5)(o(X s) Z Cr(X s)u(0)(1 —u(s)) + Z suy(8)Ck (X s)u(s)
k>1 k>1

Replacing u(s) in (A1.9) by 4(0) we can use (A1.1) to pick up the main term in (A1.7.1). If we replace u by
any other term on the right hand side of (A1.9) we get a contribution to the remainder term. Specifically,

o0
| @) xs)ids s x-0
0
and if we integrate by parts N times we see that
o0 .
‘ / 571 (5)C (Xs)ei’sxds‘ < Olullon+1 (1 + |2V 2FE- N0 x 0L,
0

We may sum in & since N > b+ 1, and also use the lower bound (A1.8). The other terms in (A1.9) are
handled similarly. This finishes the proof. O

Remark. We did not attempt to optimize the bounds in 7 and the dependence on N.

A2. Analytic continuation. We consider the function H, x as defined in (2.10) for Re(z) > 0. We will
discuss an analytic continuation, separately on the intervals (—1,1) and (—o0, —1).

Assuming Re(z) > 0 it is clear that H ) is a smooth function on (—1,1). We use integration by parts
to extend the definition of H » as a function on (—1,1) to all values of z € C. To accomplish this we
rewrite the defining integral assuming Re(z) > 0.

We set 4 = cosa, 0 < a < 7, and split

(A2.1) H,x(cosa) = Az (@) + Boa(a)

where

(A2.2) Ax / o(“=)(cos 8 — cosa)*—" cos(\8)d8
(A2.3) B, \(a) = ﬁ/o (1 —go( 6’))(coso—cosa)Hcos(/\o)dev.

Clearly B, x(«) is an entire function in z, and for each z the function B, x is smooth for « € (0, ).

Changing variables § = a — usin a we rewrite
A, \(@) = (sina)®~ 1 / Co(u 21 cos(AMa — u sin @) )du

1 : z— z—1 z— Sy o3
(A2.4) =5Z<fi“c“(5111<>z)2 Y, Goy(a, ) exp(FiAsin o))
+
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where
cos(a —usina) — cosa
Y(o,u) = —
usin®
u u? !
(A2.5) =1- 5 cosa— — sina/ (1 — s)?sin(a — susin a)ds
0

Now v(a,0)*~! = 1 and the C¥*! norm of the function (u,a) = y(a,u)*~* for (u,a) € [0,1/2] x R is
O(1 + |7|)N+1. By (A2.4) and §A1 the function A, ) can be extended to all values of z, as a smooth
function on (—1,1). This extends H, » to all values of z and yields a smooth function on (—1,1) which
depends analytically on the parameter z.

Similarly we may also extend H, x as a smooth function on (—oo,—1). We set —gp = cosha and
repeatedly integrate by parts using the adjoint of the operator (sinh s)~'d/ds to obtain

(A2.6)

_ mSin((z — A)m) /°° sym_1( 1 d coshs\m _y,
H, »(—cosha) = (—1) Trm) ). (cosh s — cosha) (sinhsds sinh23) e "ds.

This can be used to extend H, x as a smooth function on (—o0, —1) for Re(z) > —m.

A3. Oscillatory behavior of H .
In this section we examine the asymptotic behavior of H, x(u), for u € (—1,1), under the assumption
that \y/1 — u2 > 1.

Lemma A3.1. Let z = b+ i1 and assume Asina > 1. In the open interval (—1,1) the distributions
H, ) and H;’}\, defined in (2.10), can be identified with a smooth function whose asymptotic behavior is as
follows.

(i)
(A3.1) H x(cosa) = cos(Aa — L)X *(sin a4 R, ()
where
(A3.2) |R.A(@)] < Cp A7 (sina)? 2
(i)
(A3.3) (sin@)?*~! % [(sina)!~%*H, x(cosa)] = —sin(Aa — ZX)A1"*(sina)*~! + R, A(a)
where
(A3.4) IR, A(a)| < Cp A" (sina)’ 2.
Moreover
(A3.5) |H. \(cosa) —sin(Aa — ZE)A'*(sina)® 2| < Cp A "(sina)’ 2.

In the above estimates the numbers Cy . satisfy the estimates |Cy, | < Ap n(14|7)N 42T where N > |b|+3
is a positive integer and Ay n stays bounded if b and N > |b| + 3 are chosen in any compact interval.

Proof. We split H, x(cosa) = A, x(a) + B; x(a) as in (A2.2-3). We pick up the main term in (A3.1) by
considering A, x. Splitting cos(A(a — usina)) as the sum of two exponentials as in (A2.4) we may apply
Lemma A1l.1 to obtain the desired asymptotics (A3.1) for the expression A, () in place of H, y(cosa).
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To obtain an estimate for remainder term B, ), we use a further splitting and integrate by parts. The
argument is slightly different depending on whether o € (0,7/2] or a € (7/4,7).

We shall first assume that o € (0,7/2). Let (o,(6) = o(
that B, x(«) is a linear combination of terms
(A3.6)

Bjv(e) = {

a=0)). We use integration by parts to see
AN [7° sin(A0)0y[1 — (o,q(0)](sin 8)7 (cos )¢ (cos § — cosa)* 19 tdh  if N is odd
AN [7° cos(A0)FF[1 — (o,q(0)](sin )7 (cos 6)¢(cos § — cosa)* 19 ¢dh  if N is even

with the additional specifications that j + 2/ 4+ v < N and that j > 1 if N is odd and v = 0. The latter
condition implies that no boundary terms are picked up at § = 0. In the above integrals | cosf — cosa| ~
(sin @)? and therefore '
|Bjew(@)] S (L4 [2)N (1 + XN (sin)® 177777
where j + 20 + v < N. Choosing N > b+ 1 shows that Bj,, = O((1 + ) * !(sina)’2).
Let us now assume that a > 7/4. Let w be smooth so that w(d) =1 if § < n/16, and w(f) = 0 if

§ > m/8. For k > 1let (x(s) = (o(27Fs) — (o(2'*s) and observe that w(6)(o(22)) vanishes for all 6 if
a > w/4. We may therefore split

(A3.7) Boa(e) =) In(e) + I1(a)
k>1
where
(A3.8.1) L(z)Ix(a) = /a(l - w(0))§k((:,_ 0)(cost9 —cosa)® ! cos(\9)db,
0 ina

«
(A3.8.2) T(2)I1(a) = / w(8)(cos 0 — cos @)™ cos(A9)df.
0
The term IT(a) is handled by a straightforward integration by parts argument; as above one sees that
no boundary terms are picked up at 0 and the result of the computation is
(A3.9) [II(e)] < On(1L+ |7V A + 1)

which is a favorable estimate since Asina > 1.
For the terms I we use integration by parts as well. Let

a—10
Goa®) = G2 (1 (o).
We then see that I}, is a linear combination of terms of the form Iy ;» , where
(A3.10) _ .
; @) { (L+X)"N [57 sin(A)0Y (ko (0) (sin )7 (cos 0)(cos § — cosa)* 179-¢df  if N is odd,
j v Q) = 00 . ; ; . .
kb (T4 XN [ cos(A)Dy Ck,a (8) (sin 6) (cos 8)  (cos§ — cosa)*~17I7¢df  if N is even,

and where j +2/+v < N.

For the integration by parts observe that the amplitudes of the integrals are supported away from the
endpoints. One uses that | cos@ — cosa| & (2¥ sina)? if |§ — a| ~ 2¥ sin o and obtains the estimate

(A3.11) L jew()] < (1+[2))Y AN (28 sin )2 1772,

We sum and estimate using the restriction j + 2¢ + v < N. The sum (1 + |7[)~ 2 0<2k<sn/sina kil
is then controlled by either (1 + A~ or (1 4+ X)"Nlog(2 + (sina)™') < (1 + A)"Nlog(2 + A), or (1 +
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A) N (sina)?* 1~V depending on the sign of the exponent 2b — 1 — v — j — 2. If we choose N > b we
obtain the bound

> ] <A+ 2N A+ M) "b(sina)’ 1 (1 + A) sina)®~V.
0<2k <87 /sina

This finishes the proof of (A3.1/2).

We now turn to the estimates for the derivatives. The derivative of the main term in (A3.3) is given
by

% ((Sin a)172zAz,a(a)) - _ I1(1‘7) /000 Co(u)y(a,u)* tu* L sin(A(a — usina)) (A — Aucos a)du
(A3.12) .
+ _zr(z)l /0 Co(u) —gl (o, u)y(e, u)* 2! cos(A(a — usina))du := Azai(a) + A, xa(a).

We apply Lemma Al.1 to the term A, » 1 and pick up the main term in the asymptotic formula in (A3.3).
Applying the same argument to the second term A, ), and using (A2.5) we see that A, »2(a) can be
subsumed under the remainder term in (A3.3/4).

The derivatives of B, are estimated in the same way as B, itself; for the corresponding terms I},
the differentiation introduces factors which are all O((sina) 1), and this is acceptable for (A3.3). Using
both the asymptotics (A3.1) and (A3.3) yields an asymptotic formula for 0, (H x(cosa)) from which the
asserted formula (A3.5) follows. O

A4. Estimates for the nonoscillatory terms. We begin by recalling the asymptotic behavior of the
Legendre functions near the singularities.

Lemma A4.1. (i) Suppose z = b+iT and b > 1/2. Then H, ) extends to continuous function on (—oo, 00);
i particular

(A4.1) lim I, () = £ 2:)1;((2 13))

=

(i) Hy \ has a jump discontinuity at p =1 and

. P
(Ad:2) Jim Hy o\ =4 /3
(i3) H 1A has a logarithmic singularity at p = —1; moreover
(A4.3) lim [H () + <O 1001 + ul)] —AF
u——1+ 354 V2 A
where
_ T .
(A4.4) N —\/;sm()m)

and vy = —(2m) /2 cos(Am) (T (A + 1y —¥(1) —log2); here & =T"/T.

Proof. We use the description of H, , in terms of Legendre functions of the first and second kind. Precisely,
using the notation and fonts of [13], 3.7(27) and 3.7(4),

2 1_
\/§(1—,ﬂ)a—%P§7§(u) if —l<p<l

(A4.5) Hoa(p) = o
V2rsin(zm — Am)(p? — 1)3—aelz—3)m Q;i%(—p) if p<—1.
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This is derived in [22]; alternatively one may also consult Watson’s monograph ([40, §13-46, (4), (5)])
and use ([13, 3.7.4 (27), (4)]), keeping in mind that the definition of the second Legendre functions @, ler/IQ/ 2
in [40, 5-71] differs from the definition in [13, 3.3.1 (4)].

The following references concern the limiting behavior of Legendre functions as ¢ — £1 and refer to
formulas in [13]. For (i) we use 3.9.2(14) and 3.9.2(6), for (ii) we use 3.9.2(8). For (iii), for the behavior
as p /' —1 we use 3.9.2(7). As pointed out in [13] the behavior as p \, —1 can be derived from 3.4.14 and
3.9.2(8,11); the resulting formula 3.9.2(15) in [13] contains a misprint as the Euler constant there should
be multiplied by 2. O

We shall need uniform estimates for H, y and its derivatives near the points £1.

Lemma A4.2. Suppose that —1 < p <1 and z=>b+ir. Fiz A > 5/2. Then the following estimates hold
if A> m|b| +5/2.
(i) Suppose that b > 1/2. Then

(1— p2)b—2 if A 2<1, 0<p<l,
(A4.6) |H, 2 (1) < C1(A4,0)e?™ x  (1+ )1 - p2) if A 2>1, -l<p<l,
(14112 if A 2<1, —-1<p<O.
(i) Suppose that b =1/2. Then
1 if A 2<1, 0<p<l,
(A47)  |Hoa(p)] < Ca(A)e? x { (1 4+ N)1/2(1 — p2)- 1 if A 2>1, —-l<p<l,
log((2+ N)~1(1 — p?)~1/?) if A 2<1, —1<p<0.

(#1i) Suppose that b < 1/2 and —1 <y <1. Then

(A48) oA (1)] < Cs (b, A)e™

b—1

y (1—p2)t3 if A 2 <1,
A+ N"1—-p?)= if A 2>1.

Proof. The statements for Ay/1 — u2 > 1 follow from Lemma A3.1. Therefore, in what follows we assume
A1 — p? < 1. We use the decomposition (A2.1).

We first consider the region —1/8 < p < 1, in which « := arccosp satifies 0 < a < 3w/4. Then the
bound A, (o) = O(sin@)?* ! is immediate from (A2.2) and likewise we obtain the same estimate for B,
from the definition.

Now assume that Asina < 1 and « is near 7, hence p near —1. The bound for the term A, ) is as
above. To estimate B, x we have to examine the terms Iy, IT in (A3.8). Notice that in the integrand of I},
we have cosf — cosa ~ 22F (sin a)? so that

(A4.9) [T | < 2020~ Dk (sin )20~ 1

We use this estimate only for 28 < (A + 1)sina) ! and see that the sum over these terms is bounded by
C(L+ X2 if b > 1/2, by Clog(((2+ M) sina)~ 1) if b = 1/2 and by C(sina)? ! if b < 1/2. The sum
over the terms I with 2¥ > ((A + 1)sina)™! is handled by integration by parts exactly as in the proof of
Lemma A3.1. The same applies to the term IT (if A > 1).

The bounds in 7 follow from the lower bound for the I" function stated in (A1.8). O
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Lemma A4.3. Suppose thate >0, z=b+ir, A>2n(|b| +1/2), and A >b—1+c¢.
(i) If p < —2 then

(A4.10) |Ho ()] < Cle, b, A)eT(14 X)L

(i) If 2 < pu < —=1—=(A+1)"2 then

(A4.11) |H. A (1)] < Cle,b, A)er™(1+ N)b(u> — 1) T e W1,
(ii5) If =1 — (A +1)"2 < pu < —1 then
(1+X)=2 ifb>1/2,
(A4.12) |H. A(1)] < Cle,b, A)e?™ x { log((2+ N /2 — 1)) ifb=1/2,
(2 —1)b-2 fO<b<1/2.

Proof. We set yp = —cosha, a > 0. Observe that for s > a

52 —a? ifa<l, s<2,
cosh s — cosha = sinh(2£2) sinh(252) ~ eF(s—a) ifa>1,s<a+l,
e’ if s>a+1.

We assume that Re(z) > 0. We replace z by b and then have to estimate integrals with positive integrand.
After some lengthy but straightforward estimates we see that H, y(— cosha) is O(A\~be~(A=t+Da) if g > 1
and O(A\ba’~le ) if (A+1)"! <a < 1. If0 < a < (A\+1)~! one obtains that H, (- cosha) is O(A}~2?),
O(log((A + 1)a)~1) or a?*~! in the cases b > 1/2, b= 1/2 and 0 < b < 1/2, respectively. These estimates
imply (i), (ii) and (iii), for the case b > 0; the exponential bounds follow from (A1.8) and the obvious
upper bound for the coefficient sin(zw — Aw) in (2.10). The same argument applies to the case Re(z) > —m
if we use instead the formula (A2.6). O

We remark that the estimate (A4.6) for A\\/1 — p2 <1 and p — 1— can be slightly improved, if b < 1/2.
Moreover the bounds for 4 — —14 can be replaced by asymptotic expansions. Now these improvements
are only needed in this paper for the case z = —1/2, and in this case the corresponding statements have
already been proved by Lindblad and Sogge [21]. The estimates there are stated only for integer values of
A but the analysis can be carried out for general A > 0.

We will therefore just quote the estimates from [21]. First

(A4.13) |H3 ()] S (1+X)?2 if A/1—p2<1,u>-3/4.
Next, for the asymptotic behavior at 4 = —1 it is natural to define
=N log(|1 + pl)

The function H \ satisfies

dH)
dp

see §7 of [21]. Estimate (A2.17) can be complemented by a statement of uniformity in the limit (A4.3),
namely

(A416)  |Hx(p) + cos(Am)(2/m)?log(A\+ 1)| < C i A1+ p[ S1,p€ (-2,-1) U (-1,-1/2);

here C is independent of A and u. We shall omit the proof of (A4.16) as this statement does not explicitely
enter in our analysis.

(A4.15) ()| SONPIL— 27/ i pe (2,1 U(-1,-1/2);



REGULARITY PROPERTIES OF WAVE PROPAGATION ON CONIC MANIFOLDS 59

A5. Proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. By (2.12)
— n=38 _ntl
K,\('L’,T’, P) = (7'-/2)1/2K—1/2,/\(t7 T, P) = _(277) 1/2tp =r 2 HIA(N)

where Hy := Hy/, 5 and H) denotes the derivative in the sense of distributions. Let H A be as in (A4.14)
We denote by dgj, % the pointwise derivative of Hy and H) in R\ {—1,1}. Moreover let Hy(—1)
denote the right and left limit at —1, respectively (cf. (A4.3/4)).

Set ¢Mp) := ¢((1 4+ N)+/|1 — p2[). We write with ¢ € C$°(R)

(H, 6) = / / / / (1) + Ha(u)(1 — () ¢ (w)dp

In the integrals over (—1,0] and [-2, —1) we split Hy = Hy + ¢ log|1 + p| where ¢y = (2r)~1/2 cos(Ar).
Integration by parts yields

(1, 0) = - B 000 + 10 060) + [ [+ %
I:dH)\ C’\

I:dH,\

] P(p)dp

dgA
du ]¢(u)du
dg*

du

- IOCO90) + T(-1 006D + [

~ (1)) + B2 202 + [ [0 4 1,5

0 —1+4¢

— lim (exlog(1+p))é(w)|  —exlog(I1 + u)p(x)
—14¢

ex¢(m) d¢
T ) [ﬁ +exlog(L+ ul) -] ok )du)

—2

A
IO + [ [T +Hfifu | 60y

+/ [dZA (1—¢M - (f;:]du)du-

Observe that all terms involving a derivative of (* cancel; thus after clearing the boundary terms we obtain

dH dH dH dH
Hy =21 - +=2 Pxon + =22 X (=2,0) + =22 X (= o00,—2)
(A5.1) dps dps dps dps
1 _
+ C)\CAP-U-X[—ZO)( )—— — Ha(1 = 0)6(1 — p) + (v —73)0(1 + p).

1+u

Since Hy(1 —0) = (7/2)'/2 and v} — v, = —(7/2)'/2sin(A7) we pick up Dirac measures of the form

(A5.2) .\ /%tp("—&/%—(%l)ﬂ\/g [—6(1 — p) — sin(A)3(L + )]

for the term (2.19). To express these in the form desired for (2.19) we rewrite §(1£u(t, r, p)) as distributions
acting in the p variable, for fixed r > 0, ¢t > 0. It is straightforward exercise in distribution theory to verify
that

51— plt,r, p)) = 8(Etl) = 20p5((t— 1 + p)(t + 7 — p))
(A5.3) - %(5(7: —r4p)+8(t+r—0p))
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and similarly

51+ p(t,r, p)) = %((5(/)— t+1)+0(p+1+1))
(A5.4) - ?(5@ —t+7),
since we assume t > (0. Moreover
1 2rp 2rp

(45.6) T+p (r+pP—8 (rHp+tp—t+r)

Using (A5.4-6) we pick up the terms in (2.19/20). For the term %(1 — (M)x(-1,1) in (A5.1) we use
(A3.5). The main term in the asymptotic in (A3.5) is sin(Aarccos p — 7/4)A/2(1 — u?)=3/* and since
sin(f@ — w/4) = — cos(6 +m/4) this yields the term (2.18). The remainder term in this asymptotic expansion
is subsumed under (2.21). The term dﬂ* (1 — ¢*)x(=2,-1) contributes to (2.21), the appropriate estimate
follows from (A4.11) and (2.13). The terms %(1 — (M) X(—o0,—2) and %C)\X(_Oo’_g) contribute to (2.22),
here we use (A4.10) and (2.13).

For the term dg} C}‘X(o,1) we use (A4.13), and for dﬁ* C)‘X(—z,o) we use (A4.15), both terms contribute
to (2.21). O

Proof of Theorem 2.2. This is analogous to the proof of Theorem 2.1; note that for the case b > —1/2 no sin-
gular terms occur at the boundary p = £1. We use Lemma A3.1 for the contribution of K, »(1 —C")X(,l,l),
We use Lemma A4.2 for the contribution of K, AC)‘X(_Qy_l) and Lemma A4.3 for the contribution of
Kz,)\X(—oo,—Q]- U
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